
Journal of Guidance, Control, and Dynamics, Vol. 44, No. 4, 2021, pp. 889–897. doi: https://doi.org/10.2514/1.G005624

Time-Optimal Formation Establishment Around a Slowly Rotating
Asteroid

Wei Wang∗

School of Aerospace Engineering, Tsinghua University, 100084 Beijing,

People’s Republic of China

Giovanni Mengali†, Alessandro A. Quarta‡

Department of Civil and Industrial Engineering, University of Pisa, I-56122 Pisa, Italy

and
Hexi Baoyin§

School of Aerospace Engineering, Tsinghua University, 100084 Beijing,

People’s Republic of China

Introduction
Asteroids’ exploration has drawn a growing interest since the early 1990s, when NASA, ESA, and JAXA successively

proposed their task plans [1,2] in which asteroids were considered a primary goal for new millennium spacecraft missions.
Indeed, an in-depth analysis of asteroid samples may substantially improve the human knowledge of the Solar System
evolution [3], while the exploration of near-Earth objects is meaningful for planetary defense purposes [4]. In this regard,
following the tracks of the first successful sample return prober Hayabusa [5], the Japanese space prober Hayabusa-2 has
successfully fired an impactor into its target asteroid 162173 Ryugu to create an artificial crater [6]. The splashing rock
ash has allowed the spacecraft to collect asteroid samples placed beneath its surface [7].

Some advanced mission concepts, such as NASA Autonomous Nano-Technology Swarm (ANTS), require a collabo-
rative framework with hierarchical (multilevel, dense heterarchy) organization and high autonomy, as well as redundant
components with a certain degree of flexibility [8]. Other mission scenarios, consisting in the use of a spacecraft formation
system for asteroid deflection [9–12], require an advanced (onboard) autonomous formation flying control system. In fact,
from an operational standpoint, it is preferable to deploy a formation along suitable hovering [13] or periodic orbits [14,15]
around the target asteroid in order to initiate the asteroid gravity database and to chart a local geomorphologic map.
When multiple spacecraft operate in close proximity, a (virtual) synthetic aperture radar can be ideally assembled [16] to
improve the resolution of stereoscopic images, with a substantial reduction of the overall mission cost. In this scenario,
the consensus concept guarantees a functional module distribution among the spacecraft in the formation [17,18], in such
a way as to eliminate the inherent single point of failure of the on-board system [19,20].

So far, most of the existing literature [21,22] has been dedicated to study the spacecraft relative motion in the presence
of J2 term, i.e., the most relevant perturbation for spacecraft formations in low-Earth orbits [23,24], whereas the problem
of spacecraft relative motion around an asteroid has been rarely addressed [25, 26]. In fact, the complex weak nature of
the asteroid gravity enables only a few types of stable orbits to be obtained [27], e.g. the quasi-frozen orbits [28]. For
this reason the relative spacecraft dynamics around an asteroid is much more complex than that involving the J2 effect
only and, in this case, the differential gravity among the formation spacecraft may induce a rapid growth of their relative
distance. Especially for those long-term maintenance missions, an active control system is usually necessary to prevent
the spacecraft formation from colliding with or escaping from the asteroid, and hence, a considerable fuel consumption
is usually required.

The aim of this Note is to deal with the problem of time-optimal formation establishment around a slowly rotating
(uniform) asteroid, whose gravity is approximated as a second-degree and second-order gravitational field (SDSOGF).
Similar to the methodology used for identifying the classical J2-invariant relative orbits, two necessary conditions are
analytically derived to guarantee bounded relative motion in a SDSOGF. In particular, it is shown that when the
non-spherical harmonic coefficients of the asteroid gravity are first-order small, the resulting necessary conditions are
consistent with the recent literature results [29]. In this sense, since general boundedness conditions (not necessarily
related to the quasi-frozen case) are provided by the proposed approach, this Note extends the results of Ref. [29].
Moreover, the discussed mathematical model introduces a method to reduce the relative (secular) drift induced by the
mean eccentricity of the chief spacecraft. Based on the (analytically) obtained constraints, the problem of time-optimal
formation establishment is then emphasized via an indirect approach, in which the initial (unknown) costate vector is
calculated with a scaling technique to alleviate its sensitivity to the initial guess problem.

General Conditions for Bounded Relative Motion
Consider a spacecraft orbiting around an asteroid, which is approximated by an ellipsoid of uniform density. Assume

that the asteroid rotates about its maximum axis of inertia at a constant rate nT � n, where n is the mean motion of
the spacecraft orbit. According to Refs. [28, 30], the averaged gravitational (perturbing) potential R̄ in a SDSOGF can
be approximated as

R̄ ' µR2
0

2 ā3 (1− ē2)
3
2

[
C20

(
3

2
sin2 ī− 1

)
+ 3C22 sin2 ī cos

(
2 Ω̄R

)]
(1)
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where µ is the asteroid gravitational parameter, R0 is the normalizing distance, defined as the radius of the sphere of
equal volume, while C20 and C22 are the harmonic (Stokes) coefficients. In Eq. (1), the overbar (̄·) refers to the mean
value, and ā, ē, and ī are, respectively, the semimajor axis, eccentricity, and inclination of the spacecraft mean orbit,
while Ω̄R , Ω̄− nT t, where Ω̄ is the ascending node longitude of the spacecraft mean orbit.

Substituting Eq. (1) into the Lagrange planetary equations [31], the time-variation of the spacecraft mean orbital
elements are

dā

dt
= 0 (2)

dē

dt
= 0 (3)

dī

dt
=

3 n̄ C22

(p̄/R0)2 sin ī sin 2 Ω̄R (4)

dΩ̄R

dt
=

3 n̄ cos ī

2 (p̄/R0)2

(
C20 + 2C22 cos 2 Ω̄R

)
− nT (5)

dω̄

dt
= − 3 n̄

8 (p̄/R0)2

(
3C20 + 5C20 cos 2 ī− 2C22 cos 2 Ω̄R + 10C22 cos 2 ī cos 2 Ω̄R

)
(6)

dM̄

dt
= n̄− 3 n̄

√
1− ē2

8 (p̄/R0)2

(
C20 + 3C20 cos 2 ī− 6C22 cos 2 Ω̄R + 6C22 cos 2 ī cos 2 Ω̄R

)
(7)

where p̄ = ā
(
1− ē2

)
is the semilatus rectum, n̄ =

√
µ/ā3 is the mean motion, ω̄ is the argument of pericenter, and

M̄ is the spacecraft mean anomaly. In particular, Eqs. (2)–(7) state that ā and ē are constants of motion, whereas the
remaining elements ī, Ω̄R, ω̄ and M̄ , which are a function of

{
ā, ē, ī, Ω̄R

}
, have long-period and/or secular variations.

Consider now the relative motion of two spacecraft, referred to as chief and deputy, which fly in a SDSOGF around
a target asteroid. For convenience, denote Fx̄ , dx̄/dt, with x = {i,ΩR, ω,M}, so that the generic Fx̄ is a function of x̄
through Eqs. (4)–(7). Taking the first-order variations of Eqs. (4)–(7) yields

δ ˙̄i =
∂Fī

∂ā
δā+

∂Fī

∂ē
δē+

∂Fī

∂ī
δī+

∂Fī

∂Ω̄R
δΩ̄R (8)

δ ˙̄ΩR =
∂FΩ̄R

∂ā
δā+

∂FΩ̄R

∂ē
δē+

∂FΩ̄R

∂ī
δī+

∂FΩ̄R

∂Ω̄R
δΩ̄R (9)

δ ˙̄ω =
∂Fω̄

∂ā
δā+

∂Fω̄

∂ē
δē+

∂Fω̄

∂ī
δī+

∂Fω̄

∂Ω̄R
δΩ̄R (10)

δ ˙̄M =
∂FM̄

∂ā
δā+

∂FM̄

∂ē
δē+

∂FM̄

∂ī
δī+

∂FM̄

∂Ω̄R
δΩ̄R (11)

where the partial derivatives are reported in the Appendix for completeness. To prevent the chief and deputy from
drifting apart, it is straightforward to impose the following constraints

δ ˙̄i = 0 ∩ δ ˙̄ΩR = 0 ∩ δ ˙̄ω = 0 ∩ δ ˙̄M = 0 (12)

In the general case when the determinant of the coefficients matrix of the linear system represented by Eqs. (8)–(11)
is different from zero, Eq. (12) only allows the trivial solution δ ā = δ ē = δ ī = δ Ω̄R = 0. Thus, once the chief orbit
is prescribed, the only degrees of freedom in the formation structure are δω̄ and δM̄ . As a result, only a few planar
formations are feasible, which may be incompatible with practical mission requirements.

Alternatively, motivated by the approach for identifying the J2-invariant relative motion [21], the following constraints
may be enforced

δ ˙̄i = 0 ∩ δ ˙̄ΩR = 0 ∩ δ ˙̄ω + κ δ ˙̄M = 0 (13)

where κ is a sort of correcting (dimensionless) parameter, given by [32]

κ ,
1− ē

(1− ē− 2 ē2)
√

1− ē2
(14)

which is introduced to (further) reduce the along-track relative drift caused by the eccentricity of the chief orbit. Substi-
tuting Eqs. (8)–(11) into Eq. (13), the general boundedness conditions for spacecraft relative motion in a SDSOGF are
obtained as

δā =
det Fā

det F
δē, δī = −det Fī

det F
δē, δΩ̄R = −

det FΩ̄R

det F
δē (15)
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where the matrices {F,Fā,Fī,FΩ̄R
} are defined as

F =



∂Fī

∂ā

∂Fī

∂ī

∂Fī

∂Ω̄R

∂FΩ̄R

∂ā

∂FΩ̄R

∂ī

∂FΩ̄R

∂Ω̄R

∂Fω̄

∂ā
+ κ

∂FM̄

∂ā

∂Fω̄

∂ī
+ κ

∂FM̄

∂ī

∂Fω̄

∂Ω̄R
+ κ

∂FM̄

∂Ω̄R


(16)

Fā =



∂Fī

∂ē

∂Fī

∂ī

∂Fī

∂Ω̄R

∂FΩ̄R

∂ē

∂FΩ̄R

∂ī

∂FΩ̄R

∂Ω̄R

∂Fω̄

∂ē
+ κ

∂FM̄

∂ē

∂Fω̄

∂ī
+ κ

∂FM̄

∂ī

∂Fω̄

∂Ω̄R
+ κ

∂FM̄

∂Ω̄R


(17)

Fī =



∂Fī

∂ā

∂Fī

∂ē

∂Fī

∂Ω̄R

∂FΩ̄R

∂ā

∂FΩ̄R

∂ē

∂FΩ̄R

∂Ω̄R

∂Fω̄

∂ā
+ κ

∂FM̄

∂ā

∂Fω̄

∂ē
+ κ

∂FM̄

∂ē

∂Fω̄

∂Ω̄R
+ κ

∂FM̄

∂Ω̄R


(18)

FΩ̄R
=



∂Fī

∂ā

∂Fī

∂ī

∂Fī

∂ē

∂FΩ̄R

∂ā

∂FΩ̄R

∂ī

∂FΩ̄R

∂ē

∂Fω̄

∂ā
+ κ

∂FM̄

∂ā

∂Fω̄

∂ī
+ κ

∂FM̄

∂ī

∂Fω̄

∂ē
+ κ

∂FM̄

∂ē


(19)

Using the constraints given by Eq. (15), the secular growth of spacecraft relative distance can be suitably mitigated.
Moreover, since the motion near a certain special orbits, e.g. the frozen [33] and quasi-frozen orbits [28, 30], is linearly
stable, these typical trajectories are usually suggested for spacecraft formation flying [29, 33, 34]. Therefore, if some
flexibility is allowed in specifying the chief nominal orbit, such a degree of freedom may be used to initialize a passive
relative motion that is adequate for formation flying around the target asteroid. In what follows, the boundedness
conditions for relative motion around a quasi-frozen orbit will be recovered.

According to Ref. [28], a perfect frozen orbit does not exist in a SDSOGF, because the argument of periapsis ω̄
always exhibits a nonzero variation; see Eq. (6). However, some quasi-frozen orbits, whose value of ī and Ω̄R are both
stationary, can still be obtained. For example, taking into account Eqs. (4)–(5), when nT < 3 n̄ R2

0 (2C22 − C20) /
(
2 p̄2

)
,

the conditions dī/dt = dΩ̄R/dt = 0 give [29,30]

Ω̄R =
π

2
, ī = arccos

[
2nT p̄

2

3 n̄ R2
0 (C20 − 2C22)

]
(20)

The quasi-frozen orbits satisfying Eq. (20) are linearly stable in the
(̄
i, Ω̄R

)
phase space, despite the argument of

periapsis ω̄ has a constant secular rate; see Eq. (6). Note that, apart from the quasi-frozen orbits represented by
Eq. (20), there also exist other families of stable orbits such as the prograde equatorial orbits [28]. Moreover, it is
possible to get orbits with constant (on average) eccentricity and argument of pericentre by removing the constraint of
frozen attitude of the orbital plane with respect to the asteroid [35,36].

Consider now the formation flying of two spacecraft, where the chief moves along a nominal quasi-frozen orbit, while
the deputy flies nearby. When evaluated with the parameters given by Eq. (20), Eqs. (.1)–(.3) imply that ∂Fī/∂ā =
∂Fī/∂ē = ∂Fī/∂Ω̄R = 0. In that case, Eq. (19) provides det FΩ̄R

≡ 0, and thus Eq. (15) gives δΩ̄R = 0. Accordingly,



4 TIME-OPTIMAL FORMATION ESTABLISHMENT AROUND A SLOWLY ROTATING ASTEROID

the degenerated form of boundedness condition given by Eq. (15) can be rewritten as

δā =

∂FΩ̄R

∂ī

(
∂Fω̄

∂ē
+ κ

∂FM̄

∂ē

)
−
∂FΩ̄R

∂ē

(
∂Fω̄

∂ī
+ κ

∂FM̄

∂ī

)
∂FΩ̄R

∂ā

(
∂Fω̄

∂ī
+ κ

∂FM̄

∂ī

)
−
∂FΩ̄R

∂ī

(
∂Fω̄

∂ā
+ κ

∂FM̄

∂ā

) δē (21)

δī =

∂FΩ̄R

∂ē

(
∂Fω̄

∂ā
+ κ

∂FM̄

∂ā

)
−
∂FΩ̄R

∂ā

(
∂Fω̄

∂ē
+ κ

∂FM̄

∂ē

)
∂FΩ̄R

∂ā

(
∂Fω̄

∂ī
+ κ

∂FM̄

∂ī

)
−
∂FΩ̄R

∂ī

(
∂Fω̄

∂ā
+ κ

∂FM̄

∂ā

) δē (22)

In particular, if the eccentricity of the chief orbit is sufficiently small, it is reasonable to neglect the terms including
ē2 in Eqs. (.1)–(.16), when substituting them into Eqs. (21)–(22). The result is

δā =

[
7C20

(
1 + 5 cos2 ī

)
− 3C22

(
7 + 33 cos2 ī

)]
ā ē

2 (ā/R0)2 + 7C20 (1 + 4 cos2 ī)− 14C22 (3 + 4 cos2 ī)
δē (23)

δī =

[
16 (ā/R0)2 + 7C20

(
1− 3 cos2 ī

)
− 42C22

(
1− cos2 ī

)]
ē[

4 (ā/R0)2 + 14C20 (1 + 4 cos2 ī)− 28C22 (3 + 4 cos2 ī)
]

tan ī
δē (24)

Note that, when the harmonic coefficients {C20, C22} are first-order small, Eqs. (23)–(24) coincide with the results
discussed in Ref. [29], which are obtained with a perturbed Hamiltonian via Delaunay elements for quasi-frozen orbits.
Moreover, if the nominal orbit is nearly circular, the conditions given by Eqs. (23)–(24) are consistent with the results
of Ref. [29]. Finally, for the case C22 = 0 (recall that C20 = −J2), Eqs. (23)–(24) reduce to the well known J2-invariant
conditions [21,32].

Having analyzed the bounded relative motion conditions necessary for spacecraft formation flying in a SDSOGF, a
natural question that now arises is how to establish an optimal (loose) formation with a given performance index. The
next section will analyze such a problem in terms of minimum time necessary for constituting a given formation structure.

Time-Optimal Formation Establishment

Consider a spacecraft of mass m, equipped with a low-continuous-thrust propulsion system of constant specific impulse
Isp and a thrust magnitude variable in the range T ∈ [0, Tmax]. To avoid any singularity, the spacecraft trajectory is

studied in terms of modified equinoctial orbital elements (MEOEs) œ , {p, f, g, h, k, L} [37, 38], where

p = a
(
1− e2) (25)

f = e cos (ΩR + ω) (26)

g = e sin (ΩR + ω) (27)

h = cos ΩR tan
i

2
(28)

k = sin ΩR tan
i

2
(29)

L = ΩR + ω + ν (30)

in which ν is the true anomaly. Since the boundedness conditions are defined in the mean-element space, it is necessary to
formulate the optimal problem in terms of mean MEOEs. To this end, let œ̄ = ξ (œ) denote the analytical transformation
from osculating to mean MEOEs. Paralleling the procedure discussed in Ref. [39], the spacecraft dynamics in a SDSOGF
can be described as

˙̄œ = A (œ̄) +
Tmax τ

m

∂ξ

∂œ
B (œ) α̂ (31)

ṁ = −Tmax τ

Isp g0
(32)

with
A (œ̄) = [0, A2, A3, A4, A5, A6]T (33)

while the control influence matrix B is defined as

B (œ) =


0 B12 0

B21 B22 B23

B31 B32 B33

0 0 B43

0 0 B53

0 0 B63

 (34)



TIME-OPTIMAL FORMATION ESTABLISHMENT AROUND A SLOWLY ROTATING ASTEROID 5

where g0 is the standard gravity, τ , T/Tmax ∈ [0, 1] is a dimensionless parameter that models the engine throttle
level, and α̂ is the thrust unit vector. The detailed expressions of entries of A (œ̄) and B (œ), which can be analytically
evaluated using the Lagrange planetary equations [31], are rather involved and are not reported here for the sake of
brevity.

According to Ref. [39], the influence of the propulsive acceleration on mean elements can be approximated as that
on the corresponding osculating elements for the low-thrust case, because the induced error in the relative dynamics is
negligible [39]. Therefore, it is reasonable to assume ∂ξ/∂œ ' I6 and B (œ̄) ' B (œ), where I6 ∈ R6×6 is an identity
matrix. Accordingly, Eq. (31) can be further simplified as

˙̄œ = A (œ̄) +
Tmax τ

m
B (œ̄) α̂ (35)

where B (œ̄) is obtained from Eq. (34) by simply replacing the generic osculating MEOEs with the corresponding mean
MEOEs.

Assume the chief and deputy are both initially deployed along a nominal orbit at time t0 = 0, with œ̄C (t0) =
œ̄D (t0) = œ̄0. The chief is subjected to the natural force only, whereas the deputy with active control is driven toward
its design orbit so as to constitute the formation structure. According to Eq. (15) (or to Eqs. (21)–(22)) for the general
(or the frozen-type) case, a given value of δēf determines the required constraints on δāf , δīf , and δΩ̄Rf . In terms of
mean MEOEs, the final states of the deputy satisfying the bounded relative motion conditions are

p̄ (tf ) = p̄f , f̄2 (tf ) + ḡ2 (tf ) = f̄2
f + ḡ2

f , h̄ (tf ) = h̄f , k̄ (tf ) = k̄f (36)

Note that the deputy’s final true longitude L̄f and argument of pericenter ω̄f are usually related to the specific mission
requirement. In the following analysis, a loose formation is assumed so that a strict formation geometry is not required,
and L̄f and ω̄f are both left free.

The problem of spacecraft formation establishment is formulated within an optimal framework, by looking for the
optimal control law τ = τ? (t) and α̂ = α̂? (t) that minimizes the time interval ∆t = tf − t0 ≡ tf with the previously
discussed boundedness conditions. The performance index to be minimized is therefore

J , λ0 tf (37)

where the scaling factor λ0 ∈ R+ is introduced to restrict the costate vector to lie on a unit hypersphere, useful for
relieving its inherent sensitivity to the initial guess [40]. From Eqs. (32) and (35), the Hamiltonian function H can be
written as

H = A (œ̄) · λœ̄ +
Tmax τ

m
B (œ̄) α̂ · λœ̄ −

λm Tmax τ

Isp g0
+ λ0 (38)

where λm is the mass costate, and λœ̄ is the vector adjoint to œ̄, defined as

λœ̄ ,
[
λp̄, λf̄ , λḡ, λh̄, λk̄, λL̄

]T
(39)

whose time derivatives are given by the Euler-Lagrange equations

λ̇œ̄ = −∂H
∂œ̄

= −∂ [A (œ̄) · λœ̄ ]

∂œ̄
− Tmax τ

m

∂ (ηœ̄ · α̂)

∂œ̄
(40)

λ̇m = −∂H
∂m

=
Tmax τ

m2
ηœ̄ · α̂ (41)

where

ηœ̄ , BT (œ̄) λœ̄ =

 λf̄ B21 + λḡ B31

λp̄ B12 + λf̄ B22 + λḡ B32

λf̄ B23 + λḡ B33 + λh̄ B43 + λk̄ B53 + λL̄ B63

 (42)

According to the Pontryagin’s maximum principle, the optimal control law {τ?, α̂?}, to be selected within the feasible
control domain, is designed such that the Hamiltonian H given by Eq. (38) is an absolute minimum at any time, viz.

α̂? = − ηœ̄

‖ηœ̄‖
(43)

τ? =
1− sign (S)

2
(44)

where sign (2) is the signum function, and S is a switching function, defined as

S = −Isp g0 ‖ηœ̄‖
m

− λm (45)

Note that the singular case in which S = 0 (that is, when λœ̄ = 0), may take place at some isolated points only, and
therefore, is not considered in this work. Taking into account Eqs. (41) and (43), the mass costate is λm > 0, which
results in S < 0 and τ? ≡ 1 during the transfer; see Eq. (44).

The time-optimal trajectory of the deputy is the solution to a two-point boundary-value problem (TPBVP) constituted
by 14 first-order differential equations, that is, the equations of motion (32) and (35), and the Euler-Lagrange equations
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(40)-(41). The (seven) initial boundary conditions are œ̄D (t0) = œ̄0 and mD (t0) = m0, while the (four) final boundary
conditions are given by Eqs. (36). The TPBVP is completed by the transversality conditions [41], that is

λm (tf ) = 0, λf̄ (tf ) ḡf − λḡ (tf ) f̄f = 0, λL̄ (tf ) = 0, H (tf ) = 0 (46)

where tf is an output of the optimization process. The TPBVP is solved with the procedure proposed by Ref. [40], in
which a scaling technique of the initial costate vector (that is, a suitable choice of λ0) is used to improve the robustness
and efficiency of the numerical procedure.

Numerical Simulations
Consider the (slowly rotating) asteroid 4179 Toutatis, whose main physical parameters [29] are reassumed in Table 1.

Even though that asteroid actually rotates about a non-principal axis of inertia, it is chosen here as a target object for
the numerical simulations to make a meaningful comparison with the literature results [29, 30]. The chief spacecraft is
assumed to cover a quasi-frozen orbit, of which the feasible region is shown in Fig. 1 as a function of {ā0, ē0}. The deputy
spacecraft, propelled by a typical cold-gas thruster, is assumed to be a microsatellite with an initial mass m0 = 50 kg, a
maximum thrust magnitude Tmax = 70 mN, and a specific impulse Isp = 60 s.

Table 1 Physical parameters of asteroid 4179 Toutatis [29].

Parameter Value

µ 1.79× 103 m3/s2

nT 1.34× 10−5 rad/s
C20 −0.313

C22 0.12

R0 1.225× 103 m

e0

a
0

0 0.1 0.2 0.3 0.4 0.5
3600

3800

4000

4200

4400

4600

4800

forbidden region

feasible region

Figure 1 Feasible region for a quasi-frozen orbit around asteroid 4179 Toutatis.

The initial mean orbital elements of the two spacecraft [29] are selected as ā0 = 3.8 km, ē0 = 0.1, ī0 = 147.48 deg,
Ω̄R0 = 90 deg, and ω̄0 = ν0 = 0 deg. As stated before, the condition δΩ̄Rf = 0 must be satisfied to guarantee bounded
relative motion. The desired relative eccentricity is chosen equal to δēf = 0.01, and so the correcting parameter
is κ = 1.028; see Eq. (14). The values of δāf and δīf are computed from Eqs. (21)–(22) as δāf = −83.1 m and
δīf = −7.2 deg, whereas δω̄f and δνf are left free.

For convenience, introduce the body-fixed (rotating) reference frame T (O; x̂, ŷ, ẑ), with origin O coincident with the
asteroid center-of-mass, and axes {x̂, ŷ, ẑ} aligned with the minimum, intermediate, and maximum axis of inertia of the
asteroid, respectively. The mean orbital elements of the deputy, obtained with a time-optimal control law, are plotted in
Fig. 2, while the corresponding components of the thrust unit vector α̂ in frame T are reported in Fig. 3. In this case, a
minimum time tf = 2.85 minutes is required to complete the (loose) formation structure with bounded relative motion.

To compare the results with those obtained using the boundedness conditions discussed in Ref. [29], the time history
of the relative distance ρ = ‖ρ‖ between the two spacecraft is illustrated in Fig. 4(a) for a time interval of 30 hours. In
addition, Fig. 4(b) shows the minimum time tf necessary for a loose formation to be constituted as a function of the
initial mean eccentricity ē0 ∈ [0.01, 0.1]. In particular, Fig. 4 clearly shows that the proposed approach guarantees a
formation flying with bounded relative distance, and has a better performance in terms of required relative drift and
time when compared to the approach proposed in Ref. [29].

Let r , [rx, ry, rz]T denote the position vector of the deputy spacecraft along three coordinate axes in frame T ,

and let ρ , [ρx, ρy, ρz]T be the relative position vector of the deputy with respect to the chief spacecraft. Figure 5(a)
illustrates the time-optimal trajectory necessary to establish bounded relative motion for a maximum thrust value of
Tmax = 70 mN, while Fig. 5(b) shows the relative trajectories in the (ρy, ρz) plane when Tmax = {10, 40, 70} mN.
The minimum flight time tf is shown in Fig. 6(a) as a function of ē0 ∈ [0.01, 0.1] and Tmax ∈ [10, 100] mN, while
the corresponding mass variation ∆m = ∆m (ē0, Tmax) is reported in Fig. 6(b). In particular, Fig. 6 suggests that an
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Figure 2 Time histories of mean orbital elements of the deputy spacecraft during the transfer.
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Figure 3 Thrust unit vector components in T of the deputy spacecraft during the transfer.

initial nominal quasi-frozen orbit with a small eccentricity is preferable, as it requires a shorter flight time and a smaller
propellant mass.

Conclusions
Using the mean orbital elements, we have analytically derived the necessary conditions that guarantee bounded

spacecraft relative motion around a slowly rotating asteroid, which is schematized as an ellipsoid with uniform density.
These conditions are useful for alleviating the mutual drift of the formation flying spacecraft. Based on these constraints,
the problem of formation establishment has been addressed within a time-optimal framework by using an indirect
approach. The proposed method provides an important reference for the design of a loose formation in the vicinity of a
slowly rotating asteroid of regular shape, and represents the starting point for the project of a cluster flight comprised
of multiple spacecraft.

It is worth mentioning that the proposed methodology relies on an approximate second-degree and second-order
gravitational field, which inevitably gives rise to inherent errors in a real mission scenario. In addition, when dealing
with a more accurate irregular gravity field, an analytical approach might be no longer feasible. In that case, numerical



8 TIME-OPTIMAL FORMATION ESTABLISHMENT AROUND A SLOWLY ROTATING ASTEROID

0 5 10 15 20 25 30
0

300

600

900

1200

1500

1800
Baresi et al. (2016)

This Note

a) Relative distance.

0.01 0.04 0.07 0.1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

This Note

Baresi et al. (2016)

b) Minimum required time.
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Figure 5 Time-optimal trajectories for formation establishment.

(possibly time-consuming) techniques, such as that discussed in the recent literature by Baresi et al., represent an essential
tool to analyze the actual spacecraft trajectory.
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Appendix: Partial Derivatives in Eqs. (8)–(11)

The partial derivatives of
{
Fī,FΩ̄R

,Fω̄,FM̄

}
with respect to

{
ā, ē, ī, Ω̄R

}
in Eqs. (8)–(11) are
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∂ā
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2
C22 R
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∂ē
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∂ē
= −3

2
R2

0 µ
1
2 ā−

7
2
(
1− ē2)−3
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1− ē2)−2
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∂ā
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