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—— Abstract

We revisit the (block-angular) min-max resource sharing problem, which is a well-known generalization
of fractional packing and the maximum concurrent flow problem. It consists of finding an £..-minimal
element in a Minkowski sum X = Z cec Xc of non-empty closed convex sets X¢ C R?O, where C
and R are finite sets. We assume that an oracle for approximate linear minimization over X¢ is
given.

We improve on the currently fastest known FPTAS in various ways. A major novelty of our
analysis is the concept of local weak duality, which illustrates that the algorithm optimizes (close to)
independent parts of the instance separately. Interestingly, this implies that the computed solution
is not only approximately ¢--minimal, but among such solutions, also its second-highest entry is
approximately minimal.

Based on a result by Klein and Young [21], we provide a lower bound of 2 (%}ﬁ log |R|)
required oracle calls for a natural class of algorithms. Our FPTAS is optimal within this class — its
running time matches the lower bound precisely, and thus improves on the previously best-known
running time for the primal as well as the dual problem.
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1 Introduction

1.1 Problem description

Dividing a limited set of resources among customers is an overarching theme of numerous
problems in discrete and continuous optimization. A common formulation of such problems
is known as min-mazx resource sharing in the literature. In this work, we consider the
block-angular min-maz resource sharing problem as it was first studied by Grigoriadis and
Khachiyan [13]. The problem consists of choosing a feasible resource allocation for every
customer, such that the maximum accumulated resource usage is minimized. Formally, it
can be described as follows:

There is a finite set of customers C and a finite set of resources R. We denote their
sizes by n := |C| and m := |R|. For each customer C' € C, there is a non-empty closed
convex set Xc C RZ, of feasible resource allocations, also referred to as block. The set of
feasible solutions of the (block-angular) min-max resource sharing problem is given as the
Minkowski-sum & := .. Xc.
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Further, we assume that we are given, for some constant o > 1, a o-approximate block-
solver, which is an approximate linear minimization oracle for non-negative price vectors. It
is specified by functions fc : RT; — X¢ for all C' € C that satisfy

vy € RY, : (y, fe(y)) < ooptc(y), (1)

where optc(y) = minge x. (Y, x).
The (block-angular) min-mazx resource sharing problem is to compute resource allocations
xc € X for every customer C' € C, such that x := Zcec ro attains

£ . 2
A" = min |zl (2)

We abbreviate this problem as resource sharing problem in the following. In this work, we
consider fully polynomial-time approximation schemes relative to o. For § > 0, we construct
a solution x € X with ||z|| < o(1+4 d)\* within a number of oracle calls that is polynomial
in n,m, and 6 1.

Algorithms that interact with the feasible region only via a linear minimization oracle
are known as algorithms of the Dantzig- Wolfe type. An iteration consists of choosing a price
vector y € RY, and querying the linear minimization oracle of a customer C' € C with y.
The computea solution is a convex combination of the solutions returned from the oracle.
At their core, Dantzig-Wolfe-type algorithms are primal-dual algorithms. In the case of
the resource sharing problem, the dual is to find ¢ € A,, := {p € [0,1]™ : ||p||; = 1}, such
that mingecx (¢, ) = max,ca,, mingex (p, ). Strong duality is implied by von Neumann’s
minimax theorem:

nax min(p, z) = min Jnax {p,2) = min [z, = X", (3)
The resource sharing formulation can be used to model a large variety of packing problems
in combinatorial optimization. Prominent examples include multicommodity and concurrent
flow problems, where the linear minimization tasks correspond to shortest path problems, or
fractional Steiner tree packing problems, where the linear minimization tasks correspond to
minimum weight Steiner tree problems and can be implemented, for example, with a fast
2-approximation.

Using a linear minimization oracle to interact with the feasible region is a standard tool
in convex optimization, most often encountered in the form of conditional gradient descent
(a.k.a. Frank-Wolfe algorithm [9]), that has regained interest in current research as it leads
to surprisingly fast algorithms in practice [17, 19]. Apart from efficiency, utilizing a linear
minimization oracle has the advantage that solutions are constructed explicitly as an (often
sparse) combination of extreme points. This is highly useful if one is interested in an integral
solution to the packing problem, since, in practice, a close to optimal integral solution can
often be recovered by applying e.g. randomized rounding to the sparse fractional solution [28].

Resource sharing has a long history of incremental generalizations and improvements
since Shahrokhi and Matula [29] introduced the idea to use a linear optimization oracle with
an exponential weight function in the context of multicommodity flows. At their heart, most,
if not all, steps in this line of work can be interpreted as variants of the now well-known
multiplicative weight update method. Since we also present a variant of that algorithm and
improve on the best-known running time in this setting, our work can be regarded as another
step in that line. But more than that, we study an aspect that — to the best of our knowledge
— is absent from any treatment of multiplicative-weight-based algorithms even in special cases
such as multicommodity flow. We are interested in the stability of such algorithms and in
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(a) High congestion only in local hotspots. (b) High congestion in almost every part.

Figure 1 Comparison of two fractional routing results. Congestion of global routing tiles is
visualized by color (lowest congestion in green, highest in violet).

deriving guarantees that go beyond the min-max objective. For example, one might alter a
given instance X’ by adding a completely independent resource and consider X x {A} with
A > mingey ||z]| . In this case, {o-guarantees of existing algorithms do not provide any
insight into the quality of their computed solution on the perturbed instance when restricted
to X. We introduce techniques that allow a comprehensive treatment of such situations.

To provide more motivation for this pursuit, we consider the example of global routing
in VLSI design, where a resource sharing formulation has proven successful in theory and
practice [12, 16, 24]. Highly simplified, the problem consists of a Steiner tree packing problem
in a grid graph. One seeks to find a collection of (fractional) Steiner trees that minimize
the maximum edge overload. Figure 1 depicts two fractional routing results on an industrial
microprocessor. The maximum edge congestion is the same in both cases, so both solutions
have the same objective value w.r.t. the resource sharing problem. As indicated in Figure
la, however, the maximum congestion might be caused by local effects that are beyond reach
for global optimization. A practicable algorithm must be resilient to such local hotspots and
produce solutions that are close to optimal on the set of remaining resources. The solution
in Figure la is clearly to be preferred over that in Figure 1b. In practice, the ideal outcome
might be a solution x € A that minimizes the maximal entry, and among such solutions, it
minimizes the second-highest entry, and among those, it minimizes the third-highest, and so
on. This concept is known as decreasingly minimal [6].

» Definition 1. Let x € R™. We denote by x| the vector x with entries sorted in decreasing
order. We introduce the decreasing preorder, by defining for x,y € R™, x <gec y if either
xy =y, or there exists k € {1,...,m} such that (x))r < (y)r and (z}); = (y,); for all
j < k. Given a set X C R™, we say that an element x € X is decreasingly minimal if
T <gec y holds for ally € X.

1.2 QOur contribution

In this work, we present a fully polynomial-time approximation scheme for the primal as well
as the dual of the resource sharing problem. Our algorithm is an extension of the algorithm
by Miiller, Radke, and Vygen [24].

We introduce the novel concept of local weak duality (Definition 2) to analyze the core

algorithm (Algorithm 1) which is a variant of the multiplicative weight update method.

Given local weak duality, we can prove stronger bounds on max,cg x, for the computed
solution x € X and certain subsets S C R. That provides a theoretical counterpart to
the empirical observation that the algorithm optimizes (close to) independent parts of the
instance separately. Moreover, it allows concluding that — with an exact block solver — our
algorithm always computes a solution that is approximately decreasingly minimal on the two
highest entries. Such guarantees were not known even for special cases of the problem and
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could, in principle, be transferred to many other settings where the multiplicative weight
update method is employed. We also provide a negative result, namely that our algorithm
will not compute close to decreasingly minimal solutions on the three highest entries in
general.

Furthermore, we present an iterative scaling scheme in conjunction with an amortized
running time analysis that results in the currently fastest known constant factor approximation
for the resource sharing problem with O((n+m)logm) many oracle calls. This is then utilized
as an initial scaling technique to design an FPTAS improving on the best-known running
time for the resource sharing problem. Also, dual convergence, which follows immediately
with our analysis, was not shown in prior work.

Moreover, we discuss the limits of algorithms in this setting. We study a class of natural
extensions of the core algorithm and prove, using a result by Klein and Young [21], that any
algorithm from this class requires Q(”}'—z’” log m) oracle calls to compute a (14 ¢)-approximate
solution (for a range of parameters as described in Theorem 13). This matches the running
time of our algorithm precisely. As this is independent of the choice of the prices, this proves
that — in a certain sense — multiplicative price updates are optimal, and that no warm-start
analysis (i.e. reducing the running time by starting with a close to optimal dual solution) of
such algorithms is possible.

1.3 Related work

The resource sharing problem originates from the maximum concurrent flow problem. For
this special case, Shahrokhi and Matula [29] introduced the idea to use Dantzig-Wolfe-
type algorithms with an exponential weight function. Another important special case of
this problem is fractional packing, which can be described as follows. Given a polyhedron
P C R* a matrix A € R™*F that satisfies Az > 0 for all z € P, and a vector b €
RZy, find an € P that satisfies Az < b. The width of the instance is defined as p :=
mMaxXgecp Max;=1, . m(Ax);/b;. Plotkin, Shmoys, and Tardos [26] studied this problem in the
context of Dantzig-Wolfe-type algorithms. Their results were generalized and improved
multiple times [5, 11, 13, 18, 20, 22, 24]. An important idea in this line of work is a step-size
technique introduced by Garg and Koénemann [11] and extended by Fleischer [5], which is
used to design algorithms with width-independent running times.

The general version of the block-angular min-max resource sharing problem, as it is the
subject of this work, was studied first by Grigoriadis and Khachiyan [13]. In their formulation,
one is given non-empty closed convex blocks B¢ for each C' € C, and resource allocation
functions ¢(©) : Bo — RY,, which are convex and non-negative in each coordinate. Then,
one seeks to compute min{max,cr S cec 99 (be)y t be € Bo VO € C}. Their optimization
oracle solves min,.cp.. (y, 9'“)(bc)) for a given price vector y € RY,. It is easy to see that
this formulation fits into our framework by defining X¢ as the convex hull of ¢(©) (Be). The
currently fastest known algorithm for the general case is due to Miiller, Radke, and Vygen
[24]. They present a sequential algorithm that computes a solution of value at most o(1 + §)
within O((n + m)logm(6~2 + loglogm)) oracle calls. All of the mentioned approaches can
be interpreted as variants of the multiplicative weights update method [2].

Klein and Young [21] studied lower bounds on the number of iterations that are required
by any Dantzig-Wolfe-type algorithm to compute a (14 J)-approximate solution for fractional
packing. They provide an asymptotic width-dependent bound of €2 (min { plog—zm, mY/ 2’”’})
(for any fixed v € (0,1/2)). This matches known upper bounds precisely for a range of
parameters. If the width of the instance is unbounded, it is easy to see that Q(m) oracle
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Algorithm 1 Core Resource Sharing Algorithm with parameters €, T'.

1y« 1eR™

2: fort=1,..,T do

3 for C € C do

4: a0

5: Sg) 0

6 while o < 1 do

7 b+ fely)

8 &<+ min{l —a,1/[b]| .}
9: Yr < yr exp(e€b,) Vr e R
10: s 50 4 ¢b

11: a+—a+€

12: end while

13: end for

14 s 3e sg)

15: end for

. 1 T t
16: return £ >, s®

calls are required to compute a constant-factor approximation [14]. If one is not restricted to
algorithms of the Dantzig-Wolfe-type, then it is known how to avoid the =2 dependence on
the running time for the case of fractional packing [1, 3].

Decreasingly minimal solutions to optimization problems appear under many different
names in the literature, such as lexicographically optimal [10, 23], egalitarian [4], fair [8, 27]
and more recently in a line of work by Frank and Murota — who study the integral case — as
decreasingly minimal [6, 7]. We are going to use their notation in the following. It is known
how to find such solutions with linear programming techniques [25, 27]. In our case, since
X is a non-empty closed convex subset of RY,, it contains a unique decreasingly minimal
element [27]. A concept related to decreasing minimization is that of magjorization [15]. If
the set of feasible solutions contains a least majorized element, it is also the decreasingly
minimal element and can be extracted as the minimum of non-decreasing separable convex
functions [30]. We are not aware of results w.r.t. decreasingly minimal solutions in the
context of Dantzig-Wolfe-type algorithms.

1.4 Qutline

The core algorithm (Algorithm 1, [24]) starts with the uniform price vector y = 1 € R™
and, after every oracle call, it updates the prices y, + y, exp(e€b,.), where € > 0 is a fixed
parameter of the algorithm. It runs in 7' € N phases (iterations of the outer loop). At the
end, the average solution over all phases z(T) := % Zthl s() is returned. The restricted step
sizes in Line 8 were first proposed by Garg and Kénemann [11] in the case of multicommodity
flows.

The standard tool to prove primal convergence of algorithms that are based on the
multiplicative weight update method is weak duality: For y € RZ,, it holds that

30 o) < amipta) < o ol g el = o ol )

This is sufficient to derive bounds on HI(T) HOO However, we aim to prove stronger bounds on
max,cg :anT) for certain subsets of resources S C R. To this end, we introduce the concept

of local weak duality, which generalizes weak duality. We briefly describe the intuition behind
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R G- l>

G1 — G2

(a) The decreasingly minimal solution A with a
decomposition A = A(Oe) 4 \(red) - Here )\(blue)
(AeD) agsigns value 1 to all edges that are marked
with solid blue (red) lines and value 1/2 to all edges
that are marked with dashed blue (red) lines.

(b) Example of a bad oracle. Consider edge prices
Yy € ngc), given by ye = 2, y5f = y4 = 1, and zero
otherwise. Then, a 2-approximation oracle may
return the solution above, not satisfying local weak

duality on E(G1) or E(G2) for any value p < 2.

Figure 2 An instance of fractional Steiner tree packing in a graph G that consists of two subgraphs
(1 and G2 which are joined by an edge. The goal is to find fractional Steiner trees that connect the
blue, respectively red terminals, such that the maximum edge load is minimized.

this notion. Given y € RZ, one may consider the local objective value Y .o > . .cq¥rfo(y)r
of the oracles on S (e.g. the cost of the paths restricted to a subset of edges in the
multicommodity flow case). A local analog to weak duality is given if this objective value
can be bounded by 1), g ¥, for some p > 0, independently of y, for 7 € R\ S (the prices
on the remaining edges). The following definition includes a different price vector for every
customer, which is necessary to deal with the sequential price updates of the core algorithm.
Then, the upper bound on the local objective value is defined using the point-wise maximum
of these prices.

» Definition 2. We say that an instance X of the resource sharing problem satisfies local
weak duality w.r.t. a subset of resources S C R and p > 0 if for any collection of non-negative
price vectors (y(©))cec C RZ, it holds that

(©) (©) ©)
Zzyr fe(y )rgﬂzrggé(yr . (5)

ceCres res

This definition generalizes weak duality, in the sense that every instance satisfies local
weak duality w.r.t. S =R and pu = o\*.

Let us briefly present an exemplary application. Figure 2 displays an instance of the
fractional Steiner tree packing problem with unit capacities. The goal is to find fractional
Steiner trees in G that connect the blue, respectively the red terminals such that the maximum
edge usage is minimized. We have C = {blue,red} and R = F(G). The figure also depicts
an optimum solution A = \("¢4) 4 \(blue) 4 the resource sharing problem as described in the
caption of Figure 2a. In this case, A is also the decreasingly minimal solution. As the figure
indicates, G can be decomposed into two subgraphs G; and G5 that are joined by an edge e.
It is clear that e is the bottleneck, meaning that A = min,cx [|z||, = 2. However, the (local)
maximum usage on G1 and Gy is lower, it holds max.cp(g,) Ae = 1 and max.cp(a,) Ae = %
We observe that the Steiner tree problems decompose into two independent subproblems in
G171 and G, i.e. the blue, respectively red terminals in G; and G2 need to be connected to
the contained endpoint of e. Let us discuss two examples of how to apply local weak duality
to this instance for different oracles.
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(i) The oracle is exact. Thus it also solves the subproblems in G; and G exactly. Now
E(G). Since A®e) and A\(¢d) are feasible

solutions for the blue, respectively the red customer, we get:

Z y(blue Forue (y(blue))e < Z yéblue) Agblue) < Z )\gblue) max{yéblue 7y€red)}
e€E(G1) e€E(G1) e€FE(G1)

consider price vectors y(red) yblue) ¢ R

Applying the analogous inequality to the red customer and using that A = A(1ue) 4 \(red)
we can derive

Z yéblue)fbl y(blue Z y((zred)f (red) Z Ao maX{y(blue 7yereoi)}

e€E(G1) e€E(G1) (’EE(Gl)

The right hand side can be bounded by max.cp(a,) Ae ZeeE )max{y

Therefore, local weak duality is satisfied w.r.t. S = F(G1) and pu = maxeeE(Gl) Ae = 1.

The very same argument can be applied to show that local weak duality is also satisfied
wrt. S =FE(Gs) and g = maX.cp(g,) Ae = 3-

(ii) The oracle is a 2-approximation given by a path-decomposition algorithm. In this case,
we know that it will solve the subproblems in G exactly (as these are shortest path

problems) and the approximation guarantee of 2 also holds for the subinstance in Gs.

Thus, with the same argument as above, local weak duality is satisfied with regard to
S = E(G1) and p =1, and with regard to S = E(G2) and p=2- % = 1.
In general, we cannot assume local weak duality with p < 2 for all 2-approximation oracles
as described in Figure 2b for this instance. This illustrates that our notion of local weak
duality is not only a property of the convex region that we consider but also a property of the

oracle. This instance is an example of a product case, which we briefly discuss in Section 3.

In Section 2.1, we analyze the core algorithm with new techmques We prove primal-dual
convergence and that, under local weak duality, max,cg x,« ) is bounded by w plus an additive
error that is linear in 6. Dual convergence was not shown in [24]. The core algorithm is
sufficient to obtain fast convergence in normalized settings, i.e. when A* is known up to
a constant factor. To derive a FPTAS for the general problem one needs to extend this
algorithm by a prior constant factor approximation. In [24] this is done with a scaling/binary
search approach. We present a faster constant-factor approximation in Section 2.2. This
allows to transfer all results from the normalized to the general setting without increasing
the asymptotic number of oracle calls. We summarize this in the following main theorem.

» Theorem 3 (Main Theorem). Let X' be an instance of the resource sharing problem and
d € (0,1]. One can compute a primal solution x € X and a dual solution z € A, satisfying

2|l < (1 40)aA", min(z, z) > (1 — 5)>\—, (6)
rzeX o
and, for all S C R,u > 0 such that (5) holds,
max < p+dmax {\*, u}, (7)

using O ( ”+m) log m) oracle calls, and further operations taking polynomial time.

In Section 3, we show how to apply this result to product settings and that the computed
solution is close to decreasingly minimal on the two highest entries in the following sense.

(blue) (red)}.
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» Corollary 4. Let A\ € X be decreasingly minimal. If the block solver is exact, i.e. 0 =1,
then the returned solution x € X satisfies

(@)1 < (A1 +0x" and  (2y)2 < (A2 + A" (8)

This analysis is best possible for the general case. In the full version we show that an
analogous version of Corollary 4 does not hold for the three highest entries. Furthermore, it
is not possible to reduce the additive constant of dA* to §(A})2 in the second inequality of
(8). In a sense, an additive error of O(dA\*) is best possible in our framework, because the
core algorithm is known to make an additive error of O(d) and we scale the instance such
that A* € [¢, C] for some constants 0 < ¢ < C before applying it.

In Section 4, we study a class of generalizations of the core algorithm. These can be
described as standard block-coordinate descent algorithms. This class contains all algorithms
that run in a number of phases T, and in each phase 1,...,T construct a solution for
every customer by using any choice of prices and the restricted step size rule as in Line
8 of the core algorithm. Our algorithm is optimal within this class in the sense that any
such algorithm requires (%52
solution (Theorem 13), even if \* = 1 is known. This follows from a result by Klein and
Young [21] and matches the upper bound provided by our algorithm precisely.

log'm) many oracle calls to construct a (1 + J)-approximate

2 Proof of the main theorem

2.1 Analysis on normalized instances

First, we prove the main theorem for normalized instances, meaning those for which A* € [¢, 1]
is known for a constant ¢ > 0. Later, in Section 2.2, we show how to remove this assumption.
We write z(*) := % Z;Zl s(P) € X for the current solution and y* for the price vector y after
phase ¢ of the core algorithm is completed. Note that yﬁt) = exp(e E; 1 (p)) = exp(etng))
holds for all r € R and ¢t = 1,...,T. This can be used to deduce a simple bound for any

SCR:

rilggx()—rﬁgg:logyt)<—log;y . (9)
Especially, ||x(t) || 1 log Hy t) || holds. We denote the dual objective values that corres-

pond to the price vectors y® by

(t) (t)
O, = min (y (t,@ > cec O(Z:C(y )
zeX [ly®||, [y,

(10)

We provide a bound that relates the number of oracle calls to the price vector y(*). This
bound improves (slightly) on the bound that was shown in [24], which was tn + ™ log Hy(” H1

» Lemma 5. The number of oracle calls of the core algorithm until termination of phase
t=1,..,T is bounded by

)
tno ™ Hy ||1
m

(11)

A proof can be found in the full version. The following lemma states a bound on » y,(ut),

which implies a bound on max,cg 2t according to Inequality (9). In the case S = R, this
provides a bound on the primal error and the number of oracle calls. Again, we refer to the

full version for a proof of the lemma.
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» Lemma 6 (Upper bound on the price increase). Let X be an instance of the resource sharing
problem that satisfies local weak duality w.r.t. S CR and p > 0. Let i := exp(e) — 1. Assume
that nu < 1. Then for allt =0,1,...,T, it holds that

t
St < Isfesn (2. (12)

res — R

As pointed out earlier, every instance satisfies local weak duality w.r.t. R and ocA*. So
the bound Hy(t) Hl < mexp(tnoX*/(1 — noX*)) that was stated in [24] follows. In this case,
however, it is possible to insert the definition of the dual values to obtain the primal-dual
bound Hy(t) Hl < mexp (% 22:1 @p), which can be used to prove also dual convergence

of the average dual solution.

» Theorem 7 (Bound on the primal and dual error). Assume € € (0,1], noA* < 1. For every

t =1,...,T the primal solution x™® and the average dual solution z®) := 1 22:1 7”;((:;)” €A,
satisfy 1
1 1 1 —no)* 1
Hx(t)H Jlogm | 1te . min(z0,z) > 110N (4. logmy (13)
o0 et 1—noA* TEX o(l+e) et

Moreover, if X satisfies local weak duality w.r.t. S CR and p > 0, then

1 1
maxxg‘t) S Og|S| + + €

. 14
res €t 1 —noX* H (14)

For normalized instances, the main theorem follows with a straightforward calculation from
Theorem 7 by choosing € = % and T = Pogm—‘. Omitted proofs can be found in the full

20ce?

version.

2.2 Constant-factor approximation in O((n + m)log m) oracle calls

In the following, we assume A* € [1,0m|, which can be guaranteed in n oracle calls, by
computing for each customer a solution to the uniform price vector z := 3 o fo(1) € X
and scaling the instance with ﬁ
similar to the core algorithm, but it works with adaptive parameters, may discard the

. Our constant-factor approximation, Algorithm 2, is

solutions of some phases, and restart them. This is done by checking a bound on the sum
of the prices, in Line 13, after every oracle call. The algorithm maintains a guess on \*,
denoted by A, which influences the convex coefficient £. A violation of the bound indicates
that the guess was too low. This leads to a restart of the phase with € «— ¢/2 and A < 2A.

Let K* := [log A*]. We denote by K the number of restarts of the algorithm (i.e. times
the if-statement in Line 13 is satisfied). Further, ¢; < ... < tx denote the (not necessarily
distinct) indices of the phases in which the restarts occur. For a phase ¢, we write e® for
the e-value with which it was completed successfully. As before, we write z®) := % 2221 s(P)
for the current solution after phase t. By construction of the algorithm, we have that

P
bound the maximum usage of the current solution at termination of phase ¢ analogous to

previously by Hx(t) Hoo < iy log Hy(f’)Hl. We only sketch the analysis of the algorithm in

the following. Note that after the k’th restart, e = ﬁ. So, for larger k, the price updates
yr < exp(e€b,) get smaller and smaller. Similarly to the proof of Lemma 6, one can show
that after K* restarts, € is small enough to guarantee that the price bound will not be

violated again.

yT(-t) = exp (Zt:1 e(p)sg-p)). Note that €®) is decreasing for p = 1,...,t. Therefore, one can
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Algorithm 2 Constant-factor approximation for the resource sharing problem.

1y« 1eR™

2: €+ ﬁ > Current epsilon for the price update
3 A1 > Current guess on \*
4: for t =1,..,T := [logm] do

5: Yyt g > Store the last price vector
6: for C € C do

T a <+ 0, sg) ~0

8: while o < 1 do

9: b+ fe(y)

10: & < min{l —a, A/ |||} > Decide the “amount” with which b is taken
11: Yr < yrexp(e€b,) Vr e R

12: sg)esg)—i—{b,a(—a—l—&

13: if |Jy||; > mexp (t) then > Check price bound
14: y «— yt=b > Reset the prices to those of the start of this phase
15: e+ €/2,A + 2A > Reduce €, increase the guess on \*
16: go to 6 > Restart phase, solutions from this phase are discarded
17: end if

18: end while

19: end for
20: s e sg)
21: end for

. 1 T t
22: return 7 >, , s®

» Lemma 8. The total number of restarts K is bounded by K*.

This means that the number of restarts is bounded by [logA\*] < [logom] € O(logm).
Analogously to Lemma 5, one can deduce the following bound on the number of oracle calls,
which depends on the indices of the phases that are restarted.

» Lemma 9. There is a constant ¢c; > 0, such that the number of oracle calls is bounded by
Tn+cim (T + Zf; ti) )

To use this bound one exploits that (due to the price bound in Line 13)

< logm + =N (15)

* (t)
X < a LS o T

1
< (t)
o < o8 v
holds for every successfully completed phase ¢t. Thus if A* > 1, then ¢ must be small
already for low values of ¢. This implies that many restarts occurred in the early phases.
Indeed, we provide upper bounds on the ¢;, which allow estimating Efil t; by a geometric
series resulting in Y1 ; € O(logm).

» Lemma 10. There are constants co,c3 > 0, such that t; < co + 2i*K*03 logm holds
Vi=1,...,K. Thus the number of oracle calls is in O((n + m)logm).

Lemma 8 states that phase 7' is completed with e7) > 1 = = 755+ Inserting this into
Inequality (15) shows that ||x(T) ||OO < 160A*. The analysis is summarized in the following

theorem.

» Theorem 11. Algorithm 2 computes a solution z(T) € X to the resource sharing problem
that satisfies ||| < 160A* using O((n +m)logm) oracle calls.

Combining Algorithm 2 with the core algorithm proves the main theorem. Omitted proofs
from this section can be found in the full version.
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3 Decreasing Minimality on the two highest entries

In this section, we discuss the implications of local weak duality. In particular, we prove
that our algorithm computes solutions that are close to decreasingly minimal on the two

largest entries. Before that, let us consider a simple application, which is the product case.

Assume that the instance of the resource sharing problem consists of multiple independent
parts, that is, there exists a (perhaps unknown) partition of the resources R = R1 U--- U Rk
on which the customers act “independently”. More precisely, we assume that each of
the convex sets X¢ can be decomposed into a product X¢o = X{C) X oo X Xﬁ(C) where
Xi(c) - R‘;%"'l for i = 1,... k. Let us write &; := > ¢ Xi(o) for i = 1,...,k. Note
that we have X = X} X --- x Xj,. Let C € C and y©) € RY,. In this case, X satisfies
local weak duality w.r.t. R; and ming,cx, [|2;]|, for every j=1,...,k. A proof can be
found in the full version. So, indeed, according to the main theorem, Theorem 3, every
independent part of the instance is optimized separately, i.e. the primal solution z(7) satisfies
max,cR, 7 < ming, e x, ||zl +0A* foralli =1,..., k. We already saw a natural example
of a product setting in Figure 2. As discussed in the beginning, especially in these product
cases it is reasonable to assume local weak duality also for approximate block solvers (with
their approximation guarantee). A more surprising observation is that any instance X with
an exact block solver satisfies local weak duality w.r.t. to all but one coordinate and the
value of the second-highest entry in the decreasingly minimal solution.

» Lemma 12. Let X be an instance of the resource sharing problem with o0 = 1. Let A € X
be the decreasingly minimal element. Assume that (A\})1 > (A )2 holds. Let r* € R be the
coordinate of the unique mazimum entry, i.e. Ap» = (A})1. Then X satisfies local weak
duality w.r.t. S :=R\{r*} and p:= (A\})a2.

A proof of this statement can be found in the full version. Note that if (A})1 = (A})2
Corollary 4 is trivial due to primal convergence. In the case (A\}); > (A})2, Corollary 4
follows due to local weak duality with an application of the main theorem.

One might conjecture that an analogous version to Corollary 4 is valid also for the
third-highest entry and so on (meaning that the computed solution 2(™) satisfies (xiT))g <
(A})s + 0N ete.). This is not the case in general. We provide a counterexample in the full
version.

4 Limits of standard Dantzig-Wolfe-type algorithms

In this section, we study a class of algorithms that can be described by the meta-algorithm
Algorithm 3. This class contains all algorithms that process the customers in a number T’

of phases and compute a solution sg) € X¢ for every customer in each phase t = 1,...,T.

We allow to choose any price vector for the oracle queries and allow to return any convex
combination at the end of the algorithm. However, we fix the restricted step size rule in
Line 7. On the one hand, this class can be interpreted as a natural generalization of the
core algorithm. On the other hand, it includes standard conditional gradient methods that
work with this restricted step size rule. Using this step-size rule is explained by the fact that
otherwise [|£b]|, > 1 holds. Since &b is added to the current solution of the given phase and
the goal is to find an element with small /,-norm, it is a reasonable approach to restrict the
step-size towards elements with large /.-norm. Note that the bound 1/ ||b||, in Line 7 can
be replaced by C/ ||b||, for any other constant C' > 0 without affecting the asymptotic lower
bound. We prove that any such algorithm needs to use Q(”j{{” log m) many oracle calls to
terminate with a (1 4 §)-approximate solution.
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Algorithm 3 Standard block-coordinate descent with restricted steps.

1: fort=1,..,7T do

2 for C €C do

3 a <+ 0, sg) 0

4 while a < 1 do

5: Choose y € RY},

6 b+ fe(y)

7 &<« min{l —a,1/[b]| .}
8 sg) — Sg) +&b

9: a—a+€

10: end while

11: end for

12: st Y ocec sg)

13: end for

14: return a convex combination of s, ..., (™)

» Theorem 13. For every v € (0,1/2) there exist constants K., 1, > 0, such that for every
m > K., n € N, there exists an instance of the resource sharing problem with n+2 customers,
2m resources and \* = 1, such that for any 6 € (0,1/10), any version of Algorithm 3 requires

1
7y(n 4+ m) min { O§2m , m1/2—7} (16)

oracle calls to compute a (1 + 0)-approzimate solution.

For a proof we refer to the full version.

5 Conclusion

In this work, we have presented an FPTAS for the primal and the dual of the resource sharing
problem and improved on the best-known running time in terms of number of oracle calls.

We were able to show that our algorithm has the natural property to optimize (close
to) independent parts of the instance separately by introducing the notion of local weak
duality. This implied that our algorithm computes solutions that are close to decreasingly
minimal on the two largest entries. Local weak duality provides a theoretical understanding
of the empirically observed resilience to local effects of multiplicative-weight-based algorithms.
Extending the algorithm to achieve (approximate) decreasing minimality on the third-highest
entry and beyond is subject to future work.

In the last section, we have shown that further improvements, if possible, require different
types of algorithms. A mere change of the price update rule is not enough to achieve faster
convergence. This also implied that no warm-start analysis of any version of Algorithm 3 is
possible.
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