Dynamic Coloring of Unit Interval Graphs with
Limited Recourse Budget

Bartlomiej Bosek &
Theoretical Computer Science Department, Faculty of Mathematics and Computer Science,
Jagiellonian University in Krakéw, Poland

Anna Zych-Pawlewicz! &

University of Warsaw, Poland

—— Abstract

In this paper we study the problem of coloring a unit interval graph which changes dynamically.

In our model the unit intervals are added or removed one at the time, and have to be colored
immediately, so that no two overlapping intervals share the same color. After each update only a
limited number of intervals are allowed to be recolored. The limit on the number of recolorings per
update is called the recourse budget. In this paper we show, that if the graph remains k-colorable at
all times, the updates consist of insertions only, and the final instance consists of n intervals, then
we can achieve an amortized recourse budget of O(k”logn) while maintaining a proper coloring
with k colors. This is an exponential improvement over the result in [10] in terms of both k and n.
We complement this result by showing the lower bound of ©2(n) on the amortized recourse budget in
the fully dynamic setting. Our incremental algorithm can be efficiently implemented.

As an additional application of our techniques we include a new combinatorial result on coloring
unit circular arc graphs. Let L be the maximum number of arcs intersecting in one point for some
set of unit circular arcs A. We show that if there is a set A" of non-intersecting unit arcs of size
L? — 1 such that AU A’ does not contain L + 1 arcs intersecting in one point, then it is possible to
color A with L colors. This complements the work on circular arc coloring [4, 30, 31], which specifies
sufficient conditions needed to color A with L + 1 colors or more.
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1 Introduction

In this paper we study dynamic algorithms for the graph coloring problem. The setting
we focus on is as follows. We are given a graph G, which is modified over time by vertex
insertions or vertex deletions, where vertices are inserted (or deleted) together with all the
adjacent edges connecting them to the vertices that are already present in G. For a positive
integer k, a proper k-coloring of a graph is an assignment of colors in {1,...,k} to the
vertices of the graph in such a way that no two adjacent vertices share a color. We say that
a graph admitting such an assignment is k-colorable. In the dynamic setting, the ultimate
goal is to design an algorithm, that (for some given [ > k) efficiently maintains the proper
l-coloring on a dynamically changing k-colorable graph G.
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Dynamic graph coloring is a fundamental problem in computer science and as such it
has received a lot of attention in the literature. Chronologically, dynamic graph coloring
was first considered in a more restricted online setting, where the updates consist of vertex
insertions only, and one is not allowed to change the colors of the previously added vertices.
Many pessimistic lower bounds for online graph coloring have been revealed. In particular,
for general k-colorable graphs, one cannot color the graph online with less then [ = log%nk
colors [18], where n is the number of vertices added to G. This lower bound holds even
for randomized algorithms. Even for trees, which are 2-colorable, one needs | = Q(logn)
colors [3] in the online model. The situation improves if we consider k-colorable interval
graphs, for which | = 3k — 2 colors are necessary and sufficient in the online model [20]. The
case of unit interval graphs has also been extensively studied, revealing that 2k — 1 colors
suffice and 3k/2 colors are necessary to color a k-colorable unit interval graph online [6, 15].

To go beyond the pessimistic lower bounds imposed by the online model, several settings
were proposed where an algorithm is given more power. The one that received a lot
of attention is the limited recourse budget framework. In this setting the algorithm is
allowed to change a number of past decisions, but there is a limit on the number of such
changes, referred to as the recourse budget. This model has been well established and
successfully applied to a variety of optimization problems, often implying efficient dynamic
algorithms [5, 7, 8, 9, 19, 23, 21, 2, 29, 10]. For the coloring problem that we study, the
recourse budget is the number of vertices that change their color after an addition or removal
of a vertex. Barba et al. apply the recourse budget model to coloring general graphs [2].
They devise two complementary algorithms. For any d > 0, the first (resp. second) algorithm
maintains a k(d + 1)-coloring (resp. k(d + 1)n'/?-coloring) of a k-colorable graph and recolors
at most (d + 1)n'/¢ (resp. d) vertices per update, which is either addition or removal of a
vertex. While the second trade-off was improved in [29], the authors in [2] show that the first
trade-off is tight, and the bad example is a forest. Thus, if one insists on using few colors,
one has to incur a polynomial in n recourse budget on every class of graphs that contains
forests. This pushed the researchers to apply the limited recourse budget model to coloring
interval and unit interval graphs.

For unit interval graphs a very positive result has been obtained. The recoloring budget of
O(k?) (worst case) is sufficient for maintaining a (k + 1)-coloring of a k-colorable graph [10].
It is left open what budget is needed for maintaining an optimal k-coloring for unit interval
graphs, even if we only allow vertex insertions. The lower bound given in [10] is 2(logn)
(even when updates are only insertions), while the upper bound (which only works for vertex
insertions) is O(k!y/n) (the same as for general interval graphs). Such a tremendous gap for
such elementary graph class calls for further investigation. The main result of this paper is
that we close this gap up to the factors polynomial in k. To be more precise, we show that
an amortized recourse budget of O(k”logn) is sufficient to maintain k-coloring under vertex
insertions. This is an exponential improvement over [10] in terms of both n and k. It is fairly
easy to see that our algorithm can be efficiently implemented. We complement this result by
showing that in the fully dynamic setting one must spent an amortized recourse budget of
Q(n) per update.

It is worth emphasizing, that our results show a fine line between (k + 1)-coloring and
optimal k-coloring of unit interval graphs in the limited recourse budget model. While
(k + 1)-coloring admits an algorithm with the worst case recourse budget of O(k?) in the
fully dynamic setting, we cannot hope (in this setting) for any reasonable recourse budget
for optimal k-coloring, even if we allow amortization. If we restrict to only adding intervals,
we get the amortized recourse budget of O(k” logn) and Q(logn) is the lower bound. The
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incremental setting is interesting by itself, as it generalizes the online model (where the
recourse budget is zero and only insertions are allowed). In other words, we show that if in
the online model we allow a modest number of O(k”logn) recolorings per update, we can
get down from 3k/2 to the optimum number & of colors. Our result is not only motivated by
the online model, but also fits nicely in the recent line of research related to parameterized
dynamic algorithms [1, 14, 12], with k being the parameter.

The techniques we develop to obtain our main result seem applicable to a wider range
of problems. In particular, we apply one of our techniques to the problem of coloring unit
circular arc graphs. We obtain a combinatorial result that nicely fits into the related line of
research. Imagine that L is the maximum number of arcs intersecting in one point for some
set of unit circular arcs A. We show that if there is a set A’ of non-intersecting unit arcs
of size L? — 1 such that AU A’ does not contain L + 1 arcs intersecting in one point, then
it is possible to color A with L colors. This complements the work on circular arc coloring

[4, 30, 31], which specifies sufficient conditions needed to color A with L 4 1 colors or more.

The remainder of the paper is organized as follows. In Section 2 we provide basic
definitions related to interval graphs and unit interval graphs, together with some elementary
algorithms that solve the coloring problem for static instances of those graphs. In Section 3
we provide an overview of our results and techniques. Due to space limitations, we only
sketch the proofs in Section 3, skipping most of technical details. The full proofs can be found
in the full version of the paper [11]. We conclude with Section 4 in which we discuss some
properties and extensions of our main result. In particular, we discuss the implementation of
our incremental algorithm and its actual running time (which is amortized O(k”logn) per
interval insertion). We also discuss extending our incremental algorithm to changing values
of k, and finally we briefly discuss why our main result does not easily extend to general
interval graphs. We end Section 4 with the problems that we leave open.

2 Preliminaries

We consider in this paper closed-open intervals I = [z,y) for some z,y € R,z < y. Note
that this causes no loss in generality, as closed-open intervals induce the same class of graphs
as open-closed, closed-closed and open-open intervals (see [13, 26]). For an interval I we

define operators x(I) 4ef » and y(I) défy for accessing the begin and the end coordinate. A
multiset of intervals can be interpreted as a graph: the intervals are interpreted as vertices,
which are adjacent if and only if the corresponding intervals intersect. Graphs obtained
in this way are called interval graphs. The coloring related definitions stated in the first
paragraph of Section 1 directly translate to multisets of intervals interpreted as graphs. For
a multiset of intervals Z, the function ¢ : Z — {1,...,k} is a proper k-coloring if for any
I,J € T it holds that ¢(I) # ¢(J) if I and J intersect. The chromatic number x(Z) is the
minimum number k for which Z admits a proper k-coloring. Similarly we can adapt the

definition of a clique: a multiset of intervals J = {Jy, Ja,..., Jn} is a clique if and only if

N T rnn...n Jm # 0, or equivalently max?™, x(J;) < min}”, y(.J;). In such case it holds

that J = [max}™, x(J;), min]", y(J;)). We refer to this intersection as span of J, and

denote it as span(J) défﬂ J. To emphasize the size of J we often refer to it as an m-clique.

The clique number w(Z) of a multiset of intervals Z is the maximum number m such that 7
contains an m-clique. It is well known that interval graphs are perfect, that is:

» Lemma 1 (Golumbic [17]). Let Z be a multiset of intervals. Then w(Z) = x(Z).
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We introduce two orders C and < on a multiset of intervals Z. For any I,J € Z we let
IcJ if x(I) <x(J). If I =J, we solve the tie arbitrarily. Hence, CC is a linear order
on Z. We say that I < J if and only if y(I) < x(J). Hence, < is a linear order only on
independent sets of intervals (i.e., multisets of intervals that are pairwise non-intersecting).
Orders C and < extend to multisets of intervals in a natural manner. For two multisets of
intervals J and K, we say that J T K (respectively J < K) if for all J € J, K € K it holds
that J C K (respectively J < K). For a multiset of intervals Z by Z = {lL C ... C In}
we denote that Z = {I1,...,I,} and I} C ... C I,,. For an ordered multiset of intervals
I={LC...CIL,} wenow define a prefix, a suffix and an infix of Z. For I;,[; € Z, I > i
we set prefixz (I;) = {11, ..., L}, suffixz (I;) = {I;, ..., I, } and infixz (I;, [;) = {I;, ..., I;}.

We now move on to some basic observations that hold for multisets of unit intervals. An
interval T is unit if and only if y(I) = x(I) + 1.

» Observation 2. Let Z = {I, C ... C I,,} be a multiset of unit intervals. If w(Z) < m,
then the extremal intervals are disjoint, i.e., Iy < I,.

Proof. Suppose contrary that I1 N I, # 0, i.e., x(I,) < y(l1) = x(I1) + 1. Then
max!"; x(I;) < min{*, y(I;) and as a consequence (Z # () contradicting w(Z) < m. <

For interval graphs there is a simple greedy algorithm, that can be applied to complete
a coloring given on the prefix of the representation ordered by C [24]. In this paper we
need a more specific but equally simple algorithm which is restricted to unit interval graphs.
The same idea was used for instance to color proper circular arc graphs [25] or to schedule
round-robin tournaments [27]. Since we use it in a different context, we introduce it here
from scratch and we refer to it as the MODULO COLOR COMPLETION algorithm. Informally,
given some coloring on the prefix of a k-colorable instance, this algorithm looks at the first
k consecutive uncolored intervals (in T order), and copies the coloring given on the last
k intervals that are colored (respecting the C order). This proceeds until all intervals are
colored. This simple procedure works given that the coloring that is being copied consists
of all colors from 1 to k. We describe the MoDULO COLOR COMPLETION algorithm more
formally in the following observation, which also proves the corectness.

» Observation 3. LetZ ={I; T ... C I} be a multiset of unit intervals such that w(T) < k.
Let k < 1 < m and let c : prefixz (I;) — [k] be a proper k-coloring for prefixz (I}) such
that c is a bijection on infixz (I_y41,1;). Let ¢ : T+ [k] (referred to as MoDULO COLOR
COMPLETION ) be defined as follows: ¢'(I;) Lef c(I;) fori € [l] and ¢/ (Ij44) défc(ll,;ﬁ(i mod k))
forien—1]. Then ¢ is a proper k-coloring on T.

Proof. It is clear that ¢ assigns only colors in [k], it remains to prove that it is also a proper
coloring. Let I;, I; € 7, where ¢ < j and j > [. If j < i + k, then by definition ¢ (I;) # c¢(I}).
Otherwise, |{I;, I;+1,...,1;}| = k + 1, so by Observation 2, I, N I; = 0. <

The following observation will be useful to bring the prefix coloring to the state when we can
use the MODULO COLOR COMPLETION algorithm, i.e., the coloring on the prefix ends with
the bijection.

» Observation 4. Let T = {I, C ... T Ia} be a multiset of unit intervals such that w(Z) < k
and let ¢’ : prefixz (I1,) — [k] be a proper k-coloring on prefixz (I,). Then there is a proper
k-coloring ¢ : T ~ [k] such that c(I;) = ¢'(I;) fori € [k] and c is a bijection on suffixz (Ix11).

Proof. To construct ¢, we first set ¢(I;) = ¢'(I;) for all i € [k]. Let J = {I}, I;41,...I;} be
the intervals of prefixF (I;,) that intersect I. Thus, J is a (k — [ + 1)-clique. We first assign
the [ — 1 colors not used by J to the first [ — 1 intervals of suffixF (I;+1). That is we assign
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colors [k] \ ¢(J) to intervals infixZ (Ix. 1, Ix+;—1) in an arbitrary order. We get a proper
coloring since the intervals of infixZ (I 1, Ix1;—1) do no intersect intervals of prefix (I},) other
than J. Finally, we set ¢(I;) = ¢(I;_x) for i € {k+1,...,2k}. By Observation 2 intervals I;
and I;_ do not intersect. This completes the proof. |

Observe that Observation 3 and Observation 2 give an alternative to [24] algorithm that
completes the prefix coloring on unit interval graphs. We refer to this algorithm as GREEDY
CoLOR COMPLETION (even though we can use the algorithm of [24] instead).

3 Overview of our results and techniques

Our final result is based on new techniques that might be of independent interest. This section
outlines our techniques and gives an overview on how they are combined into obtaining the
final result. Our techniques are encapsulated in Section 3.1 and Section 3.2 as completely

independent results, as we see the potential of applying them to a wider range of problems.

In Section 3.1 we introduce our new technique of color sorting, which allows to solve the
UNIT PRECOLORING EXTENSION problem efficiently under a specific condition that might
naturally appear in a number of applications. In Section 3.2 we introduce the FROGS game
technique, which is a natural generalization of the folklore technique applied for merging sets
in Find-Union like algorithms. We expect the FROGS game technique to be also applicable
to a wider range of problems. Our main application of the color sorting technique and the
FRrROGS game technique is presented in Section 3.3, where we introduce the INCREMENTAL
UNIT INTERVAL RECOLORING problem and sketch the solution to this problem.

3.1 Color sorting applied to the Unit Precoloring Extension problem

Our first contribution is the color sorting technique, that we apply to the UNIT PRECOLORING
EXTENSION problem. In this problem we are given a k-colorable multiset of unit intervals
I={LC...CIy,}, m> 2k We are also given a proper k-coloring ¢’ on prefixz (I},) (the
first k intervals) and a proper k-coloring ¢’ on suffixz (I,,_r11) (the last k intervals). The
problem is to extend ¢’ and ¢” to a proper [-coloring of Z minimizing .

The UNIT PRECOLORING EXTENSION problem was proven NP-hard [22], moreover, it
is even NP-hard to decide whether one can extend the coloring using [ = k colors. In
our application, however, we are only interested in the instances when this is possible, i.e.,
the UNIT PRECOLORING EXTENSION ceases to be NP-hard. We specify a condition on Z
under which one can, using the color sorting technique, extend the precoloring to a proper
k-coloring. Our condition essentially requires that there is some slack space between the
colored prefix and the colored suffix, which allows color sorting. By the slack we mean that
we can fit between the prefix and the suffix additional k2 — 1 mutually disjoint unit intervals
without increasing the chromatic number of Z. This slack is used to gradually sort the color
permutation given on the prefix to finally obtain the color permutation given on the suffix,
in an insertion sort fashion. The precise result is stated in the following lemma.

» Lemma 5 (Precoloring Extension Lemma). Let k be an integer and let T={I C ... C I,,}
be a k-colorable multiset of m > 2k unit intervals. Let ¢’ : prefiz (I) — [k] and ¢ :
suffixz (I, —k+1) — [k] be bijections. Let there exist a set of k> — 1 pairwise non-intersecting
unit intervals L, such that prefixz (I1,) C L T suffixz (I,n_k4+1) and ZU L is k-colorable. Then
there is a proper k-coloring c : T — [k] such that ¢ extends both ¢’ and ¢, i.e., c(I;) = ¢ (I;)
fori e [k] and c(I;) = '(L;) forie {m—k+1,...,m}.

25:5
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The full proof of Lemma 5 can be found in the full version of the paper [11], Appendix A.

Sketch of proof of Lemma 5. The proof introduces the color sorting technique, which uses
the slack intervals of £ to gradually transform the coloring ¢’ into the coloring ¢”’, in an
insertion sort like fashion. In order to accomplish that, we modify the instance (by inserting
dummy intervals from £) to allow the color sorting technique to work. We describe this
process first.

We start by assuming that the multiset of unit intervals Z is connected as a graph (other-
wise Lemma 5 follows from the MODULO COLOR COMPLETION algorithm, see Observation 3).
An example instance for which our assumptions hold is pictured in Figure 1.

ST ST I e —— ey Ry
— PR
Fe e g
prefix (I3) suffixz (I,,—2)

Figure 1 An example illustrating the assumptions of Lemma 5 for k = 3.

We now partition £ = {L; < ... < Ly2_1} into 2k — 1 sets of unit intervals as follows:
L=LU{M}ULU.. .U{M}_1} ULy, where L; = {L_1)p41,---,Lix—1} for i € [k] and
M, = Ly, for i € [k — 1]. Observe that |£;| = k — 1. Thus, the intervals of the partition are
ordered as follows: prefixz (I) C L1 < {M1} < Lo < ... < {My_1} < Ly T suffixz (I, _x11)-
Next we partition Z into k parts: Z =7; UZs U...UZ, in the way that the following holds:
prefixz (Iy) CZy C {M1} C o C ... C {My_1} T Iy D suffixz (I,,_x+1). This partition is
pictured in Figure 2. We now enlarge 7 by adding to each Z; some dummy intervals. More

Figure 2 An example illustrating partitioning the intervals, k = 3.

precisely, to each Z; C 7 we add a subset £, C £; as to make the number of intervals in
the extension J; < Z; U L] a multiple of k (see Figure 2). As a consequence, J e Ule Ji
and J1, Jo, - . ., Ji satisfy the following (note that since Z is connected as a graph, each Z; is
nonempty and thus each J; is also nonempty):

1. W(j @] {Ml, ‘e aMk—l}) < k,

2. for each i € [k] we have |J;| = kp; for some p; € N\ {0},

3. prefix%([k) CcChcC {Ml} CJC...C {Mk—l} CJk 2 SUfﬁX%(In_]H_l).

Now, rather than the proper coloring for Z, we construct the proper coloring ¢ for 7 (which
is obviously also proper for 7). The construction of ¢ starts by copying colors of ¢’, so that ¢

- . , . i—1 i—1
coincides with ¢’ on prefixz (I;). Let us now consider a block J;_1 = {J}  C...C Jgjfl',l},
where (j — 1) € [k], sj—1 = |J;—1|. Suppose that c is already defined on prefixgjil(Jlg:})
(the first k intervals of J;_1). Note that coloring ¢ on prefix\%f1 (J1~]) defines a permutation
of colors. We use the MoDULO COLOR COMPLETION algorithm to copy this permutation

to suffix?jil(Jg;llfk) (the last k intervals of J;_1). This works because k|s;_1. Suppose
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that this permutation already coincides with the permutation given by ¢” on the last j — 2
positions. We now use the slack given by M;_; to define ¢ on prefixgj (J,Z_l) in such a way
that the corresponding permutation agrees with the permutation given by ¢’ on the last 7 —1
positions. To be more precise, we apply one step of the insertion sort on the permutation
to bring one more color to the appropriate position, as shown in Figure 3. This is possible
because of the slack given by M;_;. The intuition is that if we apply MopuLo COLOR
COMPLETION on prefixgj (lefl)’ then we obtain a proper k-coloring on prefix?j (Ji,l) that
precisely copies the color permutation from suffixgjf1 (Jg;lr ). On the other hand, if we
apply MobuLo COLOR COMPLETION to {M;_1} U prefix‘EZ,(J,zfl)7 then on prefix%j(.]gfl)
we get the same permutation with all colors shifted down by one, and this is also a proper
coloring. The insertion sort step that we apply (see Figure 3) gives a permutation that
alternates at most twice between the same permutation and the shifted permutation. Also,
the insertion sort step moves one special color (purple in Figure 3) further away than required
by the MobuLo COLOR COMPLETION algorithm. Hence the obtained coloring is proper.

<
j—1 j k
f sl oy Ji ! %
I 1 1 I . 1 .
|_Jg&| N |J—§| %
J—1 j k
M I & I e o |L|
1 I I\/ > I ] 1 .
51*174 /’w|‘]—{| Jsi—a
i—1 ~7 ; .
J J Je s
M; 1
F-------- 4
Figure 3 An insertion sort step, where coloring c is constructed on prefix"zjj (lefl) for j = 4,
k=5.

3.2 The Frogs game

Our second contribution is a technique that generalizes a folklore trick typically used in the
analysis of Union-Find data structure. The SET UNION problem, where the Union-Find data
structure finds its application, can be thought of as a game. In this game we are initially
given n pairwise disjoint sets of size §, and the adversary keeps merging consecutive pairs of
sets until there is only one set left. Each time the adversary merges a pair of sets, we incur
the cost equal to the size of the smaller set among the ones being merged (as if we move
all elements of the smaller set to the larger set, one by one). It is clear that the maximum
total cost the adversary can generate is dnlogn, as each of dn elements can contribute to
the total cost at most logn times.

The generalization we propose is that the cost we incur with each merging is the sum of
the sizes of Kk consecutive sets rather then just one. We sum x consecutive sizes either to the
left or to the right of the merged pair, whatever turns out cheaper. We show that the total
cost an adversary can generate here is O(dxnlogn). We refer to this generalization as the
FroGS game, and we now introduce its formal definition.

» Definition 6. We define an instance of a FROGS game as a tuple F = (N, k,0,J). There,
N .k, and 0 are integers, referred to as the size of the game, the jump number, and the initial
rank value respectively. It also holds that k < N. Moreover J is a sequence of N — 1 integers
J = (1,792, -,JjN-1), where 1 < j. < N — 71 and J is referred to as the jump sequence.

25:7
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We now define the cost of the FROGS game.

» Definition 7. Let F = (N,k,d,J) be an instance of the FROGS game, where J =

(J1,d2y---sdn—1). Let Ry = (4,...,0) be a sequence of length N (Ry is called the ini-

. def
tial rank sequence). Let Rri1 = ("1, «.oy Trj.—1, Trj, +Trjit1s Trjrd2s «-os TrN—r+41)

(rank sequence R,i1 in time T + 1 4s obtained by adding two neighboring ranks in
R, placed at positions jr and jr + 1). The FROGS cost incurred in time T is

def . ) .
G Emin(rej. .+t Tej, Trjoy et Toj,,), where fori <1 andi>N —7+1

we set rr; f 5. The total cost of the FroGgs game F is ¢(F) def 1+ ... +<Sn_1-
We bound the cost of any FROGS game F using the following theorem.

» Theorem 8 (Frogs theorem). For an instance F = (N, k,d,J) of the FROGS game we have

N +2k—2

G(F) <825 — 1)(N + 2k — 2) log, 51

The FROGS theorem is proved in the full version of the paper [11] in Appendix B. The
technique given by FROGS theorem might be of independent interest. It seems applicable as
a building block to more problems than the one studied further in this paper.

3.3 Incremental Unit Interval Recoloring problem

The main result of this paper is an algorithm for the INCREMENTAL UNIT INTERVAL
RECOLORING problem. We are given a parameter k& and a sequence of n unit intervals:
I, I,..., I, such that {Iy,...,I,} is k-colorable. This sequence defines n + 1 multisets of
unit intervals: Zy = 0 and Z; déf{h, ..., I;} for j > 0. Instance Z; differs from Z;_; by one
interval I;. The goal is to maintain a proper k-coloring on the dynamic instance. To be more
precise, after the interval I; is presented, the algorithm needs to compute a proper k-coloring
¢;j for Z;. Our objective is to minimize the recourse budget, which is the number of intervals
with different colors in ¢; and c;_;. We obtain the following result.

» Theorem 9. There is an algorithm for the INCREMENTAL UNIT INTERVAL RECOLOR-
ING problem with a total recourse budget of O(k"nlogn).

Theorem 9 is formally proved in the full version of the paper [11], Appendix C. Here we
outline how the Precoloring Extension lemma (Lemma 5) and the Frogs theorem (Theorem 8)
are combined to obtain the main result, skipping the technical details that are deferred to
the full proof.

Sketch of the proof of Theorem 9. Let us imagine that a new interval I; is presented and
we need to provide the coloring c; for Z;. Let us order Z; according to the C order. Let I
be the direct predecessor (in C order) of I; in Z;. Let interval J®) be the interval of Z;
succeeding I (in C order) such that between I and J) there is room to insert the set £
of k? — 1 mutually disjoint unit intervals, as required by the Precoloring Extension lemma
(Lemma 5). Let J (L) be an analogous interval preceding I. For simplicity let us assume
that both J(*) and J(#) exist. Based on the Precoloring Extension lemma (Lemma 5), it is
(almost) sufficient to recolor the infix of Z; between I and J (B) or the infix of Z; between
J@) and I, and it is up to the algorithm which of the two infixes it chooses to recolor. Our
recoloring algorithm basically chooses the infix that is smaller in size and recolors it (although
there are small technical details that make the algorithm a bit more complicated in the end).
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The whole weight of the proof lies now in the analysis, which shows that the size of the
smaller infix is O(k7 logn) in the amortized sense. To prove that we use the Frogs theorem
(Theorem &), so we need to define the appropriate size N, jump number k, initial rank
value §, and the jump sequence J, and all these numbers must strongly relate to what the
recoloring algorithm does. We sketch here the main idea of how we do it. We look at all
k-cliques of the final instance Z,,, n" € O(kn) (the final instance is not Z,, because, for a
technical reason mentioned further, we may be forced to add some dummy intervals after the
whole instance Z,, was presented). Every k-clique is a set of k overlapping intervals, whose
intersection is some (not necessarily unit) interval. So we represent the k-cliques of the final
instance Z, as a set S,/ of intervals, which are mutually disjoint, and we order them by <
order. This is shown in Figure 4, where at the bottom the intervals of Z,,, are drown (either
solid black or dashed blue), and above them the corresponding cliques of S,/ are pictured
(also either solid black or dashed blue).

S s,

Zy: BP———F----- A F----- 1| { | |} { | |
f { | | |~ el = 1 f | | { | | G o i
f { | | | | f | B 5 t e B 1 -
Figure 4 Example span partition : b—— — intervals of Z;, } - - -| — intervals of Z,,s \ Z; (future
intervals), —— — spans of Sj, F---| — spans of S,y \ S; (future spans), C__) - blocks of

partition B, k = 3.

We observe that m % |Sn/| = O(kn). We assume that S, is tightly packed, i.e., two
consecutive intervals in S,/ are at distance less than one (for this assumption to hold we
add dummy intervals to Z,, and obtain Z,,-whenever two consecutive cliques are at distance
at least one, we insert a dummy interval between them without increasing the chromatic
number). The intuition now is that at the beginning each clique in S, is empty, but
successively the cliques in S,/ are filled with the intervals, until each of them is filled up to

the maximum level k. A new interval I; adds 1 to the level of all the cliques it intersects.

Let us denote by Ivl;(S) the level of clique S € S,/ in step j. In Figure 4, the intervals of Z;
are marked solid black, while the future intervals (not presented until step j) are marked
dashed blue. Consequently, the fully filled cliques of S,,; are marked solid black, while the
cliques that are not filled to the maximum level in step j are marked dashed blue.

In each step j, we partition the cliques S € S,/ into blocks depending on their level
Ivl;(S). We refer to the corresponding partition as B,. The rule is that the consecutive
cliques who are entirely filled (meaning that Ivl;(.S) = k) belong to the same block of the

partition 8, while the cliques that are not filled are placed in a separate one-element block.

An example partition B; is pictured in Figure 4. As a result, the blocks of 95, are merged
over the time, but never split. The grey blocks of B, consisting of entirelly filled cliques are
called passive, while the remaining blue blocks (the one-element blocks containing the cliques
that are not filled) are called active.

Now for each insertion step j there is a corresponding rank sequence R, in the FROGS game.

Each block B € B; is assigned at least one and at most (k + 1) consecutive ranks r®) in

(B) ’
7“5,81-) > Y gepVli(S). Each active block B is assigned at least k — Ivl;(S) 4 1 consecutive
(B)

T,0 )

R, in the way that every rank r_~’ assigned to B bounds the sum of the levels in B, i.e.,

ranks r while each passive block is assigned precisely one rank.

25:9
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When the interval I; arrives, some cliques S € S,/ increase their level. Such a clique S
that increases its level is necessarily in an active (singleton) block B = {5}, as I; certifies
that .S is not completely filled up yet. To account for the insertion of I;, we merge any two
consecutive ranks assigned to B = {S} (there is at least k — Ivl;(S) + 1 > 2 ranks available).
We observe that the infix recolored by the algorithm is entirely contained within O(k3)
consecutive blocks to the left or to the right of B, and in what follows we argue why this
holds. First of all, the recolored infix can intersect at most O(k?®) active blocks: each active
block certifies that a future unit interval fits in, but k& active blocks may be witnesses for the
same future unit interval that fits in. Note that the infix recolored by the algorithm contains
at most (k% — 1) pairwise disjoint future intervals. Second of all, the recolored infix intersects
no more passive blocks than active blocks, since each passive block has a neighboring active
block.

Since every block is assigned at most (k4 1) consecutive ranks, if we set the jump number
k = O(k*), the cost incurred in the Frogs game covers the ranks assigned to the O(k?)
consecutive blocks, which in turn bound the recoloring cost in the recoloring algorithm for
step j. Of course, upon the arrival of I; some cliques need to be merged into one passive
block, and even some passive blocks get merged together, meaning that we need to merge
some extra ranks in the rank sequence, but this also can be handled by the FROGS game. <«

3.4 Fully Dynamic Unit Interval Recoloring problem

In this section we show that for the FuLLy DyNaMIC UNIT INTERVAL RECOLORING problem
one cannot hope for an algorithm with a reasonably limited recourse budget. In the FULLY
DynaMIC UNIT INTERVAL RECOLORING problem, we are initially given an empty multiset
of unit intervals Zy = ). The instance Z;; is obtained from Z; by adding a new unit interval
to Z; or removing the existing chosen interval from Z;. Every instance Z; presented to the
algorithm is k-colorable. The goal is again to maintain a proper k-coloring on the dynamic
instance. After each interval insertion and removal, the algorithm needs to compute a proper
k-coloring c¢; for Z;. Similarly as before, our objective is to minimize the recourse budget,
which is the number of intervals with different colors in ¢; and ¢;_;. For this problem we get
the following negative result.

» Observation 10. There is a sequence of m updates for the FULLY DYNAMIC UNIT INTERVAL
RECOLORING problem that forces the total number of recolorings of Q(m?).

Proof. We first construct an instance M =ZUJUKU L, where Z = {I1,...,I,}, J =
{J1y.o s Int, K={K1,...,Kp}and L = {Lq,...,L,}. All four sets contain pairwise disjoint
intervals. Both KU £ and ZU J are paths when interpreted as graphs. Additionally, set
K U L is placed to the left of Z U J. This is shown in Figure 5.

Figure 5 The update when K; has the same color as I;.
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Observe that since M is 2-colorable, all sets KC, £, Z and J are necessarily monochromatic,
moreover set K has different color than £, and Z has different color than J. We construct the
instance so, that K7 is the rightmost interval of XU £ and interval I; is the leftmost interval
of ZU J. Moreover, the distance between the end coordinate of K7 and the begin coordinate

of Iy is less than one (see Figure 5). Consider the case when K; has the same color as I7.

Then we insert to M two intersecting intervals I and I’, such that I intersects K; and I’
intersects I; (see Figure 5). This results in M U {I, I'} being a path when interpreted as a
graph. The instance is still 2-colorable, but now Z needs to have the same color as £ and J
needs to have the same color as K. This requires recoloring 2n intervals, since either Z U J
or K U L has to be recolored. Next, we remove I and I’. Consider now the case when K;
has a different color than I (see Figure 6). In that case we insert an interval I intersecting

Figure 6 The update when K has different color than ;.

both K7 and I;. This causes that K1 and I; have to now be assigned different colors, and
again either ZU J or K U L has to be recolored. <

3.5 Coloring Unit Circular Arc Graphs

In this section we present a different application of the Precoloring Extension Lemma
(Lemma 5). As a result, we offer a new combinatorial result for coloring unit circular arc
graphs.

Unit circular arc graphs, as a subclass of proper circular arc graphs, admit an O(n!9)
algorithm that statically finds an optimum proper coloring [28]. On the other hand, the
problem of coloring circular arc graphs is NP-hard [16], and a lot of research has been
devoted to find positive results regarding this problem. This line of research exposes two
important parameters describing an instance A of a circular arc graph: the load load(.A)
and the cover number cn(A). The load load(A) stands for the maximum number of arcs
intersecting in one point, whereas the cover number cn(.A) stands for the minimum number of
arcs covering the whole circle. The research focus is on the conditions under which a circular
arc graph admits a proper coloring using close to load(A) colors. Tucker [30] shows, that if
cn(A) > 4, then |3load(A)/2] colors suffice. Valencia-Pabon [31] shows that if cn(A) > 5,

then oa colors 1s enoug . or ¢cn 2 0a + the oun ecomes
hen | A1 10.d(A4 lors i h. F A) > load(A) + 2 the bound b

cn(A)—2
load(A) + 1. Belkale and Chandran [4] prove the Hadwiger’s conjecture for proper circular
arc graphs. Neither of these results exposes a condition sufficient to color the instance
with precisely load(A) colors. We use Lemma 5 to show, that if one can add load(A)% — 1
non-intersecting unit arcs to an instance of a unit circular arc graph in a way that the load
does not increase, then load(.A) colors is sufficient to properly color the instance. This is
formalized by the following lemma, proved in the full version [11] in Appendix D.

» Theorem 11. Let A be a set of unit circular-arcs on the circle with a circumference at
least 2, such that A can be extended with r = load(A)? — 1 not intersecting unit circular-arcs
By, ..., B, which do not increase the load, i.e., load(A) = load(AU{By,...,B.}). Then
x(A) < load(A).

Note that our condition of Theorem 11 can be easily checked in linear time and it might be
a very natural assumption for some applications.
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4 Concluding remarks

In this section we discuss several interesting extensions and aspects of our main result, which
is the recoloring algorithm for the INCREMENTAL UNIT INTERVAL RECOLORING problem.
We conclude with future research directions and open problems.

The first interesting property of the RECOLOR algorithm is its resistance to malicious
coloring. By that we mean, that the RECOLOR algorithm on its input coloring does not
assume anything other than being a proper k-coloring. In other words, some evil adversary
could potentially repaint the whole instance before inserting the new interval, and as long
as this is a proper k-coloring, the RECOLOR algorithm works. This might be of interest for
some applications, one of which is described next.

Throughout the paper we make a simplifying assumption that the chromatic number & of
the final instance is given apriori to the RECOLOR algorithm (as a parameter). Using the fact
that our algorithm works against malicious coloring, it is easy to get rid of this assumption
by running the recoloring algorithm with changing values of k. To be more precise, let us
consider each step j when the chromatic number increases: | — 1 = x(Z;_1) < x(Z;) =1 (we
can easlily detect all such steps j). Before I; arrives, we have the (I —1)-coloring ¢;_1 of Z; 4
at our disposal. Coloring c is obviously also an [-coloring for Z;_1, so the recoloring algorithm
for Z; gets the correct input. From now on, until the next step when the chromatic number
increases, the algorithm runs with parameter £ = [. It is easy to see that the algorithm
modified in this way returns the proper coloring. Let K be the chromatic number of the final
instance Z,, (not known to the algorithm). Since for every k used by the modified algoritm
we have k < K, the analysis for parameter K bounds from above the total recoloring budget
of the modified algorithm. Thus, using O(K7logn) amortized recoloring budget, we can
maintain an optimal coloring for each instance Z;.

Our incremental algorithm can be implemented in total time O(k"nlogn), where k is the
final chromatic number. It suffices to maintain a sorted list of intervals Z; in an AVL tree.
Such a list allows inserting a new interval in time O(logn). It allows finding the predecessor
and the successor of the newly inserted interval, and efficient iteration to the left and to the
right. This allows detecting the infix that we want to recolor in the time proportional to the
size of the infix. The coloring step can then be performed in linear time. We refer to the full
version [11] of the paper for the details and the pseudocode of the algorithm.

Finally, let us shortly discuss why our approach does not seem to extend to general interval
graphs, or even the intervals whose lengths vary from 1 to (1 + €). The main reason for that
is that the MoDULO COLOR COMPLETION algorithm spectacularly fails on such graphs. In
particular, Observation 2 ceases to hold, and the MobpuLo CoLOR COMPLETION algorithm
is based on this observation. It would be interesting to see if the color sorting technique
could work with some algorithms other than MoDULO COLOR COMPLETION , effective on
any superclass of unit interval graphs. We leave this as the main open question. Note that
due to our lower bound in Section 3.4, which carries over to any superclass of unit interval
graphs, we cannot hope on positive results regarding the fully dynamic setting.
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