
SAT Backdoors: Depth Beats Size
Jan Dreier #

Algorithms and Complexity Group, TU Wien, Austria

Sebastian Ordyniak #

Algorithms and Complexity Group, University of Leeds, UK

Stefan Szeider #

Algorithms and Complexity Group, TU Wien, Austria

Abstract
For several decades, much effort has been put into identifying classes of CNF formulas whose
satisfiability can be decided in polynomial time. Classic results are the linear-time tractability of
Horn formulas (Aspvall, Plass, and Tarjan, 1979) and Krom (i.e., 2CNF) formulas (Dowling and
Gallier, 1984). Backdoors, introduced by Williams, Gomes and Selman (2003), gradually extend
such a tractable class to all formulas of bounded distance to the class. Backdoor size provides a
natural but rather crude distance measure between a formula and a tractable class. Backdoor depth,
introduced by Mählmann, Siebertz, and Vigny (2021), is a more refined distance measure, which
admits the utilization of different backdoor variables in parallel. Bounded backdoor size implies
bounded backdoor depth, but there are formulas of constant backdoor depth and arbitrarily large
backdoor size.

We propose FPT approximation algorithms to compute backdoor depth into the classes Horn
and Krom. This leads to a linear-time algorithm for deciding the satisfiability of formulas of bounded
backdoor depth into these classes. We base our FPT approximation algorithm on a sophisticated
notion of obstructions, extending Mählmann et al.’s obstruction trees in various ways, including
the addition of separator obstructions. We develop the algorithm through a new game-theoretic
framework that simplifies the reasoning about backdoors.

Finally, we show that bounded backdoor depth captures tractable classes of CNF formulas not
captured by any known method.
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1 Introduction

Deciding the satisfiability of a propositional formula in conjunctive normal form (CnfSat) is
one of the most important NP-complete problems [4, 16]. Despite its theoretical intractability,
heuristic algorithms work surprisingly fast on real-world CnfSat instances [7]. A common
explanation for this discrepancy between theoretical hardness and practical feasibility is the
presence of a certain “hidden structure” in realistic CnfSat instances [14]. There are various
approaches to capturing the vague notion of a “hidden structure” with a mathematical
concept. One widely studied approach is to consider the hidden structure in terms of
decomposability. For instance, CnfSat can be solved in quadratic time for classes of CNF
formulas of bounded branchwidth [2] or bounded treewidth [24].
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A complementary approach proposed by Williams et al. [26] considers the hidden structure
of a CnfSat instance in terms of a small number of key variables, called backdoor variables,
that when instantiated move the instance into a polynomial-time solvable class. More
precisely, a backdoor1 of size k of a CNF formula F into a polynomial-time solvable class C is
a set B of k variables such that for all partial assignments τ to B, the instantiated formula
F [τ ] belongs to C. In fact, CnfSat can be solved in linear time for any class of CNF formulas
that admit backdoors of bounded size into the class of Horn, dual Horn or Krom (i.e., 2CNF)
formulas 2.

The size of a smallest backdoor of a CNF formula F into a class C is a fundamental
but rather simple distance measure between F and C. Mählmann, Siebertz, and Vigny [17]
proposed to consider instead the smallest depth over all backdoors of a formula F into a class
C as distance measure. It is recursively defined as follows:

depthC(F ) :=


0 if F ∈ C
1 + min

x∈var(F )
max

ϵ∈{0,1}
depthC(F [x = ϵ]) if F /∈ C and F is connected

max
F ′∈Conn(F )

depthC(F ′) otherwise
(1)

Conn(F ) denotes the set of connected components of F ; precise definitions are given in
Section 2. We can certify depthC(F ) ≤ k with a component C-backdoor tree of depth ≤ k

which is a decision tree that reflects the choices made in the above recursive definition.
Backdoor depth is based on the observation that if an instance F decomposes into

multiple connected components of F [x = 0] and F [x = 1], then each component can be
treated independently. This way, one is allowed to use in total an unbounded number of
backdoor variables. However, as long as the depth of the component C-backdoor tree is
bounded, one can still utilize the backdoor variables to solve the instance efficiently. In the
context of graphs, similar ideas are used in the study of tree-depth [19, 20] and elimination
distance [3, 6]. Bounded backdoor size implies bounded backdoor depth, but there are classes
of formulas of unbounded backdoor size but bounded backdoor depth.

The challenging algorithmic problem C-Backdoor Depth is to find for a fixed base
class C and a given formula F , a component C-backdoor tree of F of depth ≤ k. Mählmann
et al. [17] gave an FPT-approximation algorithm for this problem, with k as the parameter)
where C is the trivial class Null for formulas without variables. A component Null-backdoor
tree must instantiate all variables of F .

New Results. In this paper, we give the first positive algorithmic results for backdoor depth
into nontrivial classes. A minimization problem admits a standard fixed-parameter tractable
approximation (FPT-approximation) [18] if for an instance of size n and parameter k there
is an FPT-algorithm, i.e., an algorithm running in time f(k)nO(1), that either outputs a
solution of size at most g(k) or outputs that the instance has no solution of size at most k,
for some computable functions f and g; g(k) is also referred to as the performance ratio of
the algorithm.

▶ Main Result 1 (Theorem 15). C-Backdoor Depth admits an FPT-approximation
algorithm if C is any of the Schaefer classes Horn, dual Horn, or Krom.

1 We focus only on strong backdoors, as weak backdoors only apply to satisfiable formulas.
2 According to Schaefer’s Theorem [25], these three classes are the largest nontrivial classes of CNF

formulas defined in terms of a property of clauses, for which CnfSat can be solved in polynomial time.
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Since our FPT algorithms have linear running time for fixed backdoor depth k, we obtain
the following corollary:

▶ Main Result 2 (Corollary 16). CnfSat can be solved in linear time for formulas of bounded
backdoor depth into the Schaefer classes Horn, dual Horn, and Krom.

Backdoor depth is a powerful parameter that is able to capture and exploit structure in
CnfSat instances that is not captured by any other known method. We list some well-known
parameters which render CnfSat fixed-parameter tractable (the list is not complete but
covers some of the most essential parameters). For all these parameters, there exist CNF
formulas with constant backdoor depth (into Horn, dual Horn, and Krom) but where the
other parameter is arbitrarily large: (i) backdoor size into Horn, dual Horn, and Krom [21];
(ii) number of leaves of backdoor trees into Horn, dual Horn, and Krom [23, 22]; (iii) backdoor
depth into the class of variable-free formulas [17]; (iv) backdoor treewidth to Horn, dual
Horn, and Krom [9, 8]; (v) backdoor size into heterogeneous base classes based on Horn, dual
Horn, and Krom [11]; (vi) backdoor size into scattered base classes based on Horn, dual Horn,
and Krom [10]; (vii) deletion backdoor size into the class of quadratic Horn formulas [12];
(viii) backdoor size into bounded incidence treewidth [13]. We give definitions and separation
proofs in the full version.

Approach and Techniques. A common approach to construct backdoors is to compute
in parallel both an upper bound and a lower bound. The upper bounds are obtained by
constructing the backdoor itself, and lower bounds are usually obtained in the form of
so-called obstructions. These are parts of an instance that are proven to be “far away” from
the base class. Our results and techniques build upon the pioneering work by Mählmann
et al. [17], who introduce obstruction trees for backdoor depth. A main drawback of their
approach is that it is limited to the trivial base class Null, where the obstructions are
rather simple because they can contain only boundedly many variables. Our central technical
contribution is overcoming this limitation by introducing separator obstructions.

Separator obstructions allow us to algorithmically work with obstruction trees containing
an unbounded number of variables, an apparent requirement for dealing with nontrivial
base classes different form Null. In the context of backdoor depth, it is crucial that an
existing obstruction is disjoint from all potential future obstructions, so they can later be
joined safely into a new obstruction of increased depth. Mählmann et al. [17] ensure this by
placing the whole current obstruction tree into the backdoor – an approach that only works
for the most trivial base class because only there the obstructions have a bounded number of
variables. As one considers more and more general base classes, one needs to construct more
and more complex obstructions to prove lower bounds. For example, as instances of the base
class no longer have bounded diameter (of the incidence graph of the formula) or bounded
clause length, neither have the obstructions one needs to consider. Such obstructions become
increasingly hard to separate. Our separator obstructions can separate obstruction trees
containing an unbounded number of variables from all potential future obstruction trees. We
obtain backdoors of bounded depth by combining the strengths of separator obstructions
and obstruction trees. We further introduce a game-theoretic framework to reason about
backdoors of bounded depth. With this notion, we can compute winning strategies instead
of explicitly constructing backdoors, greatly simplifying the presentation of our algorithms.

We provide the proofs of statements marked with ⋆ in the full version.

ESA 2022
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2 Preliminaries

Satisfiability. A literal is a propositional variable x or a negated variable ¬x. A clause
is a finite set of literals that does not contain a complementary pair x and ¬x of literals.
A propositional formula in conjunctive normal form, or CNF formula for short, is a set of
clauses. We denote by CNF the class of all CNF formulas. Let F ∈ CNF and c ∈ F . We
denote by var(c) the set of all variables occurring in c, i.e., var(c) = { x | x ∈ c ∨ ¬x ∈ c }
and we set var(F ) =

⋃
c∈F var(c). For a set of literals L, we denote by L = { ¬l | l ∈ L },

the set of complementary literals of the literals in L. The size of a CNF formula F is
∥F∥ =

∑
c∈F |c|.

Let τ : X → {0, 1} be an assignment of some set X of propositional variables. If
X = {x} and τ(x) = ϵ, we will sometimes also denote the assignment τ by x = ϵ for
brevity. We denote by true(τ) (false(τ)) the set of all literals satisfied (falsified) by τ ,
i.e., true(τ) = { x ∈ X | τ(x) = 1 } ∪ { ¬x ∈ X | τ(x) = 0 } (false(τ) = true(τ)). We
denote by F [τ ] the formula obtained from F after removing all clauses that are satisfied
by τ and from the remaining clauses removing all literals that are falsified by τ , i.e.,
F [τ ] = { c \ false(τ) | c ∈ F and c ∩ true(τ) = ∅ }. We say that an assignment satisfies F

if F [τ ] = ∅. We say that F is satisfiable if there is some assignment τ : var(F ) → {0, 1}
that satisfies F , otherwise F is unsatisfiable. CnfSat denotes the propositional satisfiability
problem, which takes as instance a CNF formula, and asks whether the formula is satisfiable.

The incidence graph of a CNF formula F is the bipartite graph GF whose vertices are
the variables and clauses of F , and where a variable x and a clause c are adjacent if and
only if x ∈ var(c). We identify a subgraph G′ of the incidence graph GF with the formula F ′

consisting of all the clauses of F that are in G′, each restricted to the adjacent variables in
G′. With slight abuse of notation, we define var(F ′) to be the variables occuring in G′. Via
incidence graphs, graph theoretic concepts directly translate to CNF formulas. For instance,
we say that F is connected if GF is connected, and F ′ is a connected component of F if F ′ is
a maximal connected subset of F . Conn(F ) denotes the set of connected components of F .
We will also consider the primal graph of a CNF formula F , which has as vertex set var(F ),
and has pairs of variables x, y ∈ var(F ) adjacent if and only of x, y ∈ var(c) for some c ∈ F .

Base classes. Let α ⊆ {+, −} with α ̸= ∅, let F ∈ CNF and c ∈ F . We say that a literal
l is an α-literal if is a positive literal and + ∈ α or it is a negative literal and − ∈ α. We
say that a variable v α-occurs in in a clause c, if v or ¬v is an α-literal that is contained
in c. We denote by varα(c) the set of variables that α-occur in c. For α ⊆ {+, −} with
α ̸= ∅ and s ∈ N, let Cα,s be the class of all CNF formulas F such that every clause of F

contains at most s α-literals. For C ⊆ CNF , we say that a clause c is C-good if {c} ∈ C.
Otherwise, c is C-bad. Let τ be any (partial) assignment of the variables of F . We will
frequently make use of the fact that Cα,s is closed under assignments, i.e., if F ∈ Cα,s, then
also F [τ ] ∈ Cα,s. Therefore, whenever a clause c ∈ F is Cα,s-good it will remain Cα,s-good in
F [τ ] and conversely whenever a clause is Cα,s-bad in F [τ ] it is also Cα,s-bad in F .

The classes Cα,s capture (according to Schaefer’s Dichotomy Theorem [25]) the largest
syntactic classes of CNF formulas for which the satisfiability problem can be solved in
polynomial time: The class C{+},1 = Horn of Horn formulas, the class of C{−},1 = dHorn
of dual Horn formulas, and the class C{+,−},2 = Krom of Krom (or 2CNF) formulas. Note
also that the class Null of formulas containing no variables considered by Mählmann et
al. [17] is equal to C{+,−},0. We follow Williams et al. [26] and focus on classes that are
closed under assignments and therefore we do not consider the classes of 0/1-valid and affine
formulas.
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Note that every class Cα,s (and therefore also the classes of Krom, Horn, and dual Horn
formulas) is trivially linear-time recognizable, i.e., membership in the class can be tested in
linear-time. We say that a class C of formulas is tractable or linear-time tractable, if CnfSat
restricted to formulas in C can be solved in polynomial-time or linear-time, respectively. The
classes Horn, dHorn, Krom are linear-time tractable [1, 5].

3 Backdoor Depth

A binary decision tree is a rooted binary tree T . Every inner node t of T is assigned a
propositional variable, denoted by var(t), and has exactly one left and one right child, which
corresponds to setting the variable to 0 or 1, respectively. Moreover, every variable occurs
at most once on any root-to-leaf path of T . We denote by var(T ) the set of all variables
assigned to any node of T . Finally, we associate with each node t of T , the truth assignment
τt that is defined on all the variables var(P ) \ {var(t)} occurring on the unique path P from
the root of T to t such that τt(v) = 0 (τt(v) = 1) if v ∈ var(P ) \ {var(t)} and P contains
the left child (right child) of the node t′ on P with var(t′) = v. Let C be a base class, F be a
CNF formula, and T be a decision tree with var(T ) ⊆ var(F ). Then T is a C-backdoor tree
of F if F [τt] ∈ C for every leaf t of T [23].

Component backdoor trees generalize backdoor trees as considered by Samer and Szeider
[23] by allowing an additional node type, component nodes, where the current instance is split
into connected components. More precisely, let C be a base class and F a CNF formula. A
component C-backdoor tree for F is a pair (T, φ), where T is a rooted tree and φ is a mapping
that assigns each node t a CNF formula φ(t) such that the following conditions are satisfied:
1. For the root r of T , we have φ(r) = F .
2. For each leaf ℓ of T , we have φ(ℓ) ∈ C.
3. For each non-leaf t of T , there are two possibilities:

a. t has exactly two children t0 and t1, where for some variable x ∈ var(φ(t)) we have
φ(ti) = φ(t)[x = i]; in this case we call t a variable node.

b. Conn(φ(t)) = {F1, . . . , Fk} for k ≥ 2 and t has exactly k children t1, . . . , tk with
φ(ti) = Fi; in this case we call t a component node.

Thus, a backdoor tree is just a component backdoor tree without component nodes. The
depth of a C-backdoor is the largest number of variable nodes on any root-to-leaf path. The
C-backdoor depth depthC(F ) of a formula F into a base class C is the smallest depth over all
component C-backdoor trees of F . Alternatively, we can define C-backdoor depth recursively
as in equation (1) from the introduction. For a component backdoor tree (T, φ) let var(T, φ)
be the set of all variables x such that some variable node t of T branches on x. We observe
that one can use component C-backdoor trees to decide the satisfiability of a formula.

▶ Lemma 1 (⋆). Let C ⊆ CNF be tractable, let F ∈ CNF , and let (T, φ) be a compo-
nent C-backdoor tree of F of depth d. Then, we can decide the satisfiability of F in time
(2d∥F∥)O(1). Moreover, if C is linear-time tractable, then the same can be done in time
O(2d∥F∥).

Let C ⊆ CNF and F ∈ CNF . A (strong) C-backdoor of F is a set B ⊆ var(F ) such that
F [τ ] ∈ C for each τ : B → {0, 1}. Assume C is closed under partial assignments (which is the
case for many natural base classes and the classes Cα,s) and (T, φ) a component C-backdoor
tree of F . Then var(T, φ) is a C-backdoor of F .

ESA 2022
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4 Technical Overview

We present all our algorithms in this work within a game-theoretic framework. This framework
builds upon the following equivalent formulation of backdoor depth using splitter games.
Similar games can be used to describe treedepth and other graph classes [15].

▶ Definition 2. Let C ⊆ CNF and F ∈ CNF . We denote by Game(F, C) the so-called
C-backdoor depth game on F . The game is played between two players, the connector and
the splitter. The positions of the game are CNF formulas. At first, the connector chooses a
connected component of F to be the starting position of the game. The game is over once a
position in the base class C is reached. We call these positions the winning positions (of the
splitter). In each round the game progresses from a current position J to a next position as
follows:

he splitter chooses a variable v ∈ var(J).
The connector chooses an assignment τ : {v} → {0, 1} and a connected component J ′ of
J [τ ]. The next position is J ′.

In the (unusual) case that a position J contains no variables anymore but J is still not in C,
the splitter looses. For a position J , we denote by τJ the assignment of all variables assigned
up to position J .

The following observation follows easily from the definition of the game and the fact that
the (strategy) tree obtained by playing all possible plays of the connector against a given
d-round winning strategy for the splitter forms a component backdoor tree of depth d, and
vice versa. In particular, the splitter choosing a variable v at position J corresponds to a
variable node and the subsequent choice of the connector for an assignment τ of v and a
component of J [τ ] corresponds to a component node (and a subsequent variable or leaf node)
in a component backdoor tree.

▶ Observation 3. The splitter has a strategy for the game Game(F, C) to reach within at
most d rounds a winning position if and only if F has C-backdoor depth at most d.

Using backdoor depth games, we no longer have to explicitly construct a backdoor.
Instead, we present so called splitter-algorithms that play the backdoor depth game from the
perspective of the splitter. The algorithms will have some auxiliary internal state that they
modify with each move. Formally, a splitter-algorithm for the C-backdoor depth game to a
base class C is a procedure that

gets as input a (non-winning) position J of the game, together with an internal state
and returns a valid move for the splitter at position J , together with an updated internal
state.

We will usually use the internal state to hold an obstruction that the splitter will periodically
increase in size. Assume we have a game Game(F, C) and some additional input S. For a
given strategy of the connector, the splitter-algorithm plays the game as one would expect: In
the beginning, the internal state is initialized with S (if no additional input is given, the state
is initialized empty). Whenever the splitter should make its next move, the splitter-algorithm
is queried using the current position and internal state, and afterwards the internal state is
updated accordingly.

▶ Definition 4. We say a splitter-algorithm implements a strategy to reach for a game
Game(F, C) and input S within at most d rounds a position and internal state with some
property if and only if initializing the internal state with S and then playing Game(F, C)
according to the splitter-algorithm leads – no matter what strategy the connector is using –
after at most d rounds to a position and internal state with said property.
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The following observation converts splitter-algorithms into algorithms for bounded depth
backdoors. It builds component backdoor trees by trying all moves of the connector.

▶ Lemma 5 (⋆). Let C ⊆ CNF and fC : N → N. Assume there exists a splitter-algorithm
that implements a strategy to reach in each play in the game Game(F, C) and non-negative
integer d within at most fC(d) rounds either:

i) a winning position, or
ii) (an internal state representing) a proof that the C-backdoor depth of F is at least d.

Further assume this splitter-algorithm always takes at most O(∥F∥) time to compute its next
move. Then there is an algorithm that, given F and d, in time at most 3fC(d)O(∥F∥) either:

i) returns a component C-backdoor tree of depth at most fC(d), or
ii) concludes that the C-backdoor depth of F is at least d.

For the sake of readability, we may present splitter-algorithms as continuously running
algorithms that periodically output moves (via some output channel) and always immediately
as a reply get the next move of the connector (via some input channel). Such an algorithm
can easily be converted into a procedure that gets as input a position and internal state and
outputs a move and a modified internal state: The internal state encodes the whole state
of the computation, (e.g., the current state of a Turing machine together with the contents
of the tape and the position of the head). Whenever the procedure is called, it “unfreezes”
this state, performs the computation until it reaches its next move and then “freezes” and
returns its state together with the move.

Our main result is an approximation algorithm (Theorem 15) that either concludes that
there is no backdoor of depth d, or computes a component backdoor tree of depth at most
22O(d) . By Lemma 5, this is equivalent to a splitter-algorithm that plays for 22O(d) rounds to
either reach a winning position or a proof that the backdoor depth is larger than d.

Following the approach of Mählmann et al. [17], our proofs of high backdoor depth come
in the form of so-called obstruction trees. These are trees in the incidence graph of a CNF
formula. Their node set therefore consists of both variables and clauses. Obstruction trees of
depth d describe parts of an instance for which the splitter needs more than d rounds to win
the backdoor depth game. For depth zero, we simply take a single (bad) clause that is not
allowed by the base class. Roughly speaking, an obstruction tree of depth d > 0 is built from
two “separated” obstruction trees T1, T2 of depth d − 1 that are connected by a path. Since
the two obstruction trees are separated but in the same component, we know that for any
choice of the splitter (i.e., choice of a variable v), there is a response of the connector (i.e.,
an assignment of v and a component) in which either T1 or T2 is whole. Then the splitter
needs by induction still more than d − 1 additional rounds to win the game.

▶ Definition 6. Let F ∈ CNF and C = Cα,s with α ⊆ {+, −}, α ̸= ∅, and s ∈ N. We
inductively define C-obstruction trees T for F of increasing depth.

Let c be a C-bad clause of F . The set T = {c} is a C-obstruction tree in F of depth 0.
Let T1 be a C-obstruction tree of depth i in F . Let β be a partial assignment of the
variables in F . Let T2 be an obstruction tree of depth i in F [β] such that no variable
v ∈ var(F [β]) occurs both in a clause of T1 and T2. Let further P be (a CNF formula
representing) a path that connects T1 and T2 in F . Then T = T1 ∪ T2 ∪ var(P ) ∪ P is a
C-obstruction tree in F of depth i + 1.

▶ Lemma 7 (⋆). Let F ∈ CNF and C = Cα,s with α ⊆ {+, −}, α ≠ ∅, and s ∈ N. If there is
a C-obstruction tree of depth d in F , then the C-backdoor depth of F is larger than d.

ESA 2022
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Our splitter-algorithm will construct obstruction trees of increasing depth by a recursive
procedure (Lemma 14) that we outline now. We say a splitter-algorithm satisfies property i if
it reaches in each game Game(F, C) within gC(i, d) rounds (for some function gC(i, d)) either
1) a winning position, or
2) a position J and a C-obstruction tree T of depth i in F such that no variable in var(J)

occurs in a clause of T , or
3) a proof that the C-backdoor depth of F is at least d.
If we have a splitter algorithm satisfying property d+1 then our main result, the approximation
algorithm for backdoor depth, directly follows from Lemma 7 and Lemma 5. Assume we
have a strategy satisfying property i − 1, let us describe how to use it to satisfy property i.
If at any point we reach a winning position, or a proof that the C-backdoor depth of F is at
least d, we are done. Let us assume this does not happen, so we can focus on the much more
interesting second case.

We use property i − 1 to construct a first tree T1 of depth i − 1, and reach a position
J1. We use it again, starting at position J1 to construct a second tree T2 of depth i − 1
that is completely contained in position J1. Since in the beginning the connector selected a
connected component, T1 and T2 are in the same component of F and we can find a path P

connecting them. Let β be the assignment that assigns all the variables the splitter chose
until reaching position J1. Then T2 is an obstruction tree not only in J1 but also in F [β]. In
order to join both trees together into an obstruction of depth i, we have to show, according
to Definition 6 that no variable v ∈ var(F [β]) occurs both in a clause of T1 and T2. Since no
variable in var(J1) occurs in a clause of T1 (property i − 1), and T2 was built only from J1,
this is the case. The trees T1 and T2 are “separated” and can be safely joined into a new
obstruction tree T of depth i (see also Figure 3 on page 15 and the proof of Lemma 14 for
details).

The last thing we need to ensure is that we reach a position J such that no variable in
var(J) occurs in a clause of T . This then guarantees that T is “separated” from all future
obstruction trees that we may want to join it with to satisfy property i + 1, i + 2 and so
forth. This is the major difficulty and main technical contribution of this paper.

It is important to note here, that the exact notion of “separation” between obstruction
trees plays a crucial role for our approach and is one of the main differences to Mählmann
et al. [17]. Mählmann et al. solve the separation problem in a “brute-force” manner: If
we translate their approach to the language of splitter-algorithms, then the splitter simply
selects all variables that occur in a clause of T . For their base class – the class Null of
formulas without variables – there are at most 2O(d) variables that occur in an obstruction
tree of depth d. Thus, in only 2O(d) rounds, the splitter can select all of them, fulfilling the
separation property. This completes the proof for the base class Null.

However, already for backdoor depth to Krom, this approach cannot work since instances
in the base class have obstruction trees with arbitrarily many clauses. Moreover, the situation
becomes even more difficult for backdoors to Horn, since additionally clauses are allowed to
contain arbitrary many literals. Mählmann et al. acknowledge this as a central problem and
ask for an alternative approach to the separation problem that works for more general base
classes.

5 Separator Obstructions

The main technical contribution of this work is a separation technique that works for the
base classes C = Cα,s. The separation technique is based on a novel form of obstruction,
which we call separator obstruction. Obstruction trees are made up of paths, therefore, it is
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sufficient to separate each new path P that is added to an obstruction. Note that P can be
arbitrarily long and every clause on P can have arbitrary many variables and therefore the
splitter cannot simply select all variables in (clauses of) P . Instead, given such a path P

that we want to separate, we will use separator obstructions to develop a splitter-algorithm
(Lemma 12) that reaches in each game Game(F, C) within a bounded number of rounds
either
1) a winning position, or
2) a position J such that no variable in var(J) occurs in a clause of P , or
3) a proof that the C-backdoor depth of F is at least d.

Informally, a separator obstruction is a sequence ⟨P1, . . . , Pℓ⟩ of paths that form a tree Tℓ

together with an assignment τ of certain important variables occurring in Tℓ. The variables
of τ correspond to the variables chosen by the splitter-algorithm and the assignment τ

corresponds to the assignment chosen by the connector. Each path Pi adds at least one C-bad
clause bi to the separator obstruction, which is an important prerequisite to increase the
backdoor depth by growing the obstruction. Moreover, by choosing the important variables
and the paths carefully, we ensure that for every outside variable, i.e., any variable that is
not an important variable assigned by τ , there is an assignment and a component (which
can be chosen by the connector) that leaves a large enough part of the separator obstruction
intact. Thus, if a separator obstruction is sufficiently large, the connector can play such
that even after d rounds a non-empty part of the separator obstruction is still intact. This
means a large separator obstruction is a proof that the backdoor depth is larger than d.

To illustrate the growth of a separator obstruction (and motivate its definition) suppose
that our splitter-algorithm is at position J of the game Game(F, C) and has already built a
separator obstruction X = ⟨⟨P1, . . . , Pi⟩, τ⟩ (with corresponding tree Ti) containing C-bad
clauses b1, . . . , bi; note that τ is compatible with τJ (i.e., τ and τJ agree on the common
assigned variables). If J is already a winning position, then property i is satisfied. Therefore,
J has to contain a C-bad clause. If no C-bad clause has a path to Ti in J , then J satisfies 2)
of property i and we are also done. Otherwise, let bi+1 be a C-bad clause in J that is closest
to Ti and let Pi+1 be a shortest path from bi+1 to Ti in J . Then, we extend our separator
obstruction X by attaching the path Pi+1 to Ti (and obtain the tree Ti+1). Our next order
of business is to choose a bounded number of important variables occurring on Pi+1 that we
will add to X. Those variables need to be chosen such that no outside variable can destroy
too much of the separator obstruction. Apart from destroying the paths of the separator
obstruction, we also need to avoid that assigning any outside variable makes too many of the
C-bad clauses b1, . . . , bi+1 C-good. Therefore, a natural choice would be to add all variables
of bi+1 to X, i.e., to make those variables important. Unfortunately, this is not possible since
bi+1 can contain arbitrarily many literals. Instead, we will only add the variables of bi+1 to
X that α-occur in bi+1. By the following lemma, the number of those variables is bounded.

▶ Lemma 8 (⋆). Let F ∈ CNF and C = Cα,s with α ⊆ {+, −}, α ̸= ∅, and s ∈ N. If F

has C-backdoor depth at most some integer d, then every clause of F contains at most d + s

α-literals.

While this still allows for outside variables to occur in many of the C-bad clauses
b1, . . . , bi+1, it already ensures that no outside variable can α-occur in any of these clauses.
This helps us, since when |α| = 1 (i.e., the only case where α-occurs means something
different then just occurs), it provides us with an assignment of any such outside variable
that the connector can play without making the C-bad clauses in which it occurs C-good.
For instance, if α = {+}, then any outside variable v can only occur negatively in a C-bad
clause and moreover setting v to 0 ensures that the C-bad clauses remain C-bad.
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Figure 1 A separator obstruction containing three paths P1, P2, and P3. The figure shows
vertices and edges of the incidence graph. Only the colorful edges are part of separator obstruction’s
tree. Gray variables and clauses are mentioned under the names bi, e, and c in Definition 9.

Next, we need to ensure that any outside variable cannot destroy too many paths. By
choosing a shortest path Pi+1, we have already ensured that no variable occurs on more than
two clauses of Pi+1 (such a variable would be a shortcut, meaning Pi+1 was not a shortest
path). Moreover, because Pi+1 is a shortest path from bi+1 to Ti, every variable that occurs
on Ti and on Pi+1 must occur in the clause c in Pi+1 that is closest to Ti but not in Ti itself.
Similarly, to how we dealt with the C-bad clauses, we will now add all variables that α-occur
in c to X. This ensures that no outside variable can α-occur in both Ti and Pi+1 , which (by
induction over i) implies that every outside variable α-occurs in at most two clauses (either
from Ti or from Pi+1) and therefore provides us with an assignment for the outside variables
that removes at most two clauses from X. However, since removing any single clause can be
arbitrarily bad if the clause has a high degree in the separator obstruction, we further need
to ensure that all clauses of the separator obstruction in which outside variables α-occur
have small degree. We achieve this by adding the variables α-occurring in any clause as
soon as its degree (in the separator obstruction) becomes larger than two, which happens
whenever the endpoint of Pi+1 in Ti is a clause. Finally, if the endpoint of Pi+1 in Ti is a
variable, we also add this variable to the separator obstruction to ensure that no variable
has degree larger than three in Ti+1. This leads us to the following definition of separator
obstructions (see also Figure 1 for an illustration).

▶ Definition 9. Let F ∈ CNF and C = Cα,s with α ⊆ {+, −}, α ̸= ∅, and s ∈ N. A
C-separator obstruction for F is a tuple X = ⟨⟨P1, . . . , Pℓ⟩, τ⟩ (where P1, . . . , Pℓ are paths in
F and τ is an assignment of variables of F ) satisfying the following recursive definition.

P1 is a shortest path between two C-bad clauses b0 and b1 in F . Let B1 = {b0, b1}, let V1
be the set of all variables that α-occur in any clause in B1, let τ1 : V1 → {0, 1} be any
assignment of the variables in V1, and let T1 = P1.
For every i with 1 < i ≤ ℓ, let bi be a C-bad clause in F [τi−1] of minimal distance to Ti−1
in F [τi−1]. Then, Pi is a shortest path (of possibly length zero) in F [τi−1] from Ti−1 to
bi and Ti = Ti−1 ∪ Pi. Moreover, let e be the variable or clause that is both in Ti−1 and
Pi. We define Bi and Vi by initially setting Bi = Bi−1 ∪ {bi} and Vi = Vi−1 ∪ varα(bi)
and distinguishing two cases:

If e is a variable, then let c be the clause on Pi incident with e (note that it is possible
that c = bi). Then, we add c to Bi and we add {e} ∪ varα(c) to Vi.
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If e is a clause, then either e = bi or e ≠ bi and there is a clause c that is closest to e

on Pi (it may be that c = bi). In the former case we leave Bi and Vi unchanged and in
the latter case, we add e and c to Bi and we add varα(e) ∪ varα(c) to Vi.

τi : Vi → {0, 1} is any assignment of the variables in Vi that is compatible with τi−1.

We set τ = τℓ. The size of X is the number of paths in T = Tℓ, i.e., ℓ + 1.

The assignment τ is a central part of the definition, guiding the connector in Lemma 11
and thereby establishing a lower bound on the backdoor depth. We start by observing some
simple but important properties of separator obstructions.

▶ Lemma 10 (⋆). Let F ∈ CNF , C = Cα,s with α ⊆ {+, −}, α ̸= ∅, and s ∈ N, and let
X = ⟨⟨P1, . . . , Pℓ⟩, τ⟩ be a C-separator obstruction in F , then for every i ∈ [ℓ]:
(C1) Ti is a tree.
(C2) Every variable v ̸∈ Vi occurs in at most two clauses of Pj for every j with 1 ≤ j ≤ i

and moreover those clauses are consecutive in Pj.
(C3) Every variable v ̸∈ Vi α-occurs in at most two clauses of Ti and moreover those clauses

are consecutively contained in one path of Ti.
(C4) Every variable v ∈ Vi \ Vi−1 α-occurs in most four clauses of Ti.
(C5) If a variable v ̸∈ Vi α-occurs in a clause c of Ti, then c has degree at most two in Ti.
(C6) Every variable of F has degree at most three in T .
(C7) If every clause of F contains at most x α-literals, then |Vi \ Vi−1| ≤ 2s + x + 1.

We now show the main result of this subsection, namely, that also separator obstructions
can be used to obtain a lower bound on the backdoor depth of CNF formulas.

▶ Lemma 11. Let C = Cα,s with α ⊆ {+, −}, α ̸= ∅, and s ∈ N and F ∈ CNF . If F has a
C-separator obstruction of size at least ℓ = (8d(142 + 2d))2d , then F has C-backdoor depth at
least d.

Proof. Let X = ⟨⟨P1, . . . , Pℓ⟩, τ⟩ be a C-separator obstruction for F of size at least ℓ with
Vi, Bi, Ti, T as in Definition 9. Let J be a position in the game Game(F, C). We say that a
subtree T ′ of T = Tℓ is contained in J if every variable and clause of T ′ occurs in J . Let T ′

be a subtree of T that is contained in J . Let Pj be a path of X. We say that Pj is active
in T ′ if either V (Pj) = {bj} and T ′ contains bj or T ′ contains a vertex in V (Pj) \ V (Tj−1).
Moreover, we say that Pj is intact in T ′ at position J if V (Pj) ⊆ V (T ′) and bj is a C-bad
clause in J . Otherwise, we say that Pj is broken in T ′ at position J .

We show by induction on the number of rounds that there is a strategy S for the connector
such that the following holds for every position J reached after i rounds in the game
Game(F, C) against S: At position J , there is a subtree T ′ of T contained in J that contains
at least ℓi = (ℓ(1/2)i

/8i) intact paths and at most zi = 2i broken paths of X. This then
shows the statement of the lemma because ℓd = ℓ1/2d

/8d = 142 + 2d ≥ 1 and therefore any
position J reached after d rounds in the game Game(F, C) contains at least one clause that
is C-bad in J .

The claim clearly holds for i = 0 since ℓ0 = ℓ and z0 = 0 and the connector can choose the
component of F containing T . Assume now that i > 0 and let J be the position reached after
i − 1 rounds. By the induction hypothesis, at position J there is a subtree T ′ of T contained
in J containing at least ℓi−1 = ℓ(1/2)i−1

/8i−1 intact paths and at most zi−1 = 2(i − 1) broken
paths of X. Suppose that the splitter chooses variable v as its next move. Moreover, let o be
the smallest integer such that v ∈ Vo; if v /∈ Vℓ we set o = ℓ + 1. Note that v /∈ Vj for every
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i < o. Let I be the set of all paths Pj of X that are intact in T ′ at position J and let I<o

(I>o) be the subset of I containing only the paths Pj with j < o (j > o). Finally, let T ′
<o be

the subtree of T ′ restricted to the paths Pj of X with j < o. Note that at position J , T ′
<o

is connected and the paths in I<o are intact also in T ′
<o. Then, the connector chooses the

assignment β : {v} → {0, 1} such that:

β(v) =


τ(v) |I<o| <

√
ℓi−1,

1 |I<o| ≥
√

ℓi−1 and + ∈ α,

0 otherwise.

As we will show below, β is defined in such a manner that the position J ′ = J [β] reached
after the next round of the game Game(F, C) contains a subtree T ′′ of T ′ containing at least
ℓi =

√
ℓi−1/8 paths that are intact in J ′ and at most zi = zi−1 + 2 broken paths, which

completes the proof since the connector can now chose the component of J ′ containing T ′′

to fulfill the induction invariant. We distinguish the following cases; refer also to Figure 2 for
an illustration of the two cases.

Case 1: |I<o| ≥
√

ℓi−1. We will show that T ′′ can be obtained as a subtree of T ′
<o.

Note first that all clauses bj with j < o that are C-bad in J are also C-bad in J ′. This is
because v /∈ Vj (because j < o and v /∈ Vo−1) and therefore v cannot α-occur in bj , which
implies that bj remains C-bad and not satisfied after setting v to β(v).

The tree T ′
<o in J may decompose into multiple components in J ′. We will argue that

one of these components contains many intact paths and only at most two more broken
paths than T ′

<o. Since the C-bad clauses of an intact path remain C-bad in J ′, the only way
in which an intact path can become broken is if parts of the path get removed, i.e., either v

or clauses satisfied by setting v to β(v).
If β(v) = 1 then + ∈ α. If β(v) = 0 then + ̸∈ α, and since α ̸= ∅, then − ∈ α. Thus, in

J ′ = J [β], the only elements that are removed are the variable v as well as clauses in which
v α-occurs. By Lemma 10 (C3), v α-occurs in at most two clauses of T ′

<o and because of
(C5) those clauses have degree at most two in T ′

<o. Therefore, setting v to β(v) removes at
most two clauses from T ′

<o, each of which having degree at most two. Moreover, according
to Lemma 10 (C6), v itself has degree at most three in T ′

<o. This implies that setting v to
β(v) splits T ′

<o into at most 2 · 2 + 3 = 7 components.
Moreover, because of Lemma 10 (C3), the at most two clauses of T ′

<o in which v α-
occurs are located on the same path Pj . Therefore, at most two paths that are complete
in T ′

<o, i.e., the path Pj and the at most one path containing v, can become broken.
Therefore, there is a component of J ′ that contains a subtree of T ′

<o that contains at least
|I<o|/7 − 2 ≥

√
ℓi−1/7 − 2 intact paths and at most zi−1 + 2 ≤ 2i = zi broken paths of X.

Note that
√

ℓi−1 ≥ ℓd ≥ 142 + 2d ≥ 142 and therefore
√

ℓi−1/7 − 2 ≥
√

ℓi−1/8 = ℓi.

Case 2: |I<o| <
√

ℓi−1. This means β(v) = τ(v). In this case, we will build the subtree
T ′′ by picking only one path from T ′

<o and the remaining paths from Po+1, . . . , Pℓ. Let A

be the set of all paths of X that are active in T ′ and let A>o (A<o) be the subset of A

containing only the paths Pj with j > o (j < o). We say that a path Pa of X is attached to
a path Pb of X if a > b, V (Pa) ∩ V (Pb) ̸= ∅ and there is no b′ < b with V (Pa) ∩ V (Pb′) ̸= ∅.
We say that a path Pa in A>o is weakly attached to a path Pb in A<o if either:

Pa is attached to Pb or
Pa is attached to a path Pc in A>o that is in turn weakly attached to Pb.
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Figure 2 Left: Case 1. The set I<o is large. Assigning v to β(v) decomposes the tree T ′
<o into

at most seven components. The largest component T ′′ is still large. Right: Case 2. The set I<o is
small. There is a path P to which many paths are weakly attached, forming a tree TP . Assigning v

to β(v) splits TP in at most three parts. The largest component T ′′ of TP is still large.

Note that because T ′ is a tree, every path in A>o is weakly attached to exactly one path in
A<o. Moreover, for the same reason any path in A<o together with all paths in A>o that
are weakly attached to it forms a subtree of T ′.

Therefore, there is a path P in A<o such that at least |I>o|/|A<o| paths in I>o are weakly
attached to P . Moreover, the union TP of P and all paths in A>o that are weakly attached to
P is a subtree of T ′. Note that TP has at least |I>o|/|A<o| paths that are intact in TP and at
most zi−1 paths that are broken in TP at position J . Since

√
ℓi−1 ≥ ℓd = 142 + 2d ≥ 2d and

zi−1 ≤ zd = 2d, it holds that |I<o| + zi−1 ≤ 2
√

ℓi−1 (because also |I<o| ≤
√

ℓi−1). Therefore,

|I>o|/|A<o| ≥ (ℓi−1 − |I<o|)/(|I<o| + zi−1)
≥ (ℓi−1 − |I<o|)/(2|I<o|)
≥ (ℓi−1)/(2

√
ℓi−1) − 1/2

≥
√

ℓi−1/2 − 1/2
= 8ℓi/2 − 1 ≥ 3ℓi.

Because β(v) = τ(v), all paths Pj with j > o that are active in TP are still contained in J ′

and moreover if Pj is intact in J , then it is still intact in J ′. Moreover, because of Lemma 10
(C2), v occurs in at most two clauses of P and because β(v) = τ(v) all paths Po+1, · · · , Pℓ

that are attached to P are still attached to P after setting v to β(v). It follows that setting
v to β(v) removes at most two clauses and at most one variable (i.e., the variable v) from P

and also from TP . Therefore, J ′ = J [β] contains a component that contains a subtree T ′′ of
TP with at least 3ℓi/3 = ℓi paths that are intact in T ′′ and at most zi−1 + 1 ≤ zi paths that
are broken in T ′′. ◀

6 Winning Strategies and Algorithms

We are ready to present our algorithmic results. Earlier, we discussed that separator
obstructions are used to separate existing obstruction trees from future obstruction trees. As
all obstruction trees are built only from shortest paths, it is sufficient to derive a splitter-
algorithm that takes a shortest path P and separates it from all future obstructions. By
reaching a position J such that no variable in var(J) occurs in a clause of P , we are
guaranteed that all future obstructions are separated from P , as future obstructions will only
contain clauses and variables from J .
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▶ Lemma 12 (⋆). Let C = Cα,s with α ⊆ {+, −}, α ̸= ∅, and s ∈ N. There exists
a splitter-algorithm that implements a strategy to reach for each game Game(F, C), non-
negative integer d, and shortest path P between two C-bad clauses in F within at most
(3s + d + 1)(8d(142 + 2d))2d rounds either:
1) a winning position, or
2) a position J such that no variable in var(J) occurs in a clause of P , or
3) a proof that the C-backdoor depth of F is at least d.
This algorithm takes at most O(∥F∥) time per move.

Since selecting more variables can only help the splitter in archiving their goal, we
immediately also get the following statement from Lemma 12.

▶ Corollary 13. Consider C = Cα,s with α ⊆ {+, −}, α ̸= ∅, and s ∈ N, a game Game(F, C)
and a position J ′ in this game, a non-negative integer d and shortest path P between two
C-bad clauses in F . There exists a splitter-algorithm that implements a strategy that continues
the game from position J ′ and reaches within at most (3s + d + 1)(8d(142 + 2d))2d rounds
either:
1) a winning position, or
2) a position J such that no variable in var(J) occurs in a clause of P , or
3) a proof that the C-backdoor depth of F is at least d.
This algorithm takes at most O(∥F∥) time per move.

As described at the end of Section 4, we can now construct in the following lemma
obstruction trees of growing size, using the previous corollary to separate them from potential
future obstruction trees.

▶ Lemma 14. Let C = Cα,s with α ⊆ {+, −}, α ̸= ∅, and s ∈ N. There is a splitter-algorithm
that implements a strategy to reach for a game Game(F, C) and non-negative integers i, d

with 1 ≤ i ≤ d within at most (2i − 1)(3s + d + 1)(8d(142 + 2d))2d rounds either:
1) a winning position, or
2) a position J and a C-obstruction tree T of depth i in F such that no variable in var(J)

occurs in a clause of T , or
3) a proof that the C-backdoor depth of F is at least d.
This algorithm takes at most O(∥F∥) time per move.

Proof. We will prove this lemma by induction over i. Our splitter-algorithm will try construct
an obstruction tree of depth i by first using the induction hypothesis to build two obstruction
trees T1 and T2 of depth i − 1 and then joining them together. After the construction of
the first tree T1, we reach a position J1 and by our induction hypothesis no variable in
var(J1) occurs in a clause of T1. This encapsulates the core idea behind our approach, as it
means that T1 is separated from all potential future obstruction trees T2 that we build from
position J1. Therefore, we can compute the next tree T2 in J1 and join T1 and T2 together
in accordance with Definition 6 by a path P . At last, we use Corollary 13 to also separate
this path from all future obstructions. If at any point of this process we reach a winning
position or a proof that the C-backdoor depth of F is at least d, we can stop. Let us now
describe this approach in detail.

For convenience, let x = (3s + d + 1)(8d(142 + 2d))2d . We start our induction with i = 1.
If there is no C-bad clause in F , then it is a winning position and we can stop. Assume there
is exactly one C-bad clause c in F . By Lemma 8, if c contains more then d + s α-literals,
we have a proof that the C-backdoor depth of F is at least d and we archive case 3) of the
lemma. On the other hand, if c contains at most d + s α-literals, the splitter can obtain a
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J

Figure 3 Overview of the construction in Lemma 14. First, T1 is chosen in F , yielding J1. Then,
T2 is chosen in J1, yielding J2. In the end the connecting path P is chosen yielding J . A gray
doublesided arrow between a position Ĵ and structure T̂ symbolizes that no variable v ∈ var(Ĵ)
occurs in a clause of T̂ .

winning position in Game(F, C) after at most d + s ≤ (2i − 1)x rounds by choosing a new
variable α-occurring in c at every round. Assume there is more than one C-bad clause in
F . Thus, we pick C-bad clauses c1 and c2 and compute a shortest path P between c1 and
c2 in F . By Definition 6, T = {c1} ∪ {c2} ∪ var(P ) ∪ P is a C-obstruction tree of depth 1
in F . We then continue the game using Corollary 13 (for the path P ) to reach a position J ′

satisfying (1), (2), or (3) after at most x ≤ (2i − 1)x rounds, with each round taking at most
O(∥F∥) time.

We now assume the statement of this lemma to hold for i − 1 and we show it also
holds for i. To this end, we start playing the game Game(F, C) according to the existing
splitter-algorithm for i−1. If we reach (within at most (2i−1 −1)x rounds) a winning position
or a proof that the C-backdoor depth of F is at least d then we are done. Assuming this is
not the case, we reach a position J1 and a C-obstruction tree T1 of depth i − 1 in F such
that no variable v ∈ var(J1) occurs in a clause of T1.

We continue playing the game at position J1 according to the existing splitter-algorithm
for Game(J1, C) and i − 1. The C-backdoor depth of F is larger or equal to the C-backdoor
depth of J1. Thus again (after at most (2i−1 − 1)x rounds) we either are done (because we
reach a winning position or can conclude that the C-backdoor depth of J1 is at least d) or we
reach a position J2 and a C-obstruction tree T2 of depth i − 1 in J1 such that no variable
v ∈ var(J2) occurs in a clause of T2.

We pick two clauses c1 ∈ T1 and c2 ∈ T2 that are C-bad in F and compute a shortest
path P between c1 and c2 in F . We now argue that T = T1∪T2∪var(P )∪P is a C-obstruction
tree of depth i in F . Let β = τJ1 be the assignment that assigns all the variables the splitter
chose until reaching position J1 to the value given by the connector. Note that J1 is a
connected component of F [β].

Since all variables and clauses belonging to T2 induce a connected subgraph of J1, T2 is a
C-obstruction tree of depth i − 1 not only in J1, but also in F [β]. Let v ∈ var(F [β]). We
show that v does not occur both in some clause of T1 and of T2. To this end, assume v is
contained in a clause of T2. Since all clauses of T2 are in J1 and J1 is a connected component
of F [β], we further have v ∈ var(J1). On the other hand (as discussed earlier), no variable
v ∈ var(J1) is contained in a clause of T1. By Definition 6, T = T1 ∪ T2 ∪ var(P ) ∪ P is a
C-obstruction tree of depth i in F .

We use Corollary 13 to continue playing the game at position J2. Again, if we reach a
winning position or a proof that the C-backdoor depth of F is at least d we are done. So
we focus on the third case that we reach (within at most x rounds) a position J such that
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no variable v ∈ var(J) is contained in a clause of P . We know already that no variable
v ∈ var(J1) is contained in a clause of T1 and no variable v ∈ var(J2) is contained in a clause
of T2. Since var(J) ⊆ var(J2) ⊆ var(J1), and T = T1 ∪ T2 ∪ var(P ) ∪ P , we can conclude
that no variable v ∈ var(J) is contained in a clause of T .

In total, we played for (2i−1 − 1)x + (2i−1 − 1)x + x = (2i − 1)x rounds. The splitter-
algorithm in Corollary 13 takes at most O(∥F∥) time per move. The same holds for the
splitter-algorithm for i − 1 that we use as a subroutine. Thus, the whole algorithm takes at
most O(∥F∥) time per move. ◀

The main results now follow easily by combining Lemmas 1, 5, 7, and 14.

▶ Theorem 15 (⋆). Let C = Cα,s with α ⊆ {+, −}, α ̸= ∅, and s ∈ N. We can, for a given
F ∈ CNF and a non-negative integer d, in time at most 222O(d)

∥F∥ either
1) compute a component C-backdoor tree of F of depth at most 22O(d) , or
2) conclude that the C-backdoor depth of F is larger than d.

▶ Corollary 16. Let C ∈ {Horn, dHorn, Krom}. The CnfSat problem can be solved in
linear time for any class of formulas of bounded C-backdoor depth.

7 Conclusion

We show that CnfSat can be solved in linear-time for formulas of bounded C-backdoor
depth whenever C is any of the well-known Schaefer classes. We achieve this by showing that
C-backdoor depth can be FPT-approximated for any class C = Cα,s. This allows us to extend
the results of Mählmann et al. [17] for the class of variable-free formulas to all Schaefer
classes. Our results provide an important milestone towards generalizing and unifying the
various tractability results based on variants of C-backdoor size (see also future work below)
to the only recently introduced and significantly more powerful C-backdoor depth.

Let us finish with some natural and potentially significant extensions of backdoor depth
that can benefit from our approach based on separator obstructions. Two of the probably
most promising ones that have already been successfully employed as extensions of backdoor
size are the so-called scattered and heterogeneous backdoor sets [11, 10].

Interestingly, while those two notions lead to orthogonal tractable classes in the context
of backdoor size, they lead to the same tractable class for backdoor depth. Therefore, lifting
these two extensions to backdoor depth, would result in a unified and significantly more
general approach. While we are hopeful that our techniques can be adapted to this setting,
one of the main remaining obstacles is that obstructions of depth 0 no longer are single
(bad) clauses. For instance, consider the heterogeneous class C = Horn ∪ Krom. Here, a
CNF formula may not be in C due to a pair of clauses, one in Horn \ Krom and another
one in Krom \ Horn. Finally, an even more general but also more challenging tractable
class to consider for backdoor depth is the class of Q-Horn formulas, which generalizes the
heterogeneous class obtained as the union of all considered Schaefer classes.
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