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Abstract In this paper we consider fully discrete approximations of abstract evolution equations,
by means of a quasi non-conforming spatial approximation and finite differences in time (Rothe–
Galerkin method). The main result is the convergence of the discrete solutions to a weak solution
of the continuous problem. Hence, the result can be interpreted either as a justification of the
numerical method, or as an alternative way of constructing weak solutions.

We set the problem in the very general and abstract setting of pseudo-monotone operators,
which allows for a unified treatment of several evolution problems. The examples –which fit into our
setting and which motivated our research– are problems describing the motion of incompressible
fluids, since the quasi non-conforming approximation allows to handle problems with prescribed
divergence.

Our abstract results for pseudo-monotone operators allow to show convergence just by verifying
a few natural assumptions on the operator time-by-time and on the discretization spaces. Hence,
applications and extensions to several other evolution problems can be easily performed. The results
of some numerical experiments are reported in the final section.
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1 Introduction

We consider the numerical approximation of an abstract evolution equation1

du

dt
(t) +A(t)(u(t)) = f(t) in V ∗,

u(0) = u0 in H,
(1.1)

by means of a quasi non-conforming Rothe–Galerkin scheme. Here, V ↪→H ∼= H∗↪→V ∗ is a given
evolution triple, I := (0, T ) a finite time horizon, u0 ∈ H an initial value, f ∈ Lp′(I, V ∗), p ∈ (1,∞),
a right-hand side and A(t) : V → V ∗, t ∈ I, a family of operators.

In order to make (1.1) accessible to non-conforming approximation methods, we will additionally
require that there exists a further evolution triple X↪→Y ∼= Y ∗↪→X∗, such that V ⊆ X with
‖·‖V = ‖·‖X on V and H ⊆ Y with (·, ·)H = (·, ·)Y in H, and extensions Â(t) : X → X∗, t ∈ I, and
f̂ ∈ Lp′(I,X∗) of {A(t)}t∈I and f , resp., i.e., 〈Â(t)v, w〉X = 〈A(t)v, w〉V and 〈f̂(t), v〉X = 〈f(t), v〉V
for all v, w ∈ V and almost every t ∈ I. For sake of readability we set A(t) := Â(t) and f(t) := f̂(t)
for almost every t ∈ I.

Recently, the existence theory for abstract evolution problems with Bochner pseudo-monotone
operators in [35], based on the convergence of a Galerkin approximation, was extended in [7] to the
convergence proof of a fully discrete Rothe–Galerkin approximation. However, the result in [7] is not
applicable to the treatment of problems describing the flow of incompressible fluids. The main aim
of this paper is develop an abstract framework which shows that a fully discrete Rothe–Galerkin
approximation converges also for such problems (cf. Theorem 6.16). Even though the framework
is rather abstract it is easily applicable to many problems, since we show that it is enough to
check a few easily verifiable conditions (cf. conditions (A.1)–(A.4) in Proposition 4.6 and conditions
(QNC.1)–(QNC.2) in Definition 3.1).

A prototypical example for the flow of incompressible non-Newtonian fluids are the following
equations describing the unsteady motion of incompressible shear-dependent fluids

∂tu− div
(
(κ+ |Du|)p−2Du

)
+ div(u⊗ u) +∇q = f in I ×Ω,

divu = 0 in I ×Ω,
u = 0 on I × ∂Ω,

u(0) = u0 in Ω.

(1.2)

Here, Ω ⊆ Rd, d ≥ 2, is a domain, I = (0, T ) a time interval, and κ ≥ 0 and p ∈ (1,∞) are
material parameters of the shear-dependent fluid. Moreover, u : I × Ω → Rd denotes the velocity,
f : I ×Ω → Rd is a given external force, u0 : Ω → Rd is an initial condition, q : I ×Ω → R is the
pressure and Du := 1

2 (∇u+∇u>) denotes the symmetric gradient.
We define for p > 3d+2

d+2 the function spaces X := W 1,p
0 (Ω)d, Y := L2(Ω)d, V := W 1,p

0,div(Ω) as
the closure of V := {v ∈ C∞0 (Ω)d

∣∣ div v ≡ 0} in X, H := L2
div(Ω) as the closure of V in Y , and

the operators S,B : X → X∗ for all u, v ∈ X via

〈Su, v〉X :=
ˆ
Ω

(κ+ |Du|)p−2Du : Dv dx and 〈Bu, v〉X := −
ˆ
Ω

u⊗ u : ∇v dx. (1.3)

1 If not specified differently, we will denote in boldface elements of Bochner spaces (as the solution u(t) and the
external source f(t)), to highlight the difference with elements belonging to standard Banach spaces, denoted by
usual symbols.
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Then, (1.2) for u0 ∈ H and f ∈ Lp′(I,X∗) can be re-written as the abstract evolution equation

du

dt
(t) + S(u(t)) +B(u(t)) = f(t) in V ∗,

u(0) = u0 in H.
(1.4)

Typical fully discrete approximations of (1.4) are often based on appropriate finite element
spaces (Vn)n∈N. As the construction of finite element spaces which meet the divergence constraint
exactly, i.e., satisfy Vn ⊆ V for all n ∈ N, highly restricts the flexibility of the approximation, one
usually works with finite element spaces satisfying a discrete divergence constraint only. Thus, we
have Vn 6⊆ V , which is the reason that the theory in [7] is not applicable. However, the spaces Vn
often satisfy Vn ⊆ X, which allows us to develop a convergence theory for such a setting. Note that
this problem is treated from a different point of view, namely the theory of maximal monotone
graphs, in the recent contributions [54] and [51].

1.1 The numerical scheme

A quasi non-conforming Rothe–Galerkin approximation of the initial value problem (1.1) usually
consists of two parts:

The first part is a spatial discretization, often called Galerkin approximation, which consists
in the approximation of V by a sequence of closed subspaces (Vn)n∈N of X. We emphasize that
we do not require (Vn)n∈N to be a sequence of subspaces of V , which motivates the prefix non-
conforming. Hence, we do not have Vn ⊆ V and Vn ↗ V (approximation from below). The prefix
quasi2 indicates that the subspaces Vn are for all n ∈ N equipped with the norm of the space X. In
this case we have, under appropriate assumptions, that Vn ↘ V , i.e., we have an approximation of
the space V from above. The assumption that the subspaces Vn are equipped with the norm of the
space X (and not with a norm depending on n), together with the assumption that ‖ · ‖X = ‖ · ‖V
on V reflects the fact that the spaces Vn and X have the same „regularity“. This excludes spaces Vn
resulting from spatial discontinuous Galerkin approximations (cf. [18]). For a spatial discontinuous
Galerkin approximations in the above example one would choose X = L2(Ω)d and Vn ⊆ X as a
subspace3 of Pk(Thn)d satisfying a discrete divergence constraint and being equipped with the norm
of the broken Sobolev spaceW 1,p

0,div,DG(Thn)d, where Thn is an appropriate triangulation of Ω. These
choices violate both our assumptions and are thus not included in our treatment.

The second part is a temporal discretization, also called Rothe scheme, which consists in the
approximation of the unsteady problem (1.1) by a sequence of piece-wise constant, steady problems.
This is achieved by replacing the time derivative d

dt by so-called backwards difference quotients.
These are for a given step-size τ := T

K > 0, where K ∈ N, and a given finite sequence (uk)k=0,...,K ⊆
X defined via

dτu
k := 1

τ
(uk − uk−1) in X for all k = 1, . . . ,K.

Moreover, the operator family A(t) : X → X∗, t ∈ I, and the right-hand side f ∈ Lp
′(I,X∗)

are discretized by means of the Clemeńt 0-order quasi interpolant. This means that for a given
2 Observe that the subspaces (Vn)n∈N are spatially conforming in X.
3 Pk(Th), k ∈ N0, denotes the space of possibly discontinuous scalar functions, which are polynomials of degree at

most m on each simplex K ∈ Th.
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step-size τ = T
K > 0, where K ∈ N, we replace them piece-wise by their local temporal means, i.e.,

by [A]τk : X → X∗, k = 1, . . . ,K, and ([f ]τk)k=1,...,K ⊆ X∗, resp., for every k = 1, . . . ,K and u ∈ X
given via

[A]τku :=
 τk

τ(k−1)
A(t)u dt and [f ]τk :=

 τk

τ(k−1)
f(t) dt in X∗.

Altogether, using these two levels of approximation, we formulate the following fully discrete or
Rothe–Galerkin scheme of the evolution problem (1.1):

Algorithm 1.5 (quasi non-conforming Rothe–Galerkin scheme) For given K,n ∈ N and
u0
n ∈ Vn the sequence of iterates (ukn)k=0,...,K ⊆ Vn is given solving the implicit scheme for τ = T

K
and k = 1, . . . ,K

(dτukn, vn)Y + 〈[A]τkukn, vn〉X = 〈[f ]τk, vn〉X for all vn ∈ Vn. (1.6)

Traditionally, the verification of the convergence of a Rothe–Galerkin scheme like (1.6) to a weak
solution of the evolution equation (1.1) causes a certain effort. In the case that quasi non-conforming
approximations are used in (1.6), to the best of the authors’ knowledge, there are no abstract results
guaranteeing the weak convergence of such a scheme. Therefore, the purposes of this article are (i)
to give general and easily verifiable assumptions on both the operator family A(t) : X → X∗, t ∈ I,
and the sequence of approximative spaces (Vn)n∈N which provide both the existence of iterates
(ukn)k=0,...,K ⊆ Vn, solving (1.6), for a sufficiently small step-size τ = T

K ∈ (0, τ0), where τ0 > 0, and
K,n ∈ N; and (ii) to prove the stability of the scheme, i.e., the boundedness of the piece-wise con-
stant interpolants uτn ∈ L∞(I, Vn), K,n ∈ N with τ = T

K , in Lp(I,X)∩L∞(I, Y ); and finally (iii) to
show the weak convergence of a diagonal subsequence (uτnmn)n∈N ⊆ L∞(I,X), where τn = T

Kn
and

Kn,mn →∞ (n→∞), towards a weak solution of problem (1.1). All these results are formulated
exactly and proved in Section 6 (cf. Proposition 6.6, Proposition 6.8 and the main Theorem 6.16).

Surprisingly, there are only few contributions with a rigorous convergence analysis of fully dis-
crete Rothe–Galerkin schemes towards weak solutions. Most authors consider only semi-discrete
schemes, i.e., either a pure Rothe scheme (cf. [44]) or a pure Galerkin scheme (cf. [28], [56], [50],
[35]). Much more results are concerned with explicit convergence rates for more regular data and
more regular solutions (cf. [3], [45], [39], [26], [19], [42], [15], [6], [25], [5], [12]). Even in the conforming
case, that is if the sequence (Vn)n∈N satisfies the following two natural conditions:4

(C.1) (Vn)n∈N is an increasing sequence of closed subspaces of V , i.e., Vn⊆Vn+1⊆ V for all n∈N.
(C.2)

⋃
n∈N Vn is dense in V .

there are very few results concerning the convergence analysis of a fully discrete Rothe–Galerkin
scheme. We are only aware of the early contribution [1] which treats the porous media equation
and [7] dealing with a setting similar to the one proposed in the present paper.

Let us shortly explain the strategy used in [35] and [7], since it will be extended in the present
paper to handle also a quasi non-conforming setting. Using the properties of the operator family
A(t) : V → V ∗, t ∈ I (cf. [35, condition (C.1)–(C.4)]) and the properties of the Rothe–Galerkin
scheme (1.6) one can show that the iterates (ukn)k=0,...,K ⊆ Vn, K,n ∈ N, solving (1.6), generate
for sufficiently small τ = T

K a family of piece-wise constant interpolants uτn for which the following
holds:

4 If (C.1) and (C.2) are satisfied one can choose X = V in the above setting.
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There exists a sequence (un)n∈N := (uτnmn)n∈N and an element u ∈ Lp(I, V ) ∩ L∞(I,H), such
that

un ⇀ u in Lp(I, V ) (n→∞),

un
∗
⇁ u in L∞(I,H) (n→∞),

un(t) ⇀ u(t) in H for a.e. t ∈ I (n→∞),
lim sup
n→∞

〈Aun,un − u〉Lp(I,V ) ≤ 0,

where A : Lp(I, V ) ∩ L∞(I,H) → (Lp(I, V ))∗ denotes the induced operator, which is for every
u ∈ Lp(I, V ) ∩ L∞(I,H) and v ∈ Lp(I, V ) given via 〈Au,v〉Lp(I,V ) :=

´
I
〈A(t)(u(t)),v(t)〉V dt.

Using these properties and the fact that the induced operator A is Bochner pseudo-monotone one
can conclude that Aun ⇀ Au in (Lp(I, V ))∗ (n → ∞), and therefore the weak convergence of
the scheme (1.6). In this argumentation one has used on several places the fact that the sequence
(Vn)n∈N satisfies the conditions (C.1) and (C.2).

Without the conditions (C.1) and (C.2), i.e., V 6= X and Vn 6⊆ V for all n ∈ N one could
hope to prove the above properties with V and H replaced by X and Y , respectively. Even if
this works it is not clear whether the weak limit lies in the right function space, i.e., whether
u ∈ Lp(I, V ) ∩ L∞(I,H). To guarantee that this procedure works in an appropriate sense, we will
assume that (Vn)n∈N satisfies the assumptions (QNC.1) and (QNC.2) from Definition 3.1. Moreover,
we have to adapt the notion of Bochner pseudo-monotone operators to the quasi non-conforming
setting.

1.2 The example of the p-Navier-Stokes equations

Let us indicate that the prototypical example (1.2) fits into the abstract setting of the previous
section. Full details will be given in Section 7 where two different problems from the field of incom-
pressible fluid flows are treated. In fact, one of these examples contains problem (1.2) as a special
case.

Let Z := Lp
′(Ω). For a given family of shape regular triangulations (cf. [13]) (Th)h>0 of a

polygonal Lipschitz domain Ω and for given m, ` ∈ N0, we denote by Xh ⊂ Pm(Th)d ∩X, equipped
with the X-norm, and Zh ⊂ P`(Th) ∩ Z, equipped with the Z-norm, appropriate finite element
spaces. In addition, we define for h > 0 the discretely divergence free finite element spaces

Vh := {vh ∈ Xh

∣∣ 〈div vh, ηh〉Z = 0 for all ηh ∈ Zh}.

For a null sequence5 (hn)n∈N ⊆ (0,∞) and Vn := Vhn , n ∈ N, we formulate the following algorithm
of a space-time discrete approximation of (1.2):

Algorithm 1.7 For given K,n ∈ N and u0
n ∈ Vn the sequence of iterates (ukn)k=0,...,K ⊆ Vn is

given solving the implicit Rothe–Galerkin scheme for τ = T
K and k = 1, . . . ,K

(dτukn, vn)Y + 〈[S]ukn, vn〉X + 〈B̂ukn, vn〉X = 〈[f ]τk, vn〉X for all vn ∈ Vn, (1.8)

where B̂ : X → X∗ is given via 〈B̂u, v〉X := 1
2
´
Ω
v ⊗ u : ∇u dx− 1

2
´
Ω
u⊗ u : ∇v dx for all u, v ∈ X.

5 A null sequence is a sequence converging to zero.
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The operator B̂ can be viewed as a symmetrized extension of B, as 〈B̂u, v〉X = 〈Bu, v〉X for all
u, v ∈ V , which in contrast to B fulfils 〈B̂u, u〉X = 0 for all u ∈ X (and not only for all u ∈ V ),
and therefore guarantees the stability of the scheme (1.8).

The sequence (Vn)n∈N violates the conditions (C.1) and (C.2). However, the assumptions (QNC.1)
and (QNC.2) on the discrete spaces (Vn)n∈N are often fulfilled under mild assumptions, e.g., if
one assumes that P1(Th)d ⊂ Xh, R ⊂ Zh, and that there exist linear interpolation operators
Πdiv
h : X → Xh and ΠZh : Z → Zh which are locally W 1,1-stable and locally L1-stable, resp.,

and that Πdiv
h preserves the divergence in Z∗h (cf. Section 7 or [9], [54] for more details).

Plan of the paper: In Section 2 we recall some basic definitions and results concerning the
theory of pseudo-monotone operators and evolution equations. In Section 3 we introduce the concept
of quasi non-conforming approximations. In Section 4 we introduce quasi non-conforming Bochner
pseudo-monotonicity, and give sufficient and easily verifiable conditions on families of operators
such that the corresponding induced operator satisfies this concept. In Section 5 we recall some
basic facts about the Rothe scheme. In Section 6 we formulate the scheme of a fully discrete, quasi
non-conforming approximation of an evolution equation, prove that this scheme is well-defined,
i.e., the existence of iterates, that the corresponding family of piece-wise constant interpolants
satisfies certain a-priori estimates. Moreover, we formulate and prove the main result of this paper,
Theorem 6.16, which shows the existence of a diagonal subsequence which weakly converges to a
weak solution of the corresponding evolution equation. In Section 7 we apply this approximation
scheme to two problems describing incompressible non-Newtonian fluid flow. In Section 8 we present
some numerical experiments for one of the problems.

2 Preliminaries

2.1 Operators

For a Banach space X with norm ‖ · ‖X we denote by X∗ its dual space equipped with the norm
‖ · ‖X∗ . The duality pairing is denoted by 〈·, ·〉X . All occurring Banach spaces are assumed to be
real.

Definition 2.1 Let X and Y be Banach spaces. The operator A : X → Y is said to be

(i) bounded, if for all bounded subsets M ⊆ X the image A(M) ⊆ Y is bounded.
(ii) pseudo-monotone, if Y = X∗, and for (un)n∈N ⊆ X from un ⇀ u in X (n → ∞) and

lim supn→∞ 〈Aun, un − u〉X ≤ 0, it follows 〈Au, u−v〉X ≤ lim infn→∞ 〈Aun, un − v〉X for every
v ∈ X.

(iii) coercive, if Y = X∗ and lim‖u‖X→∞
〈Au,u〉X
‖u‖X =∞.

Proposition 2.2 If X is a reflexive Banach space and A : X → X∗ a bounded, pseudo-monotone,
and coercive operator, then R(A) = X∗.

Proof See [56, Corollary 32.26]. ut

Lemma 2.3 If X is a reflexive Banach space and A : X → X∗ a locally bounded and pseudo-
monotone operator, then A is demi-continuous.

Proof See [56, Proposition 27.7]. ut
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2.2 Evolution equations

We call (V,H, j) an evolution triple, if V is a reflexive Banach space, H is a Hilbert space
and j : V → H is a dense embedding, i.e., j is a linear, injective and bounded operator with
j(V )

‖·‖H = H. Let R : H → H∗ be the Riesz isomorphism with respect to (·, ·)H . As j is a dense
embedding the adjoint j∗ : H∗ → V ∗ and therefore e := j∗Rj : V → V ∗ are embeddings as well.
We call e the canonical embedding of (V,H, j). Note that

〈ev, w〉V = (jv, jw)H for all v, w ∈ V.

For an evolution triple (V,H, j), I := (0, T ), T < ∞, and 1 ≤ p ≤ q ≤ ∞ we define operators
j : Lp(I, V )→ Lp(I,H) : u → ju and j∗ : Lq′(I,H∗) → Lq

′(I, V ∗) : v → j∗v, where ju and j∗v
are for every u ∈ Lp(I, V ) and v ∈ Lq′(I,H∗) given via

(ju)(t) := j(u(t)) in H for a.e. t ∈ I,
(j∗v)(t) := j∗(v(t)) in V ∗ for a.e. t ∈ I.

It is shown in [35, Proposition 2.19] that both j and j∗ are embeddings, which we call induced
embeddings. Moreover, we define the intersection space

Lp(I, V ) ∩j L
q(I,H) := {u ∈ Lp(I, V )

∣∣ ju ∈ Lq(I,H)},

which forms a Banach space equipped with the canonical sum norm

‖ · ‖Lp(I,V )∩jLq(I,H) := ‖ · ‖Lp(I,V ) + ‖j(·)‖Lq(I,H).

If 1 < p ≤ q < ∞, then Lp(I, V ) ∩j L
q(I,H) is additionally reflexive. Furthermore, for each

u∗ ∈ (Lp(I, V )∩j L
q(I,H))∗ there exist functions g ∈ Lp′(I, V ∗) and h ∈ Lq′(I,H∗), such that for

every u ∈ Lp(I, V ) ∩j L
q(I,H) it holds

〈u∗,u〉Lp(I,V )∩jLq(I,H) =
ˆ
I

〈g(t) + (j∗h)(t),u(t)〉V dt, (2.4)

and ‖u∗‖(Lp(I,V )∩jLq(I,H))∗ := ‖g‖Lp′ (I,V ∗) + ‖h‖Lq′ (I,H∗), i.e., (Lp(I, V )∩j L
q(I,H))∗ is isometri-

cally isomorphic to the sum Lp
′(I, V ∗) + j∗(Lq′(I,H∗)) (cf. [28, Kapitel I, Bemerkung 5.13 & Satz

5.13]), which is a Banach space equipped with the norm

‖f‖Lp′ (I,V ∗)+j∗(Lq′ (I,H∗)) := min
g∈Lp

′
(I,V ∗)

h∈Lq
′
(I,H∗)

f=g+j∗h

‖g‖Lp′ (I,V ∗) + ‖h‖Lq′ (I,H∗).

Definition 2.5 (Generalized time derivative) Let (V,H, j) be an evolution triple, I := (0, T ),
T < ∞, and 1 < p ≤ q < ∞. A function u ∈ Lp(I, V ) ∩j L

q(I,H) possesses a generalized time
derivative with respect to the canonical embedding e of (V,H, j) if there exists a function
u∗ ∈ Lp′(I, V ∗) + j∗(Lq′(I,H∗)) such that for all v ∈ V and ϕ ∈ C∞0 (I)

−
ˆ
I

(j(u(s)), jv)Hϕ′(s) ds =
ˆ
I

〈u∗(s), v〉V ϕ(s) ds.
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As this function u∗ ∈ Lp′(I, V ∗) + j∗(Lq′(I,H∗)) is unique (cf. [55, Proposition 23.18]), deu
dt := u∗

is well-defined. By

W1,p,q
e (I, V,H) :=

{
u ∈ Lp(I, V ) ∩j L

q(I,H)
∣∣∣ ∃ deu

dt
∈ Lp

′
(I, V ∗) + j∗(Lq

′
(I,H∗))

}
we denote the Bochner-Sobolev space with respect to e.

Proposition 2.6 (Formula of integration by parts) Let (V,H, j) be an evolution triple, I :=
(0, T ), T <∞, and 1 < p ≤ q <∞. Then, it holds:

(i) The space W1,p,q
e (I, V,H) forms a Banach space equipped with the norm

‖ · ‖W1,p,q
e (I,V,H) := ‖ · ‖Lp(I,V )∩jLq(I,H) +

∥∥∥∥de ·dt
∥∥∥∥
Lp′ (I,V ∗)+j∗(Lq′ (I,H∗))

.

(ii) Given u ∈ W1,p,q
e (I, V,H) the function ju ∈ Lq(I,H) possesses a unique representation

jcu ∈ C0(I,H), and the resulting mapping jc : W1,p,q
e (I, V,H)→ C0(I,H) is an embedding.

(iii) Generalized integration by parts formula: It holds
ˆ t

t′

〈deu
dt

(s),v(s)
〉
V
ds = [((jcu)(s), (jcv)(s))H ]s=t

s=t′ −
ˆ t

t′

〈dev
dt

(s),u(s)
〉
V
ds,

for all u,v ∈W1,p,q
e (I, V,H) and t, t′ ∈ I with t′ ≤ t.

Proof See [28, Kapitel IV, Satz 1.16 & Satz 1.17]. ut

For an evolution triple (V,H, j), I := (0, T ), T < ∞, and 1 < p ≤ q < ∞ we call an operator
A : Lp(I, V )∩jL

q(I,H)→ (Lp(I, V )∩jL
q(I,H))∗ induced by a family of operatorsA(t) : V → V ∗,

t ∈ I, if for every u,v ∈ Lp(I, V ) ∩j L
q(I,H) it holds

〈Au,v〉Lp(I,V )∩jLq(I,H) =
ˆ
I

〈A(t)(u(t)),v(t)〉V dt. (2.7)

Remark 2.8 (Need for Lp(I, V )∩j L
q(I,H)) Note that an operator family A(t) : V → V ∗, t ∈ I

can define an induced operator in different spaces. In [35], [34] the induced operator A is considered
as an operator from Lp(I, V )∩j L

∞(I,H) into (Lp(I, V ))∗. Here, we consider the induced operator
A as an operator from Lp(I, V )∩j L

q(I,H) into (Lp(I, V )∩j L
q(I,H))∗, which is more general and

enables us to consider operator families with significantly worse growth behavior. Here, the so-called
Temam modification B̂ : X → X∗, tracing back to [52], [53], of the convective term B : X → X∗

defined in (1.3), defined for p > 3d+2
d+2 and all u, v ∈ X via

〈B̂u, v〉X = 1
2

ˆ
Ω

v ⊗ u : ∇u dx− 1
2

ˆ
Ω

u⊗ u : ∇v dx,

serves as a prototypical example. In fact, following [35, Example 5.1], one can prove thatB : X → X∗

satisfies for d = 3 and p ≥ 11
5 the estimate

‖Bu‖X∗ ≤ c(1 + ‖u‖Y )(1 + ‖u‖p−1
X ), (2.9)

for all u ∈ X and that corresponding induced operator B is well-defined and bounded as an
operator from Lp(I,X)∩L∞(I, Y ) to (Lp(I,X))∗. Regrettably, for the remaining term in Temam’s
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modification, i.e., for the operator B̃ := B̂ − 1
2B : X → X∗, we can prove (2.9) for d = 3 only for

p > 13
5 . In order to reach p > 11

5 for d = 3, one is forced to use a larger target space, i.e., we view
the induced operator of B̃ as an operator from Lp(I,X)∩Lq(I, Y ) to (Lp(I,X)∩Lq(I, Y ))∗, where
q ∈ [p,∞) is specified in the proof Proposition 7.4.

Definition 2.10 (Weak solution) Let (V,H, j) be an evolution triple, I := (0, T ), T < ∞, and
1 < p ≤ q < ∞. Moreover, let u0 ∈ H be an initial value, f ∈ Lp′(I, V ∗) a right-hand side, and
A : Lp(I, V )∩jL

q(I,H)→ (Lp(I, V )∩jL
q(I,H))∗ induced by a family of operators A(t) : V → V ∗,

t ∈ I. A function u ∈W1,p,q
e (I, V,H) is called weak solution of the initial value problem (1.1) if

(jcu)(0) = u0 in H and for all φ ∈ C1
0 (I, V ) there holdsˆ

I

〈deu
dt

(t),φ(t)
〉
V
dt+

ˆ
I

〈A(t)(u(t)),φ(t)〉V dt =
ˆ
I

〈f(t),φ(t)〉V dt.

Here, the initial condition is well-defined since due to Proposition 2.6 (ii) there exists the unique
continuous representation jcu ∈ C0(I,H) of u ∈W1,p,q

e (I, V,H).

3 Quasi non-conforming approximation

In this section we introduce the concept of quasi non-conforming approximations.

Definition 3.1 (Quasi non-conforming approximation) Let (V,H, j) and (X,Y, j) be evolu-
tion triples such that V ⊆ X with ‖ · ‖V = ‖ · ‖X in V and H ⊆ Y with (·, ·)H = (·, ·)Y in H ×H.
Moreover, let I := (0, T ), T < ∞, and let 1 < p < ∞. We call a sequence of closed subspaces
(Vn)n∈N of X a quasi non-conforming approximation of V in X, if the following properties
are satisfied:
(QNC.1) There exists a dense subset C ⊆ V , such that for each v ∈ C there exist elements

vn ∈ Vn, n ∈ N, such that vn → v in X (n→∞).
(QNC.2) For each sequence un ∈ Lp(I, Vmn), n ∈ N, where (mn)n∈N ⊆ N withmn →∞ (n→∞),

from un ⇀ u in Lp(I,X) (n→∞), it follows that u ∈ Lp(I, V ).

The next proposition shows that the notion of a quasi non-conforming approximation is indeed a
generalization of the usual notion of a conforming approximation. In Section 7 we will show that
our motivating example, namely the approximation of divergence-free Sobolev functions through
discretely divergence-free finite element spaces, fits into the framework of quasi non-conforming
approximations.

Proposition 3.2 Let (X,Y, j) and (V,H, j) be as in Definition 3.1. Then, it holds:
(i) The constant approximation Vn = V , n ∈ N, is a quasi non-conforming approximation of V in

X.
(ii) If (Vn)n∈N is a conforming approximation of V , i.e., (Vn)n∈N satisfy (C.1) and (C.2), then

(Vn)n∈N is a quasi non-conforming approximation of V in X.

Proof ad (i) Follows right from the definition.
ad (ii) We set C :=

⋃
n∈N Vn. Then, for each v ∈ C there exists an integer n0 ∈ N such that

v ∈ Vn for every n ≥ n0. Therefore, the sequence vn ∈ Vn, n ∈ N, given via vn := 0 if n < n0 and
vn := v if n ≥ n0, satisfies vn → v in V (n→∞), i.e., (Vn)n∈N satisfies (QNC.1). Apart from that,
(Vn)n∈N obviously fulfills (QNC.2). ut
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The following proposition will be crucial in verifying that the induced operator A of a family
of operators (A(t))t∈I is quasi non-conforming Bochner pseudo-monotone (cf. Definition 4.1).

Proposition 3.3 Let (V,H, j) and (X,Y, j) be as in Definition 3.1 and let (Vn)n∈N be a quasi
non-conforming approximation of V in X. Then, the following statements hold true:

(i) For a sequence vn ∈ Vmn , n ∈ N, where (mn)n∈N ⊆ N with mn → ∞ (n → ∞), from vn ⇀ v
in X (n→∞), it follows that v ∈ V .

(ii) For a sequence vn ∈ Vmn , n ∈ N, where (mn)n∈N ⊆ N with mn → ∞ (n → ∞), with
supn∈N ‖vn‖X <∞, and v ∈ V the following statements are equivalent:
(a) vn ⇀ v in X (n→∞).
(b) PHjvn ⇀ jv in H (n→∞), where PH :Y →H is the orthogonal projection of Y into H.

(iii) For each η ∈ H there exists a sequence vn ∈ Vmn , n ∈ N, where (mn)n∈N ⊆ N with mn →∞
(n→∞), such that jvn → η in Y (n→∞).

Proof ad (i) Immediate consequence of (QNC.2).
ad (ii) (a) ⇒ (b) Follows from the weak continuity of j : X → Y and PH : Y → H.
(b) ⇒ (a) From the reflexivity of X, we obtain a subsequence (vn)n∈Λ, with Λ ⊆ N, and an

element ṽ ∈ X, such that vn ⇀ ṽ in X (Λ 3 n → ∞). Due to (i) we infer ṽ ∈ V . From the weak
continuity of j : X → Y and PH : Y → H we conclude PHjvn ⇀ PHjṽ = jṽ in H (Λ 3 n → ∞).
In consequence, we have jṽ = jv in H, which in virtue of the injectivity of j : V → H implies that
ṽ = v in V , and therefore

vn ⇀ v in X (Λ 3 n→∞). (3.4)

Since this argumentation remains valid for each subsequence of (vn)n∈N ⊆ X, v ∈ V is weak
accumulation point of each subsequence of (vn)n∈N ⊆ X. Therefore, the standard convergence
principle (cf. [28, Kap. I, Lemma 5.4]) guarantees that (3.4) remains true even if Λ = N.

ad (iii) Since (V,H, j) is an evolution triple, j(V ) is dense in H. As a result, for fixed η ∈ H
there exists a sequence (vn)n∈N ⊆ V , such that ‖η − jvn‖H ≤ 2−n for all n ∈ N. Due to (QNC.1)
there exist a sequence (wn)n∈N ⊆ C, such that ‖vn − wn‖V ≤ 2−n−1 for all n ∈ N and a double
sequence (vnk )n,k∈N ⊆ X, with vnk ∈ Vk for all k, n ∈ N, such that vnk → wn in X (k → ∞) for all
n ∈ N. Thus, for each n ∈ N there exists mn ∈ N, such that ‖wn − vnk ‖X ≤ 2−n−1 for all k ≥ mn.
Then, we have vnmn ∈ Vmn for all n ∈ N and ‖η − jvnmn‖Y ≤ (1 + c)2−n for all n ∈ N, where c > 0
is the embedding constant of j. ut

4 Quasi non-conforming Bochner pseudo-monotonicity

In this section we introduce an extended notion of Bochner pseudo-monotonicity (cf. [35], [34]),
which incorporates a given quasi non-conforming approximation (Vn)n∈N.

Definition 4.1 Let (X,Y, j) and (V,H, j) be as in Definition 3.1 and let (Vn)n∈N be a quasi non-
conforming approximation of V in X, I := (0, T ), with 0 < T < ∞, and 1 < p ≤ q < ∞. An
operator A : Lp(I,X)∩j L

q(I, Y )→ (Lp(I,X)∩j L
q(I, Y ))∗ is said to be quasi non-conforming

Bochner pseudo-monotone with respect to (Vn)n∈N if for a sequence un ∈ L∞(I, Vmn), n ∈ N,
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where (mn)n∈N ⊆ N with mn →∞ (n→∞), from

un ⇀ u in Lp(I,X) (n→∞), (4.2)

jun
∗
⇁ ju in L∞(I, Y ) (n→∞), (4.3)

PH(jun)(t) ⇀ (ju)(t) in H (n→∞) for a.e. t ∈ I, (4.4)

and

lim sup
n→∞

〈Aun,un − u〉Lp(I,X)∩jLq(I,Y ) ≤ 0, (4.5)

it follows for all v ∈ Lp(I,X) ∩j L
q(I, Y ) that

〈Au,u− v〉Lp(I,X)∩jLq(I,Y ) ≤ lim inf
n→∞

〈Aun,un − v〉Lp(I,X)∩jLq(I,Y ).

Note that (4.2) and (4.3) guarantee that u ∈ Lp(I, V ) ∩j L
∞(I,H) due to Definition 3.1.

The basic idea of quasi non-conforming Bochner pseudo-monotonicity, in comparison to the orig-
inal notion of Bochner pseudo-monotonicity tracing back to [35], consists in incorporating the finite
dimensional approximation (Vn)n∈N into the definition. We will see in the proof of Theorem 6.16
that (4.2)–(4.5) are natural properties of a sequence un ∈ Lp(I, Vmn), n ∈ N, coming from (1.6)
(which is a quasi non-conforming Rothe–Galerkin approximation of (1.1)), if A satisfies appropriate
additional assumptions. In fact, (4.2) usually is a consequence of the coercivity of A, (4.3) stems
from the time derivative, while (4.4) and (4.5) follow directly from the approximative scheme.

Proposition 4.6 Let (X,Y, j) and (V,H, j) be as in Definition 3.1 and let (Vn)n∈N be a quasi
non-conforming approximation of V in X, I := (0, T ), T < ∞, and 1 < p ≤ q < ∞. Moreover, let
A(t) : X → X∗, t ∈ I, be a family of operators with the following properties:

(A.1) A(t) : X → X∗ is pseudo-monotone for almost every t ∈ I.
(A.2) A(·)u : I → X∗ is Bochner measurable for every u ∈ X.
(A.3) For some constants c0 > 0 and c1, c2 ≥ 0 holds for almost every t ∈ I and every u ∈ X

〈A(t)u, u〉X ≥ c0‖u‖pX − c1‖ju‖2
Y − c2.

(A.4) For constants γ ≥ 0 and λ ∈ (0, c0) holds for almost every t ∈ I and every u, v ∈ X

|〈A(t)u, v〉X | ≤ λ‖u‖pX + γ
(
1 + ‖ju‖qY + ‖jv‖qY + ‖v‖pX

)
.

Then, the induced operator A : Lp(I,X) ∩j L
q(I, Y ) → (Lp(I,X) ∩j L

q(I, Y ))∗, given via (2.7),
is well-defined, bounded and quasi non-conforming Bochner pseudo-monotone with respect to the
subspaces (Vn)n∈N.

Proof 1. Well-definiteness: For u1,u2 ∈ Lp(I,X) ∩j L
q(I, Y ) there exists sequences of simple

functions (smn )n∈N ⊆ L∞(I,X), m = 1, 2, i.e., smn (t) =
∑kmn
i=1 s

m
n,iχEmn,i(t) for t ∈ I and m = 1, 2,

where smn,i ∈ X, kmn ∈ N and Emn,i ∈ L1(I) with
⋃kmn
i=1 E

m
n,i = I and Emn,i ∩ Emn,j = ∅ for i 6= j, such

that smn (t)→ um(t) in X for almost every t ∈ I and m = 1, 2. Moreover, it follows from Lemma 2.3
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that A(t) : X → X∗ is for almost every t ∈ I demi-continuous, since it is for almost every t ∈ I
pseudo-monotone (cf. (A.1)) and bounded (cf. (A.4)). This yields for almost every t ∈ I

〈A(t)(s1
n(t)), s2

n(t)〉X =
k1
n∑

i=1

k2
n∑

j=1
〈A(t)s1

n,i, s
2
n,j〉XχE1

n,i
∩E2

n,j
(t) n→∞→ 〈A(t)(u1(t)),u2(t)〉X . (4.7)

Thus, since the functions (t 7→ 〈A(t)s1
n,i, s

2
n,j〉X : I → R, i = 0, . . . , k1

n, j = 1, . . . , k2
n, n ∈ N, are

Lebesgue measurable due to (A.2), we conclude from (4.7) that (t 7→ 〈A(t)(u1(t)),u2(t)〉X) :I → R
is Lebesgue measurable. In addition, using (A.4), we obtainˆ

I

〈A(t)(u1(t)),u2(t)〉X dt ≤ λ‖u1‖pLp(I,X)

+ γ[T + ‖ju1‖qLq(I,Y ) + ‖ju2‖qLq(I,Y ) + ‖u2‖pLp(I,X)],
(4.8)

i.e., A : Lp(I,X) ∩j L
q(I, Y )→ (Lp(I,X) ∩j L

q(I, Y ))∗ is well-defined.
2. Boundedness: As ‖v‖Lp(I,X)∩jLq(I,Y ) ≤ 1 implies that ‖v‖pLp(I,X) + ‖jv‖qLq(I,Y ) ≤ 2 for

every v ∈ Lp(I,X) ∩j L
q(I, Y ), we infer from (4.8) for every u ∈ Lp(I,X) ∩j L

∞(I, Y ) that

‖Au‖(Lp(I,X)∩jLq(I,Y ))∗ = sup
‖v‖Lp(I,X)∩jL

q(I,Y )≤1
〈Au,v〉Lp(I,X)∩jLq(I,Y )

≤ λ‖u‖pLp(I,X) + γ‖ju‖qLq(I,Y ) + γ[T + 2],

i.e., A : Lp(I,X) ∩j L
q(I, Y )→ (Lp(I,X) ∩j L

q(I, Y ))∗ is bounded.
3. Quasi non-conforming Bochner pseudo-monotonicity with respect to (Vn)n∈N: In

principle, we proceed analogously to [35, Proposition 3.13]. However, as we have solely almost ev-
erywhere weak convergence of the orthogonal projections available, i.e., (4.4), in the definition of
quasi-nonconforming Bochner pseudo-monotonicity (cf. Definition 4.1), the arguments in [35] ask
for some slight modifications. In fact, in this context the properties of the quasi non-conforming
approximation (Vn)n∈N come into play. Especially the role of Proposition 3.3 will be crucial. We
split the proof of the quasi non-conforming Bochner pseudo-monotonicity into four steps:

3.1. Collecting information: Let un ∈ L∞(I, Vmn), n ∈ N, where (mn)n∈N⊆N with mn→∞
(n → ∞), be a sequence satisfying (4.2)–(4.5). We fix an arbitrary v ∈ Lp(I,X) ∩j L

q(I, Y ), and
choose a subsequence (un)n∈Λ, with Λ ⊆ N, such that

lim
n→∞
n∈Λ

〈Aun,un − v〉Lp(I,X)∩jLq(I,Y ) = lim inf
n→∞

〈Aun,un − v〉Lp(I,X)∩jLq(I,Y ). (4.9)

Due to (4.4) there exists a subset E ⊆ I, with I \ E a null set6, such that for all t ∈ E

PH(jun)(t) ⇀ (ju)(t) in H (n→∞). (4.10)

Using (A.3) and (A.4), we get for every z ∈ Lp(I,X) ∩j L
q(I, Y ) and almost every t ∈ I

〈A(t)(un(t)),un(t)− z(t)〉X
≥ c0‖un(t)‖pX − c1‖j(un(t))‖2

Y − c2 − 〈A(t)(un(t)), z(t)〉X
≥ (c0 − λ)‖un(t)‖pX − c1K

2 − c2 − γ
[
1 +Kq + ‖(jz)(t)‖qY + ‖z(t)‖pX

]
,

(4.11)

6 A null set is a set of zero Lebesgue measure.
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where K := supn∈N ‖jun‖L∞(I,Y ) < ∞ (cf. (4.3)). If we set µz(t) := −c1K
2 − c2 − γ

[
1 + Kq +

‖(jz)(t)‖qY + ‖z(t)‖pX
]
∈ L1(I), then (4.11) reads

〈A(t)(un(t)),un(t)− z(t)〉X ≥ (c0 − λ)‖un(t)‖pX − µz(t), (∗)z,n,t

for almost every t ∈ I and all n ∈ Λ. Next, we define

E1 :=
{
t ∈ E

∣∣A(t) : X → X∗ is pseudo-monotone, |µu(t)| <∞ and (∗)u,n,t holds for all n ∈ Λ
}
.

From the defining properties of E1 it follows directly that I \ E1 is a null set.
3.2. Intermediate objective: Our next objective is to verify that for all t ∈ E1 there holds

lim inf
n→∞
n∈Λ

〈A(t)(un(t)),un(t)− u(t)〉X ≥ 0. (∗∗)t

To this end, let us fix an arbitrary t ∈ E1 and define

Λt := {n ∈ Λ
∣∣ 〈A(t)(un(t)),un(t)− u(t)〉X < 0}.

We assume without loss of generality that Λt is not finite. Otherwise, (∗∗)t would already hold true
for this specific t ∈ E1 and nothing would be left to do. But if Λt is not finite, then

lim sup
n→∞
n∈Λt

〈A(t)(un(t)),un(t)− u(t)〉X ≤ 0. (4.12)

The definition of Λt and (∗)u,n,t imply for all n ∈ Λt

(c0 − λ)‖un(t)‖pX ≤ 〈A(t)(un(t)),un(t)− u(t)〉X + |µu(t)| < |µu(t)| <∞. (4.13)

This and λ < c0 yield that the sequence (un(t))n∈Λt is bounded in X. In view of (4.10), Proposition
3.3 (ii) implies that

un(t) ⇀ u(t) in X (Λt 3 n→∞). (4.14)

Since A(t) : X → X∗ is pseudo-monotone, we get from (4.14) and (4.12) that

lim inf
n→∞
n∈Λt

〈A(t)(un(t)),un(t)− u(t)〉X ≥ 0.

Due to 〈A(t)(un(t)),un(t)− u(t)〉X ≥ 0 for all n ∈ Λ \ Λt, (∗∗)t holds for all t ∈ E1.
3.3. Switching to the image space level: In this passage we verify the existence of a

subsequence (un)n∈Λ0 ⊆ Lp(I,X) ∩j L
∞(I, Y ), with Λ0 ⊆ Λ, such that for almost every t ∈ I

un(t) ⇀ u(t) in X (Λ0 3 n→∞),
lim sup
n→∞
n∈Λ0

〈A(t)(un(t)),un(t)− u(t)〉X ≤ 0. (4.15)



14 Luigi C. Berselli et al.

As a consequence, we are in a position to exploit the almost everywhere pseudo-monotonicity of
the operator family. Thanks to 〈A(t)(un(t)),un(t)−u(t)〉X ≥ −µu(t) for all t ∈ E1 and n ∈ Λ (cf.
(∗)u,n,t), Fatou’s lemma (cf. [44, Theorem 1.18]) is applicable. It yields, also using (4.5)

0 ≤
ˆ
I

lim inf
n→∞
n∈Λ

〈A(s)(un(s)),un(s)− u(s)〉X ds

≤ lim inf
n→∞
n∈Λ

ˆ
I

〈A(s)(un(s)),un(s)− u(s)〉X ds

≤ lim sup
n→∞

〈Aun,un − u〉Lp(I,X)∩jLq(I,Y )

≤ 0.

(4.16)

Let us define gn(t) := 〈A(t)(un(t)),un(t)− u(t)〉X . Then, (∗∗)t and (4.16) read:

lim inf
n→∞
n∈Λ

gn(t) ≥ 0 for all t ∈ E1. (4.17)

lim
n→∞
n∈Λ

ˆ
I

gn(s) ds = 0. (4.18)

As s 7→ s− := min{0, s} is continuous and non-decreasing we deduce from (4.17) that

0 ≥ lim sup
n→∞
n∈Λ

gn(t)− ≥ lim inf
n→∞
n∈Λ

gn(t)− ≥ min
{

0, lim inf
n→∞
n∈Λ

gn(t)
}

= 0,

i.e., gn(t)− → 0 (Λ 3 n → ∞) for all t ∈ E1. Since 0 ≥ gn(t)− ≥ −µu(t) for all t ∈ E1 and n ∈ Λ,
Vitali’s theorem yields g−n → 0 in L1(I) (Λ 3 n→∞). From the latter, |gn| = gn− 2g−n and (4.18),
we conclude that gn → 0 in L1(I) (Λ 3 n → ∞). This provides a further subsequence (un)n∈Λ0

with Λ0 ⊆ Λ and a subset F ⊆ I such that I \ F is a null set and for all t ∈ F

lim
n→∞
n∈Λ0

〈A(t)(un(t)),un(t)− u(t)〉X = 0. (4.19)

This and (4.13) implies for all t ∈ E1 ∩ F that

lim sup
n→∞
n∈Λ0

(c0 − λ)‖un(t)‖pX ≤ lim sup
n→∞
n∈Λ0

〈A(t)(un(t)),un(t)− u(t)〉X + |µu(t)| = |µu(t)| <∞,

i.e., (un(t))n∈Λ0 is bounded in X for all t ∈ E1 ∩ F . Thus, (4.10) and Proposition 3.3 (ii) yield for
all t ∈ E1 ∩ F

un(t) ⇀ u(t) in X (Λ0 3 n→∞). (4.20)

The relations (4.19) and (4.20) are just (4.15).
3.4. Switching to the Bochner-Lebesgue level: From the pseudo-monotonicity of the op-

erators A(t) : X → X∗ for all t ∈ E1 ∩ F we obtain almost every t ∈ I

〈A(t)(u(t)),u(t)− v(t)〉X ≤ lim inf
n→∞
n∈Λ0

〈A(t)(un(t)),un(t)− v(t)〉X .
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Due to (∗)v,n,t, we have 〈A(t)(un(t)),un(t)−v(t)〉X ≥ −µv(t) for almost every t ∈ I and all n ∈ Λ0.
Thus, using the definition of the induced operator (2.7), Fatou’s lemma and (4.9) we deduce

〈Au,u− v〉Lp(I,X)∩jLq(I,Y ) ≤
ˆ
I

lim inf
n→∞
n∈Λ0

〈A(s)(un(s)),un(s)− v(s)〉X ds

≤ lim inf
n→∞
n∈Λ0

ˆ
I

〈A(s)(un(s)),un(s)− v(s)〉X ds

= lim
n→∞
n∈Λ

〈Aun,un − v〉Lp(I,X)∩jLq(I,Y )

= lim inf
n→∞

〈Aun,un − v〉Lp(I,X)∩jLq(I,Y ).

As v ∈ Lp(I,X) ∩j L
q(I, Y ) was chosen arbitrary, this completes the proof of Proposition 4.6. ut

5 Rothe scheme

Let X be a Banach space, and I := (0, T ), T <∞, be a finite time interval. For K ∈ N we set
τ := T

K , Iτk := ((k − 1)τ, kτ ], k = 1, . . . ,K, and Iτ := {Iτk }k=1,...,K . Moreover, we denote by

S0(Iτ , X) := {u : I → X
∣∣u(s) = u(t) in X for all t, s ∈ Iτk , k = 1, . . . ,K} ⊂ L∞(I,X)

the space of piece-wise constant functions with respect to Iτ . For a given finite sequence
(uk)k=0,...,K ⊆ X the backward difference quotient operator is defined via

dτu
k := 1

τ
(uk − uk−1) in X, k = 1, . . . ,K.

Furthermore, we denote for a given finite sequence (uk)k=0,...,K ⊆ X by uτ ∈ S0(Iτ , X) the piece-
wise constant interpolant, and by ûτ ∈ W 1,∞(I,X) the piece-wise affine interpolant, for
every t ∈ Iτk and k = 1, . . . ,K given via

uτ (t) := uk, ûτ (t) :=
( t
τ
− (k − 1)

)
uk +

(
k − t

τ

)
uk−1 in X. (5.1)

In addition, if (X,Y, j) is an evolution triple and (uk)k=0,...,K ⊆ X a finite sequence, then it holds
for k, l = 0, . . . ,K the discrete integration by parts formula

ˆ lτ

kτ

〈deûτ
dt

(t),uτ (t)
〉
X
dt ≥ 1

2‖ju
l‖2
Y −

1
2‖ju

k‖2
Y , (5.2)

which is an immediate consequence of the identity 〈dτeuk, uk〉X = 1
2dτ‖ju

k‖2
Y + τ

2‖dτ ju
k‖2
Y for

every k = 1, . . . ,K.
For the discretization of the right-hand side in (1.1) we use the following construction. Let X

be a Banach space, I = (0, T ), T <∞, K ∈ N, τ := T
K > 0 and 1 < p <∞. The Clemént 0-order

quasi-interpolation operator Jτ : Lp(I,X)→ S0(Iτ , X) is defined for every u ∈ Lp(I,X) via

Jτ [u] :=
K∑
k=1

[u]τkχIτk in S0(Iτ , X), [u]τk :=
 
Iτ
k

u(s) ds ∈ X.
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Proposition 5.3 For every u ∈ Lp(I,X) it holds:

(i) Jτ [u]→ u in Lp(I,X) (τ → 0), i.e.,
⋃
τ>0 S0(Iτ , X) is dense in Lp(I,X).

(ii) supτ>0 ‖Jτ [u]‖Lp(I,X) ≤ ‖u‖Lp(I,X).

Proof See [44, Remark 8.15]. ut

Since we treat non-autonomous evolution equations we also need to discretize the time dependent
family of operators in (1.1). This will also be obtained by means of the Clemént 0-order quasi-
interpolant. Let (X,Y, j) be an evolution triple, I := (0, T ), T < ∞, K ∈ N, τ = T

K > 0 and
1 < p ≤ q <∞. Let A(t) : X → X∗, t ∈ I, be a family of operators satisfying the conditions (A.1)–
(A.4), and denote by A : Lp(I,X) ∩j L

q(I, Y ) → (Lp(I,X) ∩j L
q(I, Y ))∗ the induced operator

(cf. (2.7)). The k-th temporal mean [A]τk : X → X∗, k = 1, . . . ,K, of A(t) : X → X∗, t ∈ I, is
defined for every u ∈ X via

[A]τku :=
 
Iτ
k

A(s)u ds in X∗.

The Clement 0-order quasi-interpolant Jτ [A](t) : X → X∗, t ∈ I, of A(t) : X → X∗, t ∈ I, is
defined for almost every t ∈ I and u ∈ X via

Jτ [A](t)u :=
K∑
k=1

χIτ
k
(t)[A]τku in X∗.

TheClement 0-order quasi-interpolantJτ [A] : Lp(I,X)∩jL
q(I, Y )→ (Lp(I,X)∩jL

q(I, Y ))∗,
of A : Lp(I,X) ∩j L

q(I, Y )→ (Lp(I,X) ∩j L
q(I, Y ))∗ is for all u,v ∈ Lp(I,X)∩j L

q(I, Y ) defined
via

〈Jτ [A]u,v〉Lp(I,X)∩jLq(I,Y ) :=
ˆ
I

〈Jτ [A](t)(u(t)),v(t)〉X dt.

Note that Jτ [A] is the induced operator of the family of operators Jτ [A](t) : X → X∗, t ∈ I.

Proposition 5.4 (Clement 0-order quasi-interpolant for induced operators)
Let A(t) : X → X∗, t ∈ I, be a family of operators satisfying the conditions (A.1)–(A.4), and
denote by A : Lp(I,X) ∩j L

q(I, Y ) → (Lp(I,X) ∩j L
q(I, Y ))∗ the induced operator (cf. (2.7)).

Then, there holds:

(i) [A]τk : X → X∗ is well-defined, bounded, pseudo-monotone, and satisfies:
(i.a) 〈[A]τku, v〉X ≤ λ‖u‖

p
X + γ[1 + ‖ju‖qY + ‖jv‖qY + ‖v‖pX ] for all u, v ∈ X.

(i.b) 〈[A]τku, u〉X ≥ c0‖u‖pX − c1‖ju‖2
Y − c2 for all u ∈ X.

(ii) Jτ [A](t) : X → X∗, t ∈ I, satisfies the conditions (A.1)–(A.4).
(iii) Jτ [A] :Lp(I,X) ∩jL

q(I, Y )→(Lp(I,X) ∩jL
q(I, Y ))∗ is well-defined, bounded and satisfies:

(iii.a) For all uτ ∈ S0(Iτ , X), v ∈ Lp(I,X) ∩j L
q(I, Y ) holds

〈Jτ [A]uτ ,v〉Lp(I,X)∩jLq(I,Y ) = 〈Auτ ,Jτ [v]〉Lp(I,X)∩jLq(I,Y ).

(iii.b) If the functions uτ ∈ S0(Iτ , X), τ > 0, are bounded in Lp(I,X) ∩j L
q(I, Y ), then

Auτ −Jτ [A]uτ ⇀ 0 in (Lp(I,X) ∩j L
q(I, Y ))∗ (τ → 0).
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(iii.c)
‖Jτ [A]uτ‖(Lp(I,X)∩jLq(I,Y ))∗ ≤ ‖Auτ‖(Lp(I,X)∩jLq(I,Y ))∗ .

Proof ad (i) Let u ∈ X. Due to (A.2) the function A(·)u : I → X∗ is Bochner measurable. (A.4)
guarantees that ‖A(·)u‖X∗ ∈ L1(I), and thus the Bochner integrability of A(·)u : I → X∗. As
a result, the Bochner integral [A]τku =

ffl
Iτ
k
A(s)u ds ∈ X∗ exists, i.e., [A]τk : X → X∗ is well-

defined. The inequalities (i.a) and (i.b) are obvious. In particular, we gain from inequality (i.a)
the boundedness of [A]τk : X → X∗. So, it is left to show the pseudo-monotonicity. Therefore, let
(un)n∈N ⊆ X be a sequence such that

un ⇀ u in X (n→∞), (5.5)
lim sup
n→∞

〈[A]τkun, un − u〉X ≤ 0. (5.6)

If we set un := unχIτ
k
∈ L∞(I,X), n ∈ N, and u := uχIτ

k
∈ L∞(I,X), then (5.5), the Lebesgue

theorem on dominated convergence and the properties of the induced embedding j imply

un ⇀ u in Lp(I,X) (n→∞), (5.7)

jun
∗
⇁ ju in L∞(I, Y ) (n→∞), (5.8)

(jun)(t) n→∞⇀ (ju)(t) in Y for a.e. t ∈ I. (5.9)

In addition, from (5.6) we infer

lim sup
n→∞

〈Aun,un − u〉Lp(I,X)∩jLq(I,Y ) = τ lim sup
n→∞

〈[A]τkun, un − u〉X ≤ 0. (5.10)

Note that the constant approximation Vn = X, n ∈ N, is trivially a quasi non-conforming approx-
imation of X in X (cf. Remark 6.5 (i)). Thus, Proposition 4.6 yields that the induced operator
A : Lp(I,X) ∩j L

q(I, Y ) → (Lp(I,X) ∩j L
q(I, Y ))∗ is quasi non-conforming Bochner pseudo-

monotone with respect to Vn = X, n ∈ N. Consequently, we obtain from (5.7)–(5.10) that for all
v ∈ Lp(I,X) ∩j L

q(I, Y ) there holds

〈Au,u− v〉Lp(I,X)∩jLq(I,Y ) ≤ lim inf
n→∞

〈Aun,un − v〉Lp(I,X)∩jLq(I,Y ). (5.11)

If we choose in (5.11) v := vχIτ
k
∈ L∞(I,X) with v ∈ X and divide by τ > 0, we conclude

〈[A]τku, u− v〉X ≤ lim inf
n→∞

〈[A]τkun, un − v〉X .

In other words, [A]τk : X → X∗ is pseudo-monotone.
ad (ii) The assertion follows immediately from (i) and the definition of Jτ [A](t), t ∈ I.
ad (iii) Since Jτ [A] is the induced operator of the family of operators Jτ [A](t), t ∈ I, the

well-definiteness and boundedness of Jτ [A] results from (ii) in conjunction with Proposition 4.6
applied again in the trivial setting of the constant approximation Vn = X, n ∈ N.

ad (iii.a) Let uτ ∈ S0(Iτ , X) and v ∈ Lp(I,X) ∩j L
q(I, Y ). Then, using for every t, s ∈ Iτk ,

k = 1, . . . ,K, that 〈A(s)(uτ (t)),v(t)〉X = 〈A(s)(uτ (s)),v(t)〉X and Fubini’s theorem, we infer

〈Jτ [A]uτ ,v〉Lp(I,X)∩jLq(I,Y ) =
ˆ
I

〈Jτ [A](t)(u(t)),v(t)〉X dt
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=
K∑
k=1

ˆ
Iτ
k

〈 
Iτ
k

A(s)(uτ (t)) ds,v(t)
〉
X
dt

=
K∑
k=1

ˆ
Iτ
k

〈
A(s)(uτ (s)),

 
Iτ
k

v(t) dt
〉
X
ds

=
ˆ
I

〈A(s)(u(s)),Jτ [v](s)〉X ds

= 〈Auτ ,Jτ [v]〉Lp(I,X)∩jLq(I,Y ).

ad (iii.b) Let the family uτ ∈ S0(Iτ , X), τ > 0, be bounded in Lp(I,X) ∩j L
q(I, Y ). Then,

by the boundedness of A : Lp(I,X) ∩j L
q(I, Y ) → (Lp(I,X) ∩j L

q(I, Y ))∗ (cf. Proposition 4.6),
the family (Auτ )τ>0 ⊆ (Lp(I,X) ∩j L

q(I, Y ))∗ is bounded as well. Therefore, also using (iii.a),
we conclude for every v ∈ Lp(I,X) ∩j L

q(I, Y ) that

〈Auτ −Jτ [A]uτ ,v〉Lp(I,X)∩jLq(I,Y ) = 〈Auτ ,v −Jτ [v]〉Lp(I,X)∩jLq(I,Y ) → 0 (τ → 0),

where we also used Proposition 5.3 (i).
ad (iii.c) Using (iii.a) and Proposition 5.3 (ii), we deduce

‖Jτ [A]uτ‖(Lp(I,X)∩jLq(I,Y ))∗ = sup
‖v‖Lp(I,X)∩jL

q(I,Y )≤1
〈Jτ [A]uτ ,v〉Lp(I,X)∩jLq(I,Y )

= sup
‖v‖Lp(I,X)∩jL

q(I,Y )≤1
〈Auτ ,Jτ [v]〉Lp(I,X)∩jLq(I,Y )

≤ ‖Auτ‖(Lp(I,X)∩jLq(I,Y ))∗ . ut

6 Fully discrete, quasi non-conforming approximation

In this section we formulate the exact framework of a quasi non-conforming Rothe–Galerkin approx-
imation, prove its well-posedness, i.e., the existence of iterates, and its stability, i.e., the boundedness
of the corresponding double sequence of piece-wise constant interpolants. Moreover, we prove the
main result of this paper, Theorem 6.16, which shows the weak convergence of a diagonal subse-
quence towards a weak solution of problem (1.1).

Assumption 6.1 Let I :=(0, T ), T <∞ and 1<p≤q<∞. We make the following assumptions:

(i) Spaces: (V,H, j) and (X,Y, j) are as in Definition 3.1 and (Vn)n∈N is a quasi non-conforming
approximation of V in X.

(ii) Initial data: u0∈H and there is a sequence u0
n∈Vn, n ∈ N, such that u0

n → u0 in Y (n→∞)
and supn∈N ‖ju0

n‖Y ≤ ‖u0‖H .7

(iii) Right-hand side: f ∈ Lp′(I,X∗).
(iv) Operators: A(t) : X → X∗, t ∈ I, is a family of operators satisfying (A.1)–(A.4) and A :

Lp(I,X) ∩j L
∞(I, Y )→ (Lp(I,X) ∩j L

q(I, Y ))∗ the corresponding induced operator.
7 For a quasi non-conforming approximation Proposition 3.3 guarantees the existence of such a sequence.
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Furthermore, we set Hn := j(Vn) ⊆ Y equipped with (·, ·)Y , denote by jn : Vn → Hn the
restriction of j to Vn and by Rn : Hn → H∗n the corresponding Riesz isomorphism with respect
to (·, ·)Y . As jn is an isomorphism, the triple (Vn, Hn, jn) is an evolution triple with canonical
embedding en := j∗nRnjn : Vn → V ∗n , which satisfies

〈envn, wn〉Vn = (jnvn, jnwn)Y for all vn, wn ∈ Vn. (6.2)

Putting all together leads us to the following algorithm:

Algorithm 6.3 (Quasi non-conforming Rothe–Galerkin scheme) Let Assumption (6.1) be
satisfied. For given K,n ∈ N the sequence of iterates (ukn)k=0,...,K ⊆ Vn is given solving the implicit
Rothe–Galerkin scheme for τ = T

K and k = 1, . . . ,K

(dτ jukn, jvn)Y + 〈[A]τkukn, vn〉X = 〈[f ]τk, vn〉X for all vn ∈ Vn. (6.4)

Remark 6.5 Note that the Rothe–Galerkin scheme (6.4) also covers pure Rothe schemes, i.e.,
without spatial approximation, and fully discrete conforming approximations:

(i) If X = V , Y = H, and Vn = X, n ∈ N, then (6.4) is a pure Rothe scheme.
(ii) If X = V , Y = H, and the closed subspaces (Vn)n∈N satisfy (C.1)–(C.2), then (6.4) is a

conforming Rothe–Galerkin scheme.

Proposition 6.6 (Well-posedness of (6.4)) Let Assumption (6.1) be satisfied and set
τ0 := 1

4c1
. Then, for all K,n ∈ N with τ = T

K < τ0 there exist iterates (ukn)k=1,...,K ⊆ Vn, solv-
ing (6.4).

Proof Using (6.2) and the identity mapping idVn : Vn → X, we see that (6.4) is equivalent to

(idVn)∗
(
[f ]τk

)
+ 1
τ
enu

k−1
n ∈ R

(1
τ
en + (idVn)∗ ◦ [A]τk ◦ idVn

)
, for all k = 1, . . . ,K. (6.7)

We fix an arbitrary k = 1, . . . ,K. Apparently, 1
τ en : Vn → V ∗n is linear and continuous. Using (6.2),

we infer that 〈 1
τ enu, u〉Vn = 1

τ ‖jnu‖
2
Y ≥ 0 for all u ∈ Vn, i.e., 1

τ en : Vn → V ∗n is positive definite, and
thus monotone. In consequence, 1

τ en : Vn → V ∗n is pseudo-monotone. Since the conditions (A.1)–
(A.4) are inherited from A : X → X∗ to (idVn)∗ ◦A◦ idVn : Vn → V ∗n and since (idVn)∗ ◦ [A]τk ◦ idVn =
[(idVn)∗ ◦A◦ idVn ]τk, Proposition 5.4 (i) guarantees that the operator (idVn)∗ ◦ [A]kτ ◦ idVn : Vn → V ∗n
is bounded and pseudo-monotone. Altogether, we conclude that the sum 1

τ en + (idVn)∗ ◦ [A]kτ ◦
idVn : Vn → V ∗n is bounded and pseudo-monotone. In addition, as τ < 1

2c1
, combining (6.2) and

Proposition 5.4 (i.b), provides for all u ∈ Vn〈(1
τ
en + (idVn)∗ ◦ [A]τk ◦ idVn

)
u, u

〉
Vn
≥ 3c1‖jnu‖2

Y + c0‖u‖pX − c2,

i.e., 1
τ en + (idVn)∗ ◦ [A]τk ◦ idVn : Vn → V ∗n is coercive. Hence, Proposition 2.2 proves (6.7). ut

Proposition 6.8 (Stability of (6.4)) Let Assumption (6.1) be satisfied and set τ0 := 1
4c1

. Then,
there exists a constant M > 0 (not depending on K,n ∈ N), such that the piece-wise constant
interpolants uτn ∈ S0(Iτ , X), K,n ∈ N with τ = T

K ∈ (0, τ0), and piece-wise affine interpolants
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ûτn ∈ W 1,∞(I,X), n ∈ N, τ ∈ (0, τ0) (cf. (5.1)) generated by iterates (ukn)k=0,...,K ⊆ Vn, K,n ∈ N
with τ = T

K ∈ (0, τ0), solving (6.4), satisfy the following estimates:

‖uτn‖Lp(I,X)∩jL∞(I,Y ) ≤M, (6.9)
‖jûτn‖L∞(I,Y ) ≤M, (6.10)

‖Auτn‖(Lp(I,X)∩jLq(I,Y ))∗ ≤M, (6.11)
‖en(ûτn − uτn)‖Lq′ (I,V ∗n ) ≤ τ

(
‖f‖Lp′ (I,X∗) +M

)
. (6.12)

Proof We use vn = ukn ∈ Vn, k = 1, . . . , l, for arbitrary l = 1, . . . ,K in (6.4), multiply by τ ∈ (0, τ0),
sum with respect to k = 1, . . . , l, use (5.2) and supn∈N ‖ju0

n‖Y ≤ ‖u0‖H , to obtain for every l = 1, . . . ,K

1
2‖ju

l
n‖2
Y +

l∑
k=1

τ〈[A]kτukn, ukn〉X ≤
1
2‖u0‖2

H +
l∑

k=1
τ〈[f ]kτ , ukn〉X . (6.13)

Applying the weighted ε-Young inequality with constant c(ε) := (pε)1−p′/p′ for all ε > 0, using
‖Jτ [f ]‖Lp′ (I,X∗) ≤ ‖f‖Lp′ (I,X∗) (cf. Proposition 5.3 (ii)), we deduce for every l = 1, . . . ,K

l∑
k=1

τ〈[f ]kτ , ukn〉X = 〈Jτ [f ],uτnχ[0,lτ ]〉Lp(I,X) ≤ c(ε)‖f‖p
′

Lp′ (I,X∗) + ε

ˆ lτ

0
‖uτn(s)‖pX ds.

In addition, using Proposition 5.4 (i.b), we obtain for every l = 1, . . . ,K
l∑

k=1
τ〈[A]kτukn, ukn〉X ≥ c0

ˆ lτ

0
‖uτn(s)‖pX ds− τc1‖juln‖2

Y −
l−1∑
k=1

τc1‖jukn‖2
Y − c2T. (6.14)

We set ε := c0
2 , α := 1

2‖u0‖2
H + c(ε)‖f‖p

′

Lp′ (I,X∗) + c2T , β := 4τc1 < 1 and ykn := 1
4‖ju

k
n‖2
Y for

k = 1, . . . ,K. Thus, we infer for every l = 1, . . . ,K from (6.13), (6.14) that

yln + c0

2

ˆ lτ

0
‖uτn(s)‖pX ds ≤ α+ β

l−1∑
k=1

ykn. (6.15)

The discrete Gronwall inequality applied on (6.15) yields
1
4‖ju

τ
n‖2
L∞(I,Y ) + c0

2 ‖u
τ
n‖
p
Lp(I,X) ≤ α exp(Kβ) = α exp(4Tc1) =: C0,

which proves (6.9). From the boundedness of A : Lp(I,X) ∩j L
q(I, Y ) → (Lp(I,X) ∩j L

q(I, Y ))∗
(cf. Proposition 4.6) and (6.9) we infer ‖Auτn‖(Lp(I,X)∩jLq(I,Y ))∗ ≤ C1 for some C1 > 0, i.e., (6.11).
In addition, it holds ‖jûτn‖2

L∞(I,Y ) ≤ ‖ju
τ
n‖2
L∞(I,Y ) ≤ 4C0 for every n ∈ N and τ ∈ (0, τ0), i.e.,

(6.10). Moreover, since en
(
ûτn(t) − uτn(t)

)
= (t − kτ)dτenûτn(t) = (t − kτ)den ûτn

dt (t) in V ∗n and
|t− kτ | ≤ τ for every t ∈ Iτk , k = 1, . . . ,K, K,n ∈ N, there holds for every n ∈ N and τ ∈ (0, τ0)∥∥en(ûτn − uτn)∥∥Lq′ (I,V ∗n ) ≤ τ

∥∥∥∥denûτndt

∥∥∥∥
Lq′ (I,V ∗n )

= τ
∥∥(idLq(I,Vn))∗

(
Jτ [f ]−Jτ [A]uτn

)∥∥
Lq′ (I,V ∗n ) ≤ τ

(
‖f‖Lp′ (I,X∗)+ C1

)
,

i.e., the estimate (6.12), where we used Proposition 5.3 (ii) and Proposition 5.4 (iii.c). ut
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We can now prove the abstract convergence result, which is the main result of this paper.

Theorem 6.16 Let Assumption (6.1) be satisfied and set τ0 := 1
4c1

. If (un)n∈N := (uτnmn)n∈N ⊆
L∞(I,X), where τn = T

Kn
and Kn,mn →∞ (n→∞), is an arbitrary diagonal sequence of piece-

wise constant interpolants uτn ∈ S0(Iτ , X), K,n ∈ N with τ = T
K ∈ (0, τ0), from Proposition 6.8.

Then, there exists a not relabelled subsequence and a weak limit u ∈ Lp(I, V ) ∩j L
∞(I,H) such

that

un ⇀ u in Lp(I,X),

un
∗
⇁ u in L∞(I, Y ),

(n→∞).

Furthermore, it follows that u ∈W1,p,q
e (I, V,H) is a weak solution of the initial value problem (1.1).

Proof We split the proof into four steps:
1. Convergences: From the estimates (6.9)–(6.12), the reflexivity of Lp(I,X) ∩j L

q(I, Y ), also
using Proposition 5.4 (iii.b), we obtain not relabelled subsequences (un)n∈N, (ûn)n∈N ⊆ Lp(I,X)∩j

L∞(I, Y ), where ûn := ûτnmn for all n ∈ N, as well as u ∈ Lp(I,X) ∩j L
∞(I, Y ), jû ∈ L∞(I, Y )

and χ ∈ (Lp(I,X) ∩j L
q(I, Y ))∗ such that

un ⇀ u in Lp(I,X) (n→∞),

jun
∗
⇁ ju in L∞(I, Y ) (n→∞),

jûn
∗
⇁ jû in L∞(I, Y ) (n→∞),

Jτn [A]un ⇀ χ in (Lp(I,X) ∩j L
q(I, Y ))∗ (n→∞),

Aun ⇀ χ in (Lp(I,X) ∩j L
q(I, Y ))∗ (n→∞).

(6.17)

From (QNC.2) we immediately obtain that u ∈ Lp(I, V ) ∩j L
∞(I,H). In particular, there exists

g ∈ Lp′(I, V ∗) + j∗(Lq′(I,H∗)) (cf. (2.4)), such that for every v ∈ Lp(I, V ) ∩j L
q(I,H)

〈χ,v〉Lp(I,X)∩jLq(I,Y ) =
ˆ
I

〈g(t),v(t)〉V dt. (6.18)

Due to (6.12) there exists a subset E ⊂ I, with I \ E a null set, such that for every t ∈ E

‖emn(ûn(t)− un(t))‖V ∗mn → 0 (n→∞). (6.19)

Owing to (QNC.1) we can choose for every element v of the dense subset C ⊆ V a sequence
vn ∈ Vmn , n ∈ N, such that vn → v in X (n → ∞). Then, using the definition of PH , (6.2), (6.9),
(6.10) and (6.19), we infer for every t ∈ E that

|(PH [(jûn)(t)− (jun)(t)], jv)H | = |((jûn)(t)− (jun)(t), jv)Y |
≤ |〈emn [(jûn)(t)− (jun)(t)], vn〉Vmn |+ | ((jûn)(t)− (jun)(t), jv − jvn)Y |
≤ ‖emn [ûn(t)− un(t)]‖V ∗mn‖vn‖X + ‖(jûn)(t)− (jun)(t)‖Y ‖jv − jvn‖Y
≤ ‖emn [ûn(t)− un(t)]‖V ∗mn‖vn‖X + 2M‖jv − jvn‖Y → 0 (n→∞).

(6.20)

Since C is dense in V and j(V ) is dense in H, we conclude from (6.20) for every t ∈ E that

PH [(jûn)(t)− (jun)(t)] ⇀ 0 in H (n→∞). (6.21)
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Since the sequences (PHjun)n∈N, (PHjû)n∈N ⊆ L∞(I,H) are bounded (cf. (6.9) and (6.10)), [35,
Proposition 2.15] yields, due to (6.21), that PH(jûn − jun) ⇀ 0 in Lq(I,H) (n → ∞). From
(6.17)2,3 we easily deduce that PH(jûn − jun) ⇀ PH(jû − ju) in Lq(I,H) (n → ∞). Thus,
PH(jû) = PH(ju) = ju in L∞(I,H), where we used that u ∈ Lp(I, V ) ∩j L

∞(I,H).
2. Regularity and trace of the weak limit: Let v ∈ C and vn ∈ Vmn , n ∈ N, be a sequence

such that vn → v in X (n→∞). Testing (6.4) for n ∈ N by vn ∈ Vmn , multiplication by ϕ ∈ C∞(I)
with ϕ(T ) = 0, integration over I, and integration by parts yields for every n ∈ N

〈Jτn [A]un, vnϕ〉Lp(I,X)∩jLq(I,Y ) −
ˆ
I

〈Jτn [f ](s), vn〉Xϕ(s) ds

=
ˆ
I

((jûn)(s), jvn)Y ϕ′(s) ds+ (u0
mn , jvn)Y ϕ(0).

(6.22)

By passing in (6.22) for n→∞, using (6.17), (6.18), Proposition 5.3 (i), PH(jû) = ju in L∞(I,H),
u0
mn → u0 in Y (n → ∞) and the density of C in V , we obtain that for all v ∈ V and ϕ ∈ C∞(I)

with ϕ(T ) = 0 there holdsˆ
I

〈g(s)− f(s), v〉V ϕ(s) ds =
ˆ
I

((jû)(s), jv)Y ϕ′(s) ds+ (u0, jv)Y ϕ(0)

=
ˆ
I

((ju)(s), jv)Hϕ′(s) ds+ (u0, jv)Hϕ(0).
(6.23)

In the case ϕ ∈ C∞0 (I) in (6.23), recalling Definition 2.5, we conclude that u ∈ W1,p,q
e (I, V,H)

with continuous representation jcu ∈ C0(I,H) and

deu

dt
= f − g in Lp

′
(I, V ∗) + j∗(Lq

′
(I,H∗)). (6.24)

Thus, we are able to apply the generalized integration by parts formula inW1,p,q
e (I, V,H) (cf. Propo-

sition 2.6) in (6.23) in the case ϕ ∈ C∞(I) with ϕ(T ) = 0 and ϕ(0) = 1, which yields for all v ∈ V

((jcu)(0)− u0, jv)H = 0.

As j(V ) is dense in H and (jcu)(0) ∈ H, we deduce from (6.24) that (jcu)(0) = u0 in H.
3. Pointwise weak convergence: Next, we show that PH(jûn)(t) ⇀ (jcu)(t) in H (n→∞)

for all t ∈ I, which due to (6.21) in turn yields that PH(jun)(t) ⇀ (ju)(t) in H (n→∞) for almost
every t ∈ I. To this end, let us fix an arbitrary t ∈ I. From the a-priori estimate ‖(jûn)(t)‖Y ≤M
for all t ∈ I and n ∈ N (cf. (6.10)) we obtain a subsequence ((jûn)(t))n∈Λt ⊆ Y with Λt ⊆ N,
initially depending on this fixed t, and an element ûΛt ∈ Y such that

(jûn)(t) ⇀ ûΛt in Y (Λt 3 n→∞). (6.25)

Let v ∈ C and vn ∈ Vmn , n ∈ N, be such that vn → v in X (n → ∞). Then, we test (6.4) for
n ∈ Λt by vn ∈ Vmn , multiply by ϕ ∈ C∞(I) with ϕ(0) = 0 and ϕ(t) = 1, integrate over [0, t] and
integrate by parts, to obtain for all n ∈ Λt〈

Jτn [A]un, vnϕχ[0,t]
〉
Lp(I,X)∩jLq(I,Y ) −

ˆ t

0

〈
Jτn [f ](s), vn

〉
X
ϕ(s) ds

=
ˆ t

0
((jûn)(s), jvn)Y ϕ′(s) ds− ((jûn)(t), jvn)Y .

(6.26)
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By passing in (6.26) for n ∈ Λt to infinity, using (6.17), (6.18), Proposition 5.3 (i), (6.25) and the
density of C in V , we obtain for all v ∈ V

ˆ t

0
〈g(s)− f(s), v〉V ϕ(s) ds =

ˆ t

0
((ju)(s), jv)Hϕ′(s) ds− (ûΛt , jv)Y . (6.27)

From (6.24), (6.27), the integration by parts formula in W1,p,q
e (I, V,H) and the properties of PH

we obtain

0 = ((jcu)(t)− ûΛt , jv)Y = ((jcu)(t)− PH ûΛt , jv)H , (6.28)

for all v ∈ V . Thanks to the density of j(V ) in H, (6.28) yields (jcu)(t) = PH ûΛt in H, i.e.,

PH(jûn)(t) ⇀ (jcu)(t) in H (Λt 3 n→∞). (6.29)

As this argumentation remains valid for each subsequence of (PH(jûn)(t))n∈N ⊆ H, the element
(jcu)(t) ∈ H is a weak accumulation point of each subsequence of (PH(jûn)(t))n∈N ⊆ H. The
standard convergence principle (cf. [28, Kap. I, Lemma 5.4]) yields Λt = N in (6.29). Therefore,
using (6.21) and that (jcu)(t) = (ju)(t) in H for almost every t ∈ I, there holds for almost every
t ∈ I

PH(jun)(t) ⇀ (ju)(t) in H (n→∞). (6.30)

4. Identification of Au and χ: Inequality (6.13) in the case τ = τn, n = mn and l = Kn,
using Proposition 5.4 (iii.a), (jcu)(0) = u0 in H, ‖PH(jûn)(T )‖H≤‖(jûn)(T )‖Y =‖(jun)(T )‖Y
and 〈Jτn [f ],un〉Lp(I,X) = 〈f ,un〉Lp(I,X) for all n ∈ N, yields for all n ∈ N

〈Aun,un〉Lp(I,X)∩jLq(I,Y ) ≤ −
1
2‖PH(jûn)(T )‖2

H + 1
2‖(jcu)(0)‖2

H + 〈f ,un〉Lp(I,X). (6.31)

Thus, the limit superior with respect to n ∈ N on both sides in (6.31), (6.17), (6.18), (6.29) with
Λt = N in the case t = T , the weak lower semi-continuity of ‖ · ‖H , the integration by parts formula
in W1,p,q

e (I, V,H) and (6.24) yield

lim sup
n→∞

〈Aun,un − u〉Lp(I,X)∩jLq(I,Y ) ≤ −
1
2‖(jcu)(T )‖2

H + 1
2‖(jcu)(0)‖2

H

+
ˆ
I

〈f(t)− g(t),u(t)〉V dt

= −
ˆ
I

〈deu
dt

(t) + f(s)− g(s),u(t)
〉
V
dt = 0.

(6.32)

As a result of (6.17), (6.30), (6.32) and the quasi non-conforming Bochner pseudo-monotonicity of
A : Lp(I,X) ∩j L

q(I, Y )→ (Lp(I,X) ∩j L
q(I, Y ))∗ (cf. Proposition 4.6), there holds

〈Au,u− v〉Lp(I,X)∩jLq(I,Y ) ≤ lim inf
n→∞

〈Aun,un − v〉Lp(I,X)∩jLq(I,Y )

≤ 〈χ,u− v〉Lp(I,X)∩jLq(I,Y ),

for any v ∈ Lp(I,X) ∩j L
q(I, Y ), which in turn implies that Au = χ in (Lp(I,X) ∩j L

q(I, Y ))∗.
This completes the proof of Theorem 6.16. ut
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7 Applications

In this section, we apply the abstract theory developed in the previous sections to two problems
stemming from incompressible non-Newtonian fluid flows. In particular, we treat the motion of
micropolar electrorheological fluids and a variant of the Smagorinsky model in turbulence. In both
cases we show that solutions of a fully discrete implicit Rothe–Galerkin scheme converge to a weak
solution of the corresponding problem. These results are new and, to the best of the authors’
knowledge, can not be found in the literature. We restrict our treatment to the three-dimensional
case. All results have an analogue in the two-dimensional setting (for a formulation of (7.1) in two
dimensions see (8.1) in Section 8).

In this section we always assume that we have given a family of shape regular triangulations
(cf. [13]) (Th)h>0 of a bounded polygonal Lipschitz domain Ω ⊂ R3, and that I = (0, T ) is a finite
time interval.

In order to formulate the problems we need some additional notation. We denote by ε the
anti-symmetric Levi–Civita symbol. For a tensor P and a vector ω, resp., we denote by ε : P
the vector having the components εijkPjk, i = 1, 2, 3 and by ε · ω the tensor with components
εijkωk, i, j = 1, 2, 3, respectively. In both cases the summation convention over repeated indices
is used. For a tensor P and a vector ω the symbol P ω ∈ R3 denotes the matrix-vector product,
i.e., (P ω)i = Pijωj for i = 1, 2, 3. M3×3

sym is the vector space of all symmetric 3 × 3 tensors P and
M3×3

skew is the vector space of all skew-symmetric 3× 3 tensors P . We equip the vector space M3×3

of all 3 × 3 tensors P with the scalar product P : Q := PijQij and the norm |P | := (P : P ) 1
2 .

Moreover, we denote the symmetric and the skew-symmetric part, resp., of a tensor P ∈ M3×3

by P sym := 1
2 (P + P>) and P skew := 1

2 (P − P>), respectively. The particular case of the skew-
symmetric part of the velocity gradient is denoted by Wu := 1

2 (∇u−∇u>).

7.1 Micropolar electrorheological fluids

We consider the following system describing the motion of micropolar electrorheological fluids

∂tu− div S + div(u⊗ u) +∇q = f in I ×Ω,
divu = 0 in I ×Ω,

∂tω − divN + div(ω ⊗ u) = `− ε : S in I ×Ω,
u = 0, ω = 0 on I × ∂Ω,

u(0) = u0, ω(0) = ω0 in Ω.

(7.1)

In these equations u denotes the velocity, ω the micro-rotation, q the pressure, S the mechanical
extra stress tensor, N the couple stress tensor, ` the electromagnetic couple force, f = f̂+χE div(E⊗
E) the body force, where f̂ is the mechanical body force, χE the dielectric susceptibility and E the
electric field. The electric field solves the quasi-static Maxwell’s equations

divE = 0 curlE = 0 in I ×Ω ,

E · n = E0 · n on I × ∂Ω,
(7.2)

where n is the outer unit normal vector of the boundary ∂Ω and E0 is a given time-dependent
electric field.
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This model was developed in [24] to obtain a more realistic description for the motion of elec-
trorheological fluids. A representative example for a constitutive relation for the stress tensors in
(7.1) reads (cf. [24], [46])

S = (α31 + α33|E|2)(1 + |D|)p−2D + α51(1 + |D|)p−2(DE ⊗ E + E ⊗DE
)

+ α71|E|2(1 + |R|)p−2R+ α91(1 + |R|)p−2(RE ⊗ E + E ⊗RE
)
,

N = (β31 + β33|E|2)(1 + |L|)p−2L+ β51(1 + |L|)p−2(LE ⊗ E + E ⊗ LE
)
,

(7.3)

with p ∈ (1,∞) and constants α31, α33, α71, β31, β33 ≥ 0. The constants α51, α91, β51 have to satisfy
certain restrictions (cf. [24], [46]), which ensure the validity of the second law of thermodynamics.
In (7.3) we used the notation D = Du, R = R(u, ω) := Wu+ ε · ω and L = ∇ω.

This model for micropolar electrorheological fluids is rather general and contains as special
cases the models for generalized Newtonian fluids (E = 0, α31 = 0), electrorheological fluids with
constant exponents (α71 = α91 = β31 = β33 = β51 = 0) and micropolar fluids (E = const.,
α51 = α91 = β33 = β51 = 0). Consequently the results presented in this section also apply to these
models either directly or by an easy adaptation.

We refrain from considering concrete constitutive relations for the stress tensors, but we make
general assumptions covering prototypical situations:

The continuous mapping S : M3×3
sym×M3×3

skew×R3 →M3×3 satisfies for some p ∈ (1,∞) and κ ≥ 0
and all D,P ∈M3×3

sym, R,Q ∈M3×3
skew, E ∈ R3 the following properties:

(S.1) |Ssym(D,R,E)| ≤ α0(1 + |E|2) (κ+ |D|)p−2|D|+ α1 for (α0 > 0, α1 ≥ 0);
|Sskew(D,R,E)| ≤ β0|E|2(κ+ |R|)p−2|R|+ β1 for (β0 > 0, β1 ≥ 0).

(S.2) S(D,R,E) : D ≥ c0(1 + |E|2) (κ+ |D|)p−2|D|2 − c1 for (c0 > 0, c1 ≥ 0);
S(D,R,E) : R ≥ c2|E|2(κ+ |R|)p−2|R|2 − c3 for (c2 > 0, c3 ≥ 0).

(S.3) (S(D,R,E)− S(P,Q,E)) : (D − P +R−Q) ≥ 0.

The continuous mapping N : M3×3 × R3 → M3×3 satisfies for the same p ∈ (1,∞) and κ ≥ 0 and
all L,K ∈M3×3, E ∈ R3 the following properties:

(N.1) |N(L,E)| ≤ γ0(1 + |E|2) (κ+ |L|)p−2|L|+ γ1 for (γ0 > 0, γ1 ≥ 0).
(N.2) N(L,E) : L ≥ c3(1 + |E|2) (κ+ |L|)p−2|L|2 − c4 for (c3 > 0, c4 ≥ 0).
(N.3) (N(L,E)−N(K,E)) : (L−K) ≥ 0.

Concerning the electric field E solving (7.2) we assume that the boundary data E0 are regular
enough to ensure that

(E.1) E belongs to the space L∞(I, L∞(Ω)) and a.e. in I ×Ω there holds |E| > 0.

To treat problem (7.1) we define for p > 6
5 the function spaces

X := W 1,p
0 (Ω)3 ×W 1,p

0 (Ω)3, Y := L2(Ω)3 × L2(Ω)3,

V := W 1,p
0,div(Ω)×W 1,p

0 (Ω)3, H := L2
div(Ω)× L2(Ω)3,
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and the families of operators S(t), N(t), B : X → X∗ for all (u, ω)>, (v, η)> ∈ X via8

〈S(t)(u, ω)>, (v, η)>〉X :=
ˆ
Ω

S(Du,R(u, ω),E(t)) : (Dv +R(v, η)) dx ,

〈N(t)(u, ω)>, (v, η)>〉X :=
ˆ
Ω

N(∇ω,E(t)) : ∇η dx ,

〈B(u, ω)>, (v, η)>〉X :=
ˆ
Ω

u⊗ u : ∇v + ω ⊗ u : ∇η dx ,

and set A(t) := S(t) + N(t) + B : X → X∗, t ∈ I. Then, (7.1) for U0 := (u0, ω0)> ∈ H and
F := (f , `)> ∈ Lp′(I,X∗) can be re-written as the abstract evolution equation for U := (u,ω)>

dU
dt

(t) +A(t)(U(t)) = F(t) in V ∗,

U(0) = U0 in H.

In [8] it is shown that, under appropriate assumption on the data, there exists a weak solution of
the problem (7.1) for p > 6

5 provided S satisfies (S.1)–(S.3), N satisfies (N.1)–(N.3), and E satisfies
(E.1).

Due to the presence of B in the definition of the operator family A(t) : X → X∗, t ∈ I,
the condition (A.3) is not satisfied. Thus, we modify this family and define the operator family
Â(t) : X → X∗ via Â(t) := S(t) +N(t) + B̂, t ∈ I, where B̂ is given for all (u, ω)>, (v, η)> ∈ X via

〈B̂(u, ω)>, (v, η)>〉X := 1
2

ˆ
Ω

v ⊗ u : ∇u− u⊗ u : ∇v + η ⊗ u : ∇ω − ω ⊗ u : ∇η dx .

The operator B̂ is a symmetrized extension of B, as 〈B̂(u, ω)>, (v, η)>〉X = 〈B(u, ω)>, (v, η)>〉X for
all (u, ω)>, (v, η)> ∈ X, which in contrast to B fulfils 〈B̂(u, ω)>, (u, ω)>〉X = 0 for all (u, ω)> ∈ X.
Thus, we have the following result:

Proposition 7.4 For p > 11
5 the operator family Â(t) : X → X∗, t ∈ I, satisfies (A.1)–(A.4).

Proof The assertion is essentially proved in [8]. For the sake of completeness we sketch the main
arguments. Let us first consider S(t) + N(t) : X → X∗, t ∈ I. From (S.1), (N.1), (S.2), (N.2) and
(E.1) in conjunction with the standard theory of Nemytskĭı operators (cf. [44, Theorem 1.43]) we
deduce for almost every t ∈ I the well-definiteness and continuity of S(t) +N(t) : X → X∗, as well
as condition (A.3). Condition (A.2) follows in a standard way by using (S.1), (N.1), (E.1), Pettis’
and Fubini’s theorem, since X is separable. (S.3) and (N.3) certainly imply for almost every t ∈ I
the monotonicity of S(t) +N(t) : X → X∗. Hence, S(t) +N(t) : X → X∗ is for almost every t ∈ I
pseudo-monotone, i.e., condition (A.1) is satisfied. Eventually, it can readily be seen by exploiting
(S.1) and (N.1) that S(t) : X → X∗, t ∈ I, satisfies (A.4).

Next, we treat the more delicate part B̂ : X → X∗. One can verify by the standard theory of
Nemytskĭı operators and Rellich’s compactness theorem that B̂ : X → X∗ is bounded and pseudo-
monotone, i.e., satisfies (A.1) and (A.2). As already pointed out above we have 〈B̂(u, ω), (u, ω)〉X =
0 for all (u, ω) ∈ X, i.e., B̂ satisfies (A.3). To verify that B̂ satisfies (A.4) we note that it is
sufficient to treat the last two terms, since the same estimates apply for the first two if one replaces
ω and η by u and v, respectively. Thus, we define for fixed u ∈ W 1,p

0 (Ω)3 the operator B̃ via
8 To formulate the operator S we used that S : ∇u + (ε : S) · ω = S :

(
Du + R(u, ω)

)
.
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〈B̃ω, η〉W 1,p
0

:= 1
2
´
Ω
η ⊗ u : ∇ω − ω ⊗ u : ∇η dx. By Hölder’s inequality there holds for every

η, ω ∈W 1,p
0 (Ω)3

|〈B̃ω, η〉| ≤ ‖u‖L2p′‖η‖L2p′‖ω‖W 1,p
0

+ ‖ω‖L2p′‖u‖L2p′‖η‖W 1,p
0

. (7.5)

For p ≥ 3, the Sobolev embedding provides ‖v‖L2p′ ≤ c‖v‖W 1,p
0

for every v ∈ W 1,p
0 (Ω)3. Thus, a

twofold application of the ε–Young inequality yields for every ε > 0

|〈B̃ω, η〉| ≤ c ‖u‖W 1,p
0
‖ω‖W 1,p

0
‖η‖W 1,p

0

≤ ε‖u‖p
W 1,p

0
+ cε(‖ω‖W 1,p

0
‖η‖W 1,p

0
)p
′

≤ ε‖u‖p
W 1,p

0
+ ε‖ω‖p

W 1,p
0

+ cε‖η‖
p
p−2

W 1,p
0

≤ ε‖u‖p
W 1,p

0
+ ε‖ω‖p

W 1,p
0

+ cε(1 + ‖η‖p
W 1,p

0
),

where we exploited for the last inequality that a
p
p−2 ≤ (1 + a)

p
p−2 ≤ (1 + a)p ≤ c(p)(1 + ap), valid

for all a ≥ 0 and p ≥ 3. Therefore, (A.4) is satisfied for ε > 0 sufficiently small.
If p ∈ ( 11

5 , 3), then by interpolation with 1
ρ = 1−θ

p∗ + θ
2 , where ρ = p 5

3 , θ = 2
5 and p∗ = 3p

3−p , we
obtain for all v ∈W 1,p

0 (Ω)3

‖v‖Lρ ≤ ‖v‖
2
5
L2‖v‖

3
5
Lp∗
≤ ‖v‖

2
5
L2‖v‖

3
5
W 1,p

0
. (7.6)

Hence, since ρ ≥ 2p′, we further conclude from (7.6) in (7.5) that for all ω, η ∈W 1,p
0 (Ω)3

|〈B̃ω, η〉| ≤ c ‖u‖
2
5
L2‖u‖

3
5
W 1,p

0
‖η‖

2
5
L2‖η‖

3
5
W 1,p

0
‖ω‖W 1,p

0
+ c ‖u‖

2
5
L2‖u‖

3
5
W 1,p

0
‖ω‖

2
5
L2‖ω‖

3
5
W 1,p

0
‖η‖W 1,p

0

≤ ε‖u‖p
W 1,p

0
+ ε‖ω‖p

W 1,p
0

+ cε‖η‖pW 1,p
0

+ cε‖u‖
4p

5p−11
L2 + cε‖ω‖

4p
5p−11
L2 + cε‖η‖

4p
5p−11
L2 ,

where we applied an appropriate version of the ε-Young’s inequality with exponents 10(p−1)
5p−11 , 5(p−1)

3 ,
10(p−1)
5p−11 , 5(p−1)

3 and p. Thus, (A.4) is satisfied for ε > 0 sufficiently small.
Altogether, B̂ : X → X∗ satisfies (A.4) with q = 4p

5p−11 . As a result, Â(t) : X → X∗, t ∈ I,
satisfies (A.1)–(A.4). ut

Let us now define the discrete setup. For given m, `, k ∈ N0, we define Xh := Xu
h ×Xω

h , where
Xu
h ⊂ Pm(Th)3 ∩W 1,p

0 (Ω)3, Xω
h ⊂ Pk(Th)3 ∩W 1,p

0 (Ω)3 are appropriate finite element spaces, both
equipped with the W 1,p

0 (Ω)3–norm. In addition, we define for h > 0 and an appropriate finite
element space Zh ⊂ P`(Th) ∩ Z equipped with the Z–norm, where Z := Lp

′(Ω), the space

Vh :=
{

(uh, ωh)> ∈ Xh

∣∣∣ ˆ
Ω

div uh ηh dx = 0 for all ηh ∈ Zh
}
.

For a null sequence (hn)n∈N ⊆ (0,∞), we set Vn := Vhn , n ∈ N. To ensure that the spaces (Vn)n∈N
are a quasi non-conforming approximation of V in X we make the following assumption:

Assumption 7.7 (Projection operators) For every h > 0 it holds
P1(Th)3 ⊂ Xu

h , P1(Th)3 ⊂ Xω
h , R ⊂ Zh, and that there exist linear interpolation operators Πdiv

h :
W 1,p

0 (Ω)3 → Xu
h , Πωh : W 1,p

0 (Ω)3 → Xω
h and ΠZh : Z → Zh with the following properties:
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(i) Divergence preservation of Πdiv
h in Z∗h: It holds for all u ∈W

1,p
0 (Ω)3 and ηh ∈ Zh

ˆ
Ω

div u ηh dx =
ˆ
Ω

divΠdiv
h u ηh dx .

(ii) local W 1,1-stability of Πdiv
h : There exists a constant c > 0, independent of h > 0, such that

for every u ∈W 1,p
0 (Ω)3 and K ∈ Th9

‖Πdiv
h u‖L1(K) ≤ c ‖u‖L1(SK) + c hK ‖∇u‖L1(SK).

(iii) local L1-stability of ΠZh : There exists a constant c > 0, independent of h > 0, such that for
every η ∈ Z and K ∈ Th

‖ΠZh η‖L1(K) ≤ c ‖η‖L1(SK).

(iv) local W 1,1-stability of Πωh : There exists a constant c > 0, independent of h > 0, such that
for every ω ∈W 1,p

0 (Ω)3 and K ∈ Th

‖Πωhω‖L1(K) ≤ c ‖ω‖L1(SK) + c hK ‖∇ω‖L1(SK).

Certainly, the existence of such operators depends on the choice of Xh and Zh. It is shown in [14],
[29], [31], [9], [30], [21], [48] that Πdiv

h exists for a variety of spacesXh and Zh, which, e.g., include the
Taylor-Hood, the spatially conforming Crouzeix–Raviart, and the MINI element in dimension two
and three. Projection operators ΠZh satisfying Assumption 7.7 (iii) are e.g. the Clément interpolation
operator (cf. [17]) and a version of the Scott-Zhang interpolation operator (cf. [49]). The standard
Scott-Zhang interpolation operator (cf. [49]) satisfies Assumption 7.7 (iv). The abstract assumptions
allow for an easy extension of our results to other choices of Xh and Zh.

The next proposition shows that the approximation of divergence-free Sobolev functions through
discretely divergence-free finite element spaces perfectly fits into the framework of quasi non-
conforming approximations.

Proposition 7.8 Let p > 6
5 and let Assumption 7.7 be satisfied. Then, the sequence (Vn)n∈N forms

a quasi non-conforming approximation of V in X.

Proof Clearly, (V,H, idV ) and (X,Y, idX) form evolution triples satisfying V ⊆ X with
‖·‖V = ‖·‖X in V and H ⊆ Y with (·, ·)H = (·, ·)Y in H × H. So, let us verify that (Vn)n∈N
satisfies (QNC.1) and (QNC.2):

ad (QNC.1)Due to their finite dimensionality, the spaces (Vn)n∈N are closed. We set C := V × C∞0 (Ω)3,
where V = {v ∈ C∞0 (Ω)3

∣∣ div v = 0}. Let (u, ω) ∈ C. Then, owing to standard estimates for poly-
nomial projection operators (cf. [54, Lemma 2.25]), the sequence (un, ωn)> := (Πdiv

hn
u,Πωhnω)> ∈ Vn,

n ∈ N, satisfies

‖(u, η)> − (un, ωn)>‖X ≤ c hn ‖(u, ω)>‖W 2,p(Ω)3 → 0 (n→∞).

ad (QNC.2) Let (un,ωn)> ∈ Lp(I, Vmn), n ∈ N, where (mn)n∈N ⊆ N with mn →∞ (n→∞),
be such that (un,ωn)> ⇀ (u,ω)> in Lp(I,X) (n → ∞). Since the second component of V and
X coincide we only have to show that u ∈ Lp(I,W 1,p

0,div(Ω)3). Let η ∈ C∞0 (Ω) and ϕ ∈ C∞0 (I). As

9 The neighbourhood SK of a simplex K ∈ Th is defined via SK := interior
⋃
{K′∈Th

∣∣K
′∩K 6=∅}

K
′.
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in the previous step we infer that the sequence ηn := ΠZmnη ∈ Zhmn , n ∈ N, satisfies ηn → η in Z
(n→∞). On the other hand, in view of the definition of Vmn there holds 〈divun(t), ηn〉Z = 0 for
almost every t ∈ I and n ∈ N. Thus, for every n ∈ N we have

ˆ
I

ˆ
Ω

divun(s) ηn dxϕ(s) ds = 0. (7.9)

By passing in (7.9) for n→∞, we obtain for every η ∈ C∞0 (Ω) and ϕ ∈ C∞0 (I)
ˆ
I

ˆ
Ω

divu(s) η dxϕ(s) ds = 0,

i.e., u ∈ Lp(I,W 1,p
0,div(Ω)3). ut

Remark 7.10 From the proof of Proposition 7.8 it is clear that instead of Assumption 7.7 it is
sufficient to require that there exist dense subsets X of W 1,p

0 (Ω)3 and Z of Lp′(Ω) and linear
interpolation operators Πdiv

h : X → Xu
h , Πωh : X → Xω

h and ΠZh : Z → Zh which have a global
approximation property, i.e., for every (u, ω) ∈ X ×X there holds ‖(u, ω)>− (Πdiv

h u,Πωhω)>‖X → 0
for h→ 0, as well as for every η ∈ Z there holds ‖η − ΠZh η‖Z → 0 for h→ 0.

Let us summarize our setup for the treatment of problem (7.1) describing the motion of micropolar
electrorheological fluids.

Assumption 7.11 Let Ω ⊆ R3 be a bounded polygonal Lipschitz domain, I := (0, T ), T < ∞,
and p > 11

5 . We make the following assumptions:

(i) The stress tensors and the electric field satisfy (S.1)–(S.3), (N.1)–(N.3), and (E.1).
(ii) (V,H, id), (X,Y, id) and (Vn)n∈N are defined as in Proposition 7.8.
(iii) U0 := (u0, ω0)> ∈ H and U0

n := (u0
n, ω

0
n)> ∈ Vn, n ∈ N, such that U0

n → U0 in Y (n→∞) and
supn∈N ‖U0

n‖Y ≤ ‖U0‖H .
(iv) F := (f , `)> ∈ Lp′(I,X∗).
(v) Â(t) : X → X∗, t ∈ I, is defined as in Proposition 7.4.

Furthermore, we denote by e := (idV )∗RH : V → V ∗ the canonical embedding with respect to the
evolution triple (V,H, id). Thus, the quasi non-conforming Rothe–Galerkin scheme in this setup
reads:

Algorithm 7.12 Let Assumption 7.11 be satisfied. For given K,n ∈ N the sequence of iterates
Ukn := (ukn, ωkn)> ∈ Vn, k = 0, . . . ,K is given solving the implicit Rothe–Galerkin scheme for τ = T

K
and k = 1, . . . ,K

(dτ Ukn ,Wn)Y + 〈[Â]τk Ukn ,Wn〉X = 〈[F ]τk,Wn〉X for all Wn ∈ Vn. (7.13)

By means of Proposition 6.6, Proposition 6.8, Theorem 6.16 and the observations already made
in Proposition 7.4 and Proposition 7.8, we can immediately conclude the following results.

Theorem 7.14 (Well-posedness, stability and weak convergence of (7.13))
Let Assumption 7.11 be satisfied. Then, it holds:

(I) Well-posedness: For every K,n ∈ N there exist iterates (Ukn)k=0,...,K ⊆ Vn, solving (7.13),
without any restrictions on the step-size.
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(II) Stability: The corresponding piece-wise constant interpolants Uτ

n ∈ S0(Iτ , X), K,n ∈ N
with τ = T

K , are bounded in Lp(I,X) ∩ L∞(I, Y ).
(III) Weak convergence: If (Un)n∈N := (Uτn

mn)n∈N, where τn = T
Kn

and Kn,mn →∞ (n→∞),
is an arbitrary diagonal sequence of the piece-wise constant interpolants Uτ

n ∈ S0(Iτ , X),
K,n ∈ N with τ = T

K , then there exists a not relabelled subsequence and a weak limit U ∈ Lp(I, V ) ∩ L∞(I,H)
such that

Un ⇀ U in Lp(I,X),

Un
∗
⇁ U in L∞(I, Y ),

(n→∞).

Furthermore, it follows that U ∈W1,p,p
e (I, V,H)∩L∞(I,H) satisfies U(0) = U0 in H and for

all φ ∈ Lp(I, V )

ˆ
I

〈deU
dt

(t),φ(t)
〉
V
dt+

ˆ
I

〈A(t)(U(t)),φ(t)〉X dt =
ˆ
I

〈F(t),φ(t)〉X dt.

Proof ad (I)/(II) The assertions follow immediately from Proposition 6.6 and Proposition 6.8,
since the operator family Â(t) := S(t) + N(t) + B̂ : X → X∗, t ∈ I, satisfies (A.1)–(A.4) with
c1 = 0 due to Proposition 7.4.

ad (III) The assertions follow from Theorem 6.16. To be more precise, Theorem 6.16 initially
yields that U ∈W1,p,q

e (I, V,H), where q > 1 is specified in the proof of Proposition 7.4, satisfies
U(0) = U0 in H and for all φ ∈ C1

0 (I, V )

ˆ
I

〈deU
dt

(t),φ(t)
〉
V
dt+

ˆ
I

〈Â(t)(U(t)),φ(t)〉X dt =
ˆ
I

〈F(t),φ(t)〉X dt

Since 〈B̂(U(t)),φ(t)〉X = 〈B(U(t)),φ(t)〉X for almost every t ∈ I and all φ ∈ C1
0 (I, V ) as well as

B(U(·)) ∈ Lp′(I, V ∗) (cf. [8, Theorem 2.30]), as U(t) ∈ Lp(I, V ) ∩ L∞(I,H), we actually proved
that U ∈W1,p,p

e (I, V,H) ∩ L∞(I,H), is such that for all φ ∈ C1
0 (I, V )

ˆ
I

〈deU
dt

(t),φ(t)
〉
V
dt+

ˆ
I

〈A(t)(U(t)),φ(t)〉X dt =
ˆ
I

〈F(t),φ(t)〉X dt. ut

Remark 7.15 The results in Theorem 7.14 for micropolar electrorheological fluids are completely
new. There are some previous results for the various subcases. Let us mention some of them. For the
special subcase of generalized Newtonian fluids the result in Theorem 7.14 is, among others, already
contained in [54] (cf. [51]). Theorem 7.14 extends the convergence of a conforming implicit fully
discrete Rothe–Galerkin scheme of an evolution problem with Bochner pseudo-monotone operators,
proved in [7], to the quasi non-conforming setting. Convergence results with optimal rates for
the unsteady p-Navier-Stokes equations and related problems can be found e.g. in [10], [25], [12]
and [11]. For the special subcase of micropolar fluids with p = 2 optimal convergence rates for
strong solutions are proved in [41], [43]. The convergence of a fully discrete approximation towards
a mollified problem for electrorheological fluids with variable exponents is proved in [15].
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7.2 A modified Smagorinsky model

We consider the following modified10 version of the Smagorinsky model for turbulent flows
∂tu− div

(
δ |Du|Du

)
+ div(u⊗ u) +∇q = f in I ×Ω,

divu = 0 in I ×Ω,
u = 0 on I × ∂Ω,

u(0) = u0 in Ω.

(7.16)

In these equations u denotes the velocity, q is the pressure, f is the mechanical body force and δ(·) :=
dist(·, ∂Ω) the distance from the boundary ∂Ω. This modification (with a position-dependent eddy
viscosity) is intended to improve some of the weakness of the original Smagorinsky model, which
is considered to be too dissipative in laminar regimes and close to walls, and thus does not work
satisfactorily for the computation of boundary layers and of the transition to turbulence (cf. [16],
[47], [2]). The introduction of models similar to (7.16) dates back to Obukhov and van Driest,
at least in the case of a channel flow, see [16]. Improved (as well as adaptive and selective) eddy
viscosity models are mostly used in numerical computations, while the basic analytical problems
are still mainly open.

For the functional setting we make use of the standard theory of weighted Lebesgue spaces
Lp(Ω;σ) and Sobolev spaces W 1,p(Ω;σ) (cf. [32], [36]) with a weight σ belonging to the Mucken-
houpt class Ap. The norm in Lp(Ω;σ) is defined as ‖v‖Lp(Ω;σ) :=

( ´
Ω
|v|p σ dx

) 1
p . The dual space

(Lp(Ω;σ))∗ can be identified with Lp′(Ω;σ′), where σ′ := σ
−1
p−1 . In particular we have∣∣∣ˆ

Ω

fg dx
∣∣∣ ≤ ‖f‖Lp(Ω;σ)‖g‖Lp′ (Ω;σ′), (7.17)

if f ∈ Lp(Ω;σ), g ∈ Lp′(Ω;σ′). Note that σ ∈ Ap iff σ′ ∈ Ap′ . The space W 1,p
0 (Ω;σ) is defined as

the completion of C∞0 (Ω) with respect to the norm ‖ · ‖W 1,p(Ω;σ) := ‖ · ‖Lp(Ω;σ) + ‖∇ · ‖Lp(Ω;σ). The
norm ‖∇ · ‖Lp(Ω;σ) is an equivalent norm on W 1,p

0 (Ω;σ). Let us summarize some facts needed for
our analysis. The distance function δ belongs to the Muckenhoupt class Ap for p > 2 (cf. [23]). The
embedding W 1,3

0 (Ω; δ) into Lq(Ω; δ) is compact for all q ∈ [1, 6) (cf. [27, Theorem 2.6]). Moreover,
W 1,3

0 (Ω; δ) embeds into L3(Ω; δβ) if β ≥ −2 (cf. [23]).
To treat problem (7.16) we define the function spaces

X := W 1,3
0 (Ω; δ)3, Y := L2(Ω)3,

V := W 1,p
0,div(Ω; δ), H := L2

div(Ω),

and the operators S,B : X → X∗ for all u, v ∈ X via

〈Su, v〉X :=
ˆ
Ω

δ |Du|Du : Dv dx , 〈Bu, v〉X :=
ˆ
Ω

u⊗ u : ∇v dx ,

and set A(t) := S + B : X → X∗, t ∈ I. Then, (7.16) for u0 ∈ H and f ∈ Lp
′(I,X∗) can be

re-written as the abstract evolution equation
du

dt
(t) +A(t)(u(t)) = f(t) in V ∗,

u(0) = u0 in H.
10 Models of this type are known in literature as improved eddy viscosity models.
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As in the previous section we modify the operator family A(t), t ∈ I, and define Â(t) : X → X∗

via Â(t) := S + B̂, t ∈ I, where B̂ is given for all u, v ∈ X via

〈B̂u, v〉X := 1
2

ˆ
Ω

v ⊗ u : ∇u− u⊗ u : ∇v dx .

The operator B̂ is a symmetrized extension of B, as 〈B̂u, v〉X = 〈Bu, v〉X for all u, v ∈ X and fulfils
〈B̂u, v〉X = 0 for all u ∈ X. Thus, we have the following result:

Proposition 7.18 The operator family Â(t) : X → X∗, t ∈ I, satisfies (A.1)–(A.4) with p = 3.

Proof Let us first consider S : X → X∗. From a straightforward modification of the theory of
Nemytskĭı operators to weighted spaces we deduce for almost every t ∈ I the well-definiteness and
continuity of S : X → X∗, as well as 〈Su, u〉X = ‖Du‖3

L3(Ω;δ), which is condition (A.3). Condition
(A.2) is obviously satisfied, since the operator S does not depend on time. The monotonicity of
S : X → X∗ follows in the same way as for the operator 〈S̃u, v〉W 1,3

0 (Ω) :=
´
Ω
|Du|Du : Dv dx as

the arguments to prove this are pointwise. Hence, S : X → X∗ is pseudo-monotone, i.e., condition
(A.1) is satisfied. Condition (A.4) follows from the pointwise ε-Young inequality.

Next, we treat B̂ : X → X∗. Again a straightforward modification of theory of Nemytskĭı
operators to weighted spaces and the above compact embedding yield that B̂ : X → X∗ is bounded
and pseudo-monotone, i.e., satisfies (A.1). Condition (A.2) is obvious, since the operator B̂ does
not depend on time. As already pointed out above we have 〈B̂u, u〉X = 0 for all u ∈ X, i.e., B̂
satisfies (A.3). We use Hölder’s inequality (7.17), the above stated embeddings and the ε-Young
inequality to verify that for every u, v ∈ X there holds

|〈B̂u, v〉| ≤ ‖v‖
L3(Ω;δ−

1
2 )
‖u‖

L3(Ω;δ−
1
2 )
‖∇u‖L3(Ω;δ) + ‖u‖2

L3(Ω;δ−
1
2 )
‖∇v‖L3(Ω;δ)

≤ ε‖∇u‖3
L3(Ω;δ) + cε‖∇v‖3

L3(Ω;δ),

i.e., (A.4) for ε > 0 sufficiently small.
Altogether, Â(t) : X → X∗, t ∈ I, satisfies (A.1)–(A.4). ut

Let us now define the discrete setup. For p ∈ (1,∞) and a Muckenhoupt weight σ ∈ Ap
we define Z := Lp

′(Ω;σ′). For given m, ` ∈ N0 we denote by Xh ⊂ Pm(Th)3 ∩W 1,p
0 (Ω;σ)3 and

Zh ⊂ P`(Th) ∩ Z suitable finite element spaces equipped with the W 1,p
0 (Ω;σ)3-norm and Z-norm,

respectively. In addition, we define for h > 0 the space

Vh :=
{
uh ∈ Xh

∣∣∣ ˆ
Ω

div uh ηh dx = 0 for all ηh ∈ Zh
}
.

For a null sequence (hn)n∈N ⊆ (0,∞) we set Vn := Vhn , n ∈ N. To ensure that the spaces (Vn)n∈N
are a quasi non-conforming approximation of V in X we make the following assumption:

Assumption 7.19 (Projection operators) For every h > 0 there exist linear interpolation
operators Πdiv

h : W 1,p
0 (Ω;σ)3 → Xh and ΠZh : Z → Zh with the following properties:

(i) Divergence preservation of Πdiv
h in Z∗h: It holds for all u ∈W

1,p
0 (Ω;σ)3 and ηh ∈ Zh

ˆ
Ω

div u ηh dx =
ˆ
Ω

divΠdiv
h u ηh dx .
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(ii) global W 1,p(Ω;σ)-approximability of Πdiv
h : There exists a constant c > 0, independent of

h > 0, such that for every u ∈W 1,p
0 (Ω;σ)3 ∩W 2,p(Ω;σ)3

‖u− Πdiv
h u‖Lp(Ω;σ) + h ‖∇u−∇Πdiv

h u‖Lp(Ω;σ) ≤ c h2 ‖∇2u‖Lp(Ω;σ).

(iii) global Lp′(Ω;σ′)-approximability of ΠZh : There exists a constant c > 0, independent of
h > 0, such that for every η ∈ Z ∩W 1,p′(Ω;σ′)

‖η − ΠZh η‖Lp′ (Ω;σ′) ≤ c h ‖∇η‖Lp′ (Ω;σ′).

Remark 7.20 Since interpolation operators in weighted spaces are not so common in the literature,
we discuss them in some detail.

(i) The Clément interpolation operator (cf. [17]) satisfies Assumption 7.19 (iii). Indeed, the
proof of [4, Theorem 4.2], using a duality argument and a local Poincaré inequality, also works in
the setting of weighted spaces in view of the local Poincaré inequality in weighted spaces (cf. [20,
Theorem 5.1]).

(ii) The existence of an operator Πdiv
h satisfying Assumptions 7.19 (i), (ii) depends on the choice

of Xh and Zh. The general strategy from [14, Section VI.4] can be adapted to the weighted setting
(cf. [22] for a similar approach). To do so one needs a projection operator Πh : W 1,p

0 (Ω, σ)3 →
Pk(Th)3 ∩W 1,1

0 (Ω)3, where k ∈ N is such that Pk(Th)3 ⊂ Xh, which satisfies a local approximation
property, i.e., for every v ∈W 1,p

0 (Ω, σ)3 ∩W 2,p(Ω;σ)3 and K ∈ Th

‖v − Πhv‖Lp(K;σ) + h ‖∇v −∇Πhv‖Lp(K;σ) ≤ c h2 ‖∇2v‖Lp(SK ;σ). (7.21)

The existence of such an operator is proved in [40, Theorem 5.2, 5.3]. Moreover, one needs a
correction operator Πcor

h : W 1,1
0 (Ω)3 → Xh which is locally W 1,1-stable, i.e., there exists a constant

c > 0, independent of h > 0, such that for every v ∈W 1,1
0 (Ω)3 and K ∈ Th

‖Πcor
h v‖L1(K) ≤ c ‖v‖L1(SK) + c hK ‖∇v‖L1(SK).

This inequality implies that there exists a constant c > 0, independent of h > 0, such that for every
v ∈W 1,p

0 (Ω;σ)3 and K ∈ Th

‖Πcor
h v‖Lp(K;σ) ≤ c ‖v‖Lp(SK ;σ) + c hK ‖∇v‖Lp(SK ;σ). (7.22)

The proof of this assertion just uses Hölder’s inequality, the equivalence ‖g‖L∞(K) ∼ −́K |g| dx valid
for all polynomials g ∈ Pm(K), and σ ∈ Ap. From (7.21), (7.22) one easily deduces that

Πdiv
h (v) := Πh(v) + Πcor

h (v − Πhv)

satisfies Assumptions 7.19 (i), (ii). Consequently, at least for the MINI element we proved that
Assumptions 7.19 is satisfied. The abstract assumptions allow for an easy extension of our results
to other choices of Xh and Zh.

Proceeding in the same way as in the proof of Proposition 7.8 one can show:

Proposition 7.23 Let Assumption 7.19 be satisfied for p = 3 and σ = δ. Then, the sequence
(Vn)n∈N forms a quasi non-conforming approximation of V in X.

Let us summarize our setup for the treatment of problem (7.16).
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Assumption 7.24 Let Ω ⊆ R3 be a bounded polygonal Lipschitz domain, I := (0, T ), and T <∞.
We make the following assumptions:

(i) (V,H, id), (X,Y, id) and (Vn)n∈N are defined as in Proposition 7.23.
(ii) u0 ∈ H and u0

n ∈ Vn, n ∈ N, are such that u0
n→u0 in Y (n→∞) and supn∈N ‖u0

n‖Y ≤‖u0‖H .
(iii) f ∈ Lp′(I,X∗).
(iv) Â(t) : X → X∗, t ∈ I, is defined as in Proposition 7.18.

Furthermore, we denote by e := (idV )∗RH : V → V ∗ the canonical embedding with respect to the
evolution triple (V,H, id). Thus, the quasi non-conforming Rothe–Galerkin scheme in this setup
reads:

Algorithm 7.25 Let Assumption 7.24 be satisfied. For given K,n ∈ N the sequence of iter-
ates ukn ∈ Vn, k = 0, . . . ,K is given solving the implicit Rothe–Galerkin scheme for τ = T

K and
k = 1, . . . ,K

(dτukn, vn)Y + 〈[Â]τk ukn, vn〉X = 〈[f ]τk, vn〉X for all vn ∈ Vn. (7.26)

By means of Proposition 6.6, Proposition 6.8, Theorem 6.16 and the observations already made
in Proposition 7.18 and Proposition 7.23, we can conclude in the same way as in Theorem 7.14 the
following results:

Theorem 7.27 (Well-posedness, stability and weak convergence of (7.26))
Let Assumption 7.24 be satisfied. Then, it holds:

(I) Well-posedness: For every K,n ∈ N there exist iterates (ukn)k=0,...,K ⊆ Vn, solving (7.26),
without any restrictions on the step-size.

(II) Stability: The corresponding piece-wise constant interpolants uτn ∈ S0(Iτ , X),K,n ∈ N with
τ = T

K , are bounded in Lp(I,X) ∩ L∞(I, Y ).
(III) Weak convergence: If (un)n∈N := (uτnmn)n∈N, where τn = T

Kn
and Kn,mn →∞ (n→∞),

is an arbitrary diagonal sequence of the piece-wise constant interpolants uτn ∈ S0(Iτ , X),
K,n ∈ N with τ = T

K , then there exists a not relabelled subsequence and a weak limit u ∈ Lp(I, V ) ∩ L∞(I,H)
such that

un ⇀ u in Lp(I,X),

un
∗
⇁ u in L∞(I, Y ),

(n→∞).

Furthermore, it follows that u ∈W1,p,p
e (I, V,H) ∩ L∞(I,H) satisfies u(0) = u0 in H and for

all φ ∈ Lp(I, V )
ˆ
I

〈deu
dt

(t),φ(t)
〉
V
dt+

ˆ
I

〈A(t)(u(t)),φ(t)〉X dt =
ˆ
I

〈f(t),φ(t)〉X dt.

This result is to the best of the authors’ knowledge the first one proving the convergence of a
fully discrete approximation of problem (7.16). Moreover, it is even the first existence proof of weak
solutions for the problem (7.16) at all.
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8 Numerical experiments

To conclude, we want to present some numerical experiments with data having low regularity that
perfectly suit the framework of this article. All numerical experiments were conducted employing
the finite element software FEniCS [37]. All graphics are generated using the Matplotlib library [33].

We consider for Ω := (−1, 1)2 ⊆ R2, T := 0.1, QT := I ×Ω and p := 11
5 , the system describing

the unsteady motion of micropolar electrorheological fluids in two dimensions, i.e.,11

∂tu− div S + div(u⊗ u) +∇q = f in I ×Ω,
divu = 0 in I ×Ω,

∂tω − divN + div(ωu) = `− ε : S in I ×Ω,
u = 0, ω = 0 on I × ∂Ω,

u(0) = u0, ω(0) = ω0 in Ω,

(8.1)

where ω : I ×Ω→ R is the scalar micro-rotation, u: I ×Ω→ R2 the velocity and q : I×Ω→ R the
pressure. The system (8.1) differs from its three-dimensional counterpart mainly in equation (8.1)3,
which is now a scalar equation that involves a scalar micro-rotation ω (cf. [38] for the case p = 2).
The analogue to Theorem 7.14 in this setting holds for p > 2. Moreover, for the electric field E,
solving the two-dimensional quasi-static Maxwell’s equations (7.2), we make the particular choice

E(t, x) := (t+ x2, t+ x1)>

for all (t, x)> = (t, x1, x2)>∈QT . We assume that the stress tensor S :M2×2
sym×M2×2

skew×R2→M2×2

and the couple stress tensor N : M2×2×R2 →M2×2, for any D ∈M2×2
sym, R ∈M2×2

skew and E,L ∈ R2,
have the form

S(D,R,E) := (1 + |E|2)(κ+ |D|)p−2D + |E|2(κ+ |R|)p−2R,

N(L,E) := (1 + |E|2)(κ+ |L|)p−2L,

with κ = 0.001, where we used the notation D = Du, R = R(u, ω) := Wu+εω = Wu+
( 0 ω
−ω 0

)
. We

treat solutions with a point singularity at the origin in the velocity and the micro-rotation. More
precisely, we assume that for every (t, x)> = (t, x1, x2)> ∈ QT , there holds12

u(t, x) := (t, t)> + |x|α−1(x2,−x1)>, ω(t, x) := t+ |x|α−1x1, q(t, x) := 0, (8.2)

where α := 6
5 −

2
p ≈ 0.291. Then, making the choice

f := ∂tu− div S + div(u⊗ u) ∈ Lp
′
(I, (W 1,p

0 (Ω)2)∗),

l := ∂tω − divN + div(ωu) + ε : S ∈ Lp
′
(I, (W 1,p

0 (Ω))∗),
(8.3)

the functions (8.2) solve (8.1) with right-hand sides (8.3). In particular, note that the parameter α
is chosen so small that just u(t) ∈W 1,p

div (Ω)2 for every t ∈ I, since |Du(t, x)| ∼ |x|α−1 ∈ Lp(Ω), but
simultaneously u(t) /∈ W 2,1(Ω)2 for every t ∈ I. Similar, this choice guarantees S(t) ∈ Lp′(Ω)2×2

for every t ∈ I, but neither that S(t) /∈ W 1,p′(Ω)2×2, nor that div S(t) ∈ Lp′(Ω)2 for every t ∈ I.
11 Here, ε := ( 0 1

91 0 ) ∈ M2×2 denotes the two-dimensional Levi–Civita tensor.
12 The exact solutions do not satisfy the homogeneous boundary conditions (8.1)4. However, the error is mainly
concentrated around the singularity in the origin and hence the small inconsistency with our theoretical setup does
not have any influence in the results.
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Thus, the right-hand side has just enough regularity, namely f ∈ Lp′(I, (W 1,p
0 (Ω)2)∗), to fall into

the framework of our weak convergence result Theorem 7.14. Exactly the same considerations also
apply to both ω(t) ∈W 1,p(Ω) and l ∈ Lp′(I, (W 1,p

0 (Ω))∗).
The chosen low regularity has the consequence that one still finds convergence of the scheme,

i.e., at least weak convergence in the sense of Theorem 6.16, however, no stable convergence rates
could be recorded experimentally (cf. Tables 1 to 4).

The spatial discretization of our domain Ω is obtained by a sequence of uniform finite element
meshes (Thn)n∈N consisting of triangles with straight sides and diameter hn := h0

2n , h0 := 2
√

2, for
every n ∈ N. Beginning with Th1 , see, e.g., Figure 1 the first and the third picture, for every n ∈ N
with n ≥ 2, the mesh Thn is a refinement of Thn−1 obtained by subdividing each triangle into four,
which is based an edge midpoint or regular 1 : 4 refinement algorithm.

We consider the MINI element (cf. Table 1 and Table 2) and the spatially conforming Crouzeix–
Raviart element (cf. Table 3 and Table 4). Furthermore, we use the time step-sizes τn := 0.02 · 2−n,
i.e., Kn := 10 · 2n, n ∈ N. Then, the iterates ((ukn, ωkn)>)k=0,...,Kn⊆Vn solving the straightforward
two-dimensional analog of (1.8) are approximated employing Newton’s iteration. Apart from that,
let the mapping F : M2×2

sym → M2×2
sym be defined by F (A) := (κ + |A|)

p−2
2 A for every A ∈ M2×2

sym.
Equally, let the mapping G : R2 → R2 be defined by G(a) := (κ+ |a|)

p−2
2 a for every a ∈ R2. Then,

for n = 1, . . . , 6, we are interested in the parabolic errors

enF,u :=
( Kn∑
k=0

τn‖F (Du(tk))− F (Dukn)‖2
L2(Ω)2×2

) 1
2

, enL2,u := max
0≤k≤Kn

‖u(tk)− ukn‖L2(Ω)2 ,

enG,ω :=
( Kn∑
k=0

τn‖G(∇ω(tk))−G(∇ωkn)‖2
L2(Ω)2

) 1
2

, enL2,ω := max
0≤k≤Kn

‖ω(tk)− ωkn‖L2(Ω),

which can be considered as approximations of ‖F (Du)−F (Duτn)‖L2(QT )2×2 , ‖u−uτn‖L∞(I,L2(Ω)2),
‖G(∇ω)−G(∇ωτn)‖L2(QT )2 and ‖u− uτn‖L∞(I,L2(Ω)). In particular, we are interested in the total
parabolic errors entot,u := enF,u + enL2,u and entot,ω := enG,ω + enL2,ω for n = 1, . . . , 6. As an estimation
of the convergence rates, we employ the experimental order of convergence (EOC):

EOC(en) :=
log
(
en

en−1

)
log
(

hn+τn
hn−1+τn−1

) , n = 2, . . . , 6,

where en, n = 1, . . . , 6, either denote enF,u, enL2,u, entot,u, enG,ω, enL2,ω, or entot,ω, n = 1, . . . , 6, resp.
In order to obtain a higher accuracy in the computation of these errors, in particular, with regard

to the singularities of the exact solutions around the origin, we interpolate both u(tk) and ukn, or
ω(tk) and ωkn, into polynomial spaces of higher order with respect to a suitably refined mesh,
namely into P5(T ′hn)2, or P5(T ′hn), resp., where T ′hn is a refinement of Thn , which is obtained by
applying the longest edge bisection method of FEniCS to Thn+1 for all cells T ∈ Thn+1 that satisfy
dist(T, 0) < 0.25 and subsequently on the resulting refined mesh T̃hn+1 for all cells T ∈ T̃hn+1 that
satisfy dist(T, 0) < 0.1, see e.g. Figure 1 the second and the fourth picture.

In this manner, we obtain the following results:
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Fig. 1: From the left to the right: snapshots of the meshes Th1 , T ′h1
, Th2 and T ′h2

.

n hn = h0
2n τn = 0.2T

2n enL2,u EOC(enL2,u) enF,u EOC(enF,u) EOC(entot,u)

1 1.414 1.00e92 0.463 – 0.548 – –
2 7.07e91 5.00e93 0.263 0.81 0.463 0.24 0.48
3 3.54e91 2.50e93 0.139 0.92 0.407 0.18 0.41
4 1.77e91 1.25e93 0.075 0.89 0.362 0.17 0.32
5 8.84e92 6.25e94 0.042 0.86 0.323 0.17 0.26
6 4.42e92 3.13e94 0.028 0.57 0.289 0.16 0.20

Table 1: Error analysis with respect to u for the MINI element.

n hn = h0
2n τn = 0.2T

2n enL2,ω EOC(enL2,ω) enG,ω EOC(enG,ω) EOC(entot,ω)

1 1.414 1.00e92 0.359 – 0.592 – –
2 7.07e91 5.00e93 0.203 0.83 0.527 0.17 0.38
3 3.54e91 2.50e93 0.105 0.95 0.465 0.18 0.36
4 1.77e91 1.25e93 0.058 0.87 0.410 0.18 0.29
5 8.84e92 6.25e94 0.039 0.55 0.363 0.18 0.22
6 4.42e92 3.13e94 0.036 0.13 0.324 0.16 0.16

Table 2: Error analysis with respect to ω for the MINI element.

n hn = h0
2n τn = 0.2T

2n enL2,u EOC(enL2,u) enF,u EOC(enF,u) EOC(entot,u)

1 1.414 1.00e92 0.225 – 0.419 – –
2 7.07e91 5.00e93 0.134 0.75 0.367 0.19 0.36
3 3.54e91 2.50e93 0.086 0.64 0.329 0.16 0.27
4 1.77e91 1.25e93 0.054 0.67 0.299 0.14 0.23
5 8.84e92 6.25e94 0.034 0.66 0.272 0.14 0.20
6 4.42e92 3.13e94 0.026 0.38 0.249 0.12 0.15

Table 3: Error analysis with respect to u for the spatially conforming Crouzeix–Raviart element.

Acknowlegdements

Luigi C. Berselli was partially supported by a grant of the group GNAMPA of INdAM and by the
University of Pisa within the grant PRA_2018_52 UNIPI: “Energy and regularity: New techniques
for classical PDE problems.” We would like to thank the referees for their valuable comments.



38 Luigi C. Berselli et al.

n hn = h0
2n τn = 0.2T

2n enL2,ω EOC(enL2,ω) enG,ω EOC(enG,ω) EOC(entot,ω)

1 1.414 1.00e92 0.359 – 0.591 – –
2 7.07e91 5.00e93 0.203 0.82 0.527 0.17 0.38
3 3.54e91 2.50e93 0.106 0.94 0.465 0.18 0.35
4 1.77e91 1.25e93 0.058 0.87 0.410 0.18 0.29
5 8.84e92 6.25e94 0.040 0.55 0.363 0.18 0.22
6 4.42e92 3.13e94 0.036 0.13 0.324 0.16 0.16

Table 4: Error analysis with respect to ω for the spatially conforming Crouzeix–Raviart element.
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