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—— Abstract

We study the Traveling Salesman Problem inside a simple polygon. In this problem, which we call
TSP IN A SIMPLE POLYGON, we wish to compute a shortest tour that visits a given set S of n sites
inside a simple polygon P with m edges while staying inside the polygon. This natural problem
has, to the best of our knowledge, not been studied so far from a theoretical perspective. It can
be solved exactly in poly(n,m) + 2°0(V"1°8") time, using an algorithm by Marx, Pilipczuk, and
Pilipczuk (FOCS 2018) for SUBSET TSP as a subroutine. We present a much simpler algorithm that
solves TSP IN A SIMPLE POLYGON directly and that has the same running time.
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1 Introduction

The TRAVELING SALESMAN PROBLEM, or TSP for short, is a classic algorithmic problem.
Given an edge-weighted graph, the goal is to compute a tour — a cycle that visits each node
exactly once — of minimum total weight. The problem has been studied widely; in fact,
TSP is probably one of the most intensely studied problems in optimization and computer
science. There are even several books devoted to TSP [2, 9, 15, 29]. Important special cases
of TSP are METRIC TSP and EUCLIDEAN TSP. In METRIC TSP, the edge weights in the input
graph form a metric and, in particular, satisfy the triangle inequality. The algorithm by
Christofides [8] gives a (3/2)-approximation for this version of the problem. A special case of
METRIC TSP is EUCLIDEAN TSP. Here the input is a set S of n points in R? and the goal
is to visit all points with a tour of minimum total Euclidean length. Due to its natural
setting, EUCLIDEAN TSP is among the most studied versions of TSP. EUCLIDEAN TSP is
NP-hard [12, 27] but, unlike METRIC TSP, it admits a PTAS as was shown in the celebrated
papers of Arora [3] and (for 2D) Mitchell [26]. A PTAS with a better running time was later
presented by Rao and Smith [28]. Recently, Kisfaludi-Bak et al. [20] presented a PTAS with
201/ Edil)nlogn running time, which they proved to be optimal under Gap-ETH. There are
also PTASs for TSP in planar graphs [4, 21] and in spaces of constant doubling dimension [5]
— as Trevisan [33] proved, the restriction to bounded dimension is necessary for a PTAS, even
in Euclidean spaces — and in spaces of so-called bounded global growth [7].

Our focus is on exact algorithms for TSP. The general TSP problem can be solved exactly
in O(2"n?) time using dynamic programming, as was shown independently by Held and
Karp [16] and Bellman [6]. There is no subexponential algorithm — that is, no algorithm
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with 2°(") running time — for the general problem, under the Exponential-Time Hypothesis
(ETH) [10, Theorem 14.6]. This lower bound even holds for METRIC TSP. On the other hand,
EUCLIDEAN TSP can be solved in subexponential time. Already in the early 1990s, Kann [18]
and Hwang, Chang and Lee [17] gave 20(vnlogn) algorithms for the planar version of the
problem.! This was generalized by Smith and Wormald [31], who presented an 90(n' =/ 1ogn)
algorithm for EUCLIDEAN TSP in R?; here and in the sequel we consider the dimension d to
be a fixed constant. For a long time it was open if EUCLIDEAN TSP in R? admits an exact
algorithm with a running time 20(n' =11, Recently, the question was settled by De Berg et
al. [11], who presented such an algorithm and showed that no go(n'=1/%) algorithm exists
unless ETH fails. There is also an exact algorithm for TSP in hyperbolic spaces of Gaussian
curvature —1, which runs in quasi-polynomial time if the minimum distance between any
two points is at least some fixed constant « > 0 [19]. Finally, Klein and Marx [22] presented
an algorithm for SUBSET TSP on planar graphs with integer edge weights, where the goal
is to computes a shortest tour visiting a given subset of the vertices. Their algorithm
runs in time poly(|V|) - 20V?1ogn) L 1) where |V| is the total number of vertices, n is
the number of vertices to be visited, and W is the maximum edge weight. This was later
improved by Marx, Pilipczuk, and Piliczuk [24] who presented an algorithm with running
time poly(|V|) - 20(vV7*1°87) that does not need the weights to be bounded or integral.

A natural generalization of EUCLIDEAN TSP is to consider a salesman who is moving
among a set of obstacles in the plane, or some higher-dimensional space. We call this problem
TSP WITH OBSTACLES. As far as we know, and to our surprise, TSP WITH OBSTACLES seems
not to have been studied at all from a theoretical perspective, although it has appeared in a
behavioural study where subjects were tested on finding the optimal tour [30]. (There is also
a paper describing a genetic algorithm for TSP in the presence of obstacles [13], although
the setting is slightly different.) A somewhat related problem is where one is given two
simple disjoint polygons, and the salesman must visit all vertices of the polygons without
crossing the boundary of the polygons. This problem is markedly different from TSP WITH
OBSTACLES, however. In particular, it is not a generalization of EUCLIDEAN TSP, and it has
been shown by Abrahamson and Shokoufandeh [1] to be solvable in polynomial time.

The fact that TSP WITH OBSTACLES has not been studied is remarkable, since motion-
planning and shortest-path problems are among the most widely studied problems in
computational geometry. It is beyond the scope of our paper to give an overview of this area,
so we just mention one result that we will need. Guibas and Hershberger [14] show how to
construct, for a simple polygon P with m vertices and a source point s, a shortest-path map
in O(m) time. The shortest-path map allows us to compute, for a point set S of n points in
P and a given source point s € S, the shortest-path tree rooted at s and going to all other
points in S, in O(m + nlogm) time. If we do this for all points from S as source point, we
obtain all shortest paths (and all distances) between the points in S in O(nm + n?logn)
time.

TSP WITH OBSTACLES can be solved by computing a shortest path between each pair of
points in S, and then running the Bellman-Held-Karp algorithm [6, 16] using the computed
pairwise distances, but this leads to an exponential running time. In the plane a much
faster algorithm can be obtained if one uses an algorithm for SUBSET TSP as a subroutine,
as follows. First, compute all pairwise shortest paths. Next, turn this collection of paths

! Comparing the exact lengths of two given tours in the plane is in fact non-trivial, as it involves comparing
sums of square roots. To focus on the combinatorial complexity of the problem, such algebraic issues
are typically ignored by working in the real-RAM model, which we do as well.
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in the plane into a weighted planar graph by inserting a vertex at every intersection point
between two paths, where the weight of an edge in the graph is the shortest-path distance
between its endpoints. Note that some pairs of path may overlap instead of intersect; in that
case, insert a vertex at the two outermost points where they overlap. The resulting graph
has O(n*) vertices — the points in S plus the intersection points — of which n nodes must be
visited. Solving SUBSET TSP using the algorithm of Marx, Pilipczuk, and Piliczuk [24] leads
to an algorithm with poly(n,m) + O(n?) - 200vV7108™) — poly(n, m) 4+ 20V71°8™) running
time, where m is the total number of edges of the obstacles.

Our contribution. We are interested in the variant of TSP WITH OBSTACLES where the
salesman is moving inside a simple polygon P with m edges in total, which contains the
set S of points to be visited. In other words, there is a single obstacle which is the region
outside the polygon. We call this variant TSP IN A SIMPLE POLYGON. From now on, we refer
to the points in S as sites, to distinguish them from arbitrary points in P.

As mentioned, TSP WITH OBSTACLES in the plane can be solved in subexponential time
using the algorithm of Marx, Pilipczuk, and Piliczuk for SUBSET TSP as a subroutine. Hence,
TSP IN A SIMPLE POLYGON can be solved in poly(n,m) +2°0(vV719e7) time. Unfortunately, the
algorithm of Marx, Pilipczuk, and Piliczuk for SUBSET TSP is complicated: the description
of the algorithm and its correctness proof take 27 pages in total [23]. Here we only count the
overview of the algorithm (Section 2, comprising 7 pages) and the detailed description of the
algorithm and proof of correctness (Section 5, comprising 20 pages), and not the description
of some of the tools being used (Sections 3 and 4, comprising 2.5 pages).

We present a much simpler algorithm with the same running time, based on the elegant
algorithm by Hwang, Chang and Lee [17] for EUCLIDEAN TSP in the plane. We also
prove several basic properties of optimal solutions for TSP WITH OBSTACLES, which are of
independent interest.

2 Notation and basic properties

In this section we introduce the notation and terminology used throughout paper, and we
prove several basic properties of optimal TSP tours in a simple polygon.

Let P be a simple polygon, which is the region in which the salesman can move. We
consider P to be a closed set, so that shortest paths are well defined. Let S = {s1,...,8,} C P
denote the set of sites to be visited by the salesman. We say that a vertex v of P is reflex if
the angle between the two edges incident to v, measured inside P, is more than 180 degrees.

Whenever we speak of a path, we mean a path that stays in P, unless stated otherwise.
We denote the length of the line segment pq connecting points p and ¢ by |pg|. Similarly,
we denote the (Euclidean) length of a path 7 by |r|. For two points p,q € P we use 7(p, q)
to denote the (unique) shortest path between them, that is, the path from p to ¢ that has
minimum length while staying inside P. Finally, for a path = and two points a,b € 7, the
subpath of m between a and b is denoted by 7a, b].

Consider a polygonal path 7 (that is, a path consisting of straight-line segments) and let
v be a reflex vertex of P. We say that « bends around v if v coincides with an interior vertex
(not an endpoint) of m and 7 is locally shortest at v. In other words, if e;,es are the two
edges of ™ meeting at v, then the two edges of P meeting at v lie in the convex wedge defined
by e; and es. Observe that a shortest path 7 inside P must bend around a reflex vertex of P
at each of the path’s interior vertices. The next lemma shows that in a simple polygon, local
optimality implies global optimality. It is folklore, but for completeness we give a proof.

5:3
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Figure 1 (i) Illustration for the proof of Lemma 1. (ii) An optimal tour may pass through the
same site twice, and can contain (partially) overlapping line segments. (iii) Crossing and non-crossing
paths. Note: paths in parts (ii) and (iii) are shown slightly displaced where they overlap.

» Lemma 1. Let p,q be two points inside a simple polygon P and let w be a path between p
and q such that every interior vertex of w bends around a reflex vertex of P. Then, w is the
shortest path from p to q in P.

Proof. Let v1,...,v; be the interior vertices of 7, so m = (p, vy, ..., Uk, q). We will prove the
lemma by induction on k. For k = 0 the lemma trivially holds, so assume k& > 0.

Consider the ray from p through vy, and let z be the first point where the ray hits 0P
after v1. Then the segment v,z splits P into two parts. Let P; be the part that contains p,
and let P, be the other part. We claim that ¢ € P». Indeed, if this was not the case then
7 must cross v;z at some point y. Consider the region R C P enclosed by v1y and 7[v1, yl;
see Fig. 1(i). (Our assumptions do not immediately rule out that 7 intersects itself, so R
need not be simple. But this does not invalidate the coming argument.) Since P is simple,
R cannot contain any part of dP. Let v; denote a vertex of m on 7[vy, y] that has maximal
distance from v1y. Then the angle between the two edges of 7 incident to v; has to be convex
when measured inside R, otherwise v; cannot be a vertex of maximal distance from v;y. By
assumption, 7 has to bend around a vertex of P at v;, but this cannot happen since R C P.
Hence, q € P;, as claimed.

We now observe that the shortest path from p to any point in P, passes through v;.
Moreover, by the induction hypothesis we know that the path (vy, ..., v, q) is the shortest
path from v; to q. We conclude that 7 is the shortest path from p to ¢ in P. |

It is well known that optimal tours for EUCLIDEAN TSP in R? are non-self-intersecting, that
is, if s;5; and sys; are non-consecutive edges in an optimal tour then s;s; and sis; do not
intersect (except when all sites are collinear). This is no longer true for TSP IN A SIMPLE
POLYGON: two paths 7(s;, s;) and m(sg, s¢) that are part of an optimal tour can meet in one
or more points, and sites may be visited more than once; see Fig. 1(ii). However, we can still
formulate a non-crossing property for TSP WITH OBSTACLES, as shown next.

Let m = w(p1,q1) and my = 7(pa, q2) be two shortest paths in P. Observe that their
intersection 7 N w2, may contain at most one connected component, due to the uniqueness
of shortest paths. Let «v denote this component. We give an arbitrary orientation to the path
m1. We say that m and mo are crossing when 7o lies on opposite sides of m; just before v and
just after -, relative to the chosen orientation of 71; otherwise m; and ms are mon-crossing.
See Fig. 1(iii) for an example.

We now state the main result of this section.

» Theorem 2. Let P be a simple polygon and let S be a set of n sites in P. Then there is
an optimal tour Tope through S such that

1. Tope passes at most twice through any point of P, and

2. any two paths of Top are non-crossing.
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Figure 2 Illustrations for the proof of Theorem 2.

» Remark 3. A site s; may lie on the shortest path between two other sites s;, s, in which

case Tope may use m(s;, si) plus two shortest paths with s; as endpoint; see site s3 in Fig. 1(ii).

This does not contradict Property 1 of the theorem: T, still passes through s; only twice.

Proof.

Proof of part 1. We first observe the following. Let r be a point through which T}, passes
at least twice. Give T, an arbitrary orientation, and suppose T,y first arrives at r along
a segment e; and later along a segment e, that is not collinear with e;. Then r must be a
reflex vertex of P, and P must, locally at 7, lie in the convex wedge defined by e; and es;
otherwise we could shortcut T, at r as shown in Fig. 2(i).

Now suppose T, passes at least three times through some point 7. Then there are
at least three segments e, ez, e3 through which T, arrives at r. If two of these segments
overlap then we can shortcut 75, which is a contradiction. Otherwise at least two of the
three wedges defined by eq, e, e3 have an opening angle less than 180 degrees. The point r
can be a reflex vertex of R, but locally at r, the polygon P can lie in only one of these two
wedges; see Fig. 2(ii). Hence, we can shortcut at the other wedge, which is a contradiction.

Proof of part 2. Number the sites in order along Topt so that Tope = U;L:1 ¢, where we
define m; := w(s¢, S¢11) and sp4+1 := s1. Suppose there are two paths m; and 7; that cross
each other. Notice that the paths 7(s;,s;) and 7(s;41,5;+1) do not cross each other; see
Fig. 1, where the two crossing paths shown at the top can be “uncrossed”, resulting in the
non-crossing paths shown at the bottom. Let I'y be the part of T, from s;41 to s; and
let I'y be the part of Top from sj41 to s;. Then Tg, =T U T(Sit1,854+1) UT2 Un(sy, 55),
where the direction of I'y is reversed, is a tour of the same length as Tj,,¢. Moreover, T5
has fewer crossings; this is true because uncrossing m; and 7; cannot generate new crossings
by part 1 of the theorem. Hence, we can repeat the process until we are left with an optimal

tour without any crossings. <

3 A subexponential algorithm for TSP IN A SIMPLE POLYGON

In this section we give a subexponential algorithm for TSP IN A SIMPLE POLYGON, based on
the work by Hwang et al. [17]. The algorithm of Hwang et al. solves a problem that is slightly
more general than TSP, so that it can be used in a recursive algorithm. In a recent paper,
De Berg et al. [11] define the same generalized problem, but with a different terminology
that will be more convenient for us. In what follows we will mostly use their terminology
to define the problem, which De Berg et al. call EUCLIDEAN PATH COVER. (Hwang et al.
called it GENERALISED EUCLIDEAN TSP).

Let S’ C S be a subset of n of the sites of the initial set of sites, let B C S’ be a set of
boundary sites, and let M be a perfect matching on B. We say that a collection of paths?
P = {mi,ma,...,mp|s2} realizes M on S’ if (i) for each pair (s;,s;) € M there is a path

2 Note that we are now temporarily back in the standard EUCLIDEAN TSP setting. Thus the paths
mentioned here are not shortest paths between sites, but paths in the complete graph on the sites. In
the current setting, the edges of these paths are straight-line segments between the corresponding sites;
when we go back to TSP IN A SIMPLE POLYGON, they will be shortest paths between sites.
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Figure 3 An example of how the algorithm works. After trying all possible separators and all
possible ways the paths cross the separator, we will have found the optimal solution.

m;; € P with s; and s; as endpoints, and (ii) the paths together visit each site in S exactly
once. The goal of EUCLIDEAN PATH COVER is to find a collection of paths of minimum
total length that realizes M on S’. Note that we can solve EUCLIDEAN TSP by solving n — 1
instances of EUCLIDEAN PATH COVER on S’, namely for B = {s1,s;} where i € {2,...,n},
and taking the best solution found. Next we describe how an instance of EUCLIDEAN PATH
COVER can be solved using the triangulation approach. For simplicity, and with a slight
abuse of notation, we will denote the set of sites that need to be visited by S (rather than S).

The triangulation approach. Hwang et al. solve EUCLIDEAN PATH COVER with a separator-
based divide-and-conquer algorithm, which we will refer to as the triangulation approach. It
works as follows. We start by creating @), a set of three points defining an arbitrarily large
triangle containing all the points in S. Suppose we have a maximal triangulation 7 of S U @
that uses all segments from each path in an optimal solution Pyp¢. Since T is a maximal
planar graph, Miller’s separator theorem [25] implies that there exists a simple cycle C in T
of at most 24/2(n + 3) points from S U @ such that at most 2(n + 3)/3 sites are inside C,
and at most 2(n + 3)/3 sites are outside C. The idea is to use the separator C to split the
problem into two subproblems: one inside C and one outside C, and glue the solutions to
these subproblems together to get the solution to the original problem. However, we have
to make sure that the solutions inside and outside match with each other. To ensure this,
we guess all possible ways in which P,y can cross C, and handle each of them separately.
Since the triangulation uses all segments from each path in Pyp¢, no edge in P,y crosses an
edge in C. Hence, P,y only goes from inside C to outside C via nodes of C. Thus guessing
where Pt crosses C amounts to guessing for each path in P,y at which nodes of C it crosses
C (as well as the order of these crossing nodes). Each guess will lead to different pairs of
subproblems to be solved inside and outside the separator. The optimal solution will then
be the best solution over all guesses. See Fig. 3 for an example.

Above we assumed that we had a triangulation 7 of S U @ that uses all segments from
each path in Pyp¢. But we do not know Py, since Popy is what we want to compute. We
therefore try all possible simple cycles C of at most 24/2(n 4 3) sites, and for each of them
compute an optimal solution under the assumption that the solution does not use any edge
that intersects an edge in the cycle. One of these guesses must correspond to the separator for
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the (unknown) triangulation 7. Algorithm 1 gives a high-level description of the algorithm.
Next we show how to apply the algorithm to TSP IN A SIMPLE POLYGON, and fill in the
details for the various steps.

Algorithm 1 Triangulation-Approach(S, B, M).

Input: set .S of n sites; set B C S of boundary points; perfect matching M on B
Output: A solution for EUCLIDEAN PATH COVER for the instance (S, B, M)

1. if |S] is a sufficiently small constant then

2: Compute an optimal solution P by brute-force

3: else

4: Generate all candidate separators C for S, as explained in the text

5: for each candidate separator C do

6: Generate all pairs of subproblems (S1, By, My), (S2, Ba, M) for C,
as explained in the text. Recursively solve each pair of subproblems, and let
Popt (S1, B1, M1, S, Ba, M2) be the solution obtained by concatenating
the solutions to the subproblems.

7: Popt < best of all solutions Popi(S1, B1, M1, Sa, B, Ms) from the previous step

1

return Pop¢

3.1 Applying the triangulation approach to TSP IN A SIMPLE POLYGON

We now return to TSP IN A SIMPLE POLYGON. As above, we will solve a path-cover
problem, which we call GENERALIZED EUCLIDEAN PATH COVER. This problem is the same
as EUCLIDEAN PATH COVER, except that the edges used by the paths, which used to be
straight-line segment connecting sites, are now going to be shortest paths connecting sites.

To apply the triangulation approach in our new setting, we need a maximal triangulation of
an optimal solution Py to the given instance of the GENERALIZED EUCLIDEAN PATH COVER.
The existence of such a maximal triangulation implies that there is a small separator by
Miller’s separator theorem, which we can then guess. There exists of course a triangulation of
Popt if we are allowed to use all internal vertices of these paths as vertices in the triangulation:
we just need to construct a so-called constrained triangulation on the set of all sites and
internal shortest-path vertices, which uses the given segments on the paths. But the number
of nodes of such a triangulation would not only depend on the number of sites, but also on
the total complexity of the shortest paths, which depends on the complexity of the polygon P.
The key idea to overcome this, is to work with a triangulation whose nodes are the sites in .S
and whose edges are shortest paths. Next, we show that such a triangulation always exists,
and show how to create a maximal triangulation from this triangulation. After that we will
describe the various steps of the algorithm in more detail, and we will prove its correctness
and analyze its running time.

Triangulating Popt. Recall that a set X C P is called geodesically convez if for any two
points p, ¢ € X the shortest path 7(p, ¢) in P is contained in X. The relative convex hull [32)
of a set S of sites inside a simple polygon P, denoted by RCH(S), is defined as the intersection
of all geodesically convex sets containing S. Intuitively, RCH(S) is obtained by placing a
rubber band on 0P, and then releasing the band so that it “snaps” around S, without crossing
over any site and while staying inside P. The boundary of RCH(S) consists of shortest paths
connecting points of S; see Fig. 4(i) for an illustration.

5:7
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Let E(S) := {n(s;,5;) : si,5; € S and i # j} to be the set of all shortest paths between
the sites in S. We now define an sp-triangulation (see Figure 4(ii)) of S to be a collection
Tsp(S) C E(S) of pairwise non-crossing shortest paths between the sites in S such that

Tep(S) includes the shortest paths that form ORCH, and

each face in the subdivision of RCH(S) defined by 75,(S) (after moving pieces of the paths

slightly apart where they overlap) is bounded by exactly three paths.

» Lemma 4. For any set S of sites inside a simple polygon P, and any given collection
E* C E(S) of pairwise non-crossing paths, there exists an sp-triangulation Ts,(S) that
includes the paths from E*.

Proof. Consider the subdivision of RCH(S) induced by (the boundary of RCH(S) and) the
prescribed shortest paths in E*. We will show how to triangulate each face F' in this
subdivision using paths from E(S5).

The face F has an outer boundary and it contains zero or more additional shortest
paths. Let E, . (F) denote the shortest paths forming the outer boundary, let Fi,(F') denote
the remaining shortest paths, and let E(F) := Eou(F) U Ei (F). Let Sout(F) denote the
sites from S on the outer boundary of F', let S;,(F) denote the remaining sites, and let
S(F) = Sout (F) U Sin(F). If Sin(F) = 0 and |Sout(F)| = 3 then F is already a triangle and
we are done. Otherwise we will argue that there exist two sites s;,s; € S(F) such that

the shortest path 7 (s;, s;) lies inside F

7(si,85) is not yet present in E(F) and

7(si,85) does not cross any shortest path in E(F)

These properties imply that we can add 7(s;,s;) to E(F). This either splits F into two
faces, or it adds a path to Ei,(F'). In both cases we can continue recursively on the resulting
face(s), until every face is a triangle. It remains to argue the existence of the pair s;, s;. We
consider two cases:

Case I: Siy(F) =0 and all sites from Sout(F) are convex vertices of F.

Then take two sites s;,s; € S(F) that are not already connected by a shortest path in
Eout(F). Such a pair exists because |Sout(F')| > 3. Consider the shortest path 7 from s; to
s that is restricted to lie inside F'. All interior vertices of 7 must bend around reflex vertices
of F. Since all vertices from S, (F') are convex, these reflex vertices are not sites but reflex
vertices of P. By Lemma 1, 7 must also be the shortest path in P between p and ¢ and so
m € E(S). Since 7 stays inside F', it does not cross any other shortest path.

Case II: Sin(F) #£ 0 or Sout(F) contains a site that is a reflex vertex of F.
We start by identifying a “reflex” site, from which we will then be able to add a path.

> Claim. There is a site s; € S(F') with the following property: there is a line ¢ through s;
such that all paths from E(F) that have s; as an endpoint lie to the same side of ¢, locally
near s;. (In other words, the edges of these paths that have s; as an endpoint all lie to the

same side of £).
)

iii

(1)

(i) (

Figure 4 (i) The relative convex hull of a set of points. (ii) An sp-triangulation. (iii) The
corresponding maximal triangulation. Note: paths are shown slightly displaced where they overlap.
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(i)

Case 11

Figure 5 Illustrations for the proof of Lemma 4. (i) An example with three faces inside RCH(S).
The red face is already a triangle. The yellow face falls into Case 1 and can be triangulated by
adding the purple path. The blue face falls into Case 2 of the proof. (ii) The ray from s; hits a
shortest path that has s; as an endpoint in Fi(s;). The purple path is the shortest path from s;
to sy inside Fi(s;), and therefore 7(s;, s;) is added to the triangulation.

Proof. First suppose that Si,(F) = (). Then Sou(F) contains a site s; that is a reflex vertex
of F' and, hence, has the required property. (Note that, except for the two paths on the outer
boundary of F' meeting at s;, the site s; has no other incident paths, since Sy, (F) = 0.)
Now suppose Si,(F) # (. Consider a connected component C in E;,(F). (Or more
precisely, a connected component of the set |J Ei,(F) C R?.) Then C may contain at most
one site from Sout(F') — indeed, if it would contain two such sites then it would split F' and

some paths in the component would be part of the outer boundary of F', a contradiction.

Now see Eou(F) as a simple polygon and consider the relative convex hull of C'N S(F)
within this simple polygon. Then choose s; to be any vertex of RCH(C N (S(F')) that is a
site from Si,(F'). Then there is a line ¢ through s; such that the path edges incident to s; lie
to the same side of ¢, namely a line ¢ that is (locally) tangent to RCH(C N S(F)). <

Consider the site s; and the line ¢ provided by the above claim. Let 1 C ¢ denote the
maximal subsegment of ¢ containing s; and lying inside F'. The segment ¢; splits F' in two
pieces, F1 and Fy. Let F, denote the piece containing the edges incident to s; and let Fj
denote the other piece. We claim that F5 must contain all sites si already connected to s;,
that is, all sites s, € S(F) such that m(s;,s;) € E(F). Indeed, if some neighbor s of s;
was in F} then 7(s;, si) would intersect ¢; at some point s and therefore we would be able
to shorten 7 (s;, si) by using the straight segment s;s as a shortcut. Now, ¢; together with
the paths in Fi,(F) induces a subdivision of F into planar regions. Denote by Fj(s;) the
region in this subdivision within Fj that contains s; on its boundary; see Fig. 5(ii), where
this region is shown in purple.

Now shoot a ray from s; into Fj(s;), and let = denote the first path from E(F) hit by this
ray. At least one of the two endpoints of = must be in Fj(s;), otherwise = would intersect ¢;
twice, contradicting that 7 is is a shortest path. Let s be this endpoint. Consider the
shortest path «y from s; to sk, restricted to lie in Fy(s;). Then « has to bend around vertices
of F(s;), which are either reflex vertices of P or sites in S(F). Let s; be the first vertex on
~ that is a site; such a vertex exists, since the endpoint si of v is a site. Then all interior
vertices of v[s;, s;], the subpath of v from s; to s;, bend around reflex vertices of P. By
Lemma 1, the subpath ~[s;, s;] is a shortest path in P. Hence, we have found a shortest
7(s;,5;) that we can add to E(F). <
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Note that 75, (S), when viewed as a graph, may not be maximally planar. The reason is that
the face outside RCH(S) is not necessarily a triangle. However, we can easily turn T, (.5)
into a maximally planar graph, as follows. Let sy, ..., s, be the sites on RCH(S), in the same
order as they are encountered while following ORCH(S) clockwise. For every pair (s, s;) with
3 <i<r—1, weadd the path from s; to s; that follows ORCH clockwise, as an edge to
our triangulation. We denote this set of “outside edges” by E(S); see the purple paths in
Figure 4(iii) for an example. By adding these edges to T, (.S), we triangulate the outer face
and thus obtain a maximally planar graph, which we denote by G, (S).

Now that we have established the existence of a suitable triangulation, we can explain
how to implement the various steps in Algorithm 1.

Preprocessing. As a preprocessing step we compute the shortest path 7(s;, s;) for each pair
si,5; € S, which also gives us all pairwise distances. We then check for each pair of shortest
paths whether they cross or not, so that later on in the algorithm we have this information
readily available. Clearly, the preprocessing can be done in poly(n,m) time. As it turns
out, Algorithm 1 will not need the actual shortest paths or other geometric information —
knowing pairwise distances (for solving the constant-size subproblems at the base of the
recursion) and whether or not pairs of shortest paths cross (for larger subproblems) is all
that is needed.

Generating all candidate separators. Miller’s theorem [25] guarantees that G, (S) has a
simple-cycle separator of at most 2v/2n nodes. The edges in this separator are edges in
Gsp(S), which correspond to paths in E(S) U E(S). Note that for every pair of sites, there
are at most two different paths in E(S) U E(S). We now generate our collection of candidate
separators as follows:

1: for every circular sequence s1, So, ..., S, 1 of at most 24/2n sites from S do
2: for every choice of paths from E(S) U E(S) to connect consecutive sites do
3: Check if the paths used in the resulting cycle C are pairwise non-crossing and if

the number of sites inside and outside C is at most 2n/3. If so, add C to the

collection of cycles.

Clearly, the collection of generated separators is guaranteed to contain the separator that
would result from applying Miller’s theorem to Gs,(S). The total number of candidate
separators is n© (V™) (for choosing the circular sequence) times 20(vn) (for choosing the paths
to connect consecutive sites), so n@(V7) . 20(vVn) — 90(Vnlogn) iy total,

Note that for each candidate separator C we need to check if it is simple, that is, if
its paths are pairwise non-crossing. With the pre-computed information, this can be done
in O(|C|?) = O(n) time. Note that the paths from E(S) do not cross any other path by
definition, so these paths need not be checked.

If C is simple, we need to determine which sites are inside C and which are outside C. In
fact, what is “inside” and what is “outside” is not important, we just need to partition the
set of sites (that are not on the separator) into two subsets: the sites on one side of C and
the sites on the other side of C. We can do that as follows.

Take any site s; that is not on the separator C, and consider another site s; (that is not
on C either). We can decide if s; is on the same side of C as s; by counting how often 7(s;, s;)
crosses C: site s; is on the same side if and only if 7(s;, s;) crosses C an even number of times.
Because we determined in the preprocessing step for each pair of shortest paths whether they
cross or not, we can do this counting in O(y/n) time in total. The separator may also use
paths from E(S) and these paths depend on the subproblem being solved. Hence, they have
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not been considered in the preprocessing step. However, such paths cannot cross 7(s;, s;)
by definition, so they can be ignored. This also means that we do not have to compute the
paths in E(S) explicitly. We conclude that, for each candidate separator C, we can partition
the sites not on C into subsets on either side of the separator in O(ny/n) time.

Hence, in total we spend O(n/n) - 20(Vrlogn) — 90(vVnlogn) time to generate all possible
separators and their corresponding partitions.

» Lemma 5. The number of separators generated in Step 4 of Algorithm 1 is 20(Vnlogn)
and they can be generated in the same amount of time. This includes determining for each
candidate C a partitioning of S\ C into sites on one side of C and on the other side of C.

Generating the subproblems for a given separator C. This can be done as in the algorithms
of Hwang et al. [17] and De Berg et al. [11]; see Fig. 3. For completeness we give a sketch.
Consider the set C \ B, which contains the sites from C that are not boundary sites. The

path §;; € Popy corresponding to a pair (s;,s;) € M may or may not visit sites of C \ B.

To generate our subproblems, we need to guess for every pair (s;,s;) € M, which points of
C\ B are visited by ¢;; and in which order. (A site from C \ B should be used by at most
one path §;;.) Given such a guess, we can generate the corresponding subproblems, one for
each side, as follows. Let Sk, , Sk, - - -, Sk, be the ordered sequence of sites from C \ B that is
our guess for where &;; crosses C. Define fz’j = 8§, Sky)Ska»- -+, Sk;» Sj. Lhen every pair of
consecutive sites of Ez’j becomes a pair in the matching of one of the subproblems; which

subproblem depends on which side we have guessed the corresponding part of &;; to be on.

After doing this for all &;; corresponding to a pair in M, we have the matchings M; and
M of our subproblems. The sets of sites S7 and S5 for the recursive calls are generated as
follows. First we add the sites inside C to S; and the sites outside C to S3. Then we add
the sites of M; to S7, and the sites of M5 to So. Note that causes some sites to appear in
both subproblems. Finally, the remaining sites on C' are all added to S;. In other words, we
consider all points on C to be on the same side of C. See Fig. 3 for an example.

The total number of subproblems generated for a given separator C is n@(vV7) = 20(Vnlogn)
since we have to guess for each separator node by which (if any) of the paths it is used and
then choose an ordering for the crossings.

A proof of correctness. Next we prove that this gives an optimal solution.

» Lemma 6. Let s; be such that there is an optimal solution Topy with non-crossing shortest
paths that uses the path 7(s1,s;). Then Triangulation-approach(S, B, M) with B = {s1, s;}
computes an optimal solution for TSP IN A SIMPLE POLYGON. Moreover, all other calls report
valid solutions.

Proof. We first argue that each reported solution is valid, by showing that any recursive
call gives a valid solution of EUCLIDEAN PATH COVER. This is trivially true for the base
case in the algorithm. The way in which the subproblems are generated and their solutions
are combined, ensures that when the solutions to the subproblems are valid (which we can
assume by induction) then the combined solution is valid. (Note: the generation of the
subproblems and how they are combined is based on the original triangulation approach by
Hwang et al. [17], so this part in fact follows from the correctness of their algorithm.)

Now consider a call Triangulation-approach(S, B, M). Let Pop (S, B, M) be an optimal
solution to the subproblem. We will prove that if the parameters S, B, M are consistent with
Topt, — that is, Pop (S, B, M) is a subset of the global T, — then the algorithm computes
an optimal solution to the subproblem. Since the initial call with B = {s1, s;} is consistent

5:11

ESA 2022



5:12

TSP in a Simple Polygon

with T, by definition, this will prove the lemma. Note that if Pypi(S, B, M) C Tppt, then
Popt (S, B, M) consists of non-crossing paths. Lemma 4 then implies that there exists an
sp-triangulation 75, (S) that includes the edges from P,pi (S, B, M). This can be extended
to a maximally planar graph G, (), which has separator of size at most 2v/2n. As argued
earlier, this separator will be one of the generated candidate separators, and the way in
which Popi (S, B, M) crosses it will be corresponds to one of the generated subproblems.
The parameters Si,, Bin, Mi, and Sout, Bout, Mous 0f these subproblems are thus consistent
with Tops, and so we can assume by induction that they are solved optimally, thus leading to
an optimal solution for the call to Triangulation-approach(S, B, M). <

Putting it all together. Lemma 6 gives the correctness of our algorithm so it remains
to analyze the running time. The preprocessing takes poly(n, m) time. The running time
of Triangulation-approach satisfies the recurrence T|(n) = 20(vnlogn) 4 90(vnlogn) . T(% +
O(y/n)), which solves to T'(n) = 20(vV7*1°e7)  This leads to our final theorem.

» Theorem 7. TSP IN A SIMPLE POLYGON for a set S of n sites in a polygon P with m
edges can be solved in poly(n, m) + 200V71087) time,

4  Conclusion

We introduced TSP IN A SIMPLE POLYGON, a natural variant of TSP that seems not to have
been studied at all so far. The problem can be solved in poly(n, m)+ 20(vVnlogn) time using a
complicated algorithm of Marx, Pilipczuk, and Pilipczuk [24] as a subroutine. We presented
a much simpler algorithm with the same running time. Our work raises several questions:
It was recently shown that EUCLIDEAN TSP in R? can be solved in 200V time [11]. Can
we also get rid of the log-factor in the exponent for TSP IN A SIMPLE POLYGON?
Can our approach be extended to polygons with holes? A major obstacle is that in
this case a triangulation using shortest paths not always exists. We have been able to
generalize our approach, by working with a suitable collection of paths between every
pair of sites, but this significantly complicates matters, thus defeating the purpose.
Can ideas from our approach be used to get a simplified solution to the more general
SUBSET TSP problem for planar graphs?
What about TSP WITH OBSTACLES in higher dimensions? Here neither our approach nor
the approach by Marx, Pilipczuk, and Pilipczuk can be used.
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