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a b s t r a c t 

When people choose routes minimizing their individual delay, the aggregate congestion can be much 

higher compared to that experienced by a centrally-imposed routing. Yet centralized routing is incom- 

patible with the presence of self-interested users. How can we reconcile the two? In this paper we ad- 

dress this question within a repeated game framework and propose a fair incentive mechanism based 

on artificial currencies that routes selfish users in a system-optimal fashion, while accounting for their 

temporal preferences. We instantiate the framework in a parallel-network whereby users commute re- 

peatedly (e.g., daily) from a common start node to the end node. Thereafter, we focus on the specific 

two-arcs case whereby, based on an artificial currency, the users are charged when traveling on the first, 

fast arc, whilst they are rewarded when traveling on the second, slower arc. We assume the users to 

be rational and model their choices through a game where each user aims at minimizing a combina- 

tion of today’s discomfort, weighted by their urgency, and the average discomfort encountered for the 

rest of the period (e.g., a week). We show that, if prices of artificial currencies are judiciously chosen, 

the routing pattern converges to a system-optimal solution, while accommodating the users’ urgency. We 

complement our study through numerical simulations. Our results show that it is possible to achieve a 

system-optimal solution whilst significantly reducing the users’ perceived discomfort when compared to 

a centralized optimal but urgency-unaware policy. 

© 2021 The Author(s). Published by Elsevier Ltd on behalf of European Control Association. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Mobility systems are currently facing significant challenges due 

o users’ dissatisfaction, traffic congestion and environmental pol- 

ution [8,20] . At the same time, the advent of autonomous driv- 

ng, the internet of things, the concept of sharing economies and 

ew automotive technologies is leading to structural transforma- 

ions in the way we conceive mobility, providing us with unprece- 

ented opportunities to handle the aforementioned challenges. For 

nstance, intermodal autonomous mobility-on-demand systems—

eets of robotaxis servicing travel demand jointly with public 

ransit—are a promising solution for urban scenarios, as they com- 

ine the high-efficiency of public transportation systems with the 

oint-to-point mobility service provided by fleets of connected 

utonomous vehicles. Whilst the possibility of routing customers 
∗ Corresponding author. 
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hrough socially-optimal intermodal routes can significantly im- 

rove transportation efficiency [19] , this requires users to sacrifice 

heir individual welfare for the “greater good” [21] . The central is- 

ue revolves around the inherent tension between the drivers’ in- 

ividual objective (e.g., minimizing the travel-time from A to B) 

nd the societal goal (e.g., minimizing the city-wide congestion). In 

his respect, it is well known that traffic patterns arising from self- 

nterested decision making are often inefficient [18] , and this is, to 

 high degree, what we experience in every densely populated city. 

A promising solution to alleviate these issues is to employ mon- 

tary tolls [2,4,12,15] . However, approaches based on congestion 

ricing are associated with two fundamental drawbacks: (i) they 

iscriminate users with lower incomes; (ii) they do not account 

or individual preferences such as the users’ temporary urgency 

nd needs. Against this backdrop, this paper presents an incentive 

cheme based on an artificial currency—here called Karma , borrow- 

ng the terminology from [6] —to align the routing of self-interested 

sers with the system-optimum allocation, whilst accounting for 

heir temporal individual needs. Specifically, our framework is 
l Association. This is an open access article under the CC BY-NC-ND license 
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Fig. 1. Network with one origin and one destination node connected by two arcs. 

Each arc j is traversed by x j users per unit time, resulting in a societal cost c j (x j ) x j 
and a discomfort cost d j (x j ) perceived by the users. Each arc is assigned a price p j . 

In this particular case, the users pay p 1 > 0 to take the first, fast route, and receive 

r 2 = −p 2 > 0 when traveling the second, slower route. 
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o  
ased on a currency that can neither be bought nor exchanged, but 

nly spent or gained when traveling, whilst our results focus on 

he case where users are faced with a binary choice. On the micro- 

copic level, it gives each user equal possibilities to choose when 

o be self-interested—selecting the fastest path for a toll (e.g., the 

pper one in Fig. 1 )—and when to be altruistic—traveling on the 

lower path for a reward (e.g., the lower one in Fig. 1 )—whilst, on

he mesoscopic level, it aligns the average population behavior to 

he system optimum. 

Related work. The interest in the design of tolls dates back to 

he work of Pigou [15] . Since then, a large body of literature per-

aining to the fields of transportation and economics has developed 

his approach [2,12,15] . When considering the continuous flow ap- 

roximation of the classical congestion game model [17] (typically 

mployed to describe mesoscopic traffic patterns), the marginal 

ost mechanism [1] produces local tolls ensuring that every equi- 

ibrium allocation coincides with the system optimum. The prob- 

em of optimal tolling is much more challenging when considering 

he original congestion game model. In this context, the recent re- 

ult in Paccagnan et al. [13] derives optimal local tolls that min- 

mize the system inefficiency and can be considered the counter- 

art of marginal cost tolls for discrete congestion games. Design- 

ng tolling mechanisms that account for the users’ sensitivity dis- 

ribution is particularly challenging even if considering congestion 

ames with a continuum of users, unless the exact sensitivity of 

ach user is fully known to the designer. In this respect, the re- 

ults are limited to providing efficiency bounds for existing tolling 

echanisms [11] , to deriving optimal tolls when the sensitivity dis- 

ribution is a piecewise constant function, or to proving the exis- 

ence of optimal tolls for general distributions [9] . Our work signif- 

cantly departs from all these studies for two fundamental reasons: 

irst, we utilize an artificial currency that can neither be bought 

or exchanged; second, we account for the users’ sensitivity in a 

epeated game scenario with the objective of achieving the system 

ptimum in the long run. 

Whilst the use of artificial currency as a means to coordinate 

elf-interested decision makers has recently attracted significant 

ttention, see e.g., [6,10,16] , most of the existing works are based 

n auction mechanisms and have not been applied to managing 

raffic routing. Perhaps closest in spirit to our work is [6] , whereby 

he authors introduce an artificial currency called Karma to coor- 

inate the behavior of competitive decision makers and allocate 

hared resources (e.g., intersection coordination). Their central idea 

onsists in allowing for users to pass on using resources today, in 

xchange for Karma, which will allow them to claim the resource 

n the future. While our work is based on a similar philosophy, it 

eparts significantly from the former in that we envision its ap- 

lication to mobility systems (e.g., traffic routing). As such and in 
23 
ontrast to [6] , each resource is associated to a measure of its qual-

ty (e.g., travel time), and our model accounts for the presence of 

ore than two decision makers. Moreover, users are not required 

o submit Karma bids, whilst their routing is controlled through 

imple payment transactions. 

Statement of contributions. This paper introduces a repeated 

ame framework and leverages an artificial currency to route users 

n a system-optimal fashion while accounting for their temporal 

references. In particular, we focus on repetitive events, e.g., daily 

ommutes, whereby traveling users choose between two possi- 

le routes, as shown in Fig. 1 , depending on their daily sensitiv- 

ty (e.g., urgency) to the discomfort incurred when traveling (e.g., 

ravel time). Considering a central operator who wants to align the 

esoscopic users’ behavior with the societal optimum, we first in- 

tantiate a simple pricing framework that does not rely on auction 

echanisms, but gives the users full freedom of choice. Second, 

e propose a decision-model for rational users for which we com- 

ute the best response strategy in closed form. Third, we show 

hat the only possible static pricing policy resulting from Karma- 

onservation arguments makes the system optimum the only and 

lobally asymptotically stable equilibrium of the system, in the 

ense that the population behavior will converge to it for any ini- 

ial Karma allocation. It is important to highlight how our mecha- 

ism does not require any information on the underlying sensitiv- 

ty distribution, i.e., it is distribution-free. Finally, we simulate our 

cheme in different case studies, validating our theoretical findings 

umerically. 

Organization. The remainder of this paper is structured as fol- 

ows: We instantiate our framework in Section 2 , where we intro- 

uce the repeated game problem on a parallel arcs network for 

 central operator and for an individual user. From Section 3 on- 

ard we focus on a two-arcs parallel network, by first deriving the 

ptimal static prices via necessary Karma-conservation conditions. 

ection 4 computes the best response strategy for the user analyt- 

cally, which is used in Section 5 to study the average aggregate 

ehavior of a population of users playing the best response strat- 

gy, showing that it converges to the desired optimal flows. We 

alidate our findings with numerical simulations for different case 

tudies in Section 6 , and conclude the paper in Section 7 with a

iscussion and an outlook on future research. 

. Problem formulation 

This section introduces the routing problem from both the 

esoscopic perspective of a central operator who wants to min- 

mize the societal costs, and from the individual perspective of a 

ser aiming at minimizing the discomfort incurred when traveling 

nder the proposed scheme. 

Our framework combines three ingredients: (i) a transportation 

etwork represented by a digraph, (ii) cost functions representing 

he societal and personal costs (a measure of discomfort such as 

ravel time) resulting from the aggregate route choices of the users, 

nd (iii) a pricing policy based on the artificial currency Karma. 

.1. Central operator’s problem 

Consider a parallel road-network, consisting of a single origin 

nd destination node but connected by n ∈ { 1 , 2 , . . . } directed arcs,

.g., the example in Fig. 1 , whereby n = 2 . Such a digraph can be

sed to describe a daily commute, but our framework lends itself 

o model more general resource-allocation problems whereby the 

uality of each resource depends on its usage-level. 

From a mesoscopic perspective, the users aim to reach the des- 

ination from the origin traveling through one of the n arcs in the 

igraph at each (discrete) time t ∈ N . Thereby, the component x j (t)

f vector x (t) ∈ [0 , 1] n represents the fraction of users crossing arc
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j ∈ { 1 , 2 , . . . , n } at time t . To account for non-traveling users, we

ssume that every day each user has a probability P home ∈ [0 , 1]

ot to travel. This way, the probability for a user to travel is P go =
 − P home and 

∑ n 
j=1 x j (t) = P go users will travel per day. Crossing 

ach arc j entails a specific societal cost per user c j (x j (t)) depen- 

ent on the fraction of users traversing it x j (t) . Moreover, it also

auses each user a discomfort d j (x j (t)) (e.g., travel time). We as- 

ume c : [0 , 1] n → R 

n + and d : [0 , 1] n → R 

n + to be monotonically in-

reasing functions for each arc j, where R + = [0 , ∞ ) is the set of

eal non-negative numbers. In general, the societal cost c(x ) and 

he discomfort d(x ) need not be aligned—for instance, the former 

ight represent energy consumption and the latter travel time. 

We assume the presence of a central operator (e.g., a municipal 

uthority) who needs to design incentives so that the aggregate 

ows converge to the minimizer of the total societal cost c(x ) � x . 

roblem 1 (Central Operator’s Problem) . The central operator aims 

t routing customers so the aggregate route choice x (t) converges 

o 

 

� ∈ arg min 

x ∈ [0 , 1] n 
c(x ) � x (1a) 

.t. 1 � x = P go . (1b) 

In order to steer users’ behavior towards a social optimum x � , 

he central operator endows each user with the artificial currency 

arma and sets a price p j ∈ R to cross each arc j. Users are not

ermitted to buy or exchange Karma, and they can only select 

he arcs keeping their Karma-level non-negative. Crucially, some 

f the arcs have negative prices, so that users will be rewarded 

hen crossing them. From a practical perspective, such a frame- 

ork could, for instance, be implemented using apps. Yet we deem 

mplementation challenges beyond the scope of this paper. 

From a microscopic perspective, we model the routing choice 

or an individual user i at time t as y i (t) ∈ { 0 , 1 } n being a vec-

or with 1 � y i (t) ≤ 1 and y i 
j 
(t) = 1 if user i decides to cross arc

j at t , and 0 otherwise. Thereby, a non-traveling user is modeled 

s y i (t) = 0 . Given a scenario with M users, their individual deci- 

ions are linked to the mesoscopic flows as x (t) = 

1 
M 

∑ M 

i =1 y 
i (t) . In

articular, assuming that at time t each user i owns an amount 

 

i (t) ∈ R + of Karma, given a routing choice y i (t) , her Karma will

e updated as k i (t + 1) = k i (t) − p � y i (t) . 

.2. Individual user’s problem 

On the microscopic level, we assume individual users to make 

hoices in order to minimize their traveling discomfort without 

eaching a negative level of Karma. In contrast to conventional 

onetary tolling schemes, the individual user’s problem cannot 

e captured in a static setting: In our framework, the users are 

laying against their future selves, and must account for their 

uture preferences to decide when to use Karma and when to 

ain it. Specifically, on some days they might be more sensitive 

o discomfort than on other days—for instance, when going to an 

mportant meeting, travel time may be more important than when 

imply commuting to the working place. To this end, we define 

he sensitivity that a user i might have at time t w.r.t. discomfort 

s s i (t) ∈ R + and use it as a weighting factor. This way, the cost

erceived by user i when crossing arc j is s i (t) · d j (x j (t)) . Hereby,

e assume s i (t) to be i.i.d. extractions (w.r.t. i and t) from an un-

erlying common probability distribution with probability density 

unction ρ : [ s min , s max ] → R + , support set [ s min , s max ] ⊆ R + and

verage value s̄ . For the sake of simplicity, from now on we drop 

ependence on t , x and i whenever it is clear from the context. 

We assume that each user will choose the route associated with 

he least discomfort perceived on the respective day of traveling 
24 
nd the one expected in the T days to follow, whilst accounting for 

er Karma allowance. Specifically, we model the decision of each 

ser in the present moment as y i ∈ { 0 , 1 } n , whilst we condense her

uture behavior into the fractional variable ȳ i ∈ [0 , 1] n . We assume 

he users to consider today’s discomfort on the arcs d(x (t)) to be 

onstant for their whole planning horizon (e.g., a week). Thereby, 

he users minimize the discomfort perceived today with a sensi- 

ivity s i (t) and the discomfort perceived in the remaining T steps 

n the horizon with an average sensitivity s̄ . Finally, we assume 

sers to be conservative in terms of Karma: Given an initial Karma 

evel k i (t) , they will constrain their choices so that their Karma at 

he end of the horizon will not fall below a non-negative reference 

alue k i 
ref 

. This value represents the amount of Karma the users 

ould like to have available at the end of the horizon and is as- 

umed to differ for each user depending on their personality—e.g., 

ome users may not be conservative at all and keep it equal to 0, 

hilst others could set it equal to p 1 to be able to travel on the

rst arc one more time at the end of the horizon; in this paper, 

e will assume it to be time-invariant and randomly distributed 

mong the users. We explicitly account for path constraints (pos- 

tive Karma at every time step) on the user’s Karma level only 

or the current decision, whilst assuming that in the remaining T 

ime-steps captured by the average behavior ȳ i they will be satis- 

ed. Formally, we get the following individual user’s problem: 

roblem 2 (Individual User’s Problem) . At time t , given the flows 

 and prices p, respectively, a traveling user with Karma level k ≥
 and reference k ref , and sensitivity s will choose her route as y � 

esulting from 

y � , ȳ � ) ∈ arg min 

y ∈ Y , ̄y ∈ Ȳ 

s · d(x ) � y + T · s̄ · d(x ) � ȳ (2a) 

.t. k − p � y − T · p � ȳ ≥ k ref (2b) 

p � y ≤ k, (2c) 

ith Y = { y ∈ { 0 , 1 } n : 1 � y = 1 } and Ȳ = { ̄y ∈ [0 , 1] n : 1 � ȳ = 1 } .
e define the set containing all points y � solving (2) as 

 

� (x, s, k, k ref ) ⊆ Y . Non-traveling users have y � = 0 . 

Note that a discount factor can be readily included by simply 

caling the average sensitivity s̄ in the objective. 

.3. Infinitely many users setting and wardrop equilibrium 

In this paper, we consider the limit case whereby users form a 

ontinuum with M → ∞ . To describe the population, we use a no- 

ation similar to [10] . Thereby, we describe the instantaneous dis- 

ribution of the Karma level k and reference k ref in the population 

ith the density function η : R + × R + → R + . This way, we can de-

cribe an infinite-users population with ρ(s ) and η(k, k ref ) . For the

nfinite-users setting, the Nash and Wardrop Equilibrium (WE) are 

dentical [14] and can be defined as follows: 

efinition 2.1 (Wardrop Equilibrium) . x WE ∈ [0 , 1] n satisfying 

 

� x WE = P go is a WE if and only if there exist y � (x WE , s, k, k ref ) ∈
 

� (x WE , s, k, k ref ) so that 
 s max 

s min 

∫ ∞ 

0 

∫ ∞ 

0 

y � (x WE , s, k, k ref ) · ρ(s ) · η(k, k ref ) d s d k d k ref = x WE . 

Informally, x WE is a WE if the aggregate best-response based on 

ssuming x = x WE reconstructs the same vector x WE . Observe that 

he users’ decision process can be interpreted as a model predic- 

ive control algorithm that implements solely the optimal decision 

or today y � , whilst discarding the optimal future decisions ȳ � . 
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Taking a static planning perspective, at each time-step t , we 

odel the aggregate choices of the population with the WE x WE (t) . 

he central operator’s problem then is to choose the prices so that 

he daily WE x WE (t) will converge to the system optimum x � . 

roblem 3 (Pricing Problem) . Given a desired system opti- 

um x � , the pricing problem consists of finding p ∈ R 

n so that

im t→∞ 

x WE (t) = x � . 

.4. Discussion 

A few remarks are in order. First, we use a static setting 

hereby on each day we compute the WE to model the users’ be- 

avior. This is in line with the mesoscopic perspective of our study. 

econd, we assume the users to be rational and to share the dis- 

omfort function d(x ) and sensitivity probability density function 

(s ) , but differentiate them with regard to their daily level of sen-

itivity s i (t) and their reference Karma-level k i 
ref 

. 

. Two-arcs pricing problem 

For the remainder of this paper, we will focus on the parallel 

etwork with two arcs shown in Fig. 1 . This model can represent 

 daily commute routine where users can choose between two op- 

ions, a fast (or comfortable) route, and one that is slower (or less 

omfortable). We leave the study of parallel networks with more 

rcs and more general transportation networks to future research 

ndeavors. We assume, without loss of generality, that at the de- 

ired socially-optimal solution x � it holds that d 1 (x � 1 ) < d 2 (x � 2 ) . 
1 

herefore, we introduce a price p 1 > 0 for arc 1 and a reward

 2 = −p 2 > 0 for arc 2. Crucially, given a desired solution x � , a nec-

ssary condition required to solve Problem 3 , that the total Karma 

ust be conserved in the steady state: Since we want the ag- 

regate dynamics to converge and stay at x � , there the aggregate 

arma of the population cannot change. Hence, the steady-state 

rices must satisfy p � x � = 0 , implying that 

p 1 = r 2 ·
x � 2 

x � 
1 

. (3) 

We observe that scaling the prices’ (p 1 , p 2 ) with a common fac-

or would not alter the value of the only admissible x � satisfying 

3) . Therefore, in the two-arcs setting under consideration, there 

s no control freedom when choosing the prices once their mag- 

itude is chosen. However, we will show in the remainder of this 

aper that choosing the prices as in (3) will make the aggregate 

ehavior of the users described by Problem 2 converge to the de- 

ired system optimum resulting from Problem 1 . 

. Best response strategy 

This section derives the best response strategy for a user with 

arma-level k , reference level k ref and daily sensitivity s . 

The solution of Problem 2 , namely the users’ best response 

trategy, can be computed in closed-form as shown in the follow- 

ng theorem. 

heorem 4.1 (Best Response Strategy) . Consider a player with 

arma k ≥ k inf , sensitivity s , Karma reference k ref , and given prices

p. We define the thresholds k inf = max { 0 , k ref − (T + 1) · r 2 } , k poor =
ax { p 1 , k ref + p 1 − T · r 2 } , k rich = max { k poor , k ref + T · p 1 − r 2 } , and

 wealthy = k ref + (T + 1) · p 1 . Given x such that d 1 (x 1 ) < d 2 (x 2 ) , the
1 If it were to hold d 2 (x � 2 ) < d 1 (x � 1 ) , given the monotonocity properties of d(x ) , 

e could simply swap the arcs’ labeling and recover this problem. 

e

s

w

i  

25 
est response strategy j � of a traveling user’s chosen arc is 

j � = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

2 if k ∈ [ k inf , k poor ) {
1 if s > s̄ 
2 if s < s̄ 

if k ∈ [ k poor , k rich ) { 

1 if s > s̄ · k wealthy −k 

p 1 + r 2 
2 if s < s̄ · k wealthy −k 

p 1 + r 2 
if k ∈ [ k rich , k wealthy ) 

1 if k ≥ k wealthy , 

(4) 

Moreover, given x so that d 1 (x 1 ) = d 2 (x 2 ) , the best response strat-

gy of a traveling user is 

j � 
{

= 2 if k ∈ [ k inf , k poor ) 
∈ { 1 , 2 } if k ≥ k poor . 

(5) 

Finally, given x so that d 1 (x 1 ) > d 2 (x 2 ) , the best response strategy

f a traveling user is 

j � = 2 ∀ k ≥ k inf . (6) 

The proof can be found in Appendix A . Fig. 2 depicts the best 

esponse strategy (4) . As shown in the proof, Problem 2 is in- 

easible for k < k inf . Therefore, we will always consider the case 

hereby the Karma of any user is initialized above k inf . Moreover, 

nder policy (4) the set [ k inf , k wealthy + r 2 ) is positively invariant

nd attractive from above, so that it will be k ≥ k inf for all future

imes. Finally, we observe that the best response strategies (4) –(6) 

re independent of the quantitative discomfort level; they depend 

nly on the prices, the current level of Karma k , and the sensitivity 

 . 

.1. Wardrop equilibrium 

One can verify that, when prices are chosen according to (3) , 

here exists no WE satisfying d 1 (x 1 ) > d 2 (x 2 ) . This is due to the

act that, when d 1 (x 1 ) > d 2 (x 2 ), the user’s best response would

ntail choosing arc 2, thus leading to d 1 (0) < d 2 (P go ) . Finally, we

efine x̄ so that d 1 ( ̄x 1 ) = d 2 ( ̄x 2 ) , whereby, given the monotonic-

ty properties of d(x ) , we have that d 1 (x 1 ) < d 2 (x 2 ) for all x 1 < x̄ 1 .

n the following lemma, we show that a WE always exists, and is 

haracterized by d 1 (x WE 
1 

) ≤ d 2 (x WE 
2 

) . 

emma 4.2 (Wardrop Equilibrium for Two Arcs) . Let ˜ x 1 < x̄ 1 , i.e., 

 1 ( ̃  x 1 ) < d 2 ( ̃  x 2 ) , and define the mesoscopic flow resulting from the

est response (4) y � ( ̃  x , s, k, k ref ) ∈ Y 

� ( ̃  x , s, k, k ref ) as 

 

KC = 

∫ s max 

s min 

∫ ∞ 

0 

∫ ∞ 

0 

y � ( ̃  x , s, k, k ref ) · ρ(s ) · η(k, k ref ) d s d k d k ref , 

(7) 

which we refer to as Karma-controlled (KC). A WE exists and is 

haracterized by x WE = x KC if x KC 
1 

< x̄ 1 , and/or x WE = x̄ . 

The proof can be found in Appendix B . We define the WE 

t x̄ as uncontrolled , since it corresponds to the WE resulting 

hen no pricing is applied. In fact, it exists when the popula- 

ion has too much Karma and can therefore easily afford the first 

rc. 

For the remainder of this paper we will assume that for the 

iscomfort functions it holds d 1 (x 1 ) < d 2 (x 2 ) for all admissible x .

his way, in addition to Lemma 4.2 , we can prove the existence 

f a unique WE with d 1 (x WE 
1 

) < d 2 (x WE 
2 

) for any Karma distribu-

ion η(k, k ref ) , directly stemming from the best response strat- 

gy (4) . This assumption enables the formal analysis of the meso- 

copic aggregate behavior presented in Section 5 below. However, 

e believe this assumption can be lifted, since by the prices def- 

nition (3) —i.e., p 1 x 
� − r 2 x 

� = 0 —and the fact that x � < x̄ 1 , it holds

1 2 1 
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Fig. 2. The best response strategy (4) resulting from the solution of Problem 2 for d 1 (x ) < d 2 (x ) . 

Fig. 3. The steady-state distribution in relative Karma levels for an exponentially distributed s . 

Fig. 4. Sparsity pattern of the matrix A go . The probability of choosing the first arc 

paying p 1 is denoted in blue, whilst the probability of choosing the second arc re- 

ceiving r 2 in red. In this example, we chose p 1 = 2 , r 2 = 3 and T = 3 . Full dots rep- 

resent 1-entries, whilst empty dots denote P rush ( ̄s ) (blue) and P chill ( ̄s ) (red). Stars 

represent P rush (. ) (blue) and P chill (·) (red) evaluated as in the third and second con- 

dition of (11a) and (11b) , respectively. Since P rush + P chill = 1 , column-stochasticity of 

A go can be determined by inspection. (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.) 
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hat p � x̄ > 0 . Therefore, the uncontrolled WE at x̄ is not sustain- 

ble in time, as the population would continuously lose Karma, un- 

il eventually reaching a distribution with WE d 1 (x WE 
1 

) < d 2 (x WE 
2 

)

onverging to x � . We corroborate our conjecture with numerical 

imulations in Section 6 . 
26 
. Mesoscopic average behavior 

This section studies the dynamics of the aggregate behavior of 

he population. In the case under consideration, the WE always 

esults from the individual user’s best response strategy (4) due 

o the assumption that d 1 (x 1 ) < d 2 (x 2 ) , i.e., it corresponds to x KC 

rom (7) in Lemma 4.2 . Since the positively invariant set of (4) k ∈
 k inf , k wealthy + r 2 ) is attractive, we assume each user to start with

 level of Karma already in it. We first define the fraction of users 

ith a certain level of Karma: 

P poor = P (k ∈ [ k inf , k poor )) 

P ok = P (k ∈ [ k poor , k rich )) 

P rich = P (k ∈ [ k rich , k wealthy )) 

 wealthy = P (k ∈ [ k wealthy , k wealthy + r 2 )) (8) 

Next, given the probability density function of the sensitivity 

(s ) and ˆ s ∈ [ s min , s max ] , we define 

P chill ( ̂  s ) = P (s < 

ˆ s ) = 

∫ ˆ s 

s min 

ρ(s ) d s 

 rush ( ̂  s ) = P (s > 

ˆ s ) = 1 − P chill ( ̂  s ) = 

∫ s max 

ˆ s 

ρ(s ) d s. (9) 

Overall, these six quantities represent the fraction of users 

resent in each of the regions shown in Fig. 2 , and suffice to 

ompute the average population response. For the sake of sim- 

licity, but without loss of generality, from now on we assume 

 2 = −p 2 ≥ p 1 > 0 , and k ref + p 1 − T · r 2 ≥ p 1 , resulting in k poor =
 ref + p 1 − T · r 2 . The cases comprising k poor = p 1 and r 2 ≤ p 1 can
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Fig. 5. Societal cost, mesoscopic flows, relative average sensitivity and discomfort deviation, and Karma distribution for a population with P home = 5% and very large initial 

Karma levels. Specifically, the first plot shows the deviation of the societal cost from the optimal one (which can be negative when fewer users than expected are traveling 

in a system-optimal fashion), whilst the third plot shows the deviation of the average value of the sensitivity per day with respect to the mean of the distribution (dotted), 

and the deviation of the perceived discomfort w.r.t. an equivalent sensitivity-unaware random allocation. 

b

 1 )) 
1 −i 

 

)
 P (i 

 j = i
 1 + r

(T +

] ∧ j

 1 , T 

p 1 +
e studied with identical arguments and lead to the same result. 

P (i ) + = P home · P (i ) + P go · P rush ( ̄s ) · P (i + p 1 ) 
P (i ) + = P home · P (i ) + P go · (P (i − r 2 ) + P rush ( ̄s ) · P (i + p 1 )) 
P (i ) + = P home · P (i ) + P go · (P chill ( ̄s ) · P (i − r 2 ) + P rush ( ̄s ) · P (i + p

P (i ) + = P home · P (i ) + P go · (P chill ( ̄s ) · P (i − r 2 ) + P rush 

(
s̄ · T ·(p 1 + r 2 )+

p 1 + r 2
P (i ) + = P home · P (i ) + P go · (P chill 

(
s̄ · (T +1) ·(p 1 + r 2 )+1 −i 

p 1 + r 2 
)

· P (i − r 2 ) +
P (i ) + = P home · P (i ) + P go · P chill 

(
s̄ · (T +1) ·(p 1 + r 2 )+1 −i 

p 1 + r 2 
)

· P (i − r 2 ) 

(10) 

A chill (i, j) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 if i ∈ [ r 2 + 1 , r 2 + p 1 ] ∧
P chill ( ̄s ) if i ∈ [ p 1 + r 2 + 1 , T · (p

P chill 

(
s̄ · (T +1) ·(p 1 + r 2 )+1 −i 

p 1 + r 2 
)

if i ∈ [ T · (p 1 + r 2 ) + 1 , 

0 otherwise 

(11a) 

A rush (i, j) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

P rush ( ̄s ) if i ∈ [1 , (T − 1) · (p 1 + r 2 )

P rush 

(
s̄ · T ·(p 1 + r 2 )+1 −i 

p 1 + r 2 
)

if i ∈ [(T − 1) · (p 1 + r 2 ) +
1 if i ∈ [ T · (p 1 + r 2 ) + 1 , T ·
0 otherwise 

(11b) 
27 
∀ i ∈ [1 , r 2 ] 
∀ i ∈ [ r 2 + 1 , r 2 + p 1 ] 
∀ i ∈ [ r 2 + p 1 + 1 , (T − 1) · (p 1 + r 2 )] 

P (i + p 1 )) ∀ i ∈ [(T − 1) · (p 1 + r 2 ) + 1 , T · (p 1 + r 2 )] 

+ p 1 )) ∀ i ∈ [ T · (p 1 + r 2 ) + 1 , T · p 1 + (T + 1) · r 2 ] 

∀ i ∈ [ T · p 1 + (T + 1) · r 2 + 1 , (T + 1) · (p 1 + r 2 )] 

 − r 2 
 2 )] ∧ j = i − r 2 
1) · (p 1 + r 2 )] ∧ j = i − r 2 

 = i + p 1 
· (p 1 + r 2 )] ∧ j = i + p 1 
 (T + 1) · r 2 ] ∧ j = i + p 1 
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Fig. 6. Societal cost, mesoscopic flows, relative average sensitivity and discomfort deviation, and Karma distribution for P home = 0 . 
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urthermore, we assume p 1 and r 2 to be commensurate, and scale 

hem to be integer and co-prime (in practice, it is possible to round 

he prices after a suitable scaling without appreciably affecting the 

esults, as shown in Section 6 below). We define i = k − k ref + T ·
 2 + 1 , quantize the probability distributions (8) as 

P poor = 

p 1 ∑ 

i =1 

P poor (i ) , P ok = 

(T −1) ·(p 1 + r 2 ) ∑ 

i =1 

P ok (i ) , 

P rich = 

p 1 + r 2 ∑ 

i =1 

P rich (i ) , P wealthy = 

r 2 ∑ 

i =1 

P wealthy (i ) , 

(12) 

nd stack them in the vector P = (P 

� 
poor , P 

� 
ok 

, P 

� 
rich 

, P 

� 
wealthy 

) � , as

hown in Fig. 3 . The probability vector P is the quantized ver- 

ion of η(k, k ref ) , and evolves in line with the best response strat-

gy (4) as detailed in (10) on page 6. In matrix form, it can be

ritten as 

 

+ = A P , (13) 

here A = P home · I + P go · A go is a non-negative, square and 

olumn-stochastic matrix, i.e., A 

� 1 = 1 . Furthermore, A is primi- 

ive if P home > 0 . Since A is non-negative, for any P ≥ 0 , it holds

hat P 

+ ≥ 0 . Moreover, being A column-stochastic, we have that 

 

� P 

+ = 1 � A P = 1 � P [5] . The sparsity pattern of A go = A chill + A rush 

s shown in Fig. 4 , whereby the red dots represent the probability 

or a traveling user with Karma deviation k = i + k ref + T · r 2 − 1 to

hoose the slow arc and are defined as in (11a) , whilst the blue
28 
ots represent the probability to choose the fast arc and are de- 

ned as in (11b) . The system has discrete linear time-invariant dy- 

amics. Its ω-limit sets are either fixed points or limit cycles. Such 

-limit sets can be found by eigenvalue analysis as we do below, 

howing that limit cycles can only appear if P home = 0 . Since P ≥ 0
s a probability distribution, it must hold 1 � P = 1 . Hence, the triv- 

al equilibrium P = 0 is not admissible. As the equilibrium is de- 

ned as P 

e = A P 

e , it must be spanned by the eigenvector corre-

ponding to the 1-eigenvalue of A . 

With this in mind, we can show that in the large population 

imit, the equilibrium in Karma distribution P 

e is globally asymp- 

otically stable and corresponds to the desired system optimum x � . 

heorem 5.1 (Globally Asymptotically Stable and Optimal Equilib- 

ium) . Given the prices (3) and a population of users acting in line 

ith (4) with P home > 0 , the equilibrium of the Karma distribution 

ynamics (13) P 

e ≥ 0 with 1 � P 

e = 1 is globally asymptotically stable 

nd its resulting flows correspond to the system optimum x � . 

The proof can be found in Appendix C . This theorem shows that 

he prices resulting from Karma conservation arguments indeed 

olve Problem 3 . Note that equivalent results can be obtained by 

everaging the geometric ergodicity properties of the Markov chain 

 through the straightforward application of Doeblin’s theorem [7] . 
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Fig. 7. Societal cost, mesoscopic flows, relative average sensitivity and discomfort deviation, and Karma distribution for c(x ) = x and P home = 5% . 
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. Numerical results 

This section presents the results obtained via numerical simu- 

ations for the following case-studies: First, a scenario where the 

ocial cost corresponds to the sum of the users’ cost, i.e., d(x ) � x
s in standard routing settings [4] . There we consider the case 

hereby on average P home = 5% of the population do not travel 

which we randomly select at each time instant) and the limit case 

here all users travel every day, i.e., P home = 0 . Second, we study 

he case where the societal cost does not correspond to the sum 

f the users’ costs. For all the scenarios we consider M = 10 0 0

sers and sample their daily sensitivity from an exponential dis- 

ribution defined on R + . In line with our theoretical findings, the 

ase where the discomfort functions satisfy d 1 (x 1 ) < d 2 (x 2 ) for any

dmissible x and the same horizon T for each user resulted in 

he expected convergence of the aggregate behavior to the sys- 

em optimum for any of the scenarios mentioned. For the sake 

f brevity, we omit such results and focus on the more interest- 

ng case whereby d 1 (x 1 ) > d 2 (x 2 ) for x 1 > x̄ 1 , and the uncontrolled

E at x̄ exists. Moreover, we consider users with a horizon T ran- 

omly chosen to have values between 3 and 9. Specifically, we 

odel the discomfort as a travel-time Bureau of Public Roads (BPR) 

unction [3] 

(x j ) = d 0 , j ·
(

1 + α ·
(
x j /κ j 

)β
)
, (14) 
29 
ith d 0 = (1 , 2) � , κ = (1 / 2 , 2 / 3) � , α = 0 . 15 and β = 4 , for which

¯ 1 = 0 . 80 for both values of P home . We simulate each day by itera-

ively computing the Nash equilibrium (approximating the infinite- 

sers WE) resulting when each user is solving Problem 2 (which 

an be efficiently solved as a linear program). The computation of 

he Nash equilibrium always needed only a couple of iterations. 

.1. The social cost is the sum of the users’ cost 

Setting P home = 5% , the system optimum is x � = (0 . 56 , 0 . 39) � ,
or which we design prices according to (3) as p = (10 , −14) � ,
ounding them as mentioned in Section 5 above. We initialize the 

arma reference levels k i 
ref 

from a uniform distribution defined be- 

ween 0 and 100, whilst initializing the Karma levels k i (0) be- 

ween 0 and 10 0 0, so that an extremely large fraction of users 

tarts with k above k wealthy and thus x̄ is the only possible WE. 

s expected, Fig. 5 shows that providing the users with too much 

arma will indeed result in the uncontrolled WE. However, as the 

verage Karma level of the population K̄ (t) shown in the fourth 

ubplot is depleted, the system-level behavior and cost converge 

ery close to the system optimum with an average relative societal 

ost difference below 0.1%. We measure the perceived discomfort 

f the single users s i (t) · d(x (t )) � y i (t ) and average it over the pop-

lation. The third subplot of Fig. 5 compares it with the average 

iscomfort that would be perceived by the users if they were al- 

ocated in a random and sensitivity-unaware fashion to the same 
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ows as 

d̄ (t) = 

∑ 10 0 0 
i =1 s i ( t) · d(x (t)) � y i (t) − s̄ · d(x (t)) � y i (t) ∑ 10 0 0 

i =1 s̄ · d( x ( t)) � y i ( t) 
, (15) 

hich exhibits a behavior that is similar to the relative devia- 

ion of the daily average sensitivity from the distribution’s mean 

s̄ (t) = 

∑ 10 0 0 
i =1 

s i (t) −s̄ 
10 0 0 ·s̄ . In line with the goal of our framework, while 

onverging to the system optimum, the users perceive a discomfort 

bout 14% lower compared to the case where the users would be 

andomly allocated in a system-optimal but urgency-unaware fash- 

on. 

Next, we study the limit case where all users are traveling, 

.e., P home = 0 . Fig. 6 shows the results obtained in this scenario

ith system-optimal solution x � = (0 . 57 , 0 . 43) � for which we de-

ign again the prices via (3) and round them to p = (10 , −13) � .
n this case, we initialize the Karma initial and reference values 

etween 0 and 200. Interestingly, the proposed scheme seems to 

ork well also for this limit case, whereby periodic solutions could 

xist—as the matrix A would no longer be primitive but only row- 

tochastic. Again, the population behavior converges very close to 

he system-optimum with a relative deviation of about 0.2% and 

n average 	d̄ of about −14% . Since in this scenario the number 

f users traveling every day is constant, the optimal societal cost 

s never outperformed. Overall, these results prompt us to study in 

ore detail also the convergence properties of this limit case with 

 home = 0 . 

.2. The social cost is not the sum of the users’ cost 

The proposed framework enables to steer the behavior of the 

opulation to any average choice. In this case, we set the soci- 

tal cost as c(x ) = x , leading to the symmetric optimal flows x � =
0 . 5 , 0 . 5) � for which the prices resulting from (3) can be chosen

s p = (10 , −10) � . Fig. 7 shows that, despite different societal and

sers’ objectives and a very high price of anarchy for the uncon- 

rolled case, the mesoscopic flows converge to the system opti- 

um. Finally, also in this scenario, our framework enables users to 

ignificantly improve the perceived discomfort by about 20% w.r.t. 

 system-optimal but random allocation, whilst aligning their be- 

avior with the desired system optimum. 

. Conclusion 

This paper explored the application of artificial currencies to 

oute self-interested users in a system-optimal fashion whilst ac- 

ounting for their temporal needs. Specifically, we instantiated a 

epeated game whereby each day traveling users choose whether 

o cross the most comfortable route for a price or to receive a 

eward for traveling a less comfortable route. For a parallel two- 

rcs network we showed that a static pricing choice resulting 

rom simple Karma-conservation arguments guarantees the meso- 

copic average behavior to converge to the system optimum, signif- 

cantly reducing the societal costs w.r.t. the uncontrolled equilib- 

ium. What is more, our scheme is fairly simple and does not rely 

n any auction mechanism for allocation, but leaves full freedom of 

hoice to the users as long as their Karma level is non-negative. As 

 result, it enables a considerable reduction of the perceived dis- 

omfort with respect to a random but optimal allocation. In prac- 

ice, our numerical results were in line with our findings in all the 

cenarios studied: Our scheme reached a societal cost less than 1% 

igher than the system optimum, while significantly reducing the 

verage perceived discomfort by 14–20%. 

This work can be extended as follows: We would like to study 

ore realistic network structures, such as more general transporta- 

ion graphs with different origin-destination pairs. Furthermore, 

e would like to devise learning-based control algorithms to adapt 
30 
he prices in real-time and implement them within high-fidelity 

imulation environments. 
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ppendix A. Proof of Theorem 4.1 

Before solving Problem 2 , we reformulate it as 

in 

y, ̄y 
d � ( s · y + s̄ · T · ȳ ) (A.1a) 

.t. y ∈ { (1 , 0) � , (0 , 1) � } (A.1b) 

¯
 1 = 1 − ȳ 2 ∈ [0 , 1] (A.1c) 

p � ȳ ≤ (k − k ref − p � y ) /T (A.1d) 

p � y ≤ k (A.1e) 

 ≤ k, (A.1f) 

nd start solving for the case where d 1 < d 2 . Since from (A.1b) each

gent has only two possibilities (namely, arc 1 or arc 2), we first 

et the value of y to one of these two and compute the ȳ resulting

rom the combination of (A .1c), (A .1d) and (A .1e) . Finally, we eval-

ate the objective (A.1a) for both possible y and resulting ȳ , and 

ick the y minimizing it as a function of the prices p, discomfort 

and sensitivity s . In the following, we proceed by increasing the 

alue of k . 

First, a negative k is infeasible due to (A.1f) . Moreover, if k ∈ 

0 , p 1 ) , the agent cannot decrease it due to (A.1e) , and therefore

he only possible choice is j � = 2 . We can derive similar conditions

or k < k ref + p 1 − T · r 2 . From condition (A.1c) we get 

p 1 ̄y 1 − r 2 · (1 − ȳ 1 ) ≤
k − k ref − p j 

T 
, 

esulting in 

¯
 1 ≤

k − k ref − p j + T · r 2 

T · (p 1 + r 2 ) 
. (A.2) 

Since d 1 < d 2 , (A.2) will hold with equality due to objec- 

ive (A.1a) unless its right-hand side is strictly larger than 1. 

rom (A.1c) we have that ȳ 1 ≥ 0 , which combined with (A.2) leads 

o 

 ≥ k ref − T · r 2 + p j , (A.3) 

ndicating that if k < k ref − (T + 1) · r 2 the problem is infeasible for

ny arc choice. On the contrary, if k ∈ [ k ref − (T + 1) · r 2 , k ref − T ·
 2 + p 1 ) , the only possible choice is arc j = 2 . In conclusion, defin-

ng k inf = max { 0 , k ref − (T + 1) · r 2 } and k poor = max { p 1 , k ref + p 1 −
 · r 2 } , we get infeasibility if k < k inf and j � = 2 if k ∈ [ k inf , k poor ) .

ote that since traveling on arc 2 will increase k , an agent starting 
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ith a level of k (0) ≥ k poor − p 1 will always have k (t) ≥ k poor − p 1 
 t ≥ 0 . 

Second, we study the case where k ∈ [ k poor , k ref + T · p 1 − r 2 )

hen the set [ k poor , k ref + T · p 1 − r 2 ) is nonempty (which is the

ase if T ≥ 1 and k ref ≥ T · r 2 or k ref ≥ r 2 − (T − 1) · p 1 ). It can be

een that (A.2) holds with equality as its right hand side cannot 

xceed 1. In fact, the condition 

k − k ref − p j + T · r 2 

T · (p 1 + r 2 ) 
≤ 1 ∀ j 

esults indeed in p j = −r 2 and 

k − k ref + r 2 + T · r 2 
T · (p 1 + r 2 ) 

≤ 1 , 

ielding 

 ≤ k ref + T · p 1 − r 2 . 

Therefore, we get 

¯
 1 = 

k − k ref − p j + T · r 2 

T · (p 1 + r 2 ) 
, (A.4) 

hich, combined with (A.1c) yields 

¯
 2 = 1 − k − k ref − p j + T · r 2 

T · (p 1 + r 2 ) 
= 

T · p 1 − k + k ref + p j 

T · (p 1 + r 2 ) 
. (A.5) 

Next, we compute the objective from (A.1a) defined as 

( j, s, k ) = s · d j + s̄ · T · d � ȳ ( j, k ) , (A.6)

or j ∈ { 1 , 2 } and with ȳ ( j, k ) from (A.4) and (A.5) , and choose j � 

s its minimizer. If j = 1 , we get 

J(1 , s, k ) 

= s · d 1 + s̄ · T ·
(
d 1 · k −k ref −p 1 + T ·r 2 

T ·(p 1 + r 2 ) + d 2 · T ·p 1 −k + k ref + p 1 
T ·(p 1 + r 2 ) 

)
= s · d 1 + s̄ · d 1 ·(k −k ref −p 1 + T ·r 2 ) −d 2 ·(k −k ref −(T +1) ·p 1 ) 

p 1 + r 2 . 

(A.7) 

Similarly, if j = 2 , we get 

J(2 , s, k ) 

= s · d 2 + s̄ · d 1 ·(k −k ref + r 2 + T ·r 2 ) −d 2 ·(k −k ref −T ·p 1 + r 2 ) 
p 1 + r 2 . 

(A.8) 

Finally, taking the difference between (A.7) and (A.8) yields 

J(1 , s, k ) − J(2 , s, k ) = s · (d 1 − d 2 ) − s̄ · (d 1 −d 2 ) ·(p 1 + r 2 ) 
p 1 + r 2 

= (d 1 − d 2 ) · (s − s̄ ) , 
(A.9) 

rom which we can infer that since d 1 < d 2 , if s > s̄ , the opti-

al choice is j � = 1 , whilst, if s < s̄ , then j � = 2 . Interestingly, the

uantitative discomfort difference or the prices’ values do not in- 

uence the best response strategy. It may happen that the set 

k poor , k ref + T · p 1 − r 2 ) is empty and the policy derived does not

pply. To account for this phenomenon and use a general formula- 

ion, we define k rich := max { k poor , k ref + T · p 1 − r 2 } and apply this

olicy for any k ∈ (k poor , k rich ) . 

Third, we turn our attention to the case where k ∈ 

 k rich , k wealthy ) , with k wealthy = k ref + (T + 1) · p 1 There we can

how that condition (A.2) holds with equality for j = 1 , and is

nactive for j = 2 . In fact, the condition 

k − k ref − p 1 + T · r 2 
T · (p 1 + r 2 ) 

< 1 < 

k − k ref + r 2 + T · r 2 
T · (p 1 + r 2 ) 

ndeed leads to 

 rich = k ref + T · p 1 − r 2 < k < k ref + (T + 1) · p 1 = k wealthy . 

Therefore, choosing arc j = 1 would still result in (A.2) holding 

ith equality, i.e., conditions (A .4) and (A .5) , yielding the objec- 

ive (A.7) . Conversely, choosing arc j = 2 would result in (A.2) be-

ng inactive and hence we would have ȳ 1 = 1 and ȳ 2 = 0 , yielding

he objective 

(2 , s, k ) = s · d 2 + s̄ · T · d 1 . (A.10)
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In this case, the difference between objec- 

ives (A.7) and (A.10) results in 

J(1 , s, k ) − J(2 , s, k ) = (d 1 − d 2 ) ·
(
s − s̄ · k ref +(T +1) ·p 1 −k 

p 1 + r 2 
)

= (d 1 − d 2 ) ·
(

s − s̄ · k wealthy −k 

p 1 + r 2 

)
, 

(A.11) 

rom which we infer that if s > s̄ · k wealthy −k 

p 1 + r 2 then the best response 

s to travel on arc j � = 1 , while, if the opposite is true, the optimal

rc is j � = 2 . Note that the sensitivity threshold is reduced from s̄

t k = k rich to 0 at k = k wealthy . Also in this case, the best response

trategy is independent of the quantitative discomfort values. 

Fourth, we consider the final case whereby k > k wealthy . Since 

his condition results in (A.2) being inactive for any arc choice, we 

btain ȳ 1 = 1 without any constraint on the choice of y . Therefore, 

he best response strategy is trivially found to be j � = 1 . 

Finally, combining everything together results in the best re- 

ponse strategy (4) . 

Turning our attention to the case with d 1 = d 2 , once again we 

ee that we get infeasibility if k < k inf and j � = 2 if k ∈ [ k inf , k poor ) .

therwise, since the objective does not change for any y and ȳ , we 

et the multiple solution j � ∈ { 1 , 2 } for any k ≥ k poor . Combining

hese results yields the best response strategy (5) . 

Considering the case with d 1 > d 2 , we also get infeasibility if 

 < k inf and j � = 2 if k ∈ [ k inf , k poor ) . If k ≥ k poor we can see that the

bjective (A.1a) is pushing both y and ȳ to (0 , 1) � without being 

onstrained by (A .1c) –(A .1f) . This way we get j � = 2 for all k ≥ k inf ,

.e., the best response strategy (6) . 

Combining the results (4) –(6) concludes the proof. �

ppendix B. Proof of Lemma 4.2 

We distinguish between two cases. First, if x KC 
1 

< x̄ 1 , then x KC = 

 

WE , since d 1 (x KC 
1 

) < d 2 (x KC 
2 

) and the best response strategy is the

ame for any d(x ) as long as d 1 (x 1 ) < d 2 (x 2 ) . Second, we show

he existence of x WE with d 1 (x WE 
1 ) = d 2 (x WE 

2 ) if the number of

ravelers with k < k poor —which can only pick arc 2 as shown in

heorem 4.1 —is lower than x̄ 2 . This condition is necessary since 

f the number of travelers with k < k poor is higher than x̄ 2 , then

 2 is definitely higher than x̄ 2 irrespective of the discomfort lev- 

ls so that a WE at x̄ cannot exist. First, we assign the agents 

ith k < k poor to the second arc, since it is the only arc they can

ick. Next, we jointly fill both arcs with the remaining agents so 

hat both arcs achieve equal discomfort, i.e., x = x̄ . In line with (5) ,

or those agents, choosing any of the arcs would be a solution to 

roblem 2 . Thus the resulting equilibrium is a WE with d 1 (x WE 
1 ) =

 2 (x WE 
2 

) , corresponding to the uncontrolled case. In both cases, the 

E exists and is characterized by d 1 (x WE 
1 

) ≤ d 2 (x WE 
2 

) , concluding

he proof. �

ppendix C. Proof of Theorem 5.1 

First, we show that given P home > 0 and any initial condi- 

ion P 0 ≥ 0 satisfying 1 � P 0 = 1 , the equilibrium satisfying P 

e ≥ 0 

nd 1 � P 

e = 1 is globally asymptotically stable. Applying standard 

atrix theory results such as the Perron-Frobenius Theorem to 

olumn-stochastic and primitive matrices, we see that for the spec- 

ral radius of A it holds ρ(A ) = 1 . Furthermore, for the eigenvalues

f A , it holds λ = 1 > | μ| ≥ 0 ∀{ λ, μ} ∈ ρ(A ) , with λ = 1 simple.

his way, we see that the time-trajectory P t converges to a vector 

panned by P 

e [5] . Since the equilibrium probability vector P 

e is 

panned by the eigenvector related to the eigenvalue λ = 1 , it can 

ndeed be chosen non-negative. For the given initial condition, it 

olds that P t ≥ 0 and 1 � P t = 1 for all t ≥ 0 . Combining the two,

e conclude that P 

e ≥ 0 is globally asymptotically stable. 
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Second, we show that at the average steady-state x e , the ra- 

io of people choosing the fast route x e 
1 

= P go · 1 � A rush P 

e corre- 

ponds to x � 
1 
, whilst the ratio of people choosing the slow route 

 

e 
2 

= P go · 1 � A chill P 

e to x � 
2 
. We know by (3) that for the desired

teady-state x � it holds 
x � 

1 
x � 

2 
= 

r 2 
p 1 

. Therefore, since 1 � x e = 1 � x � = P go ,

 

� = x e holds iff

x e 1 

x e 
2 

= 

r 2 
p 1 

. (C.1) 

This means that x e 
1 

p 1 − x e 
2 
r 2 = 0 , i.e., that the total Karma level

f the population will not change. We proceed by contradiction: 

uppose that at the equilibrium it holds that x e 
1 

p 1 − x e 
2 
r 2 � = 0 . This

eans that the Karma distribution over the population cannot re- 

ain identical, i.e., that A P 

e � = P 

e , which contradicts the fact that

 

e is an equilibrium, hence proving that x e = x � . 

Combining the global asymptotic stability of the equilibrium P 

e 

ith its correspondence to the system optimum x � concludes the 

roof. �
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