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—— Abstract

We study two variants of the fundamental problem of finding a cluster in incomplete data. In the
problems under consideration, we are given a multiset of incomplete d-dimensional vectors over the
binary domain and integers k and r, and the goal is to complete the missing vector entries so that
the multiset of complete vectors either contains (i) a cluster of k vectors of radius at most r, or (ii)
a cluster of k vectors of diameter at most r. We give tight characterizations of the parameterized
complexity of the problems under consideration with respect to the parameters k, r, and a third
parameter that captures the missing vector entries.
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1 Introduction

We consider two formulations of the fundamental problem of finding a sufficiently large
cluster in incomplete data [2, 3, 18, 24]. In the setting under consideration, the input is a
multiset M of d-dimensional Boolean vectors — regarded as the rows of a matrix, some of
whose entries might be missing — and two parameters k,r € N. In the first problem under
consideration, referred to as DIAM-CLUSTER-COMPLETION, the goal is to decide whether
there is a completion of M that admits a multiset of k vectors (which we call a k-cluster)
of diameter at most r; that is, a k-cluster such that the Hamming distance between any
two cluster-vectors is at most r. In the second problem, referred to as RAD-CLUSTER-
COMPLETION, the goal is to decide whether there is a completion of M that admits a
k-cluster of radius at most 7; that is, a k-cluster such that there is a center vector § € {0, 1}¢
with Hamming distance at most r to each cluster-vector.
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The cluster-diameter and cluster-radius are among the most widely used measures for
intra-cluster similarity [5, 8, 12, 15, 16, 17, 18]. Our interest in studying these problems
stems from the recent relevant research within the theory community [9, 14, 19, 20, 21], as
well as the ubiquitous presence of incomplete data in relevant areas, such as recommender
systems, machine learning, computer vision, and data science [1, 10, 11, 28].

We study the parameterized complexity of the above problems with respect to the two
parameters k, r, and a third parameter that captures the occurrence of missing vector
entries. Naturally, parameterizing by the number of missing entries alone is not desirable
since one would expect that number to be rather large. In their recent related works on
clustering problems, Koana, Froese, and Niedermeier [20, 21] restricted the occurrence of
missing entries by using the maximum number of missing entries per row as the parameter.
Another parameter for restricting the occurrence of missing entries is the minimum number
of vectors plus coordinates needed to “cover” all missing entries, which was proposed and
used by Eiben et al. [9] and Ganian et al. [14], who studied various data completion and
clustering problems. In this paper, we propose and use a parameter that unifies and subsumes
both previous parameterizations: the “deletion distance to near-completion”, denoted A(M),
which is the minimum integer p such that at most p vectors can be removed from M so that
every remaining vector contains at most p missing entries. Clearly, the parameter A(M) is
computable in polynomial time and is not larger than any of (and hence subsumes) the two
parameters considered by Koana et al. [20, 21], Eiben et al. [9], and Ganian et al. [14].

Results and Techniques. We perform an in-depth analysis of the two considered data
completion problems w.r.t. the aforementioned parameterizations. We obtain results that
provide a nearly complete complexity landscape of these problems. An overview of our
results is provided in Table 1. As a byproduct, our results establish that both problems
under consideration are fixed-parameter tractable parameterized by k 4+ r when the data is
complete, which answers an open question in the literature [2, 3].

Table 1 Overview of the results obtained in this paper.

k r k+r k+ A r+ X k4+r+A

Diam-CLUSTER-C.  W[1]-h/XP paraNP-c W[1]-h/XP WI[1]-h/XP FPT  FPT
RAD-CLUSTER-C.  W[1]-h/XP paraNP-c W[1]-h/XP ~ ?/XP  ?/XP  FPT

We summarize the new results obtained in this paper below.

1. We show that DIAM-CLUSTER-COMPLETION is fixed-parameter tractable (FPT)
parameterized by r + A(M) (Theorem 9). The significance of the above result is in
removing the dependency on the cluster size k in the running time of the algorithm, thus
showing that finding a large cluster in incomplete data can be feasible when both the
cluster diameter and the parameter \(M) are small. This result is the pinnacle of our
technical contributions and relies on two ingredients: a fixed-parameter algorithm for
the same problem parameterized by k + r + A(M) (Theorem 1), which is then used as a
subroutine in the main algorithm, and a new technique that we dub iterative sunflower
harvesting. Crucial to this new technique is a general structural lemma, allowing us to
represent a family of sets in a succinct manner in terms of sunflower cores, which we believe
to be interesting in its own right. We note that the use of sunflowers to obtain a succinct
set representation (leading to a kernel) is not uncommon in such settings [20, 21, 22, 25].
What makes the sunflower harvesting technique novel is that it allows us to (1) show
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that each solution can be covered by a small number of sunflowers, and to (2) iteratively
“harvest” these sunflowers to obtain a solution in boundedly-many (in the parameter)
branching steps.

2. We give an XP-algorithm for D1AM-CLUSTER-COMPLETION parameterized by k alone
(Theorem 10). Together with Theorem 11 (showing the W[1]-hardness of DIAM-CLUSTER
w.r.t. k) and Theorem 12 (showing the W[1]-hardness for DIAM-CLUSTER-COMPLETION
w.r.t. k even for r = 0), this gives a complete complexity landscape for D1IAM-CLUSTER-
COMPLETION parameterized by any combination of the parameters k, r, and A\(M).

3. We show that RAD-CLUSTER-COMPLETION is FPT parameterized by k + r + A(M)
(Theorem 15); this result answers open questions in the literature [2, 3], which asked
about the fixed-parameter tractability of the easier complete version of the problem (i.e.,
when A\(M) = 0).

4. We provide an XP-algorithm for RAD-CLUSTER-COMPLETION parameterized by r + \(M)
in which the degree of the polynomial in the runtime has only a logarithmic dependence
on r (Theorem 16). We remark that the problem is in XP parameterized by k alone
(Observation 13).

5. We provide an accompanying W/[1]-hardness result for RAD-CLUSTER-COMPLETION that
rules out its fixed-parameter tractability when parameterized by k 4+ r (Theorem 12).
Since the problem is NP-hard for fixed r (as also follows from Theorem 12), this leaves
only two questions open for the considered parameterizations: whether RAD-CLUSTER-
COMPLETION is FPT when parameterized by either k + A(M) or by r + A(M).

6. We give an FPT-approximation scheme for the optimization version (w.r.t. the cluster
size) of RAD-CLUSTER-COMPLETION.

Related Work

The RAD-CLUSTER problem (i.e., RAD-CLUSTER-COMPLETION for complete data) and
variants of it were studied as early as the 1980’s, albeit under different names. Dyer and
Frieze presented a heuristic algorithm for approximating a variant of RAD-CLUSTER, referred
to as the p-CENTER problem, where the goal is to compute p € N clusters, each of radius
at most r, that contain all vectors of M; hence, RAD-CLUSTER corresponds to the case
of p-CENTER where p = 1 and k = |M| (i.e., when the cluster contains all vectors in M).
Cabello et al. [4] studied the parameterized complexity of the geometric p-CENTER PROBLEM
in R?.

Frances and Litman [13] studied the complexity of RAD-CLUSTER with k& = |M]|, in the
context of computing the radius of a binary code; they referred to it as the COVERING RADIUS
problem and showed it to be NP-hard. Gasieniec et al. [15, 16] studied (the optimization
versions of) RAD-CLUSTER and D1AM-CLUSTER with k = | M| and obtained polynomial-time
algorithms as well as lower bounds for a number of cases. They also obtained 2-approximation
algorithms for these problems by extending an earlier algorithm by Gonzalez [17].

The RAD-CLUSTER problem restricted to the subcase of k = |[M| was also extensively
studied under the nomenclature CLOSEST STRING. Li et al. [24] showed that the problem
admits a polynomial time approximation scheme if the goal is to minimize r. Gramm et
al. [18] studied CLOSEST STRING from the parameterized complexity perspective and showed
it to be fixed-parameter tractable parameterized by r. Following this naming convention,
Boucher and Ma [2], and Bulteau and Schmid [3] studied the parameterized complexity of
RAD-CLUSTER under the nomenclature CLOSEST STRING WITH OUTLIERS. They considered
several parameters, including some of the parameters under consideration in this paper.
Notably, the restriction of our fixed-parameter algorithm for RAD-CLUSTER parameterized
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by k + 7+ A to the subcase where A = 0 answers an open question in [2, see, e.g., Table 1].
Moreover, our XP algorithm for RAD-CLUSTER-COMPLETION provided in Theorem 16 that
has a run-time in which the degree of the polynomial has only a logarithmic dependence
on 7, immediately implies an algorithm of the same running time for CLOSEST STRING WITH
OUTLIERS, as a special case.

For incomplete data, Hermelin and Rozenberg [19] studied the parameterized complexity
of RAD-CLUSTER-COMPLETION for k = |M| under the nomenclature CLOSEST STRING
WITH WILDCARDS problem, with respect to several parameterizations. Very recently, Koana
et al. [20] revisited the earlier work of Hermelin and Rozenberg [19] and obtained, among
other results, a fixed-parameter algorithm for the problem parameterized by r plus the
maximum number of missing entries per row. Even more recently, the same group [21] also
studied a problem related to DIAM-CLUSTER-COMPLETION for k = |[M|. They obtain a
classical-complexity classification w.r.t. constant lower and upper bounds on the diameter
and the maximum number of missing entries per row.

2 Preliminaries

We assume basic familiarity with parameterized complexity, including the classes W[1], FPT,
XP, as well as Turing kernelization and FPT-approximation schemes [7, 6, 27].

Vector Terminology. Let @ and b be two vectors in {0,1,0}%, where 0 is used to represent
coordinates whose value is unknown (i.e., missing entries). We denote by A(d, 5) the set of
coordinates in which @ and b are guaranteed to differ, i.c., A(a@,b) = {i | (@[] = 1 A bJi] =
0) v (@i] = 0 Ab[i] = 1)}, and we denote by 8(@,b) the Hamming distance between @
and b measured only between known entries, i.e., |A(@,b)|. Moreover, for a subset D’ C [d]
of coordinates, where [d] = {1,...,d}, we denote by @[D’] the vector a restricted to the
coordinates in D’.

There is a one-to-one correspondence between vectors in {0, 1}¢ and subsets of coordinates,
i.e., for every vector, we can associate the unique subset of coordinates containing all its
one-coordinates and vice-versa. It will be useful to represent a vector by the set of coordinates
where the vector has the value 1. We introduce the following notation for vectors to switch
between their set-representation and vector-representation. We denote by A(@) the set
A(0,@). We extend this notation to sets of vectors as follows: for a set N of vectors in
{0,1,0}4, we denote by A(N) the set { A(¢) | 7 € N }. We say that a vector @ € {0,1,0}¢
is a t-vector if |A(@)| =t and we say that @ contains a subset S of coordinates if S C A(d).

We say that a multiset! M* C {0,1}¢ is a completion of a multiset M C {0,1,0}¢ if
there is a bijection o : M — M™* such that for all @ € M and all ¢ € [d] it holds that either
@[i] = O or a(@)[i] = @li]. For a multiset M of vectors over {0,1,0}¢, we let the deletion
distance to near-completion, A(M), denote the minimum integer such that there exists a
subset Djy; C M with the following properties: (a) |Dps| < A(M), and (b) every vector in
M \ Dy contains at most A(M) missing entries. We call Dys the deletion (multi-)set, and
observe that A(M) along with a corresponding deletion set can be trivially computed from
M in linear time.

A sunflower in a set family F is a subset 7/ C F such that all pairs of elements in
F' have the same intersection. We will say that a multiset P is a DIAM-Cluster (or |P|-
DIAM-Cluster) if 6(p,§) < r for every pair p,¢ € P. Similarly, P is a RAD-Cluster (or
| P|-RAD-Cluster) if there exists a vector ¢ € {0,1}¢ such that §(¢,p) < r for every p'€ P.

1 We remark that, in the interest of brevity and when clear from context, we will sometimes use standard
set notation such as A C B in conjunction with multisets.



E. Eiben, R. Ganian, I. Kanj, S. Ordyniak, and S. Szeider

In all problems under consideration, the input size is considered to be |M], i.e., the size
of the matrix including multiplicities.

3 Finding a DIAM-Cluster in Incomplete Data

In this section, we present our results for DIAM-CLUSTER-COMPLETION. Our main
algorithmic results are that DIAM-CLUSTER-COMPLETION is FPT parameterized by r + A(M)
and is in XP parameterized by k alone. Together with Theorem 11 (showing the W/[1]-hardness
of DIAM-CLUSTER parameterized by k) and Theorem 12 (showing the W([1]-hardness of
D1aM-CLUSTER-COMPLETION parameterized by k even for r = 0), this gives a complete
complexity landscape for DIAM-CLUSTER-COMPLETION parameterized by any combination
of the parameters k, r, and A(M).

3.1 DiAM-CLUSTER-COMPLETION Parameterized by k + 7 + A(M)

We start by showing that D1AM-CLUSTER-COMPLETION parameterized by &k + r + A(M)
is FPT. We will later show a stronger result, namely that the same result already holds if
we only parameterize by r + A(M). Showing the weaker result here is important for the
following reasons: (1) we use the algorithm presented here as a subroutine in our result for
the parameterization r + A(M), (2) the techniques developed here can also be employed for
RAD-CLUSTER-COMPLETION, and (3) we obtain a Turing kernel of size polynomial in k.

The main approach behind the Turing kernel is to guess two vectors of maximum distance
in the desired cluster. This will allow us to pre-process the instance such that if the resulting
instance contains too many vectors, then it has a solution. Note that this approach only
works for the case that a solution contains at least two vectors from M \ Dy (recall that
Dy denotes the deletion set); otherwise, we can guess the at most one vector from M \ Dy
that is in the solution and remove all the other vectors from M \ Djy;. Therefore, in all cases,
we end up with a reduced instance with boundedly many vectors and we will then show that
we can remove all but boundedly many coordinates while preserving solutions.

» Theorem 1. DiAM-CLUSTER-COMPLETION parameterized by k +r + A(M) has a Turing-
kernel containing at most n = k3*2M)*7 L X(M) +2 vectors, each having at most max{r(n—
1)+ A(M), (,\(24)) (r4+1)} coordinates.

3.2 DiAM-CLUSTER-COMPLETION Parameterized by r + A\(M)

With Theorem 1 in hand, we can move on to establishing the fixed-parameter tractability of
D1aM-CLUSTER-COMPLETION parameterized by r + A(M). At the heart of our approach
lies a new technique for analyzing the structure of vectors through sunflowers in their set
representations, which we dub iterative sunflower harvesting. We first preprocess the instance
to establish some basic properties. We then show a general result about sunflowers that
allows us to derive a succinct representation of the solution cluster — in particular, this
guarantees that the hypothetical solution can be described by a bounded number of sunflower
cores. Finally, we proceed to “harvesting” these sunflowers cores using a branching procedure,
thus computing the solution cluster.

3.2.1 Preprocessing the Instance

Let (M, k,r) be an instance of DiaAM-CLUSTER-COMPLETION, let M* be a completion of
M that contains a maximum size DIAM-Cluster, and fix P* to be such a maximum size
DIAM-Cluster in M*. We also fix Dy to be a A(M)-deletion set. The goal of the algorithm
is to find M* and P*.

47:5
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If k < A(M) + 2, then we can use the algorithm in Theorem 1 to obtain a Turing kernel
whose size is a function of r + A(M), which, in turn, would imply that DiAM-CLUSTER-
COMPLETION if FPT parameterized by r + A(M), thus giving the desired result. We assume
henceforth that P* contains the completion of at least two vectors in M \ Dp;. We can guess
the subset Pr of Dj; that will be completed to vectors in P*, and restrict our attention to
finding a DIAM-Cluster in M \ Dy of size |P*\ Dys|. We will do so by enumerating all such
DIAM-Cluster’s in M \ Dj; and at the end check whether one of them, together with Pg,
can be extended into a DIAM-Cluster.

Therefore, we will focus on what follows on finding a cluster in M \ Dj;. We first guess
two vectors ¥ and @ in M \ Dy, together with their completions o* and @*, respectively,
such that ¢ and @* are both in P* and are the farthest vectors apart in P* \ Dy; fix
Tmax = 0(U%,@*). We remove all other vectors that can be completed into ¢ or @*, and

N

reduce k accordingly; hence, we do not keep duplicates of the two vectors that we already
know to be in P*. We then normalize all vectors in M so that ™ becomes the all-zero vector,
i.e., we replace ¥* by the all-zero vector, and for every other vector @ # ¥, we replace it
with the vector @’ such that @'[i] = 0 if v*[i] = W[i], &'[{] = O if W[i] = O, and @'[i] = 1,
otherwise. Finally, for each vector @ € M \ Dy, we compute the set A(w) of all completions
of w at distance at most ryax from both o* and @*. Note that A(w) can be computed in
O(2XM) . d) time for each vector in M \ Dy, where d is the dimension of the vectors in M.
We then remove all vectors o with A(w) = 0 from M \ Dyy.

We will extend the notation A(w) to Ac(w), for a multiset C' of vectors in {0,1}%, such
that Ao (W) is the set of all completions of a vector @ at distance at most rmax to all vectors
in C. We are now ready to show that after normalizing the vectors in P*, the multiset
P*\ Dy, satisfies certain structural properties that we refer to as an r-saturated subset (of
M*); these structural properties allow for a succinct representation of P*.

3.2.2 Sunflower Fields or Representing Sets by Cores of Sunflowers

In this subsection, we provide the central component for our algorithm based on the iterative
sunflower harvesting technique. Crucial to this component is a general structural lemma that
allows us to represent a family of sets in a succinct manner in terms of sunflower cores, which
we believe to be interesting in its own right. We first state the result in its most general form
(for sets), and then show how to adapt it to our setting.

» Definition 2. Let U be a universe, B a family of subsets of U and A C B. We say that A
is an r-saturated subfamily of B (for r € N) if the following holds for every t € N and every
sunflower S C A containing at least r + 1 sets of cardinality t with core C': A contains every
set B € B of cardinality t such that C C B.

Intuitively, this property states that A contains all sets in B which are super-sets of cores
of every sufficiently-large sunflower in A (with sets of the same cardinality).

The connection of this set property to clusters is as follows. We will show that every
maximal cluster is an r-saturated subset of M*. Since P* contains the all-zero vector v, any
vector in P* contains at most r ones. Fix ¢ € [r], and consider the set of all vectors in P*
containing exactly ¢ ones. The above notion will allow to draw the following assumption: if
the aforementioned set of vectors is large, then it must contain a large sunflower and all the
vectors in M whose completions share the core of this sunflower must be in P. This property
will subsequently allow us to represent every hypothetical solution using a bounded number
of sunflowers, as we show next.
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The crucial insight now is that every r-saturated subfamily containing only sets of bounded
size admits a succinct representation, where we can completely describe the set via a bounded
number of sunflower cores. This is made precise in the following lemma.

» Lemma 3. Let A and B be two families of sets of cardinality at most r' over universe U
such that A C B. If A is an r-saturated subset of B, then there is a set S of at most (rr’)rl
subsets of U such that A is equal to the set of all sets B in B satisfying that S C B for some
S € S. Moreover, for each set S € S, S is either the core of a sunflower in A with at least
r+1 petals, or |S| =1'.

We will now show how Lemma 3 can be employed in our setting. Let M, M’ C {0,1}¢
with M’ C M. Then M’ is an r-saturated subset of M if A(M’) is an r-saturated subset of
A(M). Herein, one can think of M as being (a part of) the input matrix and M’ as being
an inclusion-wise maximal cluster; we will later show that this property guarantees that
M’ is an r-saturated subset of M. Using this definition, the following corollary now follows
immediately from Lemma 3.

» Corollary 4. Let r',r € N and M, M' C {0,1}% be sets of r'-vectors such that M’ is an
r-saturated subset of M. There is a set S of at most (rr')" subsets of [d] such that M’ is
equal to the set of all vectors m in M satisfying S C A(m) for some S € S. Moreover, for

each set S € S, S is either a core of a sunflower in A(M') with at least r + 1 petals, or
|S| =7".

We now can show that after normalizing the vectors in P*, the multiset P* \ Dj; is an
r-saturated subset of M*.

» Lemma 5. Let (M, k,r) be an instance of DIAM-CLUSTER-COMPLETION, let M* be a
completion of M and let P* be a DIAM-Cluster in M* of mazimum size such that 0 € P*.
Then for every N C M*, P*\ N is an r-saturated subset of M*\ N.

Since P*\ N is an r-saturated subset of M*\ N, by Corollary 4, applied separately for
each 1’ € [r], there exists a set S = {(S1,71),...,(Se, 7o)}, with £ <37y (rr!)" < 2t
such that P* \ N contains precisely all the vectors @ in M*, such that for some (S;,7;),
i€, S; € A(W) and |A(W)| =r;.

We call the pair (S;,r;) an r;-center (of P*\ N in M* \ N). We say that a vector
@ € {0,1,0}% is compatible with r;-center (S;,r;) if there is a completion @* € {0,1}% of
w, called witness of compatibility, such that S; C A(w*) and |A(w*)| = r;. We say that
w € {0,1,0}% is compatible with S if it is compatible with some (S;,7;) € S.

The size of an r;-center is the number of vectors that are compatible with it in M.

Moreover, for a set S = {(S1,71),...,(Se,7¢)} and a multiset C of vectors from {0,1}%, we
say that S defines C| if every vector ¢ € C'is compatible with S and for every (S;, r;) € S there
is a vector in C' compatible with (S;,r;). We say that S properly defines C, if |S| < r?"+1 S
defines C, and for every (S;,r;) € S either:

|Si| = r; and the unique vector that is compatible with (S;, ;) is in C; or

|Si| < r; and C contains a set N of r + 1 r;-vectors such that A(N) forms a sunflower

with core S;.
Note that if every vector in C' has at most ryax 1’s, then since C' is an r-saturated subset of
C, it follows from Corollary 4 that there always exists a set S that properly defines C.

» Observation 6. Let C be a multiset of vectors from {0,1}¢, with maxzec |A(€)| < r. Then
there exists a set S of at most r?" 1 r;-centers that properly defines C.
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Suppose that we have a correct guess for S, then we can already solve the problem as
follows. For each (S;,r;) € S such that |S;| = r;, there is only one possible r;-vector that
contains S;. If our guess is correct, then P* contains at least one vector that can be completed
to this particular r;-vector, and by maximality of P*, P* has to contain all such vectors. If
(Si,r;) € S such that |S;| < r;, then P* contains a sunflower containing r;-vectors of size at
least 7 + 1 whose core is S;. Clearly, P* contains all the vectors that can be completed to an
ri-vector containing S;, since Lemma 5 holds for any completion M* of M that contains P*
as a subset. The following lemma shows that all such vectors can be completed arbitrarily
since all that matters is that their completion is compatible with S.

» Lemma 7. Let (M, k,r) be an instance of DIAM-CLUSTER-COMPLETION, M* a completion
of M, P* a DIAM-Cluster in M* of mazimum size with 0 € P*, and N C M*. If S properly
defines P* \ N, then for every pair of vectors Wy, ws € {0,1}¢ compatible with S it holds that
(5(1171, 1172) S r.

It is easy to see that there are at most d" ! choices for a pair (S;,7;) (i.e., a r;-center), and
2 gowT?) possible choices for the set S that properly
defines P*. This bound already implies an XP-algorithm. To obtain a fixed-parameter
algorithm, it suffices to find the correct guess for S in FPT-time, which is our next goal.

hence we have at most (d"™1)"

3.2.3 lterative Sunflower Harvesting

We are now ready to describe the iterative sunflower harvesting procedure, which allows us
to obtain the desired FPT-algorithm. Namely, we show that instead of enumerating all "
possible sets S of r;-centers to find the one that properly defines P* \ Dy, it suffices to
enumerate only f(r, A(M))-many “important” r;-centers for each choice of ¥* and @* (recall
that * and @* are the two fixed vectors in P* \ D), that were guessed), where f is some
function that depends only on r and A(M). Moreover, we can enumerate these possibilities
in FPT-time.

We compute S by iteratively adding r;-centers one by one. The main idea is to show that,
for any partial solution &', there is a bounded number of choices for the next 7;-center to
add. As a first step in this direction, the following lemma shows that for &', there is always
a “large” r;-center (S;,r;) that can be added to &', i.e., of size at least a (272" *1)-fraction
of the remaining vectors. Before we state the lemma, we introduce the following notations.
If 0 is compatible with S, we will denote by ¢ () the set of witnesses of compatibility for
@ and S. Recall that, for a vector @ € {0,1,0}% and multiset C' of vectors from {0, 1}¢,
Ac (W) denotes the set of all completions of vector & at distance at most ryax to all vectors
in C, i.e., maxzec{(C, Cw)} < rmax-

» Lemma 8. Let P* be a mazimum DIAM-Cluster in (M, k,r), S the set of r;-centers
that properly define P*\ Dy, and 8’ C S. Moreover, let C' be the multiset of vectors W
in M\ Dy with ¢S (@) # 0 and C the multiset containing a vector @, € ¢S (@) for every
w € C'. Finally, let M’ be the multiset consisting of all the vectors & € M\ (C'U Dyy) with
Ao (W) # 0. Then there exists (S;,r;) C S\ S’ such that at least (|[M']/2"mx — |Dyy|)/r?" 1
vectors in M' are compatible with (S;,r;).

Note that each normalised vector @ can be compatible with at most 2"t M) r;_centers
(Si,1i), since S; € A(w*) for some completion w* of w. Now it follows from a counting
argument that the number of large r;-centers is at most 27+AM) (2727 +1) = 92r+A(M)y.2r+1
and those can be enumerated in time O(2"+*™)|M|). By Observation 6, |S| and hence the

2r+1

depth of the branching algorithm, is at most r , which implies the following theorem.

» Theorem 9. DiaAM-CLUSTER-COMPLETION is fixed-parameter tractable parameterized by
T+ AM).
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3.3 DiAmM-CLUSTER-COMPLETION Parameterized by k

Here, we use an Integer Linear Programming subroutine to show that DiAM-CLUSTER-
COMPLETION parameterized by k is in XP.

Moreover, we also observe in Theorem 11 that, unless W[1]=FPT, this cannot be improved
to an FPT-algorithm even for complete data.

» Theorem 10. D1AM-CLUSTER-COMPLETION s in XP parameterized by k.

Proof. Let (M, k,r) be an instance of DIAM-CLUSTER-COMPLETION. The algorithm works
by enumerating all potential clusters C' of size exactly k, and then uses a reduction to an
ILP instance with f(k) variables to check whether C can be completed into a cluster. Since
there are at most |M|¥ many potential clusters of size exactly k, it only remains to show
how to decide whether a given set C of exactly k vectors in M can be completed into a
DIAM-Cluster. Let M¢ be the submatrix of M containing only the vectors in C. Then M¢
has at most 3% distinct columns, and moreover, each of those columns can be completed in
at most 2* possible ways. Let T be the set of all columns occurring in M¢ and for a column
t € T, let F(t) be the set of all possible completions of #, and let #(f ) denote the number of
columns in M, equal to ¢. For a vector f € {0,1}* (representing the completion of a column),
let T'( f) denote the subset of 7' containing all columns £ with f € F(t). Moreover, for every
i and j with 1 <i < j <k (representing the i-th and the j-th vectors in C'), we denote by
FD(i, ) the set of all vectors (completions of columns) f € {0, 1}* such that f[i] # fj].
We are now ready to construct an ILP instance Z with at most 3¥2% variables that is
feasible if and only if C' can be completed into a DIAM-Cluster. Z has one variable Ty F for

every t € T and every f eF (f) whose value (in a feasible assignment) represents how many

columns of type ¢ in M will be completed to f Moreover, Z has the following constraints:
One constraint for every ¢ € T stipulating that every column of type  in M¢ is completed
in some manner:

For every i and j with 1 <14 < j <k (representing the i-th and the j-th vectors in C),
one constraint stipulating that the Hamming distance between the i-th and the j-th
vectors in C' does not exceed 7:

>, wgpsh

feFD(i,j)teT(f)

This completes the construction of Z and it is straightforward to verify that Z has a feasible
assignment if and only if C' can be completed to a DIAM-Cluster. Since Z has at most 3%2F
variables, and since it is well known that ILP can be solved in FPT-time w.r.t. the number
of variables [23], Z can be solved in FPT-time w.r.t. k. <

» Theorem 11. D1AM-CLUSTER-COMPLETION is W[l]|-hard parameterized by k even if
A(M) =0.
We note that our second result also establishes the W[1]-hardness of RAD-CLUSTER-

COMPLETION (since both problems coincide when r = 0).

» Theorem 12. DIAM-CLUSTER-COMPLETION and RAD-CLUSTER-COMPLETION are both
WI(1]-hard parameterized by k even if r = 0.
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4 Finding a RAD-Cluster in Incomplete Data

In this section, we present our results for RAD-CLUSTER-COMPLETION. We will show
that RAD-CLUSTER-COMPLETION is FPT parameterized by k + r + A(M), and is in XP
parameterized by r 4+ A alone. Notably, the degree of the polynomial in the run-time of our
XP algorithm grows only logarithmically in r and the algorithm can be employed to solve
the CLOSEST STRING WITH OUTLIERS problem [2, 3].

Before proceeding to the main contributions of this section, we observe that, by combining
the trivial branching procedure, in which we branch over all sets of k vectors from M (where
in each branch we proceed under the assumption that all vectors outside of the set can be
deleted), with a previous result of Hermelin and Rozenberg [19, Theorem 2], which solves
the special case of RAD-CLUSTER-COMPLETION for k = | M|, we obtain:

» Observation 13. RAD-CLUSTER-COMPLETION parameterized by k is in XP.

Together with the previously-established Theorem 12 (showing the W/[1]-hardness for
RAD-CLUSTER-COMPLETION w.r.t. k even for r = 0), this gives us an almost complete
picture of the parameterized complexity of RAD-CLUSTER-COMPLETION for any combination
of the parameters k, r;, A\(M). The only two questions that remain open are whether the XP
result for » + A\(M) can be improved to an FPT-result (as this has been the case for DiAM-
CLUSTER-COMPLETION), and whether it is possible to obtain an FPT-algorithm either for
parameter k or k+ A(M). As a first step in this direction, we present an FPT-approximation
scheme for parameter r + A(M) in Section 4.3. The following observation will be useful:

» Observation 14. Given a (complete) vector 5 € {0,1}¢, in time O(|M|d) we can decide if
§ is the center of a RAD-CLUSTER of k vectors in M.

Observation 14 is straightforward since we can find all vectors W € M that can be
completed to a vector w* at distance at most r from § by letting w*[i] = 3[i] wherever
w*[i] = 0, and then decide whether @* is such a vector by computing §(w*, ).

4.1 RAD-CLUSTER-COMPLETION Parameterized by k + r + A(M)

We start by showing that, as in the case of DIAM-CLUSTER-COMPLETION, RAD-CLUSTER-
COMPLETION parameterized by k 4+ r + A(M) has a Turing kernel. The approach is similar
to that in Subsection 3.1.

» Theorem 15. RAD-CLUSTER-COMPLETION parameterized by k + r + A(M) has a Turing-

kernel containing at most n = k3 M)F2r L X(M) +2 vectors, each having at most max{2r(n—
1)+ A(M), (A(éw)) (2r + 1)} coordinates.

4.2 RAD-CLUSTER-COMPLETION Parameterized by r + A(M)

While, it is relatively easy to see that RAD-CLUSTER-COMPLETION parameterized by 7+ A(M)
can be solved in time f(A(M),7)n®"), here we provide a more efficient algorithm by reducing
the degree of the polynomial in the run-time from O(r) to logr. Moreover, our algorithm
can be applied to the CLOSEST STRING WITH OUTLIERS problem [3].

» Theorem 16. RAD-CLUSTER-COMPLETION can be solved in time O(|M|2*) (| M| (22" +
d))'°e™*1) and is therefore in XP parameterized r + A(M).

Proof Sketch. The main ideas behind the algorithm are captured by the following definition
and discussions. Let F' C [d] and let ¢ be an integer, where 0 <t < r. We say that a vector
7€ {0,1}¢ is an (F,t)-seed for a center ¢ € {0,1}? of a solution for (M, k,r) if it satisfies:
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(C1) ¢ agrees with ¥ on all coordinates in F'; and

(C2) ¢ differs from ¢ on at most ¢ coordinates outside of F'.

We can show the following statement. If ¢ is an (F,t)-seed for ¢ then either ¥ is the center
of a solution for (M, k,r), or there is a vector m € M with r < §(¥,m) < 2r and a subset
C C D\ F, where D = A(¢,m), such that the vector ¥’ obtained from ¢ by complementing
all coordinates in C' is an (F'U D, t/2)-seed for ¢ Note that testing the former possibility,
that is, whether a vector @ € {0,1}¢ is a center of a solution for (M, k,r), can be done in
time O(|M|d) by Observation 14.

Since there at most M22" possibilities for m and C, we can use the above statement to
obtain a (F'U D, t/2)-seed from a given (F,t)-seed. This can be employed within a recursive
procedure that, given a (), r)-seed for some center ¢ of a solution either obtains a center of a
solution or obtains a (F’,0)-seed (which itself is the center of a solution), in at most logr
recursive steps. It only remains to find a ((), r)-seed for some center ¢ of a solution, which
can be achieved by guessing the completion ¥ of any vector in M \ Dy that will be in a
solution. Note that if M \ Dys does not contain a vector in the solution, then k& < A(M) and
the result follows from Theorem 15. |

We note that the algorithm provided by the above theorem generalizes a previous
algorithm of Marx [26, Lemma 3.2] for CLOSEST SUBSTRING to strings that may contain
unknown characters. In particular, it lifts the concept of “generators” to strings with unknown
characters by showing that there are logr vectors that can be computed efficiently and that
define at most rlogr “important” coordinates for the center of some solution.

4.3 FPT Approximation Scheme Parameterized by r + A(M)

In this subsection we give an algorithm that, for a given instance (M, k,r) of RAD-CLUSTER-
COMPLETION and ¢ € R, where 0 < € < 1, computes in FPT-time parameterized by
7+ A(M) + L a center of a RaD-cluster of size at least (1 — )k, or it correctly concludes
that no RAD-Cluster of size k exists.

» Theorem 17. Given an instance (M, k,r) of RAD-CLUSTER-COMPLETION and ¢ € R,
where 0 < & < 1, there exists an FPT algorithm A, parameterized by r + \(M) + %, such that
A either computes a RAD-Cluster of size at least (1 — e)k, or correctly concludes that M
does not contain a RAD-Cluster of size k.

Proof Sketch. The algorithm starts by performing a similar branching and pre-processing
to the FPT algorithm for DIAM-CLUSTER-COMPLETION parameterized by r + A(M). Fix
M* to be a completion of M that contains a maximum size RAD-Cluster, let P* be such a
maximum size RAD-Cluster in M*, and let s* be a center of P*. The goal of the algorithm
is to find §*, as given §*, by Observation 14, we can decide the instance in time O(|M|d).
If k< M + 2, then we use the algorithm in Theorem 15 to obtain a Turing kernel.
Otherwise, we can guess two vectors @ and ¥ in M \ Dy, together with their respective
completions @* and ¢*, such that @* and 0 are the farthest vectors apart in P* \ Djy; fix
Tmax = 0(0%, @*).We normalize all the vectors in M so that 0 becomes the all-zero vector.
Finally, for each vector w € M, we can in time T.x - d, where d is the dimension of the
vectors in M, check if there is a completion w* of @ such that the distance from w* to both
U* and u* is at most Tyax; we remove all vectors w that do not have such a completion.
Note here that some vectors in P* N Djy; could have been removed from M at this step.
However, we did not remove any vector from P*\ Dj;. Hence, after the preprocessing, M
contains a RAD-Cluster with center 5 and at least k' = (1 — 5)k vectors. Our goal is to
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find a center for a RAD-Cluster with at least (1 — 5)k" = (1 — £)%k > (1 — )k vectors. For

ease of exposition, we let ¢’ = § and we let " > (1 — ')k be the number of vectors of P*
still in M. Now we can show the following statement: After the above pre-processing, in

. . M|
time O(2"mx - [M]), we can find a center for a RAD-Cluster of size 5.-.
|M]

Therefore, we can assume henceforth that &’ > . Now the algorithm sets 5§ = v* = 0

—— 27Tmax

and the goal is to iteratively compute §%, 85, 3%,...,8%, ' <r, such that:

1. for all i € [r'], we have A(S}) = A(S7_;) U{¢;} for some coordinate ¢; € A(8*) \ A(5F_);

2. for all j € [r" — 1], the number of vectors « with §(u, 57) < 7 is less than (1 —&’)k’; and

3. the number of vectors @ with §(w, §%) < r is at least (1 —&’)k’.

Let §F be such that A(8F) C A(5*) for some ¢ € [’ —1]. The number of vectors at distance
<’ |M]

2Tmax

at most r from §7, ¢ < r/, is less than (1 —¢’)k’. This means that at least 'k’ > vectors
whose completions are in P* are at distance at least r + 1 from §;. For every such vector ,
it is easy to see that, since A(5F) C A(§*), it must be the case that (A(5*) N A(W)) \ A(5})
is nonempty. Note that |[A(5*)| < r, and hence there exists ¢;+1 € A(5*) such that, for at
;;‘li\f‘r vectors @ in M at distance at least r + 1 from 8}, it holds that ¢; 41 € A(wW).

Moreover, for every vector @ € M, we have |A(W)| < rpax. It follows—by a straightforward

counting argument—that there are at most 21& - "max coordinates ¢ € [d] such that, for

e IMl yectors W, it holds that ¢ € A(w). Therefore, to obtain 57,, such that

2Tmax - -
" 92Tmax .p
>4

least

at least
A(57,,) € A(5%), we only need to branch on one of at mos - Fmax coordinates. The

statement of the theorem follows since we can exhaustively branch on the coordinates that

are set to 1 in at least 2f,l£f‘r many vectors in M, until either the number of vectors at
distance at most r from §F is at least (1 — &)k’ or i > r. <

5 Concluding Remarks

We studied the parameterized complexity of two fundamental problems pertaining to
incomplete data that have applications in data analytics. In most cases, we were able
to provide a complete landscape of the parameterized complexity of the problems w.r.t. the
parameters under consideration. It is worth noting that all algorithmic upper bounds obtained
in this paper can also be directly generalized to vectors (i.e., matrices) over a domain whose
size is bounded by the parameter value by using the encoding described by Eiben et al. [9].

Two important open questions ensue from our work, namely determining the parameterized
complexity of RAD-CLUSTER-COMPLETION w.r.t. each of the two parameterizations k + A
and r + A. In particular, the restrictions of these two problems to complete data (i.e., A = 0)
remain open, resulting in two important questions about the parameterized complexity of
RAD-CLUSTER parameterized by the cluster size k or the cluster radius r.
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