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Abstract—The use of multiple low-power fuel cells (FCs),
instead of a high-power one, in the powertrain of a FC-hybrid
electric vehicle (FC-HEV) has recently received considerable
attention. This is mainly due to the fact that this configuration
can lead to higher efficiency, durability, and reliability. However,
the added degrees of freedom require an advanced multi-agent
energy management strategy (EMS) for an effective power
distribution among power sources. This paper puts forward
an EMS based on game theory (GT) for a multi-stack FC-
HEV with three FCs and a battery pack. GT is a well-
approved method for characterizing the interactions in multi-
agent systems. Unlike the other strategies, the proposed EMS
is equipped with an online identification system to constantly
update the time-varying characteristics of the power sources. The
performance of the suggested strategy is investigated through
two case studies. Firstly, a comparative study with two other
EMSs, dynamic programming (offline), and a competent rule-
based strategy (online), is conducted to realize the capability
of GT. Secondly, to justify the necessity of online system iden-
tification, the degradation effect of each power source on the
EMS performance is examined. The carried-out studies show
that the total cost (hydrogen consumption and degradation)
of the proposed strategy is almost 6% better than the rule-
based EMS while keeping a reasonable difference with dynamic
programming. Moreover, health unawareness of power sources
can increase the hydrogen consumption up to 7% in the studied
system.

Index Terms—Fuel cell and battery degradation, game theory,
multi-stack fuel cell hybrid electric vehicle, modular system,
online energy management strategy.

I. INTRODUCTION
A FC-HEV is often composed of a proton exchange mem-

brane (PEM) FC and a battery pack. As the energetic char-
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acteristics of the utilized sources in a FC-HEV are different,
the use of an energy management strategy (EMS) is essential
to minimize the hydrogen consumption and maximize the
lifetime of the system [1]. Several EMSs, namely rule-based
and optimization-based have been proposed for a FC-HEV
with a single-stack configuration. The rule-based strategies are
typically heuristic and lead to sub-optimal results unless being
well tuned. Therefore, the use of optimization techniques has
come under attention which are also capable of improving
the rule-based strategies. Optimization-based category falls
into two groups of global, such as dynamic programming
(DP) [2], and real-time, like equivalent consumption min-
imization strategy (ECMS) [3] and Pontryagin’s minimum
principle (PMP) [4], strategies considering the specified cost
function. In [5], a two-stage strategy is designed for a FC-
HEV where a predictive controller is used to determine the
global battery state of charge (SOC) trend as well as the local
control references. In [6], a supervisory control scheme based
on optimized fuzzy logic is proposed to distribute the power
between a FC stack and supercapacitor (SC) under different
driving cycles. In [7], an EMS based on model predictive
control (MPC) is proposed for a FC-HEV, considering FC,
battery, SC, hydrogen, and charge sustaining costs. In [8], a
rule-based strategy is proposed for the same FC-HEV while all
the operational costs are controlled by imposing constraints to
the sources. In [9], a rule-based EMS is developed for dual-
locomotive. This work has proposed an always-on strategy
to prevent the on/off cycling in the FC system. In [10],
multidimensional DP is developed for a FC-HEV. This paper
introduces a sign function to reduce the number of on/off
cycling in the FC system. However, FC-HEVs with a single-
stack structure are susceptible to the malfunction of the power
sources and limited in terms of efficiency. Hence, it is essential
to improve them in terms of efficiency, durability, and cost.
One of the feasible options in this regard is the development of
a hybrid multi-stack FC system which is composed of multiple
connected low-power FCs rather than a high-power one along
with an energy storage system.

Various configurations for a multi-stack FC system are
studied in [11] and is shown that a parallel structure, where
each FC is connected to the bus through a DC-DC converter,
can provide better efficiency and enhance the reliability due
to the inherent redundancy. Some of the key advantages of a
parallel multi-stack powertrain configuration are as follows:
- Efficiency and durability enhancement: a single-stack FC
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system has solely one optimal operating point while a multi-
stack system provides access to several ones. This feature
provides a wider high-efficiency operation zone and more
degrees of freedom for power distribution which also leads
to increase of FCs lifetime.
- High survivability: survivability is increased by providing
more redundancy in a multi-stack system. In fact, this config-
uration decreases the possibility of a complete operation halt
as it enables degraded mode of operation in a FC-HEV.
- Flexible structure: this structure provides a flexible arrange-
ment that is significant for mass distribution and stability of
the vehicle. However, to benefit from the above-mentioned
advantages that originate form the utilized hardware (parallel
multi-stack configuration), an advanced EMS (as a software)
is required.

In [12], four FCs are connected to the DC bus through DC-
DC converters to reach higher output voltage while utilizing
a maximum power (MP) point tracking tool for each stack.
In [13], a hierarchical control method, composed of a control
and a management layer, is proposed for a multiple FC system.
The equivalent fitting circle method is used in this study to
realize the optimal allocation among the FCs. In [14], an
adaptive current sharing technique based on droop control
is suggested for two FCs to decrease the degradation rate.
In [15], a hysteresis EMS is designed for a multi-stack FC-
HEV with three FCs and a battery pack. The objective of
this strategy is to equalize the operational time of the three
FCs while declining the number of on-off cycles. In [16], an
EMS based on auxiliary problem principle is proposed for a
multi-stack FC-HEV with two FCs and a battery pack. The
results of this work demonstrate that this real-time approach
is able to attain an end-user price very near to DP. All the
above-discussed manuscripts have attempted to propose a new
methodology to satisfy all the expectations from a multi-source
system (minimizing the hydrogen consumption and enhancing
the lifetime of each individual powertrain). However, this is
a highly difficult task as each of the components have their
own particular interests. One of the most practical techniques
for dealing with a multi-objective problem in the presence of
several agents (power sources herein) is game theory (GT).
The performance of GT has been already justified for the
energy management of single-stack FC-HEVs [17], [18].

However, its deployment in a multi-stack FC-HEV, which
is a multi-agent system, has escaped the attention. GT can
define a wide range of interactions between multiple power
sources. Compared to the above-discussed papers, GT has
a convenient framework for understanding the preference in
situations among different agents and can help them reach
optimal decision-making in various conditions.
Considering the discussed points, this paper proposes an
online EMS based on GT for a multi-stack FC-HEV. The
powertrain of this vehicle is composed of three FCs and a
battery pack. The proposed strategy aims to maximize the
self-interest of each individual power source while minimizing
the hydrogen consumption of the system. To the best of the
authors’ knowledge, this is one of the first attempts, if any,
to distribute the power/energy flow in a multi-stack FC-HEV
using GT. According to the literature, one of the main causes

of mismanagement in any EMS is the performance drifts of the
power sources owing to degradation and operating conditions
variations [19]. To deal with this issue, each power source in
this work is combined with an online parameter estimation
tool using recursive least square (RLS) to track the health
state of the components and extract the updated energetic
characteristics. Combining the GT with online identification
of power sources leads to the development of a health-aware
GT, which is another distinguishing feature of this manuscript.
Two case studies are considered to verify the performance of
the proposed strategy. In the first case study, it is compared
with DP, as an optimal strategy, and a real-time rule-based
EMS under a real driving cycle. In the second case study, the
effect of power sources’ degradation over the performance of
the EMS is considered to evaluate the robustness and necessity
of the integrated online identification tool.

The rest of the paper is organized as follows. Section II
describes the characteristic of the multi-stack FC-HEV. Section
III explains the EMS development. The obtained results from
three EMSs are discussed in section IV. Finally, the conclusion
is given in section V.

II. POWERTRAIN MODELING

Fig. 1 illustrates the configuration of the utilized multi-stack
FC-HEV in this study, which belongs to a three-wheel electric
vehicle from e-TESC laboratory of University of Sherbrooke
[20]. According to this figure, three FCs and a small battery
pack, that are all connected to the DC bus through individual
DC-DC converters, are considered to supply the requested
power of this vehicle. Table I shows the specifications of this
vehicle.

Fig. 1. The hybrid multi-stack powertrain configuration for the three-wheel
electric vehicle at e-TESC lab., University of Sherbrooke.

The energetic macroscopic representation (EMR) of the
traction system, which is used for the EMS development, is
shown in Fig. 2. EMR is a recognized formalism for modeling
FC-HEVs [21]. The related equations are as follows:

dVEV

dt
=

Ftr − Fenv

meq
(1)
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TABLE I
SPECIFICATION OF E-TESC THREE-WHEEL VEHICLE.

Variable Symbol Value Unit
Vehicle mass Meq 350 kg

Typical rolling resistance coefficient µfr 0.02 -
Typical aerodynamic drag coefficient CD 0.75 -

Vehicle front area Af 1.25 m
Wheel radius r 0.305 m2

Belt transmission drive ratio Ggb 5.033 (30:151) -

Ftr =
Ggb

r
Temηβgb (2)

Ftr = Froll + Fgrade + Fair (3)

Froll = MeqgµfrcosΘ (4)

Fair = 0.5ρairAaeroCdV
2
EV (5)

Fgrade = meqgsinΘ (6)

Ωm = (
Ggb

r
)VEV (7)

its =
TemΩmηβm

uDC
(8)

where Ftr is the traction force, Fenv is the vehicle traction
force resistance, Meq is the equivalent of vehicle mass, r is
the wheel radius, Tem is the electric machine torque, ηgb is
the gearbox transmission efficiency, ρair is the air density (1.2
kg/m3), β is -1 or 1 depending on the braking mode, Ωm is
the rotor rotation speed, Θ is the road grade, µfr is the rolling
resistance, Cd is the aerodynamic drag, Tem,ref is the torque
reference, uDC is the voltage of DC bus, and ηm is the drive
efficiency that considers the inverter and motor efficiency.

A. Fuel Cell model

In this study, a semi-empirical model proposed by Squadrito
et al. is used to estimate the PEMFC output voltage [22]. This
semi-empirical model can fit the experimental data over the
whole range of current density with high accuracy. It has only
four parameters to be tuned and requires two sensors (voltage,
and current) to be adapted to a new FC system. These features
have made this steady-state model very suitable for energy
management application where its appropriateness has been
already confirmed [23]. The required experimental data to tune
the parameters of the model have been extracted from tests
of a Ballard Power System (FCvelocity®-9SSL) designated
for transportation applications. Fig. 3 shows the polarization
behavior of the utilized FC from Ballard Power System.

According to this model, the output voltage is calculated
by:

VFCi = N [Vo−b log(J)−RinternalJ+δJT ln(1−βJ)] (9)

where N is the number of cells, Vst is the output voltage (V) of
the stack, Vo is the reversible cell potential (V), b is the Tafel
slope, J is actual current density (cm2 A−1), Rinternal is cell
resistance (Ω), α is a semi-empirical parameter related to the
diffusion mechanism, σ (between 1 and 4) is a dimensionless
number which is related to the water flooding phenomenon,

Fig. 2. The studied multi-Stack FC-HEV powertrain EMR.
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Fig. 3. Polarization curve of the utilized FC system.

and β is the inverse of the limiting current density (cm2 A−1).
Vo, b, Rinternal and α need to be identified by an online
estimator to achieve an accurate voltage estimation. In order to
verify the effect of FCs degradation on the EMS performance,
a simple aging model is used to emulate the voltage decline
of each FC under constant load and on-off cycling. The end-
of-life (EOL) criterion according to US department of Energy
for the FC is assumed as a 10-percent decline in the MP. The
following equation describes the output voltage of the aging
model.

VFC = Voexp(ς, t)−∆V k (10)

Where ς is a constant coefficient, Vo is the stack voltage
of the new PEMFC, K is the number of on/off cycles, t is
the operation time, and ∆V is the FC voltage drop owing
to one start-stop cycle. For the current FC, ∆V is assumed
13.79 µV/cycle [24]. The losses from the balance of plant
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(compressor and fan) have been calculated based on the
proposed formulations in [24]. Moreover, an experimental
equation based on stack current (Ist) and number of cells
(Ncell) is used to determine the hydrogen flow (qH2) [25] as:

qH2 = 0.00696IstNcell (11)

B. Battery model

The battery pack comprises a series-parallel combination of
Li-ion cells. The specifications of the Li-ion cell and FC are
shown in Table II. The battery behavior is simulated by the
Thevenin model, which is a dynamic type. It is composed of
an ideal voltage source to characterize open circuit voltage
(OCV) as a function of SOC, a series ohmic resistance, and
a parallel RC branch. Depending on the required accuracy,
the number of parallel RC branches can vary from 1 (known
as Thevenin equivalent circuit model) to n. Thevenin models
have been already utilized in energy management of FC-HEVs
[26]. In this model, the OCV is obtained by:

Voc = Vbat − (Rs +Rc)Ibat +RcCc
dvbat
dt

−RsRcCc
dIbat
dt
(12)

where Vbat is the terminal voltage, Voc is the OCV, Ibat
is the battery load current (positive and negative currents
correspond to charge and discharge respectively), Rs is the
internal ohmic resistance, and Rc and Cc are the equivalent
polarization resistance and capacitance, respectively. To esti-
mate a precise terminal voltage, the equivalent circuit model
(ECM) parametrization should be done by an online parameter
estimation technique. The prerequisite laboratory test data for
the identification process has been provided by performing
charge and discharge pulse testes. In order to estimate the
SOC, coulomb counting formula is used. To see the impact of
battery degradation on the performance of the multi-stack FC-
HEV, the common battery ageing criteria are utilized in which
the internal resistance is doubled, or the capacity is faded by
20 percent [19]. As a result, the SOC calculations are updated
according to the state of the health of the battery.

TABLE II
THE CHARACTERISTICS OF POWER SOURCES

Power Sources Parameter Symbol Value Unit
No. cell Ncell 38 cell

No. stack Nstack 3 -
FC Max Current iFC,max 300 A

Max Power PFC,max 7.33 kW
Max Temperature TFC,max 70 °C

No. Series Nbat,serie 24 -
No. Parallel Nbat,parallel 12 -

Battery Capacity Qbat 2.5 Ah
Nominal Voltage Vbat,nom 3.7 V

C. Online parameter estimation

To counteract the influence of the characteristics variation
uncertainties, RLS, as an attested estimator in the literature,
has been utilized for the parameters’ adjustment of both power
sources. The details about adopting RLS for estimating the

parameters of the above-explained battery and PEMFC models
are available in [27], [28]. Consequently, only the obtained
results from the online parameters identification are discussed
in this section. Fig. 4(a) presents the estimation of the PEMFC
output voltage performed via RLS. According to the reported
mean square error (MSE) in the caption of this figure, the
tuned model can imitate the behavior of the real FC with a
good accuracy. Fig. 4(b) also represents the estimation of the
FC power curve which is close to the measured one. Fig. 5(a)
shows a pulse charge test applied to the Li-ion cell to perform
the model parametrization. The parameters of the ECM model
are identified using RLS. Fig. 5(b) illustrates the estimation of
the terminal voltage. Figs. 5(c) and 5(d) give an account of the
estimation of the equivalent resistor and open circuit voltage,
respectively. The estimation of the battery parameters confirms
the accuracy of the performed identification.
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Fig. 4. The estimated voltage and power curves: MSE (a):0.01, MSE
(b):0.003.

Fig. 5. Battery Parameters in charge profile: (a) Current in charge profile,
(b) The estimated terminal voltage, (c) Equivalent resistor, (d) Open circuit
voltage.

III. ENERGY MANAGEMENT STRATEGY

Battery and FCs are used to supply the requested power
(Preq) from the electric motor. Consequently, the hydrogen
consumption of a multi-stack FC-HEV depends to a great ex-
tent on the distribution of the power between the PEMFCs and
the battery. The aim of using an EMS is to determine a power
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split trajectory to minimize the hydrogen consumption and
maximize the lifetime of the power sources while respecting
the limitations of the system.

Preq = ηDC−DC(PFC1 + PFC2 + PFC3 + PBat) (13)

where Preq is the requested power, ηDC−DC (0.96) [29] is
the DC-DC converter efficiency and PBat is the battery power.
Hereinafter, GT (as the proposed EMS), DP (as an offline op-
timal reference), and ASM (as a real-time benchmark strategy)
are explained.

A. Game Theory

To reach a fair trade-off among the various individual pref-
erences, it is vital to benefit from the attributes of each com-
ponent and also the cooperation among them. GT is a well-
approved method for characterizing the interactions among
self-regarded players (power sources herein) and predicting
their policies. Nash equilibrium is the most common method
for noncooperative games including two or more players. A
Nash equilibrium is reached when each power source has
picked a policy and no other source can gain benefits by
changing policies separately while the others keep their poli-
cies unchanged. Fig. 6 shows the developed multi-agent EMS
in which three FCs and a battery pack are considered as four
players interacting with the environment (i.e., the requested
power here). According to Fig. 6, the online identification
process is run for each of the FC systems and the battery
pack while the vehicle is under operation. The responsibility
of this identification process is to provide the actual battery
SOC level as well as the maximum power (PFC−max,i) and
the power with maximum efficiency (PFC−opt,i) of each FC,
where i = 1, 2, 3. These updated characteristics of the power
sources will be used by the developed EMS based on GT
for the distribution of the power. The preferences of the
players (FC and battery pack) are defined by means of some
utility functions that illustrate the satisfaction level of a player
considering the interaction between its physical model and the
requested power. The principal goal of the developed GT-based
strategy is to perform the power distribution in a way to reach
a balance among the preferences of the players.
For any reason, if one of the FCs degrades more than
the others, their operational characteristics, such as MP and
efficiency points, will be updated by the developed online
identification systems and their operations will be restricted
within the updated ranges. This implies that the FCs with
higher MP values will provide more power than the degraded
ones. The following utility functions in quadratic forms are
considered for the power sources to ensure the existence of the
Nash equilibrium and its uniqueness. A weighted sum utility
function, composed of three objectives/preferences, is defined
for managing the operation of the battery pack. The main
preference of the battery pack is to protect itself to extend its
own lifespan. To do so, attention to the amplitude and variation
rate of the battery power as well as the battery SOC operation
range is required. Regarding the operation of the FCs, three
objectives, namely reduction of the power variation, efficient
operation, and minimizing the number of on/off cycles, are

Fig. 6. The general scheme of the proposed GT based EMS for a multi-stack
FC-HEV.

considered for each FC in this study. These three objectives
are combined through the weighted sum method to form the
utility function of each FC. Table III shows the list of utilized
parameters for deriving the utility functions of the power
sources in this work.

TABLE III
INTRODUCING THE UTILIZED PARAMETERS FOR DEFINING THE UTILITY

FUNCTIONS

Parameter Symbol Value
Maximum battery power PBat,max 36.6 kW

Power variation rate PBat,l Previous battery power
Power amplitude rate PBat,avg Average battery power so far
Power variation rate PFC l,i Previous FC power

Power of maximum efficiency PFC opt,i Determined by the RLS algorithm
SOC variation rate SOCl Previous SOC

The utility function of the battery (uBat) is defined as:

uBat = uBat,avg + uBat,soc + uBat,l (14)

where the function for limiting the battery power amplitude
(uBat,ave) is given by:

uBat,avg = wBat,avg(1− f(PBat − PBat,avg)
2) (15)

The coefficient f is defined as below to normalize the value
of uBat,ave between zero and one.

f = Min[
1

(PBat,max − PBat,avg)2
,

1

(−PBat,max − PBat,avg)2
]

The function for managing the battery SOC (uBat,soc) is
formulated as below which expresses the closeness to the
desired initial SOC.

uBat,soc = wsoc(1− g(−SOC0 − SOCl)
2) (16)

The coefficient g is the normalizing factor to bring the value
of uBat,soc within zero and one.

g = Min[
1

(PBat,max − PBat,soc)2
,

1

(−PBat,max − PBat,soc)2
]

The function for limiting the battery power variation uBat,l is
defined as:

uBat,l = wBat,l(1− c(PBat − PBat,l)
2) (17)
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The normalizing factor c of uBat,l is given by:

c = Min[
1

(PBat,max − PBat,l)2
,

1

(−PBat,max − PBat,l)2
]

The weighted sum utility function for each FC is formulated
as:

uFCi = uFC opt,i + uFC l,i + uFC sgn,i (i = 1, 2, 3) (18)

where i is the index for determining the FC number. The
preference function for maintaining the FC operation in the
efficient zone is obtained by:

uFC opt,i = wopt,i(1− ai(PFCi − PFC opt,i)
2) (i = 1, 2, 3)

(19)
The normalizing factor a is expressed as:

ai = Min[
1

(PFC max,i − PFC opt,i)2
,

1

(PFC min,i − PFC opt,i)2
]

(i = 1, 2, 3)

The function for restricting the dynamic variation of each FC
as well as their normalizing factor are given by:

uFC l,i = wl,i(1− di(PFCi − PFC l,i)
2) (20)

di = Min[
1

(PFC max,i − PFC l,i)2
,

1

(PFC min,i − PFC l,i)2
]

(i = 1, 2, 3)

where PFC l,i is the previous FC power and PFC max,i

is the MP of FC. To reduce the number of on/off cycles
in the PEMFC, the following utility function uFC sgn,i is
utilized. This utility function has been introduced in [10] for
controlling the on/off cycles in an offline EMS based on DP.

uFC sgn,i = wsgn,i(1− sign(PFCi)
2) (21)

(i = 1, 2, 3)

To comprehend the applicability of this function, let us assume
that the FC stack is under operation (so it is on). As long as
the FC keeps working, the value of this function is zero and
has no effect on the total cost function. However, if the FC
turns off and on, the sign function adds some costs to the
total cost function. Therefore, in the performed optimization,
the algorithm tries not to change the state of the FC a lot. If
it is on, it attempts to keep it in this state as long as possible.
If it is off, it prefers not to turn it on till necessary (the load
condition in (13)). In this way, the proposed function prevents
the frequent occurrence of on/off cycles in the FC systems.
The FC stack power is between zero to 7330 W and therefore,
its sign value is either zero or 1. It is worth noting that the
same utility function has been used for other FC stacks as well.
Finally, with the combination of utility functions of the battery
and the FC the power that maximizes each utility function can
be determined by applying the following derivations:

∂uFCi

∂PFCi
= 0,

∂uBat

∂PBat
= 0 (i = 1, 2, 3) (22)

The obtained best preferences can be written as:

S1 = wopt,2 ∗ a2(Preq − PFC3 − PBat − PFC opt,1)+

wl,2 ∗ d2(Preq − PFC3 − PBat − PFC l,1)+

wsgn,2(Preq − PFC3 − PBat − PFC sgn,1)+

wopt,3 ∗ a3(Preq − PFC2 − PBat − PFC opt,2)+

wl,3 ∗ d3(Preq − PFC2 − PBat − PFC l,2)+

wsgn,3(Preq − PFC2 − PBat − PFC opt,1)+

wBat,avg ∗ f(Preq − PFC2 − PFC3 − PFC opt,3)+

wBat,l ∗ c(Preq − PFC2 − PFC3 − PFC l,3)+

wsoc ∗ g(Preq − PFC2 − PFC3 − PFC sgn,3)

S2 = wopt,1 ∗ a1(Preq − PFC2 − PFC3 − PFC opt,1)+

wl,1 ∗ d1(Preq − PFC2 − PFC3 − PFC l,1)+

wsgn,1(Preq − PFC2 − PFC3 − PFC sgn,1)+

wopt,2 ∗ a2(Preq − PFC1 − PFC3 − PFC opt,2+

wl,2 ∗ d2(Preq − PFC1 − PFC3 − PFC l,2)+

wsgn,2(Preq − PFC2 − PFC3 − PFC sgn,2)+

wopt,3 ∗ a3(Preq − PFC1 − PFC2 − PFC opt,3)+

wl,3 ∗ d3(Preq − PFC1 − PFC2 − PFC l,3)+

wsgn,3(Preq − PFC1 − PFC2 − PFC sgn,3)

G = wopt,1 ∗ a1 + wopt,2 ∗ a2 + wopt,3 ∗ a3 + wl,1 ∗ d1+
wl,2 ∗ d2 + wl,3 ∗ d3 + wsgn,1 + wsgn,2 + wsgn,3+

wBat,avg ∗ f + wBat,l ∗ c+ wsoc ∗ g

where PBat can be replaced by PFCi using the power
balance in (13). As it is seen in (23) and (24), there are
twelve weight coefficients inside the derived equations.
These coefficients are expected to be adaptively adjusted
under different conditions. In this regard, the adaptive tuning
method, proposed in [30], is utilized in this manuscript. This
adaptive tuning approach is composed of two steps. In the
first step, genetic algorithm (GA) is employed to determine
the initial values of the coefficients under a driving cycle.
In this work, GA is run by means of MATLAB. The twelve
coefficients are defined as decision variables where GA
tries to tune them in a way to minimize the defined cost
function in (28). The obtained initial values of all the twelve
weight coefficients are listed in Table IV. All the reported
weight coefficients wopt,i (i = 1, 2, 3), wsgn,i (i = 1, 2, 3),
wl,i (i = 1, 2, 3), wsoc, wBat,avg , wBat,l are then adaptively
adjusted as follows, taking wopt,i as an example:

if |PFCi−PFC opt,i| ≥ εopt,i then (i = 1, 2, 3)

wopt,i : max[min(wopt,i,max, wopt,i) + ∆wopt,i), wopt,i,min]

if |PFCi−PFC opt,i| < εopt,i then

wopt,i : max[min(wopt,i,max, wopt,i)−∆wopt,i), wopt,i,min]

where εopt,i stands for the threshold value, wopt,i,max and
wopt,i,min are the upper bound and lower bound, respectively,
and ∆wopt,i is the tuning step size. All the parameters for the
tuning of the weight coefficients are listed in Table IV.
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PFC1 =
S1 + wl,1 ∗ a1(PFC l,1) + wopt,1 ∗ d1(PFC opt,1) + wsgn,1 ∗ PFC sgn,1

G
(23)

PBat =
S2 + wBat,avg ∗ f(PBat,avg) + wBat,l ∗ c(PBat,l) + wsoc ∗ g(PBat,soc)

G
(24)

TABLE IV
COEFFICIENT WEIGHT

Initial Value Adaptive Tuning
wl,i = 0.2 wl,i,max = 1 wl,i,min = 0.1
wopt,i = 0.5 ∆wl,i = 0.001 ∆wopt,i = 0.001

wopt,i,max = 1 wopt,i,min = 0.1
wsgn,i,max = 1 wsgn,i,min = 0.1

wsgn,i = 0.5 ∆wsgn,i = 0.001 wbat,l,max = 1
wsoc = 0.2 wsoc,max = 1 wsoc,min = 0.1

∆wsoc = 0.001 wbat,l,min = 0.1
wbat,avg = 0.2 wbat,avg,max = 1 wbat,avg,min = 0.1
wbat,l = 0.2 ∆wbat,avg = 0.001 ∆wbat,avg = 0.001

B. Dynamic Programming

DP is a global optimization method that is used to solve
an energy management problem in which the driving cycle
is known in advanced. In this work, a multi-variable DP
is required because there are multiple power sources. Such
a tool has been already developed and successfully tested
in solving the energy management optimization problem of
various HEVs [30]. The provided MATLAB function in [30]
is used in this study to solve the discrete-time optimal-control
problem with DP algorithm. The utilized DP here minimizes
the introduced cost function in (28). The considered system
states are battery SOC and the power of each PEMFC system
to avoid abrupt changes in the drawn power from the FCs.
The considered dynamic constraints are as 10% of the MP
per second for rising up, and 30% of the MP per second for
falling down [31]. The steady space model is defined as:

xk+1 =


f(xk, uk, vk, ak) + xk

x = [SOC,PFC1,SV , PFC2,SV , PFC3,SV ]

u = [PFC1,CV , PFC2,CV , PFC3,CV , PBat]
(25)

where xk is the vector of state variables, uk is the vector of
control variables, vk is the vehicle velocity, ak is the vehicle
acceleration, ik is the gear number, PFCi,SV (i=1,2,3) is the
PEMFC power as a state variable, PFCj,CV (j=1,2,3) is the
stack power as a control variable, and PBat is the battery
power. Since the driving profile is a priori known, vk, ak, and
ik can be incorporated in the model function. Consequently,
the steady space model will be,

xk+1 = f(xk, uk, vk) + xx, k = 0, 1, ...N − 1 (26)

N =
TF

Ts
+ 1

where TF is the final time of the driving cycle and Ts is the
sampling time. The considered limitations on the control and
state variables are defined as:

SOCmin ≤ SOC ≤ SOCmax (27)

PBat,min ≤ PBat ≤ PBat,max

PFC,SV,min ≤ PFC,SV ≤ PFC,SV,max

∆PFC,SV,rate,min ≤ ∆PFC,SV,rate ≤ ∆PFC,SV,rate,max

∆PBat,rate,min ≤ ∆PBat,rate ≤ ∆PBat,rate,max

PFC,min ≤ PFCj,CV (k) ≤ PFC,max

SOC ε [50%, 90%]

PFCj,CV ε [0, 7330 W ]

PFCi,SV ε [0, 7330 W ]

∆PBat,rate,min ε [−36000, 36000 Ws−1]

∆PFC,SV,rate,min ε [−5000, 6600 Ws−1]

where ∆PFC,rate and ∆PBat,rate are the change rate of the
FC and battery power respectively, the value of PFCi,SV is
considered based on [30]. Various minimum and maximum
SOC levels for the battery have been considered in the
literature [32]. In this work, a conservative level of 50%
is considered for the minimum battery SOC. This choice
provides a reasonable balance between charge and discharge
efficiency [33]. The maximum SOC level is set to 90%.
Lithium-ion batteries normally have a big flat low-resistance
area in the middle. Therefore, the considered range for the
battery SOC will be almost within this flat low-resistance area.

C. Adaptive State Machine

An ASM based EMS is developed to be compared with
the proposed GT strategy. This strategy has been introduced
in [33] for a multi-stack FC-HEV. This strategy involves two
steps. In the first step, RLS is responsible for determining MP
and maximum efficiency of FCs and in the second step, some
rules are utilized for performing the power split among power
sources. In this strategy, FCs work on maximum efficiency
until battery SOC level approaches the defined limits. If SOC
is more than 90%, FCs turn off and if SOC is less than 50%
FCs should work on the MP. FCs with less degradation supply
more portion of the requested power. Moreover, to decrease
the number of switching, FCs maintain their operation until
the battery SOC constraint is satisfied.

D. Evaluation Procedure

In order to evaluate the performance of the above-discussed
strategies, the following cost function is employed. This im-
plies that the discussed strategies are run for a driving cycle
and then their performance will be quantified by (28) which
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includes the hydrogen consumption and degradation in the FCs
and the battery pack.

$Total = (
3∑

i=1

$FCi) + $H2 + $bat (28)

DegFCi(t) =

t∫
i=0

(
δ0

3600
(1 +

γ

P 2
FC,nom

(PFCi − P 2
FC,nom)

+Nswitchηswitch

$FCi = DegFCi(t)FCcost (29)

$H2
= H2cost

∫ τ

0

ṁH2
dk (30)

Degbat(t) =
1

Qbat

∫ t

0

|(1 + 3.25(1− SOC)2ibatG(ibat)|
(31)

G(ibat) = 1 + 0.45
ibat

ibat−nom
if ibat ≥ 0

G(ibat) = 1 + 0.55
|ibat|

ibat−nom
if ibat < 0

(32)

$bat = BatcostDegbat(t) (33)

Where $FC is FC degradation cost, $H2 is the cost of
fuel consumption, $bat is the battery system degradation cost,
DegFC is the degradation of FC, FCcost is the FC system
cost that is 600 US$, Nswitch is the number of start-stop of
the FC, ηswitch is the start-stop degradation coefficient [34], δ0
and α are load coefficients, PFC,nom is the nominal power of
the FC in terms of degradation, H2cost is the cost of hydrogen
consumption that is 3.5 US $/kgH2, Degbat is the degradation
of battery, Batcost is the cost of degradation of battery that
is 640 US$, Qbat is the capacity of battery, ibat−nom is the
nominal current of battery and i is the number of FC.

IV. RESULTS AND DISCUSSION

To comprehensively evaluate the performance of the pro-
posed EMS, two case studies have been designed under a
real driving cycle, as explained hereinafter. Fig. 7 presents
the utilized real driving cycle in this study and its respective
requested power that should be supplied by the power sources.
This driving cycle has been obtained by an on-road test drive
of the real studied three-wheel motorcycle (Spyder) [20], [35].
It has been designed based on the characteristics of this recre-
ational three-wheel motorcycle which normally experiences
high accelerations and decelerations. The employed driving
cycle comprises an urban driving condition with two rapid
accelerations (0 to 70 km/h in 8 s) and two fast decelerations in
order to challenge this reactional vehicle. The maximum speed
is about 90 km/h and the overall driven distance throughout
this test is 30 km.

Firstly, the performance of the proposed online EMS based
on GT is compared with DP, as an offline optimal strategy,
and ASM, that is a competent rule-based strategy. This first
case study clarifies the potential of the GT as an online EMS
in such a multi-source system by measuring how far its results
are compared to an ideal case (comparison with DP) and how
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Fig. 7. Real driving cycle e-TESC: (a) Speed, (b) Corresponding requested
power.

it performs compared to another available online EMS used
for multi-stack FC-HEVs in the literature. Fig. 8 shows the
distribution of the power among the three FCs and the variation
of battery SOC after imposing the real driving profile to the
vehicle. Fig. 8(a) shows the power distribution by GT in which
it is evident that each FC, as a player, tries to maximize its
utility function. Since all the FCs have the same degradation
level, the requested power from them follows the same trend.
Fig. 8(b) illustrates the power distribution by ASM strategy
where the FCs are turned on in a specific order to supply
the requested power. Looking at the performance of ASM
strategy, it is observed that some FC on/off cycles happen
during the power distribution by this strategy as it tries to
use the minimum number of FCs. However, the on/off cycles
are very limited in case of GT. Fig. 8(c) presents the power
split performed by DP where all the three FCs show the
same behavior since the strategy is aware of the driving cycle
in advance. Fig. 7(d) demonstrates the variation of battery
SOC for each of the discussed EMSs. It should be noted
that all the strategies start with the same initial SOC. To
have a fair comparison, first, GT-based EMS performs the
power distribution and results in a particular final SOC (61%).
Afterwards, the final battery SOC for DP is set to reach the
same value as GT. The final battery SOC for ASM strategy
is a bit lower than other strategies. This difference affects the
hydrogen consumption comparison. Therefore, a recharge step
at the end of each profile is considered for ASM strategy. In
this regard, the battery is recharged to reach the same final
SOC as other strategies by using the maximum efficiency point
of the PEMFC stack at the end of each test and the US$ cost
of the additional required hydrogen is added to the total cost
function. To better comprehend the behavior of the FCs while
being used by the strategies to supply the requested power, the
distribution of power for different cases is presented in form
of histogram in Fig. 9. According to this figure, the density
of power points is high within the efficient zone of the FCs
(around 2 kW) in both of GT and DP strategies under the
Real driving cycle e-TESC. Moreover, the FCs have almost
the same distribution pattern in GT which is a solid proof
that the defined utility functions try their best to maximize
their preferences. Regarding the ASM strategy, the distribution
patterns of FCs are different with one another at each driving
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cycle since the main policy of this strategy is to supply the
requested power by using the minimum number of FCs.
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Fig. 9. Distribution of the FCs power points for the three strategies under
real driving cycle e-TESC.

Table V summarizes the results of the discussed comparative
study regarding the three EMSs in terms of different perfor-
mance indexes. From this table, DP has reached the minimum
total cost (0.6 USD), followed by GT (0.68 USD) and ASM
(0.723 USD). This implies that GT has achieved the nearest
total cost to DP by almost 12% difference while the total cost
difference between ASM and DP is around 18%. Comparison
of hydrogen consumption shows that, ASM has consumed less
hydrogen than GT to accomplish the power allocation. This
is mainly due to the fact ASM uses the minimum number of
FCs to supply the power. However, looking at the degradation
costs of FCs and battery illustrate that the policy of ASM for
minimizing the hydrogen consumption has led to the increase
of the degradation costs compared to GT.
In the second case study, the impact of power sources’
degradation on the performance of the proposed EMS is

TABLE V
COMPARISON OF DIFFERENT EMSS

Performance index
EMS

GT DP ASM
Total cost (US$) 0.68 0.6 0.723

FC1=0 FC1=1 FC1=0
On/Off cycles FC2=0 FC2=1 FC2=0

FC3=0 FC3=1 FC3=0
H2 consumption (g) 184 153 181
Battery degradation

0.0032 0.0022 0.0457cost (US$)
FC degradation

0.0376 0.05 0.0376cost (US$)

investigated. This is to show the necessity of updating the
parameters of the FCs and battery online to prevent the strategy
from malfunction. In this case study, only GT-based EMS
is utilized for distributing the power among the sources in
three different situations. In the first situation, called GTnew,
all the power sources are healthy, and no degradation has
happened. Therefore, the parameters setting of the strategy is
based on healthy power sources. In the second situation, called
GTDegraded, it is assumed that all the power sources have
become degraded, and the parameters setting is also adapted
to the degraded health state of the power sources. It should
be noted that a 10-percent decline in the MP of the FCs and
twofold increase in internal resistance of the battery pack have
been considered in the simulation to have degraded power
sources. In the third situation, called false input feedback
GTNofeedback, it is assumed that the power sources have
become degraded but the parameters setting of the strategy
has not been updated. This is exactly the case that can happen
in an EMS which is not equipped with an online identification
process to update the parameters setting. The comparison
of the first and second situations clarifies the influence of
the power sources’ degradation over the performance of the
EMS when it is aware of the occurred attenuation. However,
the third situation highlights the importance of updating the
parameters setting when performance attenuation occurs in the
power sources which is the responsibility of the developed
online identification process in this study. Fig. 10 shows the
battery SOC variation of three explained situations under the
real driving profile. The SOC of GTnew has achieved the
highest final level compared to other two situations particularly
in Fig. 10. This difference of final battery SOC can highly
influence the hydrogen consumption as presented in Fig. 10.
From Fig. 11, it is observed that when the power sources have
become degraded and the EMS is aware of this uncertainty,
the hydrogen consumption increases by 32% for real driving
profile. However, when the power sources degrade and the
EMS is unaware of it, the hydrogen consumption increases by
almost 39%. These results confirm that integrating the online
updating strategies into the EMS design is a key step towards
minimizing the hydrogen consumption.

V. CONCLUSION

This paper puts forward a GT-based EMS to distribute
the power among three FCs and a battery pack. The de-
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Fig. 11. Hydrogen consumption comparison of different scenarios.

fined functions are used to control the on/off cycles in the
FC, minimize the hydrogen consumption and degradation of
the power sources. Furthermore, an online parameter identifi-
cation method is used for each power source to update the
utilized parameters, such as MP, battery SOC, etc., in the
EMS. To evaluate the performance of the proposed strategy,
it is compared with DP and an ASM based method under
the real driving cycle. The obtained total cost of hydrogen
consumption and degradation of the developed GT strategy is
around 6% less than the ASM and 12% higher than DP. The
last analysis of this manuscript deals with investigating the
impact of degradation of the power sources on the hydrogen
consumption of the utilized multi-stack FC-HEV architecture.
The results demonstrates that when the EMS is not aware of
the health state of the power sources, the hydrogen consump-
tion can rise up to 7% in the studied system. Although this
manuscript has pointed out the potential of the suggested EMS,
some prospects for expanding the scope of this work remain
as follows:

• Adding a braking strategy to the developed powertrain
configuration of this manuscript to enhance the overall
efficiency of the studied FC-HEV. In fact, in the utilized
three-wheel motorcycle, there is only one electric motor
connected to the rear wheels and to avoid the skid of
the rear wheel, regenerative capacity should be limited.
So, further study should be done to safely add full
regenerative breaking for this specific design.

• Designing a specific scheme for prioritizing the activation
and deactivation of individual FC stacks.
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