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ABSTRACT

When people choose routes minimizing their individual delay, the aggregate congestion can be much
higher compared to that experienced by a centrally-imposed routing. Yet centralized routing is incom-
patible with the presence of self-interested users. How can we reconcile the two? In this paper we ad-
dress this question within a repeated game framework and propose a fair incentive mechanism based
on artificial currencies that routes selfish users in a system-optimal fashion, while accounting for their
temporal preferences. We instantiate the framework in a parallel-network whereby users commute re-
peatedly (e.g., daily) from a common start node to the end node. Thereafter, we focus on the specific
two-arcs case whereby, based on an artificial currency, the users are charged when traveling on the first,
fast arc, whilst they are rewarded when traveling on the second, slower arc. We assume the users to
be rational and model their choices through a game where each user aims at minimizing a combina-
tion of today’s discomfort, weighted by their urgency, and the average discomfort encountered for the
rest of the period (e.g., a week). We show that, if prices of artificial currencies are judiciously chosen,
the routing pattern converges to a system-optimal solution, while accommodating the users’ urgency. We
complement our study through numerical simulations. Our results show that it is possible to achieve a
system-optimal solution whilst significantly reducing the users’ perceived discomfort when compared to

a centralized optimal but urgency-unaware policy.
© 2021 The Author(s). Published by Elsevier Ltd on behalf of European Control Association.

This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

Mobility systems are currently facing significant challenges due
to users’ dissatisfaction, traffic congestion and environmental pol-
lution [8,20]. At the same time, the advent of autonomous driv-
ing, the internet of things, the concept of sharing economies and
new automotive technologies is leading to structural transforma-
tions in the way we conceive mobility, providing us with unprece-
dented opportunities to handle the aforementioned challenges. For
instance, intermodal autonomous mobility-on-demand systems—
fleets of robotaxis servicing travel demand jointly with public
transit—are a promising solution for urban scenarios, as they com-
bine the high-efficiency of public transportation systems with the
point-to-point mobility service provided by fleets of connected
autonomous vehicles. Whilst the possibility of routing customers
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through socially-optimal intermodal routes can significantly im-
prove transportation efficiency [19], this requires users to sacrifice
their individual welfare for the “greater good” [21]. The central is-
sue revolves around the inherent tension between the drivers’ in-
dividual objective (e.g., minimizing the travel-time from A to B)
and the societal goal (e.g., minimizing the city-wide congestion). In
this respect, it is well known that traffic patterns arising from self-
interested decision making are often inefficient [18], and this is, to
a high degree, what we experience in every densely populated city.

A promising solution to alleviate these issues is to employ mon-
etary tolls [2,4,12,15]. However, approaches based on congestion
pricing are associated with two fundamental drawbacks: (i) they
discriminate users with lower incomes; (ii) they do not account
for individual preferences such as the users’ temporary urgency
and needs. Against this backdrop, this paper presents an incentive
scheme based on an artificial currency—here called Karma, borrow-
ing the terminology from [6]—to align the routing of self-interested
users with the system-optimum allocation, whilst accounting for
their temporal individual needs. Specifically, our framework is
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Fig. 1. Network with one origin and one destination node connected by two arcs.
Each arc j is traversed by x; users per unit time, resulting in a societal cost ¢;(x;)x;
and a discomfort cost d;(x;) perceived by the users. Each arc is assigned a price p;.
In this particular case, the users pay p; > 0 to take the first, fast route, and receive
r, = —py > 0 when traveling the second, slower route.

based on a currency that can neither be bought nor exchanged, but
only spent or gained when traveling, whilst our results focus on
the case where users are faced with a binary choice. On the micro-
scopic level, it gives each user equal possibilities to choose when
to be self-interested—selecting the fastest path for a toll (e.g., the
upper one in Fig. 1)—and when to be altruistic—traveling on the
slower path for a reward (e.g., the lower one in Fig. 1)—whilst, on
the mesoscopic level, it aligns the average population behavior to
the system optimum.

Related work. The interest in the design of tolls dates back to
the work of Pigou [15]. Since then, a large body of literature per-
taining to the fields of transportation and economics has developed
this approach [2,12,15]. When considering the continuous flow ap-
proximation of the classical congestion game model [17] (typically
employed to describe mesoscopic traffic patterns), the marginal
cost mechanism [1] produces local tolls ensuring that every equi-
librium allocation coincides with the system optimum. The prob-
lem of optimal tolling is much more challenging when considering
the original congestion game model. In this context, the recent re-
sult in Paccagnan et al. [13] derives optimal local tolls that min-
imize the system inefficiency and can be considered the counter-
part of marginal cost tolls for discrete congestion games. Design-
ing tolling mechanisms that account for the users’ sensitivity dis-
tribution is particularly challenging even if considering congestion
games with a continuum of users, unless the exact sensitivity of
each user is fully known to the designer. In this respect, the re-
sults are limited to providing efficiency bounds for existing tolling
mechanisms [11], to deriving optimal tolls when the sensitivity dis-
tribution is a piecewise constant function, or to proving the exis-
tence of optimal tolls for general distributions [9]. Our work signif-
icantly departs from all these studies for two fundamental reasons:
First, we utilize an artificial currency that can neither be bought
nor exchanged; second, we account for the users’ sensitivity in a
repeated game scenario with the objective of achieving the system
optimum in the long run.

Whilst the use of artificial currency as a means to coordinate
self-interested decision makers has recently attracted significant
attention, see e.g., [6,10,16], most of the existing works are based
on auction mechanisms and have not been applied to managing
traffic routing. Perhaps closest in spirit to our work is [6], whereby
the authors introduce an artificial currency called Karma to coor-
dinate the behavior of competitive decision makers and allocate
shared resources (e.g., intersection coordination). Their central idea
consists in allowing for users to pass on using resources today, in
exchange for Karma, which will allow them to claim the resource
in the future. While our work is based on a similar philosophy, it
departs significantly from the former in that we envision its ap-
plication to mobility systems (e.g., traffic routing). As such and in
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contrast to [6], each resource is associated to a measure of its qual-
ity (e.g., travel time), and our model accounts for the presence of
more than two decision makers. Moreover, users are not required
to submit Karma bids, whilst their routing is controlled through
simple payment transactions.

Statement of contributions. This paper introduces a repeated
game framework and leverages an artificial currency to route users
in a system-optimal fashion while accounting for their temporal
preferences. In particular, we focus on repetitive events, e.g., daily
commutes, whereby traveling users choose between two possi-
ble routes, as shown in Fig. 1, depending on their daily sensitiv-
ity (e.g., urgency) to the discomfort incurred when traveling (e.g.,
travel time). Considering a central operator who wants to align the
mesoscopic users’ behavior with the societal optimum, we first in-
stantiate a simple pricing framework that does not rely on auction
mechanisms, but gives the users full freedom of choice. Second,
we propose a decision-model for rational users for which we com-
pute the best response strategy in closed form. Third, we show
that the only possible static pricing policy resulting from Karma-
conservation arguments makes the system optimum the only and
globally asymptotically stable equilibrium of the system, in the
sense that the population behavior will converge to it for any ini-
tial Karma allocation. It is important to highlight how our mecha-
nism does not require any information on the underlying sensitiv-
ity distribution, i.e., it is distribution-free. Finally, we simulate our
scheme in different case studies, validating our theoretical findings
numerically.

Organization. The remainder of this paper is structured as fol-
lows: We instantiate our framework in Section 2, where we intro-
duce the repeated game problem on a parallel arcs network for
a central operator and for an individual user. From Section 3 on-
ward we focus on a two-arcs parallel network, by first deriving the
optimal static prices via necessary Karma-conservation conditions.
Section 4 computes the best response strategy for the user analyt-
ically, which is used in Section 5 to study the average aggregate
behavior of a population of users playing the best response strat-
egy, showing that it converges to the desired optimal flows. We
validate our findings with numerical simulations for different case
studies in Section 6, and conclude the paper in Section 7 with a
discussion and an outlook on future research.

2. Problem formulation

This section introduces the routing problem from both the
mesoscopic perspective of a central operator who wants to min-
imize the societal costs, and from the individual perspective of a
user aiming at minimizing the discomfort incurred when traveling
under the proposed scheme.

Our framework combines three ingredients: (i) a transportation
network represented by a digraph, (ii) cost functions representing
the societal and personal costs (a measure of discomfort such as
travel time) resulting from the aggregate route choices of the users,
and (iii) a pricing policy based on the artificial currency Karma.

2.1. Central operator’s problem

Consider a parallel road-network, consisting of a single origin
and destination node but connected by n € {1, 2, ...} directed arcs,
e.g., the example in Fig. 1, whereby n = 2. Such a digraph can be
used to describe a daily commute, but our framework lends itself
to model more general resource-allocation problems whereby the
quality of each resource depends on its usage-level.

From a mesoscopic perspective, the users aim to reach the des-
tination from the origin traveling through one of the n arcs in the
digraph at each (discrete) time ¢t € N. Thereby, the component x;(t)
of vector x(t) € [0, 1]" represents the fraction of users crossing arc
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je{1,2,...,n} at time t. To account for non-traveling users, we
assume that every day each user has a probability Bympe € [0, 1]
not to travel. This way, the probability for a user to travel is Py =
1 —Pyome and Z?:] Xj(t) = Py users will travel per day. Crossing
each arc j entails a specific societal cost per user c;(x;(t)) depen-
dent on the fraction of users traversing it x;(t). Moreover, it also
causes each user a discomfort d;(x;(t)) (e.g., travel time). We as-
sume c: [0,1]" — R" and d : [0, 1]" — R" to be monotonically in-
creasing functions for each arc j, where R, = [0, o) is the set of
real non-negative numbers. In general, the societal cost c(x) and
the discomfort d(x) need not be aligned—for instance, the former
might represent energy consumption and the latter travel time.
We assume the presence of a central operator (e.g., a municipal
authority) who needs to design incentives so that the aggregate
flows converge to the minimizer of the total societal cost c(x)"x.

Problem 1 (Central Operator’s Problem). The central operator aims
at routing customers so the aggregate route choice x(t) converges
to

x* earg min c(x)x (1a)
xe[0,1]n

S.t. 17x = Py. (1b)

In order to steer users’ behavior towards a social optimum x*,
the central operator endows each user with the artificial currency
Karma and sets a price p; € R to cross each arc j. Users are not
permitted to buy or exchange Karma, and they can only select
the arcs keeping their Karma-level non-negative. Crucially, some
of the arcs have negative prices, so that users will be rewarded
when crossing them. From a practical perspective, such a frame-
work could, for instance, be implemented using apps. Yet we deem
implementation challenges beyond the scope of this paper.

From a microscopic perspective, we model the routing choice
for an individual user i at time t as yi(t) € {0, 1}" being a vec-
tor with 17yi(t) <1 and y;(t) =1 if user i decides to cross arc
j at t, and O otherwise. Thereby, a non-traveling user is modeled
as yi(t) = 0. Given a scenario with M users, their individual deci-
sions are linked to the mesoscopic flows as x(t) = ﬁ Z?L yi(t). In
particular, assuming that at time t each user i owns an amount
ki(t) e R, of Karma, given a routing choice yi(t), her Karma will
be updated as ki(t +1) = ki(t) — pTyi(t).

2.2. Individual user’s problem

On the microscopic level, we assume individual users to make
choices in order to minimize their traveling discomfort without
reaching a negative level of Karma. In contrast to conventional
monetary tolling schemes, the individual user’s problem cannot
be captured in a static setting: In our framework, the users are
playing against their future selves, and must account for their
future preferences to decide when to use Karma and when to
gain it. Specifically, on some days they might be more sensitive
to discomfort than on other days—for instance, when going to an
important meeting, travel time may be more important than when
simply commuting to the working place. To this end, we define
the sensitivity that a user i might have at time t w.r.t. discomfort
as si(t) e R, and use it as a weighting factor. This way, the cost
perceived by user i when crossing arc j is s'(t) - d;j(x;(t)). Hereby,
we assume si(t) to be ii.d. extractions (w.r.t. i and t) from an un-
derlying common probability distribution with probability density
function p : [Spin, Smax] = R4, support set [Smin,Smax] € Ry and
average value S. For the sake of simplicity, from now on we drop
dependence on t, x and i whenever it is clear from the context.

We assume that each user will choose the route associated with
the least discomfort perceived on the respective day of traveling
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and the one expected in the T days to follow, whilst accounting for
her Karma allowance. Specifically, we model the decision of each
user in the present moment as y' € {0, 1}", whilst we condense her
future behavior into the fractional variable yi € [0, 1]". We assume
the users to consider today’s discomfort on the arcs d(x(t)) to be
constant for their whole planning horizon (e.g., a week). Thereby,
the users minimize the discomfort perceived today with a sensi-
tivity si(t) and the discomfort perceived in the remaining T steps
on the horizon with an average sensitivity $. Finally, we assume
users to be conservative in terms of Karma: Given an initial Karma
level ki(t), they will constrain their choices so that their Karma at
the end of the horizon will not fall below a non-negative reference
value kief. This value represents the amount of Karma the users
would like to have available at the end of the horizon and is as-
sumed to differ for each user depending on their personality—e.g.,
some users may not be conservative at all and keep it equal to 0,
whilst others could set it equal to p; to be able to travel on the
first arc one more time at the end of the horizon; in this paper,
we will assume it to be time-invariant and randomly distributed
among the users. We explicitly account for path constraints (pos-
itive Karma at every time step) on the user’s Karma level only
for the current decision, whilst assuming that in the remaining T
time-steps captured by the average behavior y' they will be satis-
fied. Formally, we get the following individual user’s problem:

Problem 2 (Individual User’s Problem). At time t, given the flows
x and prices p, respectively, a traveling user with Karma level k >
0 and reference k..r, and sensitivity s will choose her route as y*
resulting from

(y*,y") e argmin s-dx)"y+T-5-d(x)"y (2a)
YeW , Je

Stk—p'y—T-p'y> ks (2b)

p'y <k, (2c)

with # ={ye{0,1)":17y=1} and # ={j<[0,1]": 17y =1}.
We define the set containing all points y* solving (2) as
D*(x,s, k, ker) € #. Non-traveling users have y* = 0.

Note that a discount factor can be readily included by simply
scaling the average sensitivity § in the objective.

2.3. Infinitely many users setting and wardrop equilibrium

In this paper, we consider the limit case whereby users form a
continuum with M — co. To describe the population, we use a no-
tation similar to [10]. Thereby, we describe the instantaneous dis-
tribution of the Karma level k and reference k. in the population
with the density function n : R, x Ry — R,. This way, we can de-
scribe an infinite-users population with p(s) and n(k, k). For the
infinite-users setting, the Nash and Wardrop Equilibrium (WE) are
identical [14] and can be defined as follows:

Definition 21 (Wardrop Equilibrium). xXVE € [0,1]" satisfying
17xWE = Py, is a WE if and only if there exist y*(xVE, s, k, kyer) €
@ (XVE s, k, keer) SO that

Smax 0 o]
/ / / Y OVE 5.k keer) - (5) - (K, Keeg) ds de ke = XWE.
s 0 0

'min

Informally, xWE is a WE if the aggregate best-response based on
assuming x = x"E reconstructs the same vector xXVE, Observe that
the users’ decision process can be interpreted as a model predic-
tive control algorithm that implements solely the optimal decision
for today y*, whilst discarding the optimal future decisions y*.
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Taking a static planning perspective, at each time-step t, we
model the aggregate choices of the population with the WE xWE(t).
The central operator’s problem then is to choose the prices so that
the daily WE xWE(t) will converge to the system optimum x*.

Problem 3 (Pricing Problem). Given a desired system opti-
mum x*, the pricing problem consists of finding p € R" so that
lime_, o0 XWE(t) = x*.

2.4. Discussion

A few remarks are in order. First, we use a static setting
whereby on each day we compute the WE to model the users’ be-
havior. This is in line with the mesoscopic perspective of our study.
Second, we assume the users to be rational and to share the dis-
comfort function d(x) and sensitivity probability density function
p(s), but differentiate them with regard to their daily level of sen-
sitivity si(t) and their reference Karma-level ki of

3. Two-arcs pricing problem

For the remainder of this paper, we will focus on the parallel
network with two arcs shown in Fig. 1. This model can represent
a daily commute routine where users can choose between two op-
tions, a fast (or comfortable) route, and one that is slower (or less
comfortable). We leave the study of parallel networks with more
arcs and more general transportation networks to future research
endeavors. We assume, without loss of generality, that at the de-
sired socially-optimal solution x* it holds that d;(x}) < dz(xg).]
Therefore, we introduce a price p; >0 for arc 1 and a reward
) = —p, > 0 for arc 2. Crucially, given a desired solution x*, a nec-
essary condition required to solve Problem 3, that the total Karma
must be conserved in the steady state: Since we want the ag-
gregate dynamics to converge and stay at x*, there the aggregate
Karma of the population cannot change. Hence, the steady-state
prices must satisfy p"x* = 0, implying that

X
p1=r12- X (3)
We observe that scaling the prices’ (p;, p2) with a common fac-
tor would not alter the value of the only admissible x* satisfying
(3). Therefore, in the two-arcs setting under consideration, there
is no control freedom when choosing the prices once their mag-
nitude is chosen. However, we will show in the remainder of this
paper that choosing the prices as in (3) will make the aggregate
behavior of the users described by Problem 2 converge to the de-

sired system optimum resulting from Problem 1.

4. Best response strategy

This section derives the best response strategy for a user with
Karma-level k, reference level k. and daily sensitivity s.

The solution of Problem 2, namely the users’ best response
strategy, can be computed in closed-form as shown in the follow-
ing theorem.

Theorem 4.1 (Best Response Strategy). Consider a player with
Karma k > k;,, sensitivity s, Karma reference k.. and given prices
p. We define the thresholds kir = max{0, kyes — (T + 1) - 12}, kpoor =
max{py. kes+ p1 — T - 12}, kijch = max{kpoor.kres + T - p1 — 12}, and
Kwealthy = Kref + (T 4 1) - p1. Given x such that di(x1) < dy(x2), the

T If it were to hold d, (x5) < dq(x;), given the monotonocity properties of d(x),
we could simply swap the arcs’ labeling and recover this problem.
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best response strategy j* of a traveling user’s chosen arc is

2 if k € [Kinf. Kpoor)
1 ifs>s .
2 ifs z § if k € [kpoor. Krich)

j* = . - k —k (4)
1 lf S>S. wealthy .
2 if _ kw‘:;yrz_k if k € [Krich, kwealthy)
IHs<s- o
1 if k > kyeaithy

Moreover, given x so that dq(x1) = dy(x;), the best response strat-
egy of a traveling user is

=2
J {e{1,2}

Finally, given x so that d{(x1) > d(xy), the best response strategy
of a traveling user is

=2 Vk> k.

if k e [k, kpoor)
if k > kpoor-

(5)

(6)

The proof can be found in Appendix A. Fig. 2 depicts the best
response strategy (4). As shown in the proof, Problem 2 is in-
feasible for k < k. Therefore, we will always consider the case
whereby the Karma of any user is initialized above k;,;. Moreover,
under policy (4) the set [Kinf, Kyealthy + T2) is positively invariant
and attractive from above, so that it will be k > k;,¢ for all future
times. Finally, we observe that the best response strategies (4)-(6)
are independent of the quantitative discomfort level; they depend
only on the prices, the current level of Karma k, and the sensitivity
s.

4.1. Wardrop equilibrium

One can verify that, when prices are chosen according to (3),
there exists no WE satisfying d; (x;) > d,(xy). This is due to the
fact that, when d;(x;) > dy(x3), the user’s best response would
entail choosing arc 2, thus leading to d;(0) < dy(Pg). Finally, we
define X so that d;(x;) = d,(x,), whereby, given the monotonic-
ity properties of d(x), we have that dq(x;) < dy(xy) for all x; < Xy.
In the following lemma, we show that a WE always exists, and is
characterized by dq (xVE) < d (x}VE).

Lemma 4.2 (Wardrop Equilibrium for Two Arcs). Let %, < X, ie,
di (&%) < dy (%), and define the mesoscopic flow resulting from the
best response (4) y* (%, s, k, keer) € #*(X, 5, k, kief) as

K Smax
XK€ = /
S,

min

/ / (%5, K. keep) - 0(5) - (K, Keer) d dk ke,
0 0
(7)

which we refer to as Karma-controlled (KC). A WE exists and is
characterized by xWE = xX€ if xXC < %, and/or xWVE = &.

The proof can be found in Appendix B. We define the WE
at X as uncontrolled, since it corresponds to the WE resulting
when no pricing is applied. In fact, it exists when the popula-
tion has too much Karma and can therefore easily afford the first
arc.

For the remainder of this paper we will assume that for the
discomfort functions it holds d;(x;) < d(x,) for all admissible x.
This way, in addition to Lemma 4.2, we can prove the existence
of a unique WE with dy (x¥E) < dy (xY'E) for any Karma distribu-
tion n(k, k.r), directly stemming from the best response strat-
egy (4). This assumption enables the formal analysis of the meso-
scopic aggregate behavior presented in Section 5 below. However,
we believe this assumption can be lifted, since by the prices def-
inition (3)—i.e., p1xj — rpx3 = 0—and the fact that x} < X, it holds
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kwealthy kwealthy + 72

Fig. 2. The best response strategy (4) resulting from the solution of Problem 2 for d; (x) < d3(x).
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Fig. 3. The steady-state distribution in relative Karma levels for an exponentially distributed s.
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T-(pr+r2)+7at 5 .
*
P1 T-(pr+try)—re T-(pr+r2)+m

Fig. 4. Sparsity pattern of the matrix Ag,. The probability of choosing the first arc
paying p; is denoted in blue, whilst the probability of choosing the second arc re-
ceiving r, in red. In this example, we chose p; =2, r, =3 and T = 3. Full dots rep-
resent 1-entries, whilst empty dots denote P, (S) (blue) and Py, (§) (red). Stars
represent P, (.) (blue) and Py (-) (red) evaluated as in the third and second con-
dition of (11a) and (11b), respectively. Since Py + Penin = 1, column-stochasticity of
Ago can be determined by inspection. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

that p'% > 0. Therefore, the uncontrolled WE at X is not sustain-
able in time, as the population would continuously lose Karma, un-
til eventually reaching a distribution with WE d; (x)'E) < d, (x4'E)
converging to x*. We corroborate our conjecture with numerical
simulations in Section 6.

26

5. Mesoscopic average behavior

This section studies the dynamics of the aggregate behavior of
the population. In the case under consideration, the WE always
results from the individual user’s best response strategy (4) due
to the assumption that d;(x1) < d(xy), i.e., it corresponds to xXC
from (7) in Lemma 4.2. Since the positively invariant set of (4) k €
[King, kwealthy +T2) s attractive, we assume each user to start with
a level of Karma already in it. We first define the fraction of users
with a certain level of Karma:

Pooor = P(k € [kins. kpoor))
Py =P(k e [kpoorv Kiicn))
Pich = P(k € [Krich, kwealthy))
Pueaithy = P(k € [Kyeaithy» Kwealthy + 72))

(8)

Next, given the probability density function of the sensitivity
p(s) and § € [Smin, Smax], We define

$
Pnin($) =P(s < $§) = o(s)ds

Smin

Smax
P (§) = P(s > §) = 1 — Py (§) = / p(s) ds.

S

(9)

Overall, these six quantities represent the fraction of users
present in each of the regions shown in Fig. 2, and suffice to
compute the average population response. For the sake of sim-
plicity, but without loss of generality, from now on we assume
rp=—py>p1 >0, and kees+ p1 —T -1y > pq, resulting in Kpoor =
kief + p1 — T - 2. The cases comprising kpoor = p1 and r; < p; can
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Fig. 5. Societal cost, mesoscopic flows, relative average sensitivity and discomfort deviation, and Karma distribution for a population with P, = 5% and very large initial
Karma levels. Specifically, the first plot shows the deviation of the societal cost from the optimal one (which can be negative when fewer users than expected are traveling
in a system-optimal fashion), whilst the third plot shows the deviation of the average value of the sensitivity per day with respect to the mean of the distribution (dotted),
and the deviation of the perceived discomfort w.r.t. an equivalent sensitivity-unaware random allocation.

be studied with identical arguments and lead to the same result.

P(i)* = Riome - P() + Py - Pusn (5) - P(i+p1) Vie[l,n]
P(i)" = Prome - P(i) + Pyo - (P(i = 12) + Pysn($) - P(i+ p1)) Vie[r,+1,r2+ pi]
P(i)* = Biome - P(1) + Pgo - (Penir () - P(i — 12) + Busn (5) - P(i + p1)) Vie[n+pi+1,(T-1) (p1+12)]
P(D)* = Riome - P(1) + Po - (Pani ) - P(i = 12) + Pryon (§ - TSP+ p1))  Vie[(T=1) - (p1+12) + 1.T- (p1 +712)]
P(i)* = Piome - P(i) + Pygo - (Pegyy (5 - L) . P(i — 1) + P(i + p1)) Vie[T-(p1+m)+1,T-p1+(T+1) 1]
P(i)* = Phome - P(i) + Pyo - Payyy (§ - THLLERILT) (i — 1)) Vie[T-pi+(T+1)-r+1.(T+1) (p1+12)]
(10)
1 ifie[r2+1,r2+p1]/\j=i—r2
Ayt (i, ) = Peyin (5) ifie[pr+n+1T-(pr+r)Aj=i-n
ittt 1) = Py (5. CE@UI) if [T (py +10) + 1. (T+ 1) - (pr+ ) Aj=i—12
0 otherwise
(11a)
Prusn (5) fie[L,(T=1)-(p+m)]Aaj=i+p
A i ) = | Prusn (6 FERREE) ifEe [T =) (pr+12) + LT (pr+ )] Aj =i+ py
1 ifie[T-(p1+m)+1L,T-p1+T+1) -nJaj=i+p
0 otherwise

(11b)

27
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Fig. 6. Societal cost, mesoscopic flows, relative average sensitivity and discomfort deviation, and Karma distribution for Bye = 0.

Furthermore, we assume p; and r, to be commensurate, and scale
them to be integer and co-prime (in practice, it is possible to round
the prices after a suitable scaling without appreciably affecting the
results, as shown in Section 6 below). We define i =k — ks + T -
r, + 1, quantize the probability distributions (8) as

(T-1)-(p1+12)

P1
Ppoor = Z Ppoor(l)v Pok = ) Pok(l)v
i=1 i=1 (-12)
pitn X L] 3
Prich = Z Prich (l)’ Pwealthy = Z l:.wealthy (l),
1= 1=
and stack them in the vector P = (PJq, ng,chh,PvTvealthy)T, as

shown in Fig. 3. The probability vector P is the quantized ver-
sion of n(k, k), and evolves in line with the best response strat-
egy (4) as detailed in (10) on page 6. In matrix form, it can be
written as

P = AP, (13)

where A =Pyye I+ Pgpo-Ag is a non-negative, square and
column-stochastic matrix, i.e., AT1 = 1. Furthermore, A is primi-
tive if Bme > 0. Since A is non-negative, for any P > 0, it holds
that P™ > 0. Moreover, being A column-stochastic, we have that
1"P+ = 1TAP = 17P [5]. The sparsity pattern of Ago = Aciny + Arush
is shown in Fig. 4, whereby the red dots represent the probability
for a traveling user with Karma deviation k =i+ ke +T -1 — 1 to
choose the slow arc and are defined as in (11a), whilst the blue
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dots represent the probability to choose the fast arc and are de-
fined as in (11b). The system has discrete linear time-invariant dy-
namics. Its w-limit sets are either fixed points or limit cycles. Such
w-limit sets can be found by eigenvalue analysis as we do below,
showing that limit cycles can only appear if B,ype = 0. Since P > 0
is a probability distribution, it must hold 1TP = 1. Hence, the triv-
ial equilibrium P = 0 is not admissible. As the equilibrium is de-
fined as P¢ = AP¢, it must be spanned by the eigenvector corre-
sponding to the 1-eigenvalue of A.

With this in mind, we can show that in the large population
limit, the equilibrium in Karma distribution P¢ is globally asymp-
totically stable and corresponds to the desired system optimum x*.

Theorem 5.1 (Globally Asymptotically Stable and Optimal Equilib-
rium). Given the prices (3) and a population of users acting in line
with (4) with Byome > O, the equilibrium of the Karma distribution
dynamics (13) P¢ > 0 with 1TP¢ = 1 is globally asymptotically stable
and its resulting flows correspond to the system optimum x*.

The proof can be found in Appendix C. This theorem shows that
the prices resulting from Karma conservation arguments indeed
solve Problem 3. Note that equivalent results can be obtained by
leveraging the geometric ergodicity properties of the Markov chain
P through the straightforward application of Doeblin’s theorem [7].
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Fig. 7. Societal cost, mesoscopic flows, relative average sensitivity and discomfort deviation, and Karma distribution for c(x) = x and Pgme = 5%.

6. Numerical results

This section presents the results obtained via numerical simu-
lations for the following case-studies: First, a scenario where the
social cost corresponds to the sum of the users’ cost, i.e., d(x)Tx
as in standard routing settings [4]. There we consider the case
whereby on average B,me = 5% of the population do not travel
(which we randomly select at each time instant) and the limit case
where all users travel every day, i.e., Bome = 0. Second, we study
the case where the societal cost does not correspond to the sum
of the users’ costs. For all the scenarios we consider M = 1000
users and sample their daily sensitivity from an exponential dis-
tribution defined on R,. In line with our theoretical findings, the
case where the discomfort functions satisfy d;(x1) < d,(x;) for any
admissible x and the same horizon T for each user resulted in
the expected convergence of the aggregate behavior to the sys-
tem optimum for any of the scenarios mentioned. For the sake
of brevity, we omit such results and focus on the more interest-
ing case whereby dq(x1) > d,(x,) for x; > X1, and the uncontrolled
WE at X exists. Moreover, we consider users with a horizon T ran-
domly chosen to have values between 3 and 9. Specifically, we
model the discomfort as a travel-time Bureau of Public Roads (BPR)
function [3]

d(x;) = do - (1 +a. (x,-//c,-)ﬂ), (14)
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with dg = (1,2)7, k =(1/2,2/3)7, @« =0.15 and B = 4, for which
X1 = 0.80 for both values of B,,.. We simulate each day by itera-
tively computing the Nash equilibrium (approximating the infinite-
users WE) resulting when each user is solving Problem 2 (which
can be efficiently solved as a linear program). The computation of
the Nash equilibrium always needed only a couple of iterations.

6.1. The social cost is the sum of the users’ cost

Setting Byome = 5%, the system optimum is x* = (0.56,0.39)7,
for which we design prices according to (3) as p= (10, -14)T,
rounding them as mentioned in Section 5 above. We initialize the
Karma reference levels kief from a uniform distribution defined be-
tween 0 and 100, whilst initializing the Karma levels ki(0) be-
tween 0 and 1000, so that an extremely large fraction of users
starts with k above Kyeqmy and thus x is the only possible WE.
As expected, Fig. 5 shows that providing the users with too much
Karma will indeed result in the uncontrolled WE. However, as the
average Karma level of the population K(t) shown in the fourth
subplot is depleted, the system-level behavior and cost converge
very close to the system optimum with an average relative societal
cost difference below 0.1%. We measure the perceived discomfort
of the single users si(t) - d(x(t))Tyi(t) and average it over the pop-
ulation. The third subplot of Fig. 5 compares it with the average
discomfort that would be perceived by the users if they were al-
located in a random and sensitivity-unaware fashion to the same
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flows as

20si(6) - d(x(0) Ty (1) =5 d(x(£)) Ty (£)
2005 d(x(t)Tyi(t) ’

which exhibits a behavior that is similar to the relative devia-

tion of the daily average sensitivity from the distribution’s mean

As(t) = 1-12?0 S;ég)(;sf_. In line with the goal of our framework, while
converging to the system optimum, the users perceive a discomfort
about 14% lower compared to the case where the users would be
randomly allocated in a system-optimal but urgency-unaware fash-
ion.

Next, we study the limit case where all users are traveling,
i.e., Pyome = 0. Fig. 6 shows the results obtained in this scenario
with system-optimal solution x* = (0.57,0.43)T for which we de-
sign again the prices via (3) and round them to p = (10, -13)T.
In this case, we initialize the Karma initial and reference values
between 0 and 200. Interestingly, the proposed scheme seems to
work well also for this limit case, whereby periodic solutions could
exist—as the matrix A would no longer be primitive but only row-
stochastic. Again, the population behavior converges very close to
the system-optimum with a relative deviation of about 0.2% and
an average Ad of about —14%. Since in this scenario the number
of users traveling every day is constant, the optimal societal cost
is never outperformed. Overall, these results prompt us to study in
more detail also the convergence properties of this limit case with
Phome = 0.

Ad(t) = (15)

6.2. The social cost is not the sum of the users’ cost

The proposed framework enables to steer the behavior of the
population to any average choice. In this case, we set the soci-
etal cost as c(x) = x, leading to the symmetric optimal flows x* =
(0.5,0.5)" for which the prices resulting from (3) can be chosen
as p= (10, -10)T. Fig. 7 shows that, despite different societal and
users’ objectives and a very high price of anarchy for the uncon-
trolled case, the mesoscopic flows converge to the system opti-
mum. Finally, also in this scenario, our framework enables users to
significantly improve the perceived discomfort by about 20% w.r.t.
a system-optimal but random allocation, whilst aligning their be-
havior with the desired system optimum.

7. Conclusion

This paper explored the application of artificial currencies to
route self-interested users in a system-optimal fashion whilst ac-
counting for their temporal needs. Specifically, we instantiated a
repeated game whereby each day traveling users choose whether
to cross the most comfortable route for a price or to receive a
reward for traveling a less comfortable route. For a parallel two-
arcs network we showed that a static pricing choice resulting
from simple Karma-conservation arguments guarantees the meso-
scopic average behavior to converge to the system optimum, signif-
icantly reducing the societal costs w.r.t. the uncontrolled equilib-
rium. What is more, our scheme is fairly simple and does not rely
on any auction mechanism for allocation, but leaves full freedom of
choice to the users as long as their Karma level is non-negative. As
a result, it enables a considerable reduction of the perceived dis-
comfort with respect to a random but optimal allocation. In prac-
tice, our numerical results were in line with our findings in all the
scenarios studied: Our scheme reached a societal cost less than 1%
higher than the system optimum, while significantly reducing the
average perceived discomfort by 14-20%.

This work can be extended as follows: We would like to study
more realistic network structures, such as more general transporta-
tion graphs with different origin-destination pairs. Furthermore,
we would like to devise learning-based control algorithms to adapt
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the prices in real-time and implement them within high-fidelity
simulation environments.
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Appendix A. Proof of Theorem 4.1

Before solving Problem 2, we reformulate it as

nx;ndT(yy—i—s"Tj) (Ala)
st.ye{(1,0)7,(0.1)7} (A.1b)
y1=1-3¢€][0,1] (Alc)
P’y < (k—ket—p'y)/T (A1d)
py<k (Ale)
0 <k, (A1f)

and start solving for the case where d; < d,. Since from (A.1b) each
agent has only two possibilities (namely, arc 1 or arc 2), we first
set the value of y to one of these two and compute the y resulting
from the combination of (A.1c), (A.1d) and (A.le). Finally, we eval-
uate the objective (A.1a) for both possible y and resulting y, and
pick the y minimizing it as a function of the prices p, discomfort
d and sensitivity s. In the following, we proceed by increasing the
value of k.

First, a negative k is infeasible due to (A.1f). Moreover, if k €
[0, p1), the agent cannot decrease it due to (A.le), and therefore
the only possible choice is j* = 2. We can derive similar conditions
for k < kyef + p1 — T - 2. From condition (A.1c) we get

- _ k — ket — pi
piyi—r2-(1-y1) < *

resulting in
k—ker—pj+T-1
T-(p1+12)

Since di <d,, (A.2) will hold with equality due to objec-
tive (A.1a) unless its right-hand side is strictly larger than 1.
From (A.1c) we have that y; > 0, which combined with (A.2) leads
to

V1 = (A.2)

k> ket —T -2+ pj, (A.3)

indicating that if k < ke — (T + 1) - 1, the problem is infeasible for
any arc choice. On the contrary, if k € [k — (T+1) -1, kpeg — T -
r, + p1), the only possible choice is arc j = 2. In conclusion, defin-
ing kipe = max{0, kg — (T + 1) - 12} and kpoor = max{p, ker + p1 —
T -1p}, we get infeasibility if k < kjr and j* =2 if k € [kjus, kpoor)-
Note that since traveling on arc 2 will increase k, an agent starting
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with a level of k(0) > kpoor — p1 Will always have k(t) > kpoor — P1
vVt > 0.

Second, we study the case where k € [kpoor, ket +T - p1 — 12)
when the set [Kpoor, kref + T - p1 —12) is nonempty (which is the
case if T>1 and k> T -15 OF kpeg>15 — (T —1) - pq). It can be
seen that (A.2) holds with equality as its right hand side cannot
exceed 1. In fact, the condition

I<_kref_pj+T'r2
T-(p1+12)
results indeed in p;

<1 Vj

—ry and

k—kl—ef-i-rz -|-T~T2
T-(p1+12)
yielding

k<kes+T-p1—ro.
Therefore, we get

_ _k—kref—pj-i-T~T'2

= , A4
n T-(p1+72) (A4)
which, combined with (A.1c) yields
- k*kref*pj+T'r2 T'pI*kJFkref+pj
=1- = . A5
y2 T (o1 +12) T (o1 + 1) (A3)
Next, we compute the objective from (A.1a) defined as
JU.s. k) =s-dj+5-T-d"y(j. k), (A.6)

for j e {1,2} and with y(j, k) from (A.4) and (A.5), and choose j*
as its minimizer. If j = 1, we get

J(1,5,k)
_ = k=kies—p1+T-12 T-p1—k+Keest+p
=S E -<lgd13 o T+'Tfr1£rzd <k+k dz&ﬂjﬁ“@‘ﬁb )@
—c. g. di-(kK—kier—p1+T-12)—ds (K—Kyer— P1
=s-di +$ FE .
Similarly, if j = 2, we get
J(2,s.k)
=s-dy+§- d1-(k*kreerTerT‘Tz)*dz‘(k*krer*T-Pl+T2). (A.8)

p1+n2

Finally, taking the difference between (A.7) and (A.8) yields

J(,s. k) =J2,5,k) =5 (dy —dy) —§- (=t (prira)
=(d; —dy)-(s-9),

from which we can infer that since d; < d,, if s> 5, the opti-
mal choice is j* =1, whilst, if s < §, then j* = 2. Interestingly, the
quantitative discomfort difference or the prices’ values do not in-
fluence the best response strategy. It may happen that the set
(Kpoor: kref + T - p1 —12) is empty and the policy derived does not
apply. To account for this phenomenon and use a general formula-
tion, we define k¢, := max{kpoor, kres + T - p1 — 12} and apply this
policy for any k € (kpoor. Krich)-

Third, we turn our attention to the case where ke
[krichs kwealthy), With  Kyeaithy = kret + (T +1) - p1 There we can
show that condition (A.2) holds with equality for j=1, and is
inactive for j = 2. In fact, the condition

k—kies—p1+T-12 k—Keg+12+T-1;
T-(p1+r2) T-(p1+12)
indeed leads to

(A.9)

kiich = ket +T-p1 =12 <k <k + (T+1)-p1 = kwealthy~

Therefore, choosing arc j = 1 would still result in (A.2) holding
with equality, i.e., conditions (A.4) and (A.5), yielding the objec-
tive (A.7). Conversely, choosing arc j =2 would result in (A.2) be-
ing inactive and hence we would have y; = 1 and y, = 0, yielding
the objective

J(2.5.k)=s-dy +5-T-dy. (A10)
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In this case, the difference between objec-
tives (A.7) and (A.10) results in
J(As k) =J@2.5.k) = (dy —dy) - (s — 5 kerrTDpick)
_ 3 kwealth —k
—(dl _dZ)'<S_s'p]7+yrZ >
(A1)
from which we infer that if s > §- Kueatty K then the best response

+-
is to travel on arc j* = 1, while, if the1 ol:fposite is true, the optimal
arc is j* = 2. Note that the sensitivity threshold is reduced from §
at k = ke, to 0 at k = kyeaieny- Also in this case, the best response
strategy is independent of the quantitative discomfort values.

Fourth, we consider the final case whereby k > kyeainy- Since
this condition results in (A.2) being inactive for any arc choice, we
obtain y; = 1 without any constraint on the choice of y. Therefore,
the best response strategy is trivially found to be j* =1.

Finally, combining everything together results in the best re-
sponse strategy (4).

Turning our attention to the case with d; = d,, once again we
see that we get infeasibility if k < ks and j* = 2 if k € [kins, kpoor)-
Otherwise, since the objective does not change for any y and y, we
get the multiple solution j* € {1,2} for any k > kpoor. Combining
these results yields the best response strategy (5).

Considering the case with d; > d,, we also get infeasibility if
k < kine and j* = 2 if k € [King, kpoor). If k > kpoor We can see that the
objective (A.1a) is pushing both y and y to (0,1)T without being
constrained by (A.1c)-(A.1f). This way we get j* = 2 for all k > ks,
i.e., the best response strategy (6).

Combining the results (4)-(6) concludes the proof. O

Appendix B. Proof of Lemma 4.2

We distinguish between two cases. First, if xX¢ < %;, then xX¢ =
xWE, since d; (xK) < d,(x¢) and the best response strategy is the
same for any d(x) as long as dq(x;) < dy(x3). Second, we show
the existence of xWE with dy(x¥'E) = dy (xY'E) if the number of
travelers with k < kpoor—which can only pick arc 2 as shown in
Theorem 4.1—is lower than x,. This condition is necessary since
if the number of travelers with k < kpoor is higher than x,, then
X, is definitely higher than X, irrespective of the discomfort lev-
els so that a WE at X cannot exist. First, we assign the agents
with k < kpoor to the second arc, since it is the only arc they can
pick. Next, we jointly fill both arcs with the remaining agents so
that both arcs achieve equal discomfort, i.e., x = X. In line with (5),
for those agents, choosing any of the arcs would be a solution to
Problem 2. Thus the resulting equilibrium is a WE with d; (x}'E) =
d, (x‘ZNE), corresponding to the uncontrolled case. In both cases, the
WE exists and is characterized by d; (x}'E) < d, (xY'E), concluding
the proof. O

Appendix C. Proof of Theorem 5.1

First, we show that given PB,gyn. >0 and any initial condi-
tion Py > 0 satisfying 1Py = 1, the equilibrium satisfying P¢ > 0
and 1TP¢ =1 is globally asymptotically stable. Applying standard
matrix theory results such as the Perron-Frobenius Theorem to
column-stochastic and primitive matrices, we see that for the spec-
tral radius of A it holds p(A) = 1. Furthermore, for the eigenvalues
of A, it holds A =1 > || >0 V{XA, u} € p(A), with L =1 simple.
This way, we see that the time-trajectory P; converges to a vector
spanned by P¢ [5]. Since the equilibrium probability vector P€ is
spanned by the eigenvector related to the eigenvalue A =1, it can
indeed be chosen non-negative. For the given initial condition, it
holds that P, >0 and 17P; =1 for all t > 0. Combining the two,
we conclude that P¢ > 0 is globally asymptotically stable.
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Second, we show that at the average steady-state x¢, the ra-
tio of people choosing the fast route x¢ = Py, - 1" Ay, P¢ corre-
sponds to x*, whilst the ratio of people choosing the slow route
X5 =Pgo - 1T A Pe to x5. We know by (3) that for the desired
steady-state x* it holds z—l

2
x* = x¢ holds iff
x—? =
X

i+ Therefore, since 17x® = 17x* = Py,

P
p1

This means that x{p; — x5r; =0, i.e,, that the total Karma level
of the population will not change. We proceed by contradiction:
Suppose that at the equilibrium it holds that x{p; —x5r, # 0. This
means that the Karma distribution over the population cannot re-
main identical, i.e., that AP¢ = P¢, which contradicts the fact that
P¢ is an equilibrium, hence proving that x¢ = x*.

Combining the global asymptotic stability of the equilibrium P®
with its correspondence to the system optimum x* concludes the
proof. O

(C1)
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