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Abstract
For many problems, the important instances from practice possess certain structure that one should
reflect in the design of specific algorithms. As data reduction is an important and inextricable part
of today’s computation, we employ one of the most successful models of such precomputation – the
kernelization. Within this framework, we focus on Traveling Salesperson Problem (TSP) and
some of its generalizations.

We provide a kernel for TSP with size polynomial in either the feedback edge set number or the
size of a modulator to constant-sized components. For its generalizations, we also consider other
structural parameters such as the vertex cover number and the size of a modulator to constant-sized
paths. We complement our results from the negative side by showing that the existence of a
polynomial-sized kernel with respect to the fractioning number, the combined parameter maximum
degree and treewidth, and, in the case of Subset TSP, modulator to disjoint cycles (i.e., the
treewidth two graphs) is unlikely.
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1 Introduction

The Traveling Salesperson Problem is among the most popular and most intensively
studied combinatorial optimization problems in graph theory1. From the practical point of
view, the problem was already studied in the 1950s; see, e.g., [15]. We define the problem
formally as follows.

Input: An undirected graph G = (V, E), edge weights ω : E → N, and a budget b ∈ N.
Question: Is there a closed walk in G of total weight at most b that traverses each vertex of

G at least once?

Traveling Salesperson Problem (TSP)

TSP is known to be NP-hard [24]. It is worth mentioning that the input to TSP is usually
a complete graph and it is required that each vertex is visited exactly once (single-visit
version). In this paper, we aim to study the impact of the structure of the input graph on the
complexity of finding a solution to TSP. Towards this, we employ parameterized analysis [16]
and therefore we also consider the decision version of TSP. Many variants of the problem
have been studied in detail [29]. Our formulation is also known as Graphical TSP [14].

In this paper, we further study two natural generalizations of TSP– Subset TSP and
Waypoint Routing Problem. In Subset TSP (subTSP) the objective is to find a closed
walk required to traverse only a given subset W of vertices (referred to as waypoints) instead
of the whole vertex set as is in TSP. An instance of TSP can be interpreted as an instance
of subTSP by letting W = V (G). In Waypoint Routing Problem (WRP) the edges of
the input graph have capacities (given by a function κ : E(G) → N) and the objective is to
find a closed walk traversing a given subset of vertices respecting the edge capacities, i.e.,
there is an upper limit on the number of times each edge can be traversed in a solution. As
we show later, an instance of subTSP can be interpreted as an instance of WRP by letting
κ(e) = 2 for every e ∈ E(G). Note that both subTSP and WRP are NP-complete.

Related Work. TSP (and its variants) were extensively studied from the viewpoint of
approximation algorithms. The single-visit version of TSP in general cannot be approximated,
unless P = NP [51]. For the metric single-visit version of the problem Christofides [13] provided
a 3

2 -approximation, while it is known that unless P = NP, there is no 117
116 -approximation

algorithm [12]. This is so far the best known approximation algorithm for the general case,
despite a considerable effort, e.g., [54, 26, 10, 23, 8, 30, 37].

The problem remains APX-hard even in the case of weights 1 and 2, however, a 7
6 -

approximation algorithm is known for this special case [50]. A PTAS is known for the special
case of Euclidean [4, 47] and planar [27, 3, 38] TSP. Also, the case of graph metrics received
significant attention. Gharan et al. [25] found a 3

2 − ε0 approximation for this variant.
Mömke and Svensson [48] then obtained a combinatorial algorithm for graphic TSP with
an approximation factor of 1.461. This was later improved by Mucha [49] to 13

9 and then
by Sebö and Vygen [53] to 1.4. See, e.g., the monograph of Applegate et al. [2] for further
information.

A popular practical approach to the single-visit version of TSP is to gradually improve
some given solution using local improvements – the so-called q-OPT moves (see, e.g., [35, 36]).
Marx [45] proved that TSP is W[1]-hard w.r.t. q. Later, Bonnet et al. [7] studied the q-OPT

1 TSP Homepage: http://www.math.uwaterloo.ca/tsp/index.html.

http://www.math.uwaterloo.ca/tsp/index.html
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technique on bounded degree graphs. They also investigated the complexity in the case
where q is a fixed constant. The first significant theoretical improvement in the general case
was by de Berg et al. [6] (announced at ICALP ’16) who gave an O(n⌊2q/3⌋+1) time dynamic
programming based algorithm. Furthermore, they showed that improving upon the O(n3)
time for the case of 3-OPT would yield a breakthrough result by a connection with the
All Pairs Shortest Paths (APSP) problem (see, e.g., [11]). Lancia and Dalpasso [40]
observed that the DP-based approach is indeed slow in practice and implemented a practical
fast algorithm tailored for 4-OPT. Later, Cygan et al. [17] improved the result of de Berg et
al. [6] by presenting an O(n(1/4+εq)q) time algorithm. Moreover, they showed a connection
of 4-OPT to APSP. Guo et al. [28] considered other suitable measures (parameters) for local
search (e.g., r-swap or r-edit) and provided a W[1]-hardness result in general graphs (for
both parameters). Furthermore, they gave an FPT algorithm for planar graphs and showed
that the existence of polynomial kernels is unlikely even in this case.

Subset TSP can be solved in time 2ℓ · nO(1) by first computing the distance between
every pair of waypoints, and then solving the resulting ℓ-waypoint instance using the standard
Bellman-Held-Karp dynamic programming algorithm [5, 31]. Klein and Marx [39] showed
that if G is an undirected planar graph with polynomially bounded edge weights, then the
problem can be solved significantly faster, in 2O(

√
ℓ log ℓ) · nO(1) time. It is also known that

Subset TSP can be solved in 2O(
√

ℓ log ℓ) ·nO(1) on edge-weighted directed planar graphs [46].
Amiri et al. [1] initiated the study of the variant of WRP discussed in this paper. They

showed that the problem admits an XP algorithm w.r.t. the treewidth of the input graph.
They also gave a randomized algorithm for the problem with running time 2ℓ · nO(1), where
ℓ is the number of waypoints; the algorithm can be derandomized if ℓ = O((log log n)1/10).
Schierreich and Suchý [52] improved the former algorithm by giving a deterministic algorithm
with running time 2O(tw) · n, which is tight under ETH [33]. Note that Hamiltonian Path
and therefore TSP is W[1]-hard w.r.t. the cliquewidth of the input graph [21].

It is somewhat surprising that, despite its popularity in theoretical computer science,
the TSP problem did not receive much attention from the perspective of data reduction
(kernelization). A notable exception is the work of Mannens et al. [43, 44] who studied Many
Visits TSP and gave a polynomial kernel when the problem is parameterized by the vertex
cover number of the input graph. In this work, we significantly expand the kernelization
approach to TSP and its variants.

Structural parameters within the class of bounded treewidth. Even though all problems
in FPT admit a kernel, not all of them admit a polynomial-sized kernel. It is not hard to see
that TSP is AND-compositional and therefore we can (conditionally) exclude the existence
of a polynomial kernel w.r.t. treewidth; more precisely, we show the following.

▶ Lemma 1 (⋆). There is no polynomial kernel for unweighted Traveling Salesperson
Problem with respect to either the fractioning number or the combined parameter treewidth
and maximum degree, unless the polynomial hierarchy collapses.

It follows that in order to obtain positive results we should investigate parameters within
the class of bounded treewidth. Note that, roughly speaking, fractioning number is a
modulator to parameter-sized components. A modulator is a set of vertices M such that when
we remove M from a graph G the components of G \ M fall into a specific (preferably simple)
graph class (see Section 2 for formal definitions). Since almost all graph classes are closed
under disjoint union, it is also popular to speak of addition of k vertices to a graph class (i.e.,
for a graph class G we write G + kv if we are “adding” k vertices). Thus, it naturally models

ESA 2022
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Vertex Cover Number
T3 T4 T4

Mod. to Const. Paths
T5 T5 ?

Feedback Edge Set No.
T7 T7 T7

Mod. to Const. Comps.
T6 ? ?

Feedback Vertex Set No.
? ? ?

Max. Degree + Treewidth
L1 L1 L1

Fractioning Number
L1 L1 L1

Mod. to Disjoint Cycles
? T2 T2

Treewidth
der der der

Figure 1 Overview of our results. Each node names a graph parameter and at its bottom it
contains boxes representing (from left to right) TSP, subTSP, and WRP. If a node A is connected
to a lower node B with an edge, then B(G) = O(A(G)) for respective parameters. Modulator,
Constant, and Components are shortened. Each box contains either a reference to the theorem which
proves existence or non-existence of polynomial kernel (e.g. T2), or it contains ? if the problem is
open, or it contains der if the result for such setting is derived from another result.

the situation when the input is close to a class of graphs where we can solve the problem
efficiently (also called “Distance to G”). Modulator size is a popular structural parameter (see,
e.g., [9, 41, 42]). Thus, the above result motivates us to study modulator-based parameters
and their effect on kernelization of TSP and its variants. Indeed, many problems admit
much more efficient algorithms w.r.t. vertex cover than for treewidth parameterization; see,
e.g., [34, 19, 20]. Therefore, this is exactly the point where the positive part of our journey
begins.

Before we do so, we discuss one more negative result. For subTSP we can, under a
standard complexity-theoretic assumption, exclude the existence of a polynomial (Turing)
kernel for the parameter size of a modulator to graphs of treewidth two. More specifically,
we show the following.

▶ Theorem 2 (⋆). Unweighted subTSP with respect to the minimum k′ such that there is
a size k′ modulator to cycles of size at most k′ and there are at most k′ non-terminals is
WK[1]-hard.

Therefore, subTSP parameterized by the size of a modulator to (disjoint) cycles does not
admit a polynomial (Turing) kernel, unless all problems in WK[1] admit a polynomial Turing
kernel. Moreover, it does not admit (classical) polynomial kernel, unless the polynomial
hierarchy collapses. For more details on WK[1]-completeness, see [32].

Our Contribution. On a positive note, we begin with a polynomial kernel for TSP and
WRP w.r.t. vertex cover number to demonstrate the general techniques we employ in this
paper. We study the properties of a nice solution to the instance with respect to a particular
structural parameter and its interaction with the modulator. We begin the study with TSP
as a warm-up. In this case, we show that if there are “many” vertices in G \ M , where M is
the modulator (vertex cover), then all but few of them behave in a “canonical way”. Based
on the properties and cost of this canonical traversal, we identify which of these vertices can
be safely discarded from the instance. In particular, we show the following.
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▶ Theorem 3 (⋆). Traveling Salesperson Problem admits a kernel with O(k3) vertices,
O(k4) edges, and with a total bit-size O(k16), where k is the vertex cover number of G.

In the case of subTSP or WRP, we cannot be sure that a solution visits all vertices in
the modulator. Quite naturally, this results in the second kind of rule where we see that if
there are “many” vertices attached to the modulator in the same way, we can mark some
vertices in the modulator as terminals (there is a solution visiting them).

▶ Theorem 4 (⋆). Waypoint Routing Problem admits a kernel with O(k8) vertices,
O(k9) edges, and with a total bit-size O(k36), where k is the vertex cover number of G.

Using similar, yet more involved results, we are able to find a polynomial kernel for
subTSP for a modulator to constant-sized paths and for TSP for a modulator to constant-
sized components.

One ingredient for our approach is that we may assume that all vertices outside the
modulator are terminals, and therefore every solution visits them. It is not clear how to use
our approach in the presence of capacities already in the case of modulator to paths, since
the previous observation does not hold already in this simple case. Indeed, we show this by
contracting some of the edges, which in the presence of capacities might have a side effect on
the set of possible traversals of the component. The other and more important ingredient is
the so-called blending of solutions (see Lemma 30).

▶ Theorem 5 (⋆). Let r be a fixed constant. Subset TSP admits a kernel of size kO(r),
where k is the size of a modulator to paths of size at most r.

When we allow general constant-sized components outside the modulator, we have not
yet succeeded in dealing with the highly connected non-terminals in the modulator. At this
point, it is not clear whether many components with the same combination of canonical
transversal and attachment to the modulator set ensure that we can safely mark a vertex in
the modulator as a terminal.

▶ Theorem 6 (⋆). Let r be a fixed constant. Traveling Salesperson Problem admits a
kernel of size kO(r), where k is the size of a modulator to components of size at most r.

We conclude our algorithmic study by providing a rather simple polynomial kernel for
WRP parametrized by the feedback edge set number. On the one hand, this result is an
application of rather straightforward local reduction rules. On the other hand, these rules
are heavily based on the use of edge capacities. It should be pointed out that we get a
polynomial kernel for TSP as it has a polynomial compression to WRP, however, it can be
shown that “local reduction rules” do not exist in the case of TSP.

▶ Theorem 7 (⋆). Waypoint Routing Problem admits a kernel with O(k) vertices and
edges and bit size O(k4), where k is the feedback edge set number of G.

For an overview of our results, please, refer to Figure 1.

Organization of the paper. We summarize the notation and technical results we rely
on in Section 2. Section 3 contains a few useful technical lemmas and simple reduction
rules. In Section 4, we begin with the core concepts applied in the case of TSP and vertex
cover number. The similar approach is then applied in Section 5 to more general types of
modulators; this is the most technical part of this manuscript. Finally, in Section 6 we
conclude the results and discuss future research directions.
Statements where proofs or details are omitted due to space constraints are marked with ⋆.
All missing proofs and details are available in the full version of the paper.

ESA 2022



22:6 On Polynomial Kernels for TSP

2 Preliminaries

We follow the basic notation of graph theory by Diestel [18]. In parameterized complexity
theory, we follow the monograph of Cygan et al. [16].

A walk in a graph G is a non-empty alternating sequence of vertices and edges S =
v1, e1, . . . , eℓ−1, vℓ such that vi ∈ V (G), ei ∈ E(G), and ei = {vi, vi+1}, ∀i ∈ {1, . . . , ℓ − 1}.
It is closed if vℓ = v1. The weight of walk S is ω(S) =

∑ℓ−1
i=1 ω(ei). If all vertices in a walk

are distinct, it is called a path.
A solution to our problems is a closed walk S visiting every vertex in W of total weight

at most b (traversing each edge e at most κ(e) times). The least cost such walk is called
an optimal solution. Given such a walk, we can construct the corresponding multigraph GS

which is a multigraph with vertex set being the set of vertices visited by S and each edge
occuring as many times as traversed by S. We naturally extend ω to this multigraph, which
yeilds ω(GS) =

∑
e∈E(GS) ω(e) = ω(S). The degree of a vertex in a multigraph is the number

of the edges incident with it. Conversely, if a multigraph GS is Eulerian (connected with all
degrees even), then it admits a walk visiting every vertex of the graph and traversing each
edge exactly as many times as occuring in GS .

Structural Graph Parameters. Let G = (V, E) be a graph. A set of edges F ⊆ E is a
feedback edge set of the graph G if G \ F is an acyclic graph. Feedback edge set number fes(G)
of a graph G is the size of a smallest feedback edge set F of G. A set of vertices C ⊆ V is
called vertex cover of the graph G if it holds that ∀e ∈ E we have e ∩ C ̸= ∅. The vertex
cover number vc(G) of a graph G is the least size of a vertex cover of G.

▶ Definition 8. Let G be a graph family, let G be a graph, and M ⊆ V (G). We say that M

is a modulator of the graph G to the class G if each connected component of G \ M is in G.
The distance of G to G, denoted modul(G, G), is the minimum size of a modulator of G to G.

Let r be a fixed constant. Let Grc be the class of graphs with every connected component
having at most r vertices. The distance of G to r-components is modul(G, Grc). Similarly, if
Grp is a class of graphs where every connected component is a path with at most r vertices,
then the distance of G to r-paths is modul(G, Grp).

A set of vertices Cr ⊆ V is called r-fractioning set of the graph G if |Cr| ≤ r and every
connected component of G \ Cr has at most r vertices. The fractioning number fn(G) is a
minimum r ∈ N such that there is an r-fractioning set Cr in graph G.

3 The Toolbox

In this section, we give formal proofs to a few technical statements we use throughout the rest
of the paper. This yields a useful set of assumptions that allow us to present less technical
proofs in the subsequent sections. We begin with a technical lemma we were not able to find
in literature.

▶ Lemma 9 (⋆). Let G be a graph with more than 2|V (G)| − 2 edges. Then there is a cycle
C in G such that the graph G′ = G \ E(C) has the same connected components as G.

When proving the safeness of our reduction rules, it is easier to work with a solution that
does not use many edges and traverses each edge at most twice. We show that we can always
assume to work with such a solution.
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▶ Definition 10 (Nice Solution). Let (G, W, ω, κ, b) be an instance of TSP, Subset TSP,
or WRP. We call a solution nice if it uses every edge at most twice and contains at most
2|V | edges (edge traversals) in total.

Indeed, we may always assume that we work with a nice solution.

▶ Lemma 11 (⋆). Let (G, W, ω, κ, b) be an instance of TSP, Subset TSP, or WRP. There
is a nice optimal solution.

We continue with a remark about our instances. It is important to note that item (b) is
applicable in general, however, one should be careful when doing so, since it increases the
weights in the instance.
▶ Remark 12 (⋆). Let (G, W, ω, κ, b) be an instance of TSP, Subset TSP, or WRP. We
assume that a) G is a connected graph and b) ω(e) > 0 for all e ∈ E(G).

We apply the following lemma to reduce the weights of the kernelized instances. It follows
in a rather straightforward way from results of Frank and Tardos [22].

▶ Lemma 13 (⋆). There is a polynomial time algorithm, which, given an instance
(G, W, ω, κ, b) of TSP, subTSP, or WRP with at most d edges, produces ω′ and b ′ such
that the instances (G, W, ω, κ, b) and (G, W, ω′, κ, b ′) are equivalent and (G, W, ω′, κ, b ′) is of
total bit-size O(d4).

Finally, we present two simple reduction rules; we always assume that Reduction Rule 1
is not applicable.

▶ Reduction Rule 1 (⋆). Let an instance of TSP, subTSP, or WRP be given. If b < 0,
then answer no. Otherwise, if |W | ≤ 1, then answer yes.

▶ Reduction Rule 2 (⋆). Let I be an instance of Subset TSP and v /∈ W . For each pair
of vertices u, w ∈ N(v) we introduce a new edge {u, w} into the graph with ω({u, w}) =
ω({u, v}) + ω({v, w}) (if this creates parallel edges, then we only keep the one with the lower
weight). Finally, we remove v together with all its incident edges.

While Reduction Rule 2 is easy to apply, its application may destroy the structure of
the input graph. Therefore, we only apply it to some specific vertices as explained in the
subsequent sections.

4 Polynomial Kernel with Respect to Vertex Cover Number for TSP

In this (warm-up) section, we argue that TSP admits a polynomial kernel with respect to
the vertex cover number. That is, we are going to present the most simple use-case of our
reduction rules and therefore we can focus on the introduction of the core concept – the
natural behavior. We begin with the definition of a (natural) behavior, which is a formal
description of how a vertex “can behave” in a solution. Let M be a vertex cover of G of size
k = vc(G) and let R = V \ M .

▶ Definition 14. For a vertex r ∈ R a behavior of r is a multiset F ⊆ {{r, m} | {r, m} ∈
E, m ∈ M} containing exactly two edges (edge occurrences). We let B(r) be the set of all
behaviors of r. We naturally extend the weight function such that for a behavior F ∈ B(r)
we set its weight to ω(F ) =

∑
e∈F ω(e). For a vertex r ∈ R its natural behavior bnat(r) is a

fixed minimizer of min {ω(F ) | F ∈ B(r)} that takes two copies of a minimum weight edge
incident with r.

ESA 2022
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The following lemma shows that in an optimal solution, most of the vertices of R actually
use some behavior.

▶ Lemma 15 (⋆). Let S be an optimal solution. Then the number of vertices r ∈ R that are
traversed more than once by S is at most k.

Now, that we know what a behavior is, we can observe that each vertex can have one of
two roles in the sought solution – they are either “just attached” using the natural behavior
or they provide some connectivity between (two) vertices in the vertex cover. The role of a
vertex is formalized as follows.

▶ Definition 16. Let r ∈ R and F ∈ B(r) be a behavior of r. We say that F touches a
vertex m of M if m has nonzero degree in ({r} ∪ M, F ). We call the set imp(F ) of touched
vertices the impact of behavior F .

Let Ir = {imp(F ) | F ∈ B(r)} be the set of all possible impacts of behaviors of r. Let
I =

⋃
r∈R Ir.

Note that we have 1 ≤ | imp(F )| ≤ 2 for each behavior F . Therefore, we get |I| ≤(
k
2
)

+ k ≤ k2. Note also that for each r ∈ R we have | imp(bnat(r))| = 1.
Now, we show that, in large instances, most of the vertices of R fall back to their natural

behavior in an optimal solution. Towards this, we take a solution that differs from this in
the fewest possible vertices r ∈ R. Then, we observe that if r is not in the natural behavior,
then it is attached to (at least) two vertices in M . If there are many such “extra” edges
in a solution, we can apply Lemma 9 – this would yield a contradiction. Thus, we get the
following.

▶ Lemma 17 (⋆). There is an optimal solution S such that for all but at most 3k vertices
r ∈ R the solution contains exactly the edges of bnat(r) among the edges incident with r.

Now, we know that there are only a few vertices that behave unnaturally in an optimal
solution, we would like to keep these in the kernel. We arrive at the question of which
vertices to keep. To resolve this question, we observe that if a vertex deviates from its natural
behavior, we (possibly) have to pay for this some extra price (which comes in the exchange
of the provided connectivity). Thus, we would like to keep sufficiently many vertices for
which this deviation is cheap. To this end, we first formalize the price.

▶ Definition 18. For r ∈ R and an impact I ∈ I let the price P (r, I) of change from bnat(r)
to I at r be ω(FI) − ω(bnat(r)) if there is a behavior FI ∈ B(r) with imp(FI) = I and we let
it be ∞ otherwise.

Note that if there is a behavior FI ∈ B(r) with imp(FI) = I, then it is unique.
Now, based on this, we can provide the following reduction rule we employ.

▶ Reduction Rule 3. For each I ∈ I if there are at most 3k vertices r ∈ R with finite P (r, I),
then mark all of them. Otherwise mark 3k vertices r ∈ R with the least P (r, I).

For each unmarked r ∈ R, remove r and decrease b by ω(bnat(r)).

Safeness. Let (G, ω, b) be the original instance and (Ĝ, ω̂, b̂) be the new instance resulting
from the application of the rule. Note that ω̂ is just the restriction of ω to Ĝ which is
a subgraph of G. Let R− be the set of vertices of R removed by the rule. Note that
b̂ = b −

∑
r∈R− ω(bnat(r)). We first show that if the new instance is a yes-instance, then so

is the original one.
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Let Ŝ be a solution walk in the new instance and let ĜS be the corresponding multigraph
formed by the edges of Ŝ. Note that the total weight of ĜS is at most b̂. We construct a
multigraph GS by adding to ĜS for each r ∈ R− the vertex r together with the edge set
bnat(r). Since ĜS is connected and each bnat(r) is incident with a vertex of M ⊆ V (ĜS), GS

is also connected. As each addition increases the degree of the involved vertex by exactly 2
and the degree of each vertex is even in ĜS , it follows that the degree of each vertex is even
in GS . Hence GS is Eulerian and contains all vertices of G. Since the weight of the added
edges is exactly

∑
r∈R− ω(bnat(r)) it follows that (G, ω, b) is a yes-instance.

Now suppose that the original instance (G, ω, b) is a yes-instance.

▷ Claim 19 (⋆). There is an optimal solution S for (G, ω, b) such that each r ∈ R− is
incident exactly to the edges of bnat(r) in S.

Let S be a solution for (G, ω, b) as in the claim and GS the corresponding multigraph.
Let ĜS be obtained from GS by removing the edges of bnat(r) and vertex r for each r ∈ R−.
This reduces the total weight by exactly

∑
r∈R− ω(bnat(r)), hence, as GS is of weight at most

b, ĜS is of weight at most b̂. Furthermore, as each r ∈ R− has only one neighbor in GS , ĜS

is connected. Moreover, each removal decreases the degree of exactly one remaining vertex
by exactly 2, hence all degrees in ĜS are even. Thus ĜS is Eulerian, yielding a solution Ŝ

for (Ĝ, ŵ, b̂). This completes the proof. ◀

Since |I| ≤ k2, the following observation is immediate.

▶ Observation 20 (⋆). After Reduction Rule 3 has been applied, the number of vertices in R

is bounded by 3k3 and, hence, the total number of edges is O(k4).

We conclude this section in the following theorem (which follows using Lemma 13).

▶ Theorem 3 (⋆). Traveling Salesperson Problem admits a kernel with O(k3) vertices,
O(k4) edges, and with a total bit-size O(k16), where k is the vertex cover number of G.

5 Polynomial Kernels with Respect to Modulator Size

In this section, we move to more general type of modulators. Recall that if M is a vertex
cover, the connected components of G \ M are single vertices. We are going to relax this
a bit – we shall investigate general components of constant size and paths of constant size.
For the first, more general one, we obtain a polynomial kernel for TSP. For the second, we
obtain a polynomial kernel even for subTSP.

5.1 TSP and the Distance to Constant Size Components
For the rest of the section, we assume that we are given an undirected graph G = (V, E), k is
its distance to r-components, M the corresponding modulator, EM =

(
M
2

)
, and R = G \ M .

Let M = {m1, . . . , mk} be a fixed order of the vertices of the modulator.
We begin with the definition of a behavior.

▶ Definition 21. For a connected component C of R we consider the graph GC = G[C ∪ M ]\
EM . A behavior of C is a multiset F ⊆ E[GC ] of edges of GC (each can be used at most
twice) such that in the multigraph (C ∪ M, F ), (i) each vertex v ∈ C has nonzero even degree
and (ii) each connected component contains a vertex of M , and the set F contains at most
2r edges incident with the vertices of M . We let B(C) be the set of all behaviors of C. For a
component C its natural behavior bnat(C) is a fixed minimizer of min {ω(F ) | F ∈ B(C)}.
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Now, it is not hard to see, that a solution might “visit” a component of G \ M more than
once. With this, we arrive at the key notion we introduce in this section – the segments. It
is not hard to see that a solution may even revisit some terminals in a component; we shall
later prove that this is the case for a few exceptional components only (see Lemma 25).

▶ Definition 22. Let C be a connected component of R and S be a walk starting and ending in
v0 ∈ M forming a nice optimal solution to the instance. We split S into segments S1, . . . , Sq

such that each segment starts and ends in a vertex of M , whereas the inner vertices of each
segment are from R. Let F(S, C) be obtained from the empty set by the following process: For
each i, add Si into F(S, C) if and only if there is a vertex c ∈ C visited by Si and not visited
by any of the previous segments. Let F (S, C) be the union of edges of Si, Si ∈ F(S, C),
including multiplicities.

We observe that the multiset F (S, C) is a behavior of C, i.e, F (S, C) ∈ B(C).
Again, for a connected component of G \ M , we want to introduce the notion of touched

vertices and the (connectivity) impact of a behavior of the component. For a better under-
standing of Definition 23, we refer the reader to an example in Figure 2.

▶ Definition 23. Let C be a connected component of R and F ∈ B(C) be a behavior of C.
We say that F touches a vertex m of M if m has nonzero degree in (C ∪ M, F ). Let T (F ) be
the set of touched vertices.

Consider the multiset D(F ) of edges obtained from the empty set as follows. For each
connected component H of (C ∪ M, F ) containing at least two vertices of M , let mi be the
vertex with the least index in M ∩ V (H). For each mj in (M ∩ V (H)) \ {mi} add to D(F ) a
single edge {mi, mj} if mj is incident with an odd number of edges of F and a double edge
{mi, mj} if mj is incident with an even number of edges of F .

We call the pair imp(F ) = (T (F ), D(F )) the impact of behavior F .
Let IC = {imp(F ) | F ∈ B(C)} be the set of all possible impacts of behaviors of C.
Let I =

⋃
C connected component of R IC .

From the Handshaking Lemma we get the following observation.

▶ Observation 24. Let mi be as in Definition 23. Then mi is incident with an even number
of edges of D(F ) if and only if it is incident with an even number of edges of F .

It is not hard to see that |I| = kO(r).
Now, we want to give some properties that an optimal solution should have. Namely,

we want to see that most of the connected components of G \ M fallback to their natural
behavior. Towards this, we first prove that there are only a few segments that are not part
of a behavior of any component; recall that if the solution “revisited” some terminals in the
connected component, this segment might not be part of any behavior.

▶ Lemma 25 (⋆). There is an optimal solution S such that there are at most 2|M | segments
of S that are not part of any F(S, C), and, furthermore, for all but at most 2|I|2 + 2|M |
components we have F (S, C) = bnat(C) and F (S, C) contains all edges of S incident with C.

Next, we want to introduce the notion of price of a transition between two impacts of a
connected component.

▶ Definition 26. For a connected component C of R and an impact I ∈ I let B(C, I) be the
set of behaviors F ∈ B(C) satisfying imp(F ) = I.

For a connected component C of R and a pair I, I ′ ∈ I let the price P (C, I, I ′) of change
from I to I ′ at C be min{ω(F ) | F ∈ B(C, I ′)} − ω(bnat(C)) if B(C, I ′) is non-empty and
I = imp(bnat(C)) and we let it be ∞ if some of the conditions is not met.
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C

m1 m2 m3 m4 m5

. . . M

C ′ C ′′

Figure 2 Illustration of Definition 23. A behavior F consists of red and green edges, and vertices
m2, . . . , m5 made the set T (F ) of touched vertices. We built the multiset D(F ) for behavior F as
follows. We start with an empty set. For the red connected component, the vertex mi ∈ M with
least index is m2. Thus, for m3 we add to D(F ) double edge {m2, m3}, because the vertex m3 is
incident with even number of edges in behavior F . For the vertex m5, we add to D(F ) the edge
{m2, m5} only once, as the vertex m5 is incident with odd number of edges in F . For the green
connected component, we do not extend D(F ) since, in this connected component, there is only one
vertex from M .

Now, we are ready to introduce the reduction rule used in this section. To keep a record
of the vertices that are marked towards achieving a different goal, we mark them in different
colors. Red vertices are those that behaves unnaturally in an optimal solution and their
deviation from natural behavior is cheap. The task of the vertices marked in green is to
ensure that at least one vertex with the same impact of natural behavior remains in the
instance to provide the connectivity. Finally, there are components marked in blue. These
are supposed to cover the segments which are not part of any behavior.

▶ Reduction Rule 4 (⋆). For each pair I, I ′ ∈ I if there are at most 2|I|2 +2|M | components
C with finite P (C, I, I ′), then mark all of them in red. Otherwise mark 2|I|2 + 2|M |
components C with the least P (C, I, I ′) in red.

For each pair of vertices u, v ∈ M , if there is a component C in R such that GC contains
a u-v-path, then mark a component which contains the shortest such path in blue.

For each I ∈ I, if there are unmarked components C with imp(bnat(C)) = I, then do the
following. If the number of such components is odd, then mark one arbitrary such component
in green. If the number of such components is even, then mark two arbitrary such components
in green.

For each unmarked component C, remove C from G and reduce b by ω(bnat(C)).

To prove Theorem 6 we estimate the number of vertices and edges in the reduced instance;
Theorem 6 then follows using Lemma 13.

▶ Lemma 27 (⋆). After Reduction Rule 4 has been applied, the number of components is
bounded by 2(|I|2 + 2|M |)|I|2 +

(|M |
2

)
+ 2|I| = kO(r). Hence, the number of vertices and

edges in the reduced graph G is kO(r).

5.2 Subset TSP and the Distance to Constant Size Paths
We start by applying Reduction Rule 2 to all vertices of R. Note that after each application
of the reduction rule R remains a disjoint union of paths, because each vertex has degree at
most 2 within R. Hence, for the rest of the section we assume that V (R) ⊆ W .
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We reuse the notions of the (natural) behavior, impact, and price (Definitions 21, 23,
and 26) from the previous section.

We define piece of F ∈ B(C) as any connected component of (C ∪ M, F ) \ M to which
we add all incident edges in GS . We define legs of a piece as a subset of its edges which are
incident with vertices of M . As G \ M consists of disjoint union of paths we note that each
piece of F consists of a path on C and its legs.

▶ Lemma 28 (⋆). Given a Subset TSP instance (G, W, ω, b) let S be a nice optimal
solution to the instance. Let k be the size of the modulator to disjoint union of paths.
There are at most k components with pieces of F (S, C) with more than 2 legs in behaviors
{F (S, C) | imp(F (S, C)) = I} for any fixed I ∈ I.

It is the case that every natural behavior has only two-legged pieces.

▶ Observation 29 (⋆). For each C component of R, each piece of bnat(C) has two legs.

The most technical part of this section is the following lemma that allows us to, under
some conditions, mark a non-terminal in the modulator as a terminal. For this to work, we
want to do the following. Take many components which share the impact of the natural
behavior which touches the particular non-terminal. Since there are many, many of them
also share the impact of the actual behavior and have all pieces 2-legged. For each of them
we want to find a behavior that is half-way between the actual and the natural behavior
(using the following lemma). This behavior should touch the non-terminal and be of at most
the same weight as the actual behavior. Then we find two components for which the half-way
behavior has the same impact and change these, so that we obtain a solution that visits the
particular non-terminal.

▶ Lemma 30 (Blending lemma ⋆). Let M ′ ⊆ M (the set of actually visited vertices) and C a
component of R (therefore a path) such that T (bnat(C)) ⊈ M ′. Let v ∈ T (bnat(C)) \ M ′ and
A ∈ B(C) (the actual behavior) such that T (A) ⊆ M ′ and such that each piece has two legs.
Then there is a behavior F ∈ B(C) such that v ∈ T (F ), T (F ) ⊆ T (A) ∪ T (bnat(C)), every
connected component of (C ∪ M, F ) contains a vertex of M ′, and ω(F ) ≤ ω(A).

Now, we are ready to present the reduction rule used in this case. The colors have the
same meaning as in Reduction Rule 4. It remains to secure that every vertex in M that is
incident with some natural behavior for many vertices in R is in W . Towards this, we prove
that if a vertex m ∈ M is needed for a natural behavior for many vertices in R, it is safe to
mark m as a terminal. If this is not the case, we mark the vertices r ∈ R in yellow.

▶ Reduction Rule 5 (⋆). For each pair I, I ′ ∈ I of impacts if there are at most 2|I|2 + 2|M |
components C with finite P (C, I, I ′), then mark all of them in red. Otherwise mark 2|I|2 +
2|M | components C with the least P (C, I, I ′) in red.

For each pair of vertices u, v ∈ M , if there is a component C in R such that GC contains
a u-v-path, then mark the component which contains the shortest such path in blue.

For each I ∈ I, if there are unmarked components C with imp(bnat(C)) = I, then let
I = (T, D) and do the following. If T ⊆ W , then if the number of such components is odd,
then mark one arbitrary such component in green. If the number of such components is even,
then mark two arbitrary such components in green.

If T ⊈ W and there are at most
(
(r + 1)4r · 24r+1 + k

)
· |I| unmarked components C with

imp(bnat(C)) = I, then mark them all in yellow.
If T ⊈ W and there are more than

(
(r + 1)4r · 24r+1 + k

)
· |I| unmarked components C

with imp(bnat(C)) = I, then add T to W .
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If W was not changed, then for each unmarked component C, remove C from G and
reduce b by ω(bnat(C)).

To prove Theorem 5 we estimate the number of vertices and edges in the reduced instance;
Theorem 5 then follows using Lemma 13.

▶ Lemma 31 (⋆). After Reduction Rule 5 has been applied, the number of components is
bounded by 2(|I|2 + 2|M |)|I|2 +

(|M |
2

)
+ 2|I| +

(
(r + 1)4r · 24r+1 + k

)
· |I|2 = kO(r). Hence,

the number of vertices and edges in the reduced graph G is kO(r).

6 Conclusions

The core focus of this work is kernelization of the Traveling Salesperson Problem. To
stimulate further research in this area we would like to promote some follow up research
directions. Design of “local” rules might be impossible (as was mentioned in the case of
feedback edge set number) and therefore we occasionally have to consider generalizations of
this problem that give us more power when designing the reductions. An interesting open
problem that remains in this area is whether TSP does admit a polynomial kernel with
respect to the feedback vertex number. Towards this we have provided several steps that
suggest it should be possible to design a polynomial kernel. It should be noted that in order
to do so, one could try to “lift” our arguments to modulator to trees of any size. Note that
this is not possible for cycles.

Yet another interesting line of work is the one of q-path vertex cover (q-pvc). This is a
generalization of the vertex cover number – a graph G has q-pvc of size k if it has a modulator
M (with |M | = k) such that in G \ M there is no path of length q. It is not hard to see that
some of our arguments can be applied for components of G \ M that are stars (of arbitrary
size). Therefore, it should be possible to give a polynomial kernel for 3-pvc. Thus, the
question arises: Is there a polynomial kernel with respect to r-pvc for constant r? In this
case we are more skeptical and believe that the correct answer should be negative.
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