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Abstract 

In this paper, we explore the use of a 180 nm CMOS single-poly technology platform for realizing analog Deep Neural 

Network integrated circuits. The analysis focuses on analog vector-matrix multiplier architectures, one of the main building 

blocks of a neural network, implementing in-memory computation using Floating-Gate multi-level non-volatile memories. 

We present two memory options, suited either for current-mode or for time-domain vector-matrix multiplier 

implementations, with low-voltage charge-injection program and erase operations. The effects of a limited accuracy are 

also investigated through system-level simulations, by accounting for the temperature dependence of the stored weights 

and the corresponding impact on the network error rate. 

Keywords: DNN, single-poly FG, Floating-Gate, Vector-Matrix Multiplier. 

1. Introduction 

The widespread diffusion of artificial intelligence functionality in electronic systems is calling for dedicated technologies and 

specialized hardware to realize Deep Neural Networks (DNNs), aiming at higher performance per unit energy with respect to 

processors based on the Von Neumann paradigm [1], [2]. The most frequently recurring building block of a DNN is the vector-

matrix multiplier (VMM), for which a block diagram – which can also be interpreted as a parallel architecture – is illustrated in 

Figure 1. An efficient VMM computation is crucial for the overall performance of the neural network. During the inference phase, 

data input vectors X=[x1, …xi,… xM] are multiplied by a matrix of programmable weights (wi,j), which have been previously 

determined during the training phase, based on an available dataset of labelled data. 

The recurring arithmetic operations implemented in a VMM cannot be efficiently performed by a general-purpose CPU, thus 

various degrees of parallel and/or logic in-memory architectures need to be implemented to boost overall DNN performance and 

efficiency [2], [3]. In this context, together with digital approaches such as GPU-based hardware and ASIC accelerators [4], 

computation in the analog domain is gaining momentum as a longer term solution [5]–[10], on the basis of the observation that 

limited equivalent arithmetic precision in the inference phase is sufficient for a DNN to achieve a high classification accuracy 
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[11]. Analog architectures can reach a very high computation efficiency, exploiting fundamental circuit laws and intrinsic device 

properties to execute in-memory arithmetic operations: addition, for example, can be simply obtained by exploiting Kirchhoff’s 

current law in summing several currents coming from various branches and injected into the same node (Figure 1). On the other 

hand, it is well known that analog processing blocks can be affected by circuit non-idealities such as noise, non-linearity and 

process variations [5], [9], [10] which can be counteracted at the cost of increased area occupation. 

In this paper we explore the implementation of VMM blocks in the analog domain, using a 180 nm CMOS single-poly process 

technology. We present the design of analog non-volatile memory cells to store the matrix weights, fabricated with a single-poly 

Floating-Gate (FG) structure. We discuss two memory options that can be obtained through layout optimization only, with no 

need to modify the standard process flow. Experimental results confirm the possibility to achieve multi-level storage capability. 

We describe the implementation of two analog VMM approaches based on the proposed memory cells, with a comparison of their 

main Figures of Merit (FOMs), namely Energy Efficiency (EE), latency time (TLAT) and area occupation. Finally, we discuss the 

dependence of the analog weights upon the operating temperature and the resulting impact on the DNN inference accuracy.  

2. Analog VMM implemented with single poly memory options 

Figure 2 depicts two possible architectures that can be implemented to realize an analog VMM. In Figure 2(a), a current-

mode approach is shown, which exploits programmable current mirrors. The scalar product is implemented by multiplying the 

input signal, encoded as an input current, with the stored current-mirror magnification factor: the output currents of the cells of the 

same column are summed at the same node to perform the vector-matrix multiplication. We performed a detailed analysis of the 

current-mode VMM and of the programmable mirror cells in [5]. In a time-domain approach (shown in Figure 2(b)) [13] the input 

signals are encoded as voltage pulse widths, which are applied to the matrix rows and activate the corresponding cells for a given 

time. The programmability of the conductance of each cell enables a tunable on-state current (i.e., the weight) for a fixed voltage 

bias. The cell total charge is the result of the multiplication between the input pulse width and the cell current, while the whole 

charge is collected to the same node. Finally, a charge-to-voltage conversion is performed by the integrator block.  

We designed and fabricated two single-poly memory cell options which can be used to implement the introduced VMM 

approaches using a standard CMOS technology node. In the following sub-sections, we will first discuss the experimental results 

performed on the two memory cells, and then we will present a system-level assessment of the various FOMs of a current-mode 

versus a time-domain technique. 

A. Single-poly Floating-Gate cell options 

In general, a conventional figure of merit for an analog DNN is the equivalent-number-of-bits (ENOB), which enables a quick 

comparison with a digital version of the network. In an analog function, the ENOB is limited by device noise and circuit transfer-

function non-linearity, affecting the accuracy of the performed operation. Although neuromorphic algorithms are resilient to noise 
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and limited accuracy, it has been shown that ENOB values of 5 bits can be acceptable for simple networks [5], but an ENOB of a 

at least 7 bits is needed for more complex networks such as AlexNet [12]. FG memory cells with multi-level programmability are 

then needed to store weights with a sufficient precision and dynamic range. 

The programmable current mirror basic cell was designed by adding a p-type MOS capacitor (pCAP) in series to the gate of a 

n-type transistor, thus sharing the same non-accessible poly (layout shown in Figure 3(a)) and realizing the FG. The obtained cell 

has an equivalent circuit model similar to the one of a double-poly flash memory, but the external control gate (CG) is the n-well 

of the pCAP instead of the terminal on the top poly. The lower cost of the single poly technology is traded off against a larger area 

occupied on the chip. The ID-VCG-S transfer characteristics of the resulting device is close to the one of the intrinsic nMOS, but 

with a slightly degraded slope due to the non-ideal coupling factor of the CG to the channel. This issue is critical because the poor 

electrostatics can impact the output resistance of the current mirror cell, thus limiting the linearity of the operation. We realized 

different cells for various pCAP/nMOS area ratios (i.e., coupling), and measurements demonstrated the possibility to reach the 

linearity corresponding to an ENOB close to 5 for cells with area ratios larger than 50× and a nMOS channel-length ≥ 0.5 µm. In 

Figure 3(b), various ID-VCG-S curves are displayed for different stored weight conditions, measured after progressive program 

operations that result in an increased Vth. Cell programming is performed by exploiting a self-convergence scheme, where the cell 

state target is achieved when concurrent injections of holes and electrons compensate each-others. Thus, for long pulses, the final 

state depends only on the applied voltages and can be modulated with a fine tuning of the CG voltage for a fixed drain voltage. In 

particular, the Vth is increased by applying appropriate voltage values around ⁓6 V to the drain and values in the 4 - 6 V range to 

the CG, activating impact-ionized hot-electron injection, following the scheme reported in [5]. Lowering the CG voltage to ⁓1.5 

V favors impact-ionized hot holes injection, leading to a Vth decrease.  

The considered alternative approach consists in using a single transistor, without the need of a pCAP, therefore realizing a 

two-terminal FG cell: this cell suits well for implementation in a time-domain VMM, where one terminal is connected to the 

integrator input, kept at a constant reference voltage, while the time pulse is applied to the other terminal. In this case, the CG role 

is played by the drain itself, through the coupling provided by the gate-to-drain capacitance [14]. With the objective of targeting 

minimum area, a minimum size n-type MOSFET is used to realize the FG cell: the layout of a 2×2 array is shown in Figure 4(a), 

reporting a x- and y-pitch of 1.12 and 1.54 µm, respectively. Program is obtained by applying progressive VDS pulses of ~5 V, 

activating hot electron injection phenomena, until the target state is reached. On the other side, an erase operation is performed 

using a single 6 V pulse, favoring the injection of holes. Measured ID-VD curves at different programmed levels, displayed in 

Figure 4(b), show a high degree of programmability, with an IMAX/Imin ratio of more than 3 orders of magnitude for a read voltage 

of 1 V. 
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B. Figures of Merit Evaluation for the proposed VMMs  

Characteristics of designed VMMs heavily impact the overall performance of a DNN. Since all data inputs are processed in 

parallel, then the latency time TLAT, defined as the time to perform one MAC (multiply and accumulate) operation, represents the 

computation time of the entire VMM. An M×N sized VMM can perform (2M-1)×N elementary operations (i.e. sums or 

multiplications), while the energy required to perform these operations defines the energy efficiency (EE), expressed as TOPs/J.  

The comparison between the CM and TD approaches was evaluated by circuit level (Cadence) and system level simulations 

(MATLAB) performed on a 100×100 fully-connected layer of a DNN, by appropriately sizing the transistor cells and the circuit 

implementation of the VMMs to reach an ENOB of 6-bit. Results were compared in TAB.I. The need for a large pCAP to realize 

the memory cells used in the CM based approach leads to a 100×100 VMM layout area of 1.383 mm2, and to a latency time TLAT 

= 100 µs, corresponding to an EE of 36.8 TOPs/J. On the other hand, in the TD approach we can rely on  minimum sized transistors, 

leading to a layout area of 0.038 mm2. The latency time is evaluated on the basis of the maximum input time, i.e. the period T, 

which for a target ENOB of 6 bits is 1.5 µs. Therefore, we will obtain TLAT = 2T = 3 µs, since two periods are needed for each 

operation (one for integration and one for sampling and reset). As regards the EE, its value of 14.5 TOPs/J is mainly constrained 

by the power dissipated by the integrator. Although the TD approach has a slightly lower EE compared to the CM case, the smaller 

area and lower latency time leads to a much better throughput/area figure-of-merit of 174.6 GOPs/(s·mm2), which is 3 order of 

magnitude higher than the one of the CM based solution, which is 0.144 GOPs/(s·mm2). 

3. Impact of temperature on the weights and on DNN inference accuracy 

In both VMM architectures, the weight is determined by the net charge injected in the FG, which in turn results in a shift of 

the threshold voltage. In the CM based multipliers, this shift determines the current magnification factor between the input and the 

output current, whereas in the two-terminal FG cells it determines the equivalent on-resistance. Since both cases operate in the 

sub-threshold region, small variations of the threshold voltage result in an exponential variation of the drain current (and therefore 

of the corresponding weight) that can be easily evaluated, resulting in the following:  

TABLE I 

VMM  CHARACTERISTICS 

 
   

 CM-based FG-cell Two terminal FG-cell 

Area (mm2) 1.383 0.038 

Latency time (µs) 100 3 

Throughput/area (GOPs/(s·mm2)) 0.144 174.6 

EE (TOPs/J) 36.8 14.5 
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where w(T0) is the weight at the room temperature (T0 = 300 K) at which the VMM is nominally operating, k is the Boltzmann 

constant, q is the elementary charge and 𝛼 > 0 is constant with T. We assume that the network weights have been trained at room 

temperature, and then that w(T0)(i,j) are the nominal weights. 

First, a system level simulation study has been performed using weights trained at T0. Then, the DNN inference accuracy has 

been evaluated by accounting for the dependence on temperature. As benchmark, the well-known AlexNet [12]  has been trained 

with 1000 images distributed in 50 classes from ImageNet [15] dataset for a total of 60 epochs.   

For the two approaches, the inference operation performed by AlexNet at room temperature resulted in a classification accuracy 

of 95% [5]. The impact of temperature variation on the inference accuracy is shown in Figure 5. One should note that the error 

rate of the CM based AlexNet is below 10% in the range from ~-7 °C to ~ 40 °C, while for the TD the range is restricted to only 

~ 20 °C to ~ 30 °C. The temperature impact on the classification accuracy can be mitigated with different approaches. For instance, 

one could rely on differential weights to partially counteract the weight sensitivity to temperature. In addition, considering the 

asymmetric shape of the error as a function of the temperature variation, a slightly different set of trained weights could be used 

to center the error shape around the nominal temperature. 

4. Conclusions 

The opportunity to realize single-poly non-volatile floating-gate cells for analog neural networks has been explored. UMC 

180 nm technology has been used for the first test vehicle. The following results have been demonstrated: (1) realization of two 

FG cell options for different vector-matrix multiplier approaches, (2) successful multi-level analog storage capability 

experimentally demonstrated, (3) relatively low voltage program and erase operations. The main FOMs have been evaluated for 

both the CM and TD approaches, demonstrating that the CM architecture has a slightly higher EE, while the TD one can perform 

more operations per unit area. Moreover, a system-level simulation has been performed on AlexNet to analyze the impact of 

temperature variations on the inference capability, demonstrating that a DNN network implemented with proposed approaches 

can severely be impacted by temperature variations. 
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Figures: 

 

Figure 1: Vector-matrix multiplier block diagram. 

 

 

Figure 2: Implementation of an analog VMM using (a) a current mode and (b) a time-domain approach. 
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Figure 3: FG programmable Current-Mirror cell: (a) layout and schematic representation; (b) measured ID-VCG-S 
characteristic for various programming levels. 

 

 

Figure 4: Two terminal FG cell: (a) layout of a 2×2 array composed of two pairs of mirrored cells, with the inset 
showing the corresponding electrical scheme; (b) measured ID-VD charactertistic for various programming levels. 
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Figure 5: Impact of the temperature on the precision of AlexNet for both the TD and CM techniques. 
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