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Bayesian Online Multitask Learning
of Gaussian Processes

Gianluigi Pillonetto, Member, IEEE, Francesco Dinuzzo, and
Giuseppe De Nicolao, Senior Member, IEEE

Abstract—Standard single-task kernel methods have recently been extended to the case of multitask learning in the context of
regularization theory. There are experimental results, especially in biomedicine, showing the benefit of the multitask approach

compared to the single-task one. However, a possible drawback is computational complexity. For instance, when regularization
networks are used, complexity scales as the cube of the overall number of training data, which may be large when several tasks are

involved. The aim of this paper is to derive an efficient computational scheme for an important class of multitask kernels. More
precisely, a quadratic loss is assumed and each task consists of the sum of a common term and a task-specific one. Within a Bayesian

setting, a recursive online algorithm is obtained, which updates both estimates and confidence intervals as new data become available.
The algorithm is tested on two simulated problems and a real data set relative to xenobiotics administration in human patients.

Index Terms—Collaborative filtering, multitask learning, mixed effects model, kernel methods, regularization, Gaussian processes,
Kalman filtering, pharmacokinetic data.

Ç

1 INTRODUCTION

STANDARD multidimensional regression deals with the
reconstruction of a scalar function from a finite set of

noisy samples, see, e.g., [1], [2], [3]. When the simultaneous
learning of several functions (tasks) is considered, the so-
called multitask learning problem arises. The main point is
that measurements taken on a task may be informative with
respect to the other ones.

A typical multitask problem is found in the analysis of
biomedical data when experiments performed on several
patients belonging to a population are analyzed. Usually, the
individual responses share some common features so that
data froma subject can also help reconstructing the responses
of other individuals. The so-called population analysis is
widely applied in pharmacokinetics (PKs) and pharmaco-
dynamics (PDs) [4]. In this field, a parametric modeling
approach based on compartmental models is mostly em-
ployed [5], [6]. The widely used NONMEM software traces
back to the seventies [7], [8], whereas more sophisticated
approaches also include Bayesian MCMC algorithms [9],
[10]. More recently, semiparametric and nonparametric
approaches were developed for the population analysis of
PK/PD and genomic data [11], [12], [13], [14], [15].

In the machine learning literature, the term multitask
learning has been popularized by [16]. Further investigations
demonstrated the potential advantage of multitask ap-
proaches against those that learn the single functions
separately (single-task approach) [17], [18]. Another research
issue has to do with the determination, within a Bayesian
setting, of the amount of information needed to learn a task
when it is simultaneously learned with several other ones
[19]. Recently, vector-valued Reproducing Kernel Hilbert
Spaces (RKHSs) [20] were used to derive multitask-regular-
ized kernel methods [21].

Among the open research questions listed in [21], there
are the development of online multitask learning schemes
and the reduction of computational complexity. Online
multitask learning concerns the recursive processing of
examples that are made available in real time. As for the
second question, namely, computational complexity, multi-
task methods suffer from the problem of requiring much
more operations than single-task ones. For instance, when
using kernel methods with quadratic loss function (reg-
ularization networks), complexity scales with the cube of
the overall number of examples, whereas each single-task
problem scales with the cube of its examples. As observed
in [21], a substantial improvement is possible when all of
the k tasks share the same n inputs and the multitask kernel
has a suitable structure in which case complexity can be
reduced to Oðkn3Þ. Along this direction, an Oðkn3Þ algo-
rithm for regularization networks in the longitudinal case
has been recently developed [22].

A number of works on multitask learning have ad-
dressed the case of several single-task problems sharing the
same kernel. Then, the availability of multiple training sets
is exploited to learn a better kernel, e.g., using the EM
algorithm [23], [24], [25]. This kind of problems (learning
several tasks with the same kernel) also arises in multiclass
classification [26] and functional data analysis [27], [28]. The
common feature of all these methods is that, once the kernel
has been determined, the overall learning problem boils
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down to solving a set of single-task problems. Conversely,
along the line of [21], [14], [29], [30], we adopt a more
cooperative perspective in which, also for a given kernel
choice, all training sets contribute to the reconstruction of
each single task. This cooperative scheme is obtained
assuming a quadratic loss and kernels which are the sum
of a common term and a task-specific one. In particular, we
derive a recursive algorithm that updates the estimates as
new examples become available. Online methods devel-
oped in single-task contexts [31], [32] rely upon sparse
representations of Gaussian models, obtained, for example,
by replacing the posterior distribution with a simpler
parametric description. In this paper, conversely, computa-
tional efficiency is achieved without either introducing
approximations or imposing constraints on the location of
inputs but just exploiting the possible presence of repeated
locations. The algorithm relies on a Bayesian reformulation
of the problem and efficient formulas for the confidence
intervals are also worked out. Part of the overall scheme can
be viewed as a Kalman filter for a system with growing
state dimension.

The paper is organized as follows: In Section 2, the
multitask learning problem is stated within a Bayesian
framework. In Section 3, the algorithmic core of the
recursive scheme is derived. In Sections 4 and 5, an efficient
algorithm which solves the online multitask learning
problem is worked out, while in Section 6, simulated and
real pharmacokinetic/biological data are used to test the
computational scheme. Conclusions then end the paper.
Appendix A contains some technical results used in the
paper, while, in Appendix B, an extension of the proposed
algorithm is discussed.

2 PRELIMINARIES

In this section, kernel-based multitask learning is briefly
reviewed. In particular, the problem is introduced accord-
ing to [21]. We take this deterministic approach as a starting
point, then showing that the problem can be given a
probabilistic Bayesian formulation. Further, the specific
class of multitask problems addressed in the paper is
introduced within such Bayesian setting. Finally, some
useful notation is given. Throughout the paper, boldface
letters will be used to denote scalar or vector functions.

2.1 A Brief Review of Kernel-Based Multitask
Learning

Consider a set of k task functions f j : X 7! IR where X, a
compact set in IRd, is an input space common to all tasks.
For the jth task, the following nj examples are available:

Dj :¼
!
x1j; y1j

"
; . . . ;
!
xnjj; ynjj

"# $
:

The overall number of examples is nk ¼
Pk

j¼1 nj. The aim
is to jointly estimate all the unknown functions f j starting
from the overall data set:

Dk :¼
[k

j¼1

Dj:

Following [21], let the vector-valued function f ¼
½f1; f 2; . . . ; fk% belong to an RKHS H with norm k & kH,
associatedwith themultitask kernelKððx1; p1Þ; ðx2; p2ÞÞ, with

xi 2 X, 1 ' pi ' k, i ¼ 1; 2. According to the regularization
approach, f can be estimated by minimizing the functional

JðfÞ ¼
Xk

j¼1

Xnj

i¼1

ðyij ( f jðxijÞÞ2 þ !kfk2H:

In the above expression, the sum of squares penalizes
solutions which are not adherent to experimental evidence.
Further, ! is the so-called regularization parameter which
controls the balance between the training error and the
solution regularity measured by kfk2H. The so-called
representer theorem provides the regularization network
expression of the minimizer of J (see, e.g., [33], [34]):

f̂ pðxÞ ¼
Xk

j¼1

Xnj

i¼1

cijK ðx; pÞ; ðxij; jÞ
! "

; ð1Þ

where the weights fcijg of the network are the solution of
the following linear system of equations:

Xk

j¼1

Xnj

i¼1

Kððxqp; pÞ; ðxij; jÞÞ þ !"iq"jp
% &

cij ¼ yqp; ð2Þ

where p ¼ 1; . . . ; k, q ¼ 1; . . . ; np, and "ij is the Kroenecker
delta.

2.2 Problem Formulation in a Bayesian Setting

For future developments, it will be useful to define the
following vectors:

yj :¼ ½y1j . . . ynjj%
T yk :¼

%
yT1 . . . yTk

&T
;

cj :¼ ½c1j . . . cnjj%
T ck :¼

%
cT1 . . . cTk

&T
:

According to the above notation, a variable with a subscript,
e.g., xj, indicates a vector associated with the jth task,
whereas a variable with a superscript, e.g., xk, indicates the
vector obtained by stacking all the vectors xj of the first
k tasks. In addition, in the sequel,E indicates the expectation
operator, while I denotes the identity matrix of proper size.
Given two random column vectors u and v, let

cov½u; v% :¼ E½ðu(E½u%Þðv(E½v%ÞT %;
V ar½u% :¼ E½ðu(E½u%Þðu( E½u%ÞT %:

Moreover, Nð#;!Þ denotes the multinormal density with
mean # and autocovariance !. We also recall the following
lemma on the conditional distribution of Gaussian vectors,
see, e.g., [35], or [36, Section 3.1].

Lemma 1. Let u; v be two random vectors. If

u
v

' (
* Nð0;!Þ; ! ¼ !uu !uv

!vu !vv

' (
;

then

ujv * N
!
!uv!

(1
vv v;!uu ( !uv!

(1
vv !vu

"
:

Hereafter, the following relation is assumed to hold:

yij ¼ f jðxijÞ þ $ij; ð3Þ
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where the variables f$ijg are mutually independent and
identically distributed, 8i; j, with

$ij * N
!
0; %2ij
"
:

A Bayesian paradigm is adopted and the tasks fpðxÞ will
be regarded as realizations of Gaussian random fields. Let

&&kpðxÞ :¼ E f pðxÞjDk
% &

; VV k
pðxÞ :¼ V ar f pðxÞjDk

% &
;

rrkpðxÞ :¼ cov f pðxÞ; yk
% &

:

Note that &&kp is just the Bayes estimate of the pth task, whereas
VV k

p is the associated posterior variance. The following
proposition exploits the correspondence between Gaussian
processes and RKHS, see, e.g., [37]. It provides a link
between regularization networks associatedwith amultitask
kernel and Bayesian estimation of Gaussian random fields.

Assumption 2. Assume that ff jgkj¼1 are zero-mean Gaussian
random fields, independent of $ij, 8i; j, with covariances

cov fpðx1Þ; f qðx2Þ
% &

¼ Kððx1; pÞ; ðx2; qÞÞ; p; q ¼ 1; . . . ; k:

Proposition 3. Under Assumption 2 and assuming %2ij ¼ !, the
posterior mean &&kpðxÞ is given by (1)-(2).

Proof. According to Lemma 1,

&&kpðxÞ ¼ rrkpðxÞ V k
! "(1

yk;

where, in view of (3) and the given assumptions,

V k ¼

V11 & & & V1k

..

. . .
. ..

.

Vk1 & & & Vkk

2

664

3

775þ !I;

Vpqði; jÞ :¼ Kððxip; pÞ; ðxjq; qÞÞ; Vpq 2 IRnp+nq :

Moreover,

rrkpðxÞ ¼ cov f pðxÞ;
%
f 1ðx11Þ & & & fk

!
xnkk

"&Th i

¼
%
Kððx; pÞ; ðx11; 1ÞÞ & & &K

!
ðx; pÞ;

!
xnkk; k

""&
:

Letting ck :¼ ðV kÞ(1yk, it easily follows that &&kpðxÞ
coincides with f̂p given in (1)-(2). tu

In the following assumption, we introduce the specific
class of multitask models which will be the focus of the
paper. The key feature is the decomposition of tasks into a
global component and a local one. The former accounts for
similarity among the tasks, whereas the latter describes the
individual differences.

Assumption 4. For each j and x 2 X,

f jðxÞ ¼ fðxÞ þ ef jðxÞ;

where f and ef j are zero-mean Gaussian random fields. In
addition, it is assumed that f$ijg, f , and ef j are all mutually
independent.

Under Assumptions 2 and 4, it follows that there exist
kernels K and eKj, j ¼ 1; . . . ; k, such that

Kððx1; pÞ; ðx2; qÞÞ ¼ '
2
Kðx1; x2Þ þ "pq e'2 eKpðx1; x2Þ;

where

'
2
Kðx1; x2Þ ¼ cov fðx1Þ; fðx2Þ

% &
;

e'2 eKpðx1; x2Þ ¼ cov
%efpðx1Þ;ef pðx2Þ

&
;

(
ð4Þ

with '
2
and e'2 being scale factors that will be typically

estimated from data, see Section 5.
Assumption 4 extends the model described in [21,

Section 3.1.1] to nonlinear multitask kernels. If ' ¼ 0, all
the tasks are learned independently of each other. Con-
versely, e' ¼ 0 implies that all of the tasks are actually the
same. In fact, we are assuming that each task is given by the
sum of an average function f , hereafter named average task,
and an individual shift ef jðxÞ specific for each task [14].

Assuming homoskedastic noise in (3) so that %2ij ¼ %2, it
is not difficult to see that by rescaling the triple ð%2; '; e'Þ
with the same constant, the task estimates do not change so
that it would seem that there is some redundancy.
However, all three parameters are needed in a truly
Bayesian setting, because such a scaling affects both the
computation of the marginal likelihood and the derivation
of confidence intervals.

When examples from k tasks are available and Proposi-
tion 3 is used, it would seem that the computational
complexity scales with the cube of the total number nk of
examples, that is the cost of solving (2). The rest of the paper
is devoted to derive a more efficient numerical scheme that
exploits the specific structure of the problem stemming
from Assumption 4. Furthermore, the goal is to perform
estimation in an online manner, as formalized below.

Problem 5. Assume that the data set Dk, associated with the first
k tasks, is given. In addition, suppose that a new set of
examples Dkþ1, relative to the ðkþ 1Þth task, becomes
available. Then,

1. Compute efficiently &&kj ðxÞ and Vk
j ðxÞ, j ¼ 1; . . . ; k.

2. By recursion, compute efficiently &&kþ1
j ðxÞ and

Vkþ1
j ðxÞ, j ¼ 1; . . . ; kþ 1.

2.3 Additional Notation

Let

xj :¼
%
x1j . . .xnjj

&T
xk :¼

%
xT
1 . . .xT

k

&T
;

$j :¼
%
$1j . . . $njj

&T
$k :¼
%
$T1 . . . $Tk

&T
;

fj :¼
%
f1j & & & fnjj

&T
f
k
:¼
%
f
T
1 & & & fTk

&T
;

efj :¼
%ef1j & & & efnjj

&T efk :¼
%efT

1 & & & efT
k

&T
:

where fij :¼ fðxijÞ and efij :¼ ef jðxijÞ. Also let

Sj :¼ V ar½$j% Sk :¼ V ar½$k%;

V j :¼ V ar½fj% V
k
:¼ V ar½fk%;

eVj :¼ V ar½efj% eV k :¼ V ar½efk%:

In the training set, there might be repeated input

locations. As will be seen in the following, exploiting these

repetitions is essential in order to improve computational

complexity of the multitask learning algorithm. For this
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purpose, it is useful to introduce the condensed vector "xk

whose components are the distinct elements (i.e., with no

repetitions) of the set
Sk

j¼1

Snj

i¼1fxijg. For example, if

x1 ¼ ½1; 2; 3%T , x2 ¼ ½1; 3; 6%T , then x2 ¼ ½1; 2; 3; 1; 3; 6%T and

"x2 ¼ ½1; 2; 3; 6%T . It is important to notice that xk has

dimension nk ¼
Pk

j¼1 nj, while the dimension of "xk,

denoted by "nk, can be much smaller. Let Ck and "Ck be the

binary matrices such that

"xk ¼ Ckxk; xk ¼ "Ck"xk:

The condensed vector of samples of the average task is
defined by

"fk ¼ Ckf
k
;

and has the same dimension as "xk. On the other hand, if the
condensed vector "fk is given, its full version is obtained
using "Ck, i.e.,

f
k ¼ "Ck "fk:

Let "Cj be the submatrix of "Ck such that

fj ¼ "Cj
"fk;

where the dependence of "Cj on k is omitted to simplify the
notation. Finally, let "fk be such that

"fk ¼
"fk(1

"fk

' (
:

In other words, "fk is the subvector of "fk associated with the
kth task. Note that if the kth task does not bring any new
input location, then "fk is an empty vector. Also let

"V k :¼ V ar½"fk% "rkp :¼ cov½"fp; "fk%;
"&k1jk2 :¼ E½"fk1 jDk2 % "V k1jk2 :¼ V ar½"fk1 jDk2 %;

where k1; k2 2 IN. Finally, using the above notation, the
following equations hold:

yj ¼ "Cj
"fk þ efj þ $j; ð5Þ

yk ¼ "Ck "fk þ (k; ð6Þ

where (k :¼ efk þ $k is independent of f .

3 RECURSIVE ESTIMATION OF THE SAMPLED

AVERAGE TASK

As it will become clear in the sequel, the posterior mean "&kjk

and the posterior variance "V kjk represent the two key
quantities to be propagated in order to compute efficiently
&&kj ðxÞ, that is to solve Problem 5. These two quantities
represent the point estimate and the corresponding un-
certainties on the condensed input points. The aim of this
section is to derive the recursive update formulas for "&kjk

and "V kjk. Once such posterior of the sampled average task f
k

is available, the estimates of the functions ff jg will be
computed as discussed in Section 4. In other words, the first
step consists of learning the values of the average and

individual tasks in correspondence of the available inputs.

It will be shown that such estimates are sufficient to

reconstruct the entire functions all over the input space.

Proposition 6. "&kjk and "V kjk can be recursively updated
according to the following three steps.

1. Initialization:

A1 ¼ "V 1 þ eV 1 þ S1;

"&1j1 ¼ "V 1A(1
1 y1;

"V 1j1 ¼ "V 1 ( "V 1A(1
1
"V 1:

2. Task update (predictor):

Hk ¼ "rkkþ1ð "V
kÞ(1;

"&kþ1jk ¼
I

Hk

' (
"&kjk;

ð7Þ

"V kþ1jk ¼ "V kþ1 ( I
Hk

' (!
"V k ( "V kjk"!I HT

k

"
: ð8Þ

3. Measurement update (corrector):

Akþ1 ¼ "Ckþ1
"V kþ1jk "CT

kþ1 þ eVkþ1 þ Skþ1; ð9Þ

Bkþ1 ¼ "V kþ1jk "CT
kþ1; ð10Þ

"&kþ1jkþ1 ¼ "&kþ1jk þBkþ1A
(1
kþ1

!
ykþ1 ( "Ckþ1

"&kþ1jk";
ð11Þ

"V kþ1jkþ1 ¼ "V kþ1jk (Bkþ1A
(1
kþ1B

T
kþ1: ð12Þ

Proof. Exploiting Lemma 1, one has

"&1j1 ¼ cov½"f1; y1%ðV ar½y1%Þ(1y1;

"V 1j1 ¼ "V 1 ( cov½"f1; y1%ðV ar½y1%Þ(1cov½"f1; y1%T :

Using the equation y1 ¼ "f1 þ ef1 þ $1 and the indepen-
dence assumptions, one immediately obtains

cov½"f1; y1% ¼ "V 1;

V ar½y1% ¼ "V 1 þ eV 1 þ S1 ¼ A1:

Passing now to the predictor step, to derive (7), we
project "fkþ1 first onto the space generated by "fk and Dk

and then onto Dk, that is,

"&kþ1jk ¼ E½E½"fkþ1j"fk;Dk%jDk%: ð13Þ

Using point 1 of Lemma 11, we obtain

E½"fkþ1j"fk;Dk% ¼ E½"fkþ1j"fk%; ð14Þ

so that

E½"fkþ1j"fk;Dk% ¼ cov½"fkþ1; "fk%ð "V kÞ(1 "fk ¼ I
Hk

' (
"fk:
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Finally,

"&kþ1jk ¼ E
I
Hk

' (
"fk
))))D

k

* +
¼ I

Hk

' (
"&kjk;

which proves (7). To obtain (8), recall from (6) that

yk ¼ "Ck "fk þ (k;

with (k independent of "fkþ1. Then, (8) follows from
Lemma 13, with

z ¼ "fkþ1; ) ¼ "fk; v ¼ (k;
y ¼ yk; F ¼ "Ck; U ¼ "V kþ1;

V ¼ "V k; # ¼
"V k

"rkkþ1

 !
; !v ¼ V ar½(k%:

Finally, let us consider the measurement update. Notice
that, by Lemma 12,

E ykþ1jDk
% &

¼ "Ckþ1
"&kþ1jk:

Then, letting

Akþ1 :¼ V ar ykþ1jDk
% &

; Bkþ1 :¼ cov½"fkþ1; ykþ1jDk%;

by Lemma 1, we obtain (11) and (12). Expressions (9) and
(10) for Akþ1 and Bkþ1 follow by applying Lemma 12. tu
The major difference between Proposition 6 and a

Kalman filter is that the dimension of the state "fk (i.e., the
number of distinct input locations up to the first k tasks) can
increase. This nontrivial issue is handled by means of the
projection Lemma 13 in the derivation of the predictor step.

4 SOLUTION OF THE ONLINE MULTITASK LEARNING

PROBLEM

In the previous section, efficient recursive formulas have
been derived for the estimation of the task functions
sampled in correspondence of the input locations xk. In
this section, the estimate of f jðxÞ is extended to the whole
input space. In addition, confidence intervals are provided.
In Appendix B, the proposed numerical scheme is also
extended in order to process new measurements associated
with an existing task.

4.1 Task Estimation

The next proposition shows that &&kj ðxÞ admits a representa-
tion in terms of a multitask regularization network whose
weight vector can be efficiently updated online as the
number of tasks, and associated examples increase. In
particular, given k tasks, the complexity of the proposed
algorithm scales as Oðkð"nkÞ3Þ, where "nk is the number of
distinct inputs. Recall that "nk may well be much smaller
than the overall number of examples nk.

Proposition 7. Under Assumption 4, the posterior mean
coincides with (1)-(2) and is given by the multitask
regularization network:

&&kj ðxÞ ¼ '
2X"n

k

i¼1

aiK
!
x; "xk

i

"
þ e'2

Xnj

i¼1

bij eKðx; xijÞ;

where K and eK are defined in (4) and the weights are

a ¼ ð "V kÞ(1 "&kjk;

bj ¼ ð eVj þ SjÞ(1!yj ( "Cj
"&kjk
"
:

Proof. Let

&&
kðxÞ :¼ E fðxÞjDk

% &
; e&e&

k

j ðxÞ :¼ E½efjðxÞjDk%:

Then,

&&kj ðxÞ ¼ &&
kðxÞ þ e&e&

k

j ðxÞ:

Following the same reasonings as in the second part of
the proof of Proposition 6, in particular using (13) and
(14) with "fkþ1 replaced by fðxÞ, one obtains

&&
kðxÞ ¼ cov

%
fðxÞ; "fk

&
"V k
! "(1 "&kjk;

so that, recalling the definition ofK, the expression for a is

obtained. To compute e&e&
k

j ðxÞ, we first project ef jðxÞ onto the

space spanned by fj and Dk, and then, onto Dk. We have

e&e&
k

j ðxÞ ¼ E
%
E
%ef jðxÞjfj;D

k
&
jDk
&
:

Exploiting point 2 of Lemma 11, and recalling (5), one
obtains

E
%ef jðxÞjfj;Dk

&
¼ E
%ef jðxÞjfj;Dj

&
¼ E
%ef jðxÞjefj þ $j

&

¼ cov
%ef jðxÞ; efj

&! eVj þ Sj

"(1!
yj ( fj

"
;

where the last equality follows from Lemma 1. Finally,
by projecting ðyj ( fjÞ onto Dk, we have

e&e&
k

j ðxÞ ¼ cov½ef jðxÞ; efj%ð eVj þ SjÞ(1ðyj ( "Cj
"&kjkÞ;

which, recalling the definition of eK, completes the
proof. tu

4.2 Computation of Confidence Intervals

Assume that data relative to the first k tasks have been
already processed and that "V kjk has been computed bymeans
of Proposition 6. Given an arbitrary input location x,
obtaining confidence intervals for f jðxÞ calls for the compu-
tation of the posterior variances Vk

j ðxÞ. To this aim, define

*j :¼
fj

f jðxÞ

* +
; *j :¼

fj

f jðxÞ

* +
; e*j :¼

efj
ef jðxÞ

" #

;

so that *j ¼ *j þ e*j. Letting P ¼ ðInj 0Þ, one has

yj ¼ P*j þ $j:

Define the following unconditional moments

V *j ¼ V ar
%
*j
&
; eV*j ¼ V ar

%e*j
&
; rk*j ¼ cov

%
*j; "f

k
&
;

as well as the following conditional variances

Mj ¼ V ar
%
*j
))Dk
&
;

M(j ¼ V ar
%
*j
))Dk

(j

&
;

Mj ¼ V ar
%
*j
))Dk
&
;
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where Dk
(j is the training set containing all collected data

but those regarding Dj, i.e., Dk
(j ¼ Dk nDj. Notice that

Vk
j ðxÞ ¼ Mj

% &
njþ1;njþ1

;

where ½&%i;j denotes the ði; jÞ entry of a matrix. Since the

random vector *j conditional on Dk is correlated with e*j, it
is convenient to first calculate M(j, as described in the next

lemma, whose proof is reported in the Appendix. In fact,

this permits us to immediately obtain cov½*j; yjjDk
(j% and

V ar½yjjDk
(j%, thus simplifying the computation of the

confidence interval, as described in Proposition 9.

Lemma 8. It holds that

M(j ¼
!
M

(1
j ( PT

! eVj þ Sj

"(1
P
"(1 þ eV*j ; ð15Þ

where

Mj ¼ V *j ( rk*j
!!
"V k
"(1 "V kjk! "V k

"(1 (
!
"V k
"(1"

rkT*j : ð16Þ

Confidence intervals are finally provided by the

following proposition.

Proposition 9.

Mj ¼ M(j (M(jP
T
!
PM(jP

T þ Sj

"(1
PM(j: ð17Þ

Proof. It holds that

cov
%
*j; yjjDk

(j

&
¼ M(jP

T ; ð18Þ

V ar
%
yjjDk

(j

&
¼ PM(jP

T þ Sj: ð19Þ

In addition, by Lemma 1,

V ar
%
*jjDk
&
¼ M(j ( cov

%
*j; yj
))Dk

(j

&!
V ar
%
yj
))Dk

(j

&"(1

+ cov
%
*j; yj
))Dk

(j

&T
:

Using (18) and (19), (17) is finally obtained. tu
Remark 10. The issue of confidence intervals is what makes

the real difference between the kernel-based machine

learning approach and the Bayesian one. A similar

situation is found in the literature on smoothing splines

[37]: Point estimates are usually worked out as the

solution to Tikhonov-type variational problems without

necessarily referring to prior distributions. However,

when coming to the computation of confidence intervals,

the established literature [37] resorts to Bayesian for-

mulas even though hyperparameters may be estimated

by GCV minimization. In fact, computation of confidence

intervals that propagates only the measurement error,

without accounting for prior uncertainty on the unknown

function, neglects the bias introduced by regularization.

At present, the Bayesian approach appears to be a simple

yet effective way to account for all type of uncertainties.

Of course, care must be taken in the choice of the prior

distribution in order to obtain realistic intervals.

5 ESTIMATION OF UNKNOWN HYPERPARAMETERS

VIA MAXIMUM MARGINAL LIKELIHOOD

Many learning problems involve a vector + of unknown
hyperparameters which have to be estimated from data. For
example, assuming homoskedastic noise in (3), that is,
%2ij ¼ %2, and recalling (4), in our model, the unknown
hyperparameters can be grouped into the vector

+ ¼
!
%2 '

2 ~'2
"
:

Moreover, + may also include further hyperparameters
characterizing the kernels K and eK. For instance, if
Kðx1; x2Þ ¼ e(kx1(x2k2=c, the positive scalar cmay be regarded
as a further unknown.

Hyperparameter estimation is here addressed by ex-
ploiting the developed Bayesian setting. In particular, we
resort to the so-called Empirical Bayes approach (see, e.g.,
[38], [3]), where first, hyperparameters are estimated via
marginal likelihood maximization (for alternative determi-
nistic approaches, see [39], [40], and also [41] for a
discussion about regularization and Bayesian methods for
hyperparameters tuning). Then, in order to reconstruct the
task functions, the maximum likelihood estimates are
plugged into the formulas derived in the previous sections.
Assuming that k tasks are available, + is estimated as

+ML ¼ argmin
+

Jðyk; +Þ;

Jðyk; +Þ :¼ 1

2
log½detðV ar½ykj+%Þ% þ 1

2
ðykÞTV ar½ykj+%(1yk;

where, apart from a constant term, J is equal to the opposite
of the logarithm of the likelihood pðykj+Þ. Such objective
function can be efficiently evaluated for any value of +. In
fact, the joint likelihood pðykj+Þ can be written in terms of
conditional normal densities pð&j&Þ as follows:

pðykj+Þ ¼ pðy1j+Þ
Yk

i ¼ 2

pðyijDi(1; +Þ:

Recall that Aið+Þ :¼ V ar½yijDi(1; +%. Then, it holds that
ð( logpðykj+ÞÞ is equal to

,þ 1

2

Xk

i¼1

log detAið+Þ

þ 1

2

Xk

i¼1

!
yi ( "Ci&

iji(1ð+Þ
"T
A(1

i ð+Þ
!
yi ( "Ci&

iji(1ð+Þ
"
;

where D0 :¼ ; and , is a constant we are not concerned
with. For any value of +, &iji(1 and Ai can be determined by
the recursive formulas in Proposition 6, see (7)-(9). Thus, an
efficient evaluation of Jðyk; +Þ is possible.

6 NUMERICAL EXAMPLES

In this section, we apply the new multitask algorithm to two
simulated benchmarks and a pharmacological experiment.

6.1 Simulated Data

This example is constructed by generating multiple tasks f j
that are realizations of longitudinal Gaussian processes.
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More precisely, f jðxÞ ¼ fðxÞ þ ef jðxÞ; x 2 ½0; 100%, where fðxÞ
is the average task and ef j, j ¼ 1; . . . ; 100, are the individual
shifts. Gaussian-shaped autocovariances are assumed:

cov
%
fðx1Þ; fðx2Þ

&
¼ e(

ðx1(x2Þ2
25 ;

cov
%ef jðx1Þ;ef jðx2Þ

&
¼ 0:25e(

ðx1(x2Þ2
25 ; j ¼ 1; . . . ; 100:

The average task curve is generated by drawing a single
realization from the distribution of f , while 100 realizations
of the shifts are independently drawn from the distribution
of ef j. As for the inputs xij, j ¼ 1; . . . ; 100, they are integers
randomly drawn from subsets Nj of N ¼ f1; . . . ; 100g. More
precisely, for each task index j, 30 inputs xij, i ¼ 1; . . . ; 30,
are drawn from a discrete uniform distribution having
support Nj ¼ fj; . . . ; j, 50g - N , where , denotes the
mod-100 sum operator. Note that, for each task, there exists
an input region N nNj (a sampling “hole”) where no data
are collected, thus requiring nontrivial extrapolation. The
outputs were generated according to (3) with %2ij ¼ 0:4, 8i; j.

First, all tasks were estimated according to a single-task
learning procedure. In other words, each task fj was
estimated using all and only the pairs ðxij; yijÞ, i ¼ 1; . . . ; 30.
Note that the single-task estimate is obtained as a special case
of the multitask one by forcing '

2 ¼ 0 in the formulas
throughout the paper. The left panels in Fig. 1 show the
results obtained in three tasks, together with their 95 percent
confidence intervals. As expected, the tasks are poorly
estimated in correspondence with the sampling holes due
to the lack of information. Then, all tasks were estimated
according to the multitask approach presented in the paper:
each task fj was estimated using the complete data set D100.
The right panels in Fig. 1 show the estimates and confidence
intervals obtained in the same three tasks as in the left panels.
By comparing left and right panels, one can appreciate the
benefit brought by the multitask approach. In particular, the

estimate uncertainty decreases in correspondence with the
sampling holes. The advantage ofmultitask learning can also
be appreciated by looking at Fig. 2, which reports the Root
Mean Square Error (RMSE) for both single and multitask
estimates. The multitask RMSEMT

j for the jth task was
defined as

RMSEMT
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

100

Z 100

0

!
f jðxÞ ( &&100j ðxÞ

"2
dx

s

;

and the single-task RMSEST
j was defined in a similar way.

Finally, letting

Rj :¼
RMSEMT

j

RMSEST
j

measure the RMSE reduction when passing from single-
task to multitask estimation, the average Rj value over the
100 tasks was equal to 0.67.

Next, we consider iterative online multitask learning for
what concerns the average task f . More precisely, the
estimates E½fðxÞjDk% for k ¼ 1; . . . ; 100were computed using
the recursions derived in Section 3. In Fig. 3, we display the
true function fðxÞ and its estimate, together with 95 percent
confidence intervals, for some increasing values of k. For
small values of k, no measurements are available in the
rightmost part of X, which explains the shape of confidence
intervals that get larger on the right. As k increases,
incoming information is efficiently exploited in order to
improve the estimate and reduce the size of confidence
bounds. Not surprisingly, for k ¼ 65, the estimate is already
satisfactory since the whole domain X has been sampled.
Finally, notice that, in this example, n100 ¼ 3;000, while
"n100 ¼ 100. Thus, without the method of this paper, the
multitask learning problem would call for the solution of a
system of 3,000 linear equations. Conversely, by the new
method, the solution is obtained by solving a sequence of
linear systems whose order is always less than 100.

6.2 Real Pharmacokinetic Data

Multitask learning was applied to a data set related to
xenobiotics administration in 27 human subjects, see [42] and
[14, Section 5.2]. In the fully sampled data set, eight samples
were collected in each subject at 0.5, 1, 1.5, 2, 4, 8, 12, and
24 hours after a bolus administration. Data are known to
have a 10 percent coefficient of variation, i.e., %2ij ¼ ð0:1yijÞ2.
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Fig. 1. Simulated data: Comparison between single and multitask
learning. (a) True f j (thin line) and single-task estimates (thick line) with
95 percent confidence intervals (dashed lines). (b) True f j (thin line) and
multitask estimates E½f jjy100% (thick line) with 95 percent confidence
intervals (dashed lines).

Fig. 2. Simulated data: Comparison between single and multitask

learning. Scatterplot of RMSEST
j and RMSEMT

j .



The 27 experimental concentration profiles are displayed in

Fig. 4, together with the average profile. Given the number of

subjects, such average profile can be regarded as a reason-

able estimate of the average task f . The whole data set,

consisting of 216 pairs ðxij; yijÞ, i ¼ 1; . . . ; 8, j ¼ 1; . . . ; 27,

was split into a training and a test set. In particular, for

training, we consider a sparse sampling schedule with only

threemeasurements per subject, randomly chosenwithin the

eight available data. Let

Wðt1; t2Þ ¼
t1t2minft1; t2g

2
( ðminft1; t2gÞ3

6

denote the autocovariance of an integrated Wiener process

having zero initial conditions at t ¼ 0 and unitary intensity.

With reference to (4), it is assumed that

Kðx1; x2Þ ¼ eKjðx1; x2Þ ¼ Wðhðx1Þ; hðx2ÞÞ; ð20Þ

hðxÞ ¼ 1

1þ x=-
: ð21Þ

The aim of the transformation hðxÞ, originally introduced in
[14], is to account for the nonstationary nature of pharma-
cological responses. In fact, in these experiments, there is a
greater variability for small values of t, followed by an
asymptotic decay to zero. Due to the structure of hðxÞ, it
follows that the prior variances of both f and ef j tend to zero
as t goes to infinity. In particular, recalling that f and ef j are
assumed to be zero mean, this implies that fðþ1Þ ¼
ef jðþ1Þ ¼ 0. Following [14], the parameter - was set equal
to 3.0. To account for the fact that the initial plasma
concentration is zero, a zero variance virtual measurement
in t ¼ 0 was added for all tasks.

According to the Empirical Bayes approach described in
Section 5, the hyperparameters, i.e., '

2
and e'2, were

estimated via likelihood maximization. The left and right
panels in Fig. 5 display results obtained by using the single-
task and the multitask approach, respectively. In particular,
we display the data and the estimated curves with their
95 percent confidence intervals. In addition, each panel
shows the estimates obtained by employing full sampling: It
is apparent that the multitask estimates are closer to these
reference curves. One can also notice a good predictive
capability with respect to the other five “unobserved” data.
In this respect, let If and Irj denote the full and reduced
sampling grid in the jth subject. Also, define the set
Ij ¼ If n Irj , whose cardinality is 5. For each subject, we
computed the quantity

RMSEMT
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i2Ij

!
yij ( &&27j ðxijÞ

"2

5

s

;

as well as the single-task RMSEMT
j defined in a similar way.

Fig. 6 compares the RMSE of single-task and multitask
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Fig. 4. Real pharmacokinetic data: xenobiotics concentrations after a
bolus administration in 27 human subjects obtained by linearly
interpolating noisy samples: average (thick) and individual profiles.

Fig. 5. Real pharmacokinetic data: (a) Single-task and (b) multitask
estimates (thick line) of four representative subjects with 95 percent
confidence intervals (dashed lines) using only three data (circles) for
each of the 27 subjects. The other five “unobserved” data (asterisks) are
also plotted. Dotted lines denote the estimates obtained by using the full
sampling grid.

Fig. 3. Simulated data: Comparison between single and multitask
estimation of the average task. True f (thin line) and its estimate (thick
line) for increasing values of k with 95 percent confidence intervals
(dashed lines).



estimates. The average RMSE ratio defined as in the
previous section was equal to 0.54.

Notice that the number of training inputs "n27 ¼ 8 is about
10 times smaller than the number of training examples
n27 ¼ 81. Therefore, the algorithm proposed in this paper
enjoys about a 1,000-fold reduction of computational effort
with respect to formulas in [14].

In this experiment, single and multitask learning provide
similar results when full sampling is used. However, it is
worth stressing that, in real pharmacokinetic experiments,
such full sampling is quite an exception, i.e., very few data
per subject are typically available. Thus, the experiment
shows that multitask learning proves effective in these
realistic situations.

6.3 Simulated Glucose Data

Multitask learning was finally applied to reconstruct
glucose profiles in plasma during an intravenous glucose
tolerance test (IVGTT) in which a glucose dose is injected in
plasma at the beginning of the experiment [43]. Simulated
data were generated by using the minimal model of glucose
kinetics (MM) [44] which, since its inception in the late
1970s, has been used in hundreds of papers to describe
glucose and insulin dynamics after a glucose perturbation
[43]. In particular, during an IVGTT, MM equations are:

_GðtÞ ¼ (½SG þXðtÞ%GðtÞ þGbSG þ uðtÞ
V ;

_XðtÞ ¼ (p2½XðtÞ ( SIðIðtÞ ( IbÞ%;
Gð0Þ ¼ Gb; Xð0Þ ¼ 0;

8
<

: ð22Þ

where GðtÞ ðmgdl(1Þ and IðtÞ ð#Uml(1Þ are glucose and
insulin concentration in plasma, respectively, Gb and Ib are
glucose and insulin baseline values before glucose pertur-
bation, respectively, and SI , SG, p2, and V are the
MM parameters. Finally, uðtÞ is ideally a Dirac delta
centered in 0 with area equal to the injected glucose dose.

A log-normal probability density function for MM
parameters was derived by exploiting the estimates
reported in [45, Table 1] obtained by 16 IVGTT experiments
of length 240 minutes performed in normal subjects (see
[45] for details). A continuous-time Gaussian prior for IðtÞ
was derived by first estimating via cubic smoothing splines
the 16 insulin profiles using insulin plasma samples
collected during the same experiments. Then, the sample
mean and autocovariance of IðtÞ was computed from the

estimated time courses. One thousand synthetic subjects
were randomly generated from the prior distribution of
model parameters and insulin profile. In particular, Gb was
fixed to 120 ðmgdl(1Þ. Furthermore, to account for the fact
that, in real experiments, the injected dose is not an ideal
Dirac delta, uwas assigned a Gaussian profile, with support
only on the positive axis, SD randomly drawn from a
uniform distribution on the interval ½0; 1% min, and area
equal to 300ðmgÞ.

Let $, expressed in minutes, be the set containing
30 sampling instants ftkg given by

$ ¼
1; 2; 3; 4; 6; 8; 10; 12; 14; 16; 18; 20; 25
30; 35; 40; 45; 50; 60; 70; 80; 90; 100
120; 140; 160; 180; 200; 220; 240

8
<

:

9
=

;:

We assume that in any of the 1,000 subjects, only five glucose
measurements are available, being collected at different
input locations extracted from $. To be more specific, we
divided $ in five subgrids, given by f1; 2; 3; 4; 6; 8g,
f10; 12; 14; 16; 18; 20g, and so on. Then, the sampling grid
relative to a subject is defined by randomly drawing one
input location from each of the five subgrids. Measurements
were then corrupted by awhite normal noisewith a 5 percent
coefficient of variation, a value which is assumed known
during the learning process. Glucose datawere preprocessed
by first subtracting the basal value from each profile. In
addition, to account for the fact that the initial plasma
concentration is zero, as in Section 6.2, a zero variance virtual
measurement in t ¼ 0 was added for all tasks.

The proposed multitask learning algorithm was tested on
the 1,000 synthetic subjects. The kernels reported in (20)-(21)
were adopted with - in (21) set to 30. The Empirical Bayes
approach described in Section 5 was used to estimate
hyperparameters '

2
and e'2 via marginal likelihood max-

imization. Fig. 7 plots the estimated average glucose profile
in plasma. The left and right panels in Fig. 8 show results
obtained in four representative subjects by using the single-
task and the multitask approach, respectively. They display
the data, the estimated curves with their 95 percent
confidence intervals, and the true glucose profile. One can
notice that the multitask estimates are closer to truth, with
confidence intervals being much narrower and more in-
formative than those obtained by the single-task approach.
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Fig. 7. Simulated glucose data: Estimated average curve obtained by

multitask approach applied to 1,000 IVGTT responses

Fig. 6. Real pharmacokinetic data: Comparison between single and

multitask learning. Scatterplot of RMSEST
j and RMSEMT

j .



The multitask RMSEMT
j for the jth task was defined as

RMSEMT
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

240

Z 240

0

!
f jðxÞ ( &&1;000j ðxÞ

"2
dx

s

;

and the single-task RMSEST
j was defined in a similar way.

Fig. 9 compares the RMSE of the 1,000 single-task and
multitask estimates. Remarkably, the average RMSE ratio
was equal to 0.23.

In Table 1, we also report the average RMSE ratios
obtained by increasing the number of measurements col-
lected in any subject by means of subgrids of $ defined by
using the same rationale previously adopted, e.g., when 10
samples are taken, the 10 subgrids are given by f1; 2; 3g,
f4; 6; 8g, and so on. It is interesting to notice that, in this case,
even when 30 measurements per subject are used, multitask
estimator performs much better than the single-task one.

Finally, notice that, without the method of this paper,
this problem would call for inverting matrices whose size is
30;000+ 30;000 when dealing with 30 measurements per
subject, while the algorithm proposed in this paper returns

the solution by solving a sequence of linear systems whose
order never exceeds 30.

7 CONCLUSIONS

The simultaneous learning of multiple tasks may signifi-
cantly improve learning performances when limitations are
imposed on the number and/or locations of samples
collected in each single task. However, a potential drawback
is the computational complexity involved by the joint
processing of the whole data set. To make an example, when
using regularized kernel methods with quadratic loss
functions, the number of operations scales with the cube of
the overall number of examples. In this paper, this computa-
tional problem has been addressed for a class of multitask
learningproblems inwhich each single task ismodeled as the
sum of an average function common to all tasks and an
individual shift specific for each task. The problem has been
given a Bayesian formulation under the assumption that the
unknown tasks are Gaussian random fields.

The main contribution of the paper is a recursive
learning scheme that efficiently updates estimates and
variances exploiting the possible presence of repeated input
samples. In addition to being interesting on its own, the
online algorithm has the potential to greatly reduce the
computational effort and memory occupation, especially
when the number of distinct inputs is much smaller than
the overall number of examples. The new algorithm has
been tested on two simulated benchmarks and a set of real
pharmacokinetic data.

It would be interesting to investigate the existence of
efficient numerical implementations also for other classes of
multitask kernels. We conjecture that substantial computa-
tional gains can be obtained only for classes of kernels
exhibiting rather particular structures. The one considered
in this paper, albeit specific, has practical relevance. In fact,
the decomposition of individual tasks as the sum of an
average and an individual shift has already been success-
fully employed in biomedical data analysis [12], [15], [14].

APPENDIX A

TECHNICAL LEMMAS

Lemma 11. We have:

1.

E
%
fðxÞj"fk;Dk

&
¼ E
%
fðxÞj"fk

&
; 8x 2 X:

In particular,

E
%
"fkþ1j"fk;Dk

&
¼ E
%
"fkþ1j"fk

&
:
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Fig. 9. Simulated glucose data: comparison between single and

multitask learning. Scatterplot of RMSEST
j and RMSEMT

j .

Fig. 8. Simulated glucose data: Comparison between single and
multitask learning. (a) True f j (thin line) and single-task estimates (thick
line) with 95 percent confidence intervals (dashed lines). (b) True f j (thin
line) and multitask estimates E½f jjy1;000% (thick line) with 95 percent
confidence intervals (dashed lines).

TABLE 1
Simulated Glucose Data: Average RMSE Ratio as a Function
of the Number of Measurements Collected in Each Subject



2.

E
%ef jðxÞjfj;Dk

&
¼ E
%ef jðxÞjfj;Dj

&
:

Proof. Point 1 follows by showing that

p
!
fð&Þj"fk;Dk

"
¼ p
!
fð&Þj "fk

"
:

In fact,

pðfð&Þj "fk;DkÞ ¼ pðfð&Þj"fk; ekÞ ¼ pðfð&Þ; "fk; ekÞ
pð"fk; ekÞ

¼ pðfð&Þ; "fkÞpðekÞ
pð"fkÞpðekÞ

¼ pðfð&Þj"fkÞ:

As for point 2, it follows by showing that

p
!ef jð&Þjfj;D

k
"
¼ p
!ef jð&Þjfj;Dj

"
:

In fact,

p
!ef jð&Þjfj;D

k
"
¼

p
!ef jð&Þ; yk; fj

"

p
!
yk; fj
"

¼
p
!
ykjef jð&Þ; fj

"
p
!ef jð&Þ; fj

"

p
!
yk; fj

" :

Now, let yk(j denote the vector containing all collected
data but those regarding yj, i.e., yk(j ¼ yk n yj, and let Dk

(j

be defined in a similar way. Then,

p
!
ykjef jð&Þ; fj

"
¼ p
!
yjjef jð&Þ; fj;D

k
(j

"
p
!
yk(jjef jð&Þ; fj

"

¼ p
!
yjjef jð&Þ; fj

"
p
!
yk(jjfj

"
;

(where the last equality exploits the independence
assumptions) so that we obtain

pðef jð&Þjfj;DkÞ ¼ p
!
yk(jjfj
"pðyjjef jð&Þ; fjÞpðef jð&Þ; fjÞ

pðyk; fjÞ

¼ p
!
yk(jjfj
"pðef jð&Þ; yj; fjÞ
pðykjfjÞpðfjÞ

¼
p
!
yk(jjfj
"

p
!
yk(jjfj
"
pðyjjfjÞ

pðef jð&Þ; yj; fjÞ
pðfjÞ

¼
pðef jð&Þ; yj; fjÞ
pðyijfjÞpðfjÞ

¼ pðef jð&Þjfj;DjÞ:

ut

Lemma 12. We have

V ar½ykþ1jDk% ¼ "Ckþ1
"V kþ1jk "CT

kþ1 þ eVkþ1 þ Skþ1;

cov½"fkþ1; ykþ1jDk% ¼ V ar½"fkþ1jDk% "CT
kþ1;

E½ykþ1jDk% ¼ "Ckþ1
"&kþ1jk:

Proof. It suffices to exploit (5), replacing ykþ1 with
"Ckþ1

"fkþ1 þ efkþ1 þ $kþ1, and recall the independence
assumptions. tu

The following lemma is an extension of Lemma 1 in [14,
Appendix]. It can also be seen as a special case of [31,
Lemma 1]. It is worth remarking that, differently from the
statement in [14], here, the symbol z denotes a vector (in
place of a scalar) and the weaker condition V > 0, !v > 0 (in
place of ! > 0) is invoked. Nevertheless, the proof is
completely analogous and is therefore omitted.

Lemma 13. Let y, v, and ) be random vectors and F be a matrix
such that

y ¼ F) þ v:

Also let V > 0, !v > 0,

z

)

v

2

64

3

75 * N 0;!ð Þ; ! ¼
U # 0

#T V 0

0 0 !v

2

64

3

75:

Then,

V ar½zjy% ¼ V ar½zj)% þ V ar½E½zj)%jy%;

where

V ar½zj)% ¼ U ( #V (1#T ;

V ar½E½zj)%jy% ¼ #V (1V ar½)jy%V (1#T ;

V ar½)jy% ¼
!
FT!(1

v F þ V (1
"(1

:

Proof of Lemma 8. It holds that

cov
%
*j; yj
))Dk

(j

&
¼ V ar

%
*j
))Dk

(j

&
PT ; ð23Þ

V ar
%
yj
))Dk

(j

&
¼ PV ar

%
*j
))Dk

(j

&
PT þ eVj þ Sj; ð24Þ

V ar
%
*j
))Dk

(j

&
¼ V ar

%
*j
))Dk

(j

&
þ V ar½e*j%: ð25Þ

Then, the following relation holds

V ar½*jjDk% ¼ V ar
%
*j
))Dk

(j

&
( cov
%
*j; yj
))Dk

(j

&

+
!
V ar
%
yj
))Dk

(j

&"(1
cov
%
*j; yj
))Dk

(j

&T

¼ V ar
%
*j
))Dk

(j

&
( V ar

%
*j
))Dk

(j

&
PT

+
!
PV ar
%
*j
))Dk

(j

&
PT þ eVj þ Sj

"(1
PV ar
%
*j
))Dk

(j

&

¼
!!
V ar
%
*j
))Dk

(j

&"(1 þ PT ð eVj þ SjÞ(1P
"(1

;

where the second equality makes use of (23) and (24),

while the last one exploits the matrix inversion lemma,

see, e.g., [36]. Then, (15) is obtained using (25). Finally, to

obtain (16), consider (6) and notice that V ar½*jjDk% can be

obtained by resorting to Lemma 13 with the following

assignments:

y ¼ yk; z ¼ *j; ) ¼ "fk; v ¼ (k; F ¼ "Ck: ð26Þ

tu
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APPENDIX B

PROCESSING NEW MEASUREMENTS ASSOCIATED

WITH A PREVIOUS TASK

We consider now a situation where data from k distinct
tasks have been already processed and additional
examples relative to the jth task, j ' k, become available.
In order to extend the computational scheme to such a
case, it is useful to denote by yþj the vector of new output
data associated with the jth task and by xþ

j the vector
containing the corresponding input values, whose dimen-
sion is nþ

j . For the sake of simplicity, we assume that "xk

and xþ
j do not have common elements. Let "fkþ denote the

vector whose components are the elements of the set
ffðxÞ; x 2 "xkþg, where "xkþ ¼ "xk

S
xþj . Let also f

þ
j indicate

the vector whose components are ffðxÞ; x 2 xþ
j g, while efþ

j

is the vector with components fef jðxÞ; x 2 xþ
j g. Letting $þj

denote the noise vector affecting yþj :

yj
yþj

* +
¼

fj

f
þ
j

" #

þ
efj
efþ
j

" #

þ $j
$þj

* +
:

Also let

yk
þ ¼ yk

yþj

* +
;

whileDkþ is the training set given by the union ofDk and the
new input-output pairs defined by xþj and yþj . Since data yj
have already been considered in the previous steps, the
estimate "&k

þjkþ is computed according to (7)-(12) by replacing

. the superscript “kþ 1” with kþ (e.g., "fkþ1 is replaced
by "fkþ and so on),

. "rkkþ1 with cov½fþj ; "fk%,

. the matrix "V kþ1 with

"V kþ :¼ V ar
"fk

f
þ
j

" #
;

. eVkþ1 and Skþ1 with V ar½efþj % and V ar½$þj %, respectively,

. the matrix "Ckþ1 with the matrix "Ckþ such that

E½fþ
j jD

kþ % ¼ "Ckþ
"&k

þjk;

. ykþ1 with yþj .

Then, if q 6¼ j,

&&k
þ

q ðxÞ ¼ '2
X"n
kþnþ

j

i¼1

aiK
!
x; "xkþ

i

"
þ e'2

Xnj

i¼1

biq eKðx; xiqÞ;

else

&&k
þ

q ðxÞ ¼ '2
X"n
kþnþ

j

i¼1

aiK
!
x; "xkþ

i

"
þ e'2

Xnjþnþ
j

i¼1

biq eKðx; xiqÞ;

where

a ¼ ð "V kþÞ(1 "&k
þjkþ;

bq ¼
ð eVq þ SqÞ(1!yq ( "Cq

"&k
þjkþ"; q 6¼ j;

! eV þ
q þ Sþ

q

"(1 yq

yþq

" #
( "Cq

"&k
þjkþ

 !
; q ¼ j;

8
>><

>>:

and

eV þ
q :¼ V ar

efq
efþq

" #

; Sþ
q :¼ V ar

$q
$þq

* +
:
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