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ABSTRACT

Context. Density inhomogeneities are ubiquitous in space and astrophysical plasmas, particularly at contact boundaries between dif-
ferent media. They often correspond to regions that exhibit strong dynamics across a wide range of spatial and temporal scales. Indeed,
density inhomogeneities are a source of free energy that can drive various instabilities such as the lower-hybrid-drift instability, which,
in turn, transfers energy to the particles through wave-particle interactions and eventually heats the plasma.
Aims. Our study is aimed at quantifying the efficiency of the lower-hybrid-drift instability to accelerate or heat electrons parallel to
the ambient magnetic field.
Methods. We combine two complementary methods: full-kinetic and quasilinear models.
Results. We report self-consistent evidence of electron acceleration driven by the development of the lower-hybrid-drift instability us-
ing 3D-3V full-kinetic numerical simulations. The efficiency of the observed acceleration cannot be explained by standard quasilinear
theory. For this reason, we have developed an extended quasilinear model that is able to quantitatively predict the interaction between
lower-hybrid fluctuations and electrons on long time scales, which is now in agreement with full-kinetic simulations results. Finally,
we apply this new, extended quasilinear model to a specific inhomogeneous space plasma boundary, namely, the magnetopause of
Mercury. Furthermore, we discuss our quantitative predictions of electron acceleration to support future BepiColombo observations.

Key words. plasmas – methods: numerical – instabilities – waves – methods: observational

1. Introduction

Inhomogeneities in the magnetic field, velocity, density, tem-
perature, etc. from fluid down to kinetic scales are commonly
encountered in space and astrophysical plasmas (Amatucci
1999). The gradient associated with such inhomogeneous
plasma regions is a source of “free” energy that can drive var-
ious kind of plasma instabilities. For instance, in the case of
density gradient on scale close to the ion gyroradius, a situation
that is commonly encountered in many plasma environments,
the plasma is unstable against the so-called drift instabilities.
These instabilities arise from the relative motion between ions
and electrons, and turn out to be of paramount importance in
shaping plasma boundaries found in space, allowing for strong
anomalous mass and energy transport not achievable by standard
collision-like diffusion.

In situ measurements show that lower-hybrid waves (LHW)
with a frequency close to the lower-hybrid frequency fLH ≈√
ωciωce/2π, are ubiquitous in magnetized space plasma environ-

ments. Such waves are commonly observed at Earth’s magneto-
tail (Huba et al. 1978; Retinó et al. 2008; Zhou et al. 2009, 2014;
Khotyaintsev et al. 2011; Norgren et al. 2012; Le Contel et al.
2017) and Earth’s magnetopause (André et al. 2001; Bale et al.
2002; Vaivads et al. 2004; Graham et al. 2017, 2019; Tang et al.
2020). In these two regions, LHW are commonly observed
in the vicinity of magnetic reconnection sites where strong

density gradients do form. Their role on the onset (or relax-
ation) of magnetic reconnection has been addressed in the past
and still represents a key point in the context of reconnection
research (Daughton 2003; Lapenta et al. 2003, 2018; Yoo et al.
2020).

Moreover, LHW are also observed at plasma shock fronts
such as the terrestrial bow shock (Walker et al. 2008), inter-
planetary shocks in the solar wind (Krasnoselskikh et al.
1985; Zhang & Matsumoto 1998; Wilson et al. 2013), and
supernova remnants (Laming 2001). Finally, LHW have been
observed in induced ionosphere of comet 67P (André et al. 2017;
Karlsson et al. 2017; Goldstein et al. 2019), of the planets Venus
(Scarf et al. 1980; Shapiro et al. 1995) and Mars (Sagdeev et al.
1990), as well as at Earth’s ionosphere (Reiniusson et al. 2006).
In this context, space observations of supra-thermal electron
populations in conjunction with LHW represents one of the
basic points motivating the interest in the study of the interaction
of these waves with electrons (Norgren et al. 2012; Zhou et al.
2014; Le Contel et al. 2017; Broiles et al. 2016; Goldstein et al.
2019).

As more than just a mechanism at work in space plasma envi-
ronments, electron acceleration by LHW is a mechanism com-
monly used in tokamak experiments to heat electrons and hence
the plasma along the toroidal magnetic field lines (Bécoulet et al.
2011; Pericoli-Ridolfini et al. 1999). This naturally suggests that
LHW generated in space are an efficient driver for electron
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acceleration in space plasma environments (Broiles et al. 2016).
However, the mechanism for the generation of LHW in labora-
tory differs strongly from the one that is at play in space plas-
mas. In plasma fusion experiments, the LHW are commonly
excited by an external pump enabling to sustain the waves and
so the electron acceleration process on long time scales, with
the parameters controlled by the experimenter himself. In inho-
mogeneous space plasma, LHW are instead generated by the
development of plasma instabilities, in which nonlinear satura-
tion might reduce the efficiency of the acceleration process when
compared to plasma fusion experiments.

In a natural plasma environment, the two instabilities that can
be responsible for the generation of LHW are: (i) the modified-
two-stream instability (MTSI) driven by a supra-thermal ion
beam (Ott et al. 1972; McBride et al. 1972; McBride & Ott
1972); and (ii) the lower-hybrid-drift instability (LHDI) driven
by the relative drift between ions and electrons (Krall & Liewer
1971; Krall & Trivelpiece 1973; Gary 1993). The electron accel-
eration driven by LHW generated by the MTSI has been
widely addressed in the literature using quasilinear theory
(McBride et al. 1972; Shapiro et al. 1999), full-kinetic simula-
tions (McClements et al. 1993; Bingham et al. 2002), and exper-
iments (Rigby et al. 2018). The MTSI is considered the typical
source for the above-mentioned LHW observations at plasma
shock fronts (Krasnoselskikh et al. 1985; Shapiro et al. 1995,
1999) due to the reflection of a large fraction of solar wind ions
by the shock front; however, LHW are routinely observed also
in the absence of such beams of reflected ions, a condition that
stands in the way of invoking the MTSI as the underlying mech-
anism. In such cases, the LHW are instead generated by the
LHDI. The driver for the development of the LHDI has to be
found in the “strong” density gradients that reach length scales
on the order of, or even shorter than, the ion gyroradius. This is
the case, for instance, for the above-mentioned observations at
Earth’s magnetosphere and in cometary plasmas. Henceforth in
this work, we focus on LHW generated by the LHDI and their
interaction with the electron population.

The fastest growing modes of the LHDI propagate perpen-
dicular to both the density gradient, say the x-direction, and
the ambient magnetic field direction, the z-direction. The phase
velocity is of the order of the ion thermal speed (Gary 1993).
However, the LHDI modes are unstable over a narrow cone
angle around this direction (in this case, the y-direction) pro-
portional to the square root of the ion-to-electron mass ratio
kz/ky ≈

√
me/mi (Gary & Sanderson 1978). This means that the

oblique LHDI modes have a component of the phase velocity
parallel (resp. perpendicular) to the ambient magnetic field of
the order of the electron (resp. ion) thermal speed. As a result,
electrons can be resonantly accelerated by LHDI fluctuations
in the direction parallel to the ambient magnetic field through
wave-particle interactions; hereafter, we refer to this mechanism
as LHDI electron acceleration.

The goal of this paper is to investigate the efficiency of the
LHDI electron acceleration. As of today, the state-of-the-art the-
oretical model of this mechanism is provided by the analyti-
cal quasilinear model proposed by Cairns & McMillan (2005),
hereafter, called the QL model. The QL model is well suited
to the study of the early stage of the electron acceleration, but
eventually it breaks down when the nonlinear feedback from the
particle distribution to the wave becomes important. More pre-
cisely, the QL model breaks down as soon as nonlinear effects
locally modify the distribution function shape (i.e. around the
resonant velocity); hereafter referred to as nonlinear LD-like

effects because they are analogous to the well-known nonlinear
Landau damping effects (see Brunetti et al. 2000 and references
therein).

Other past works have addressed the problem of the inter-
action between pump-generated LHW and electrons, includ-
ing such nonlinear LD-like effects (Singh et al. 1996, 1998;
Zacharegkas et al. 2016). However, the configuration adopted in
these works is not well suited for space plasma configurations
where LHW are typically driven by a plasma instability, such
as the LHDI, and not by an external pump. To the best of our
knowledge, the LHDI electron acceleration mechanism has not
yet been studied using a self-consistent full-kinetic model.

In the past, the efficiency of LHDI electron acceleration has
been addressed by means of reduced analytical models similar
to the QL model, mostly because of the limitations on com-
putational resources. Indeed, the computational power required
to solve the Vlasov equation for LHDI electron acceleration is
challenging because (i) ion and electron kinetic physics must
be included self-consistently in the model, meaning that a full-
kinetic numerical simulation is required; and (ii) the wave prop-
agation occurs over an angle, in the y−z plane, perpendicular to
the inhomogenity direction, the x-direction, meaning that three-
dimensional (3D) numerical simulations are required. All in all,
investigating the electron acceleration generated by the LHDI
requires full-kinetic 3D-3V simulations. This is one of the meth-
ods used in this work.

In this paper we investigate the electron acceleration asso-
ciated with the LHDI through a comparison of complemen-
tary numerical simulations. We use the quasilinear approach and
direct full-kinetic 3D-3V simulations. This enables us to assess
the intrinsic limits of the QL model and to investigate the con-
sequences of nonlinear LD-like effects on the LHDI electron
acceleration. We present the first direct numerical evidence of
LHDI electron acceleration from full-kinetic 3D-3V simulations,
and we build up an extended quasilinear (eQL) model that takes
into account the effect of such nonlinear saturation to quantita-
tively estimate electron acceleration under realistic space plasma
parameters.

The paper is organized as follows: Section 2 describes the QL
model and the full-kinetic 3D-3V simulation model we use here.
Section 3 presents the results of both models using two common
sets of plasma parameters (“strong” and “weak” gradient configu-
rations). Section 4 compares the results of the two models, shows
the limitations of the QL model as compared to the full-kinetic
one, and presents a novel eQL model. Finally, we apply this new
eQL model to the magnetopause of Mercury in view of the future
observations of the BepiColombo space mission. Section 5 sum-
marizes our findings and presents our conclusions.

2. Models and methods

In this study, we use two different models of plasma evolution.
First, a QL model of LHDI electron interaction based on the
work of Cairns & McMillan (2005). Second, a full-kinetic 3D-
3V plasma simulations of a plasma boundary initially unstable
to the LHDI. The former is a simplified model of the plasma
dynamics that does not account for the full response of the
plasma itself to nonlinear interactions, and is therefore consid-
ered a reduced model. The latter instead is fully self-consistent,
even if constrained by a specific parameter choice, and it is there-
fore considered an ab initio model. The full-kinetic model, being
more general than the QL one, is used to assess the limits of
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the latter and eventually, to build an extended description that
properly models the LHDI electron acceleration still within a
quasilinear framework.

2.1. Quasilinear analytical model

The wave-particle interaction between LHW (generated from
LHDI) and electrons can be modeled using a powerful ana-
lytical tool: quasilinear theory (Bernstein & Engelmann 1966;
Alexandrov et al. 1984). Quasilinear theory is based on a second
order perturbative expansion of the Vlasov equation averaged
over the spatial variables. The system of quasilinear equations
describes: (i) the diffusion in velocity space of the electron distri-
bution function through a diffusion coefficient proportional to the
electric field energy (Eqs. (1) and (2)); and (ii) the time evolution
of the electric field energy (Eqs. (3) and (4)). The state-of-the-
art QL model for LHDI electron interaction is the one developed
in Cairns & McMillan (2005) and summarized here:

∂t fe(v‖, t) = ∂v‖De(v‖, t)∂v‖ fe, (1)

De(v‖, t) =
e2

4ε0m2
e

∫
S k(k⊥, k‖, t)

k2
‖

k2
⊥

δ(ω − k‖v‖)d3k, (2)

∂tS k(k⊥, k‖, t) =

[
γLHDI

(
1 −

S k

S k,max

)
+ γe(k⊥, k‖, t)

]
S k, (3)

γe(k⊥, k‖, t) =
πω2

LHω(k⊥, k‖)

2n0k2
⊥

mi

me
∂v‖ fe(v‖ = ω/k‖, t). (4)

Here, fe(v‖, t) is the electron distribution function, k⊥ (resp. k‖)
is the wavevector perpendicular (resp. parallel) to the ambient
magnetic field, S k = E2

k/8π is the electric field energy density
in wavevector-space, S k,max is the maximum value of S k attained
at saturation, n0 is the plasma density, ωLH, ωci are the lower-
hybrid and ion cyclotron frequencies, ω(k⊥, k‖) is the spectrum
of the wave, γLHDI is twice the linear growth rate of the LHDI,
and δ(x) is the Dirac delta function. In the following, ρi is the ion
gyroradius, and vthi = ρiωci is the ion thermal speed.

After normalization, this nonlinear system of coupled par-
tial differential equations (Eqs. (1)–(4)) is solved by numerical
integration using a time staggered leapfrog scheme. In k-space,
we limit the computation to the region of LHDI fastest grow-
ing modes, that is, 0.7 < k⊥ρe < 1 and 0 < k‖ρi < 1, as done
in Cairns & McMillan (2005). Since the wavevectors are lim-
ited to this region, the wave spectrum turns out to be more or
less flat with a corresponding frequency for the fastest growing
mode given by the lower-hybrid frequency,ω(k⊥, k‖) ' ωLH. The
grid in velocity space is chosen by testing the convergence of the
solution.

The QL model, Eqs. (1)–(4), depends on four parameters:
mi/me, ωpe/ωce, γLHDI, and S k,max. The first two parameters,
mi/me, ωpe/ωce, define the plasma itself. The last two parame-
ters γLHDI and S k,max (or analogously S max =

∫
d3kS k,max) define

the linear growth and saturation level of the instability, and they
only depend on the initial plasma configuration. The analytical
expressions for these two quantities are given by:

γLHDI =

√
2π
4

1√
1 + βi/2

(εnρi)2ωLH, (5)

S max =

2 me
mi

(εnρi)2

(1+ω2
pe/ω

2
ce) n0Ti current relaxation

2
45
√
π

(εnρi)5

(1+ω2
pe/ω

2
ce) n0Ti ion trapping,

(6)

where βi is the ion plasma beta, and the inverse gradient scale
length εn is defined as

εn = max
{

1
n(x)

dn(x)
dx

}
. (7)

The growth rate γLHDI in Eq. (5) has been obtained using a lin-
earized kinetic model by Davidson et al. (1977). The electric
energy at saturation S max in Eq. (6) has been obtained using an
analytic quasilinear approach by Davidson (1978), and it was
later tested numerically by Brackbill et al. (1984) using 2D full-
kinetic simulations. The LHDI can saturate through two different
processes depending on the initial value of the density gradient:
ion trapping (resp. current relaxation) for high (resp. low) values
of the density gradient (Brackbill et al. 1984).

The derivation of Eqs. (5) and (6) is based on the assumption
that the only source of drift in the plasma is the density gradient.
Thus, all particle drifts, apart from the diamagnetic drift vDi, are
considered negligible. As a consequence, vDi/vthi = εnρi. In the
full-kinetic simulations, presented in the next section (Sect. 2.2),
this assumption is essentially verified.

Quasilinear models are inherently limited because they do
not include the nonlinear feedback from the modified plasma dis-
persion function on the electromagnetic fields. To overcome this
limitation, we present in the next section (Sect. 2.2) a full-kinetic
3D-3V numerical plasma model.

2.2. Setup for full-kinetic 3D-3V simulations

The full-kinetic model of the plasma is based on a direct solution
of the Vlasov-Maxwell system of equations using a Lagrangian
PIC (particle-in-cell) approach.

To run the simulations of a plasma boundary unstable to
the LHDI, we used the explicit, electromagnetic, relativistic,
PIC code SMILEI (Derouillat et al. 2018). The ambient mag-
netic field is directed along the z-axis and the density gradi-
ent along the x-axis. In order to model both wave propagation
(predominantly along the y-axis, perpendicular to both the mag-
netic field and the density gradient direction) and the electron
wave-particle interaction (predominantly along the z-axis, paral-
lel to the magnetic field), we considered a 3D numerical box.
Compared to previous numerical investigations of the LHDI
(Brackbill et al. 1984; Gary & Sgro 1990; Hoshino et al. 2001;
Shinohara & Hoshino 1999; Lapenta & Brackbill 2002), which
focused on the wave generation mechanism only through 2D-3V
simulations in the equivalent of our (x, y) plane, we also include
in this study the out-of-plane direction that hosts the electron
acceleration resonant processes. An overview of the numerical
setup is shown in Fig. 1, with the right panel showing the 3D
numerical box used here and highlighting: (i) a slice of the ion
density field in the (x, y) plane; and (ii) the plane (y, z) that is
most unstable to the LHDI in yellow.

The initialization of the simulations ensures pressure balance
by means of the Vlasov equilibrium proposed in Alpers (1969),
Pu et al. (1981), which shapes a plasma boundary with density
and magnetic field asymmetries, uniform temperature, with no
electric field and no velocity nor magnetic field shear. Hereafter,
we refer to the side I (resp. side II) of this boundary as the high
(resp. low) density side. The expressions for the initialization
profiles are:

n(x) = nI +
nII − nI

2

(
1 + erf

(
w

eAy(x)
mivthi

))
, (8)

Bz(x) =
√

8π (PBC − n(x)T )1/2 , (9)
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Fig. 1. Schematic view of the setup of the full-kinetic 3D-3V sim-
ulations presented in this study. Left panel: Density, magnetic field,
and current profiles at t = 0 along the direction of the inhomogeneity
(x-axis) in the “strong gradient” simulation. Right panel: 3D visualiza-
tion of the ion density in the “strong gradient” simulation at tωI

ci = 12,
the LHDI fluctuations are highlighted in the unstable plane (yellow) and
in a cut that is perpendicular to the ambient magnetic field.

Bz(x) =
dAy(x)

dx
with Ay(Lx/2) = 0. (10)

Here, T = Ti + Te is the uniform temperature, PBC is the con-
stant of pressure balance (set to have the plasma beta βI = 10/3
and βII = 1/12), and w is a constant that defines the width of
the layer – set to 0.98 (resp. 0.5) in the “strong” (resp. “weak”)
gradient case. We use a density and magnetic field asymmetry
of nI/nII = 10 and BI/BII = 0.5. The shape of these initial-
ization profiles is shown in the left panel of Fig. 1. In the fol-
lowing, all quantities are normalized to ion quantities in side
I: the ion gyrofrequency, ωI

ci = eBI/mic; the ion skin depth,
dI

i = c
√

mi/4πnIe2; and the Alfvén speed V I
A = BI/

√
4πminI .

The numerical box dimensions are: Lx = Ly = 2π and Lz = 20π,
with a number of cells, namely, Nx = Ny = 288 and Nz = 1472.
The box is elongated (by a factor of

√
mi/me = 10) in the

magnetic field direction in order to reliably include the nar-
row cone angle over which unstable LHDI modes grow. The
timestep used in the simulations is dt = 3.4 × 10−4 to satisfy
the CFL stability condition. The simulations are ran for several
tens of the ion gyroperiods until electron acceleration saturates.
We use 100 macro-particles per cell and a second order spline
interpolation for the macro-particles. We use a reduced ion-to-
electron mass ratio mi/me = 100 to make simulations computa-
tionally feasible while maintaining a sufficient scale separation
between ions and electrons. The implications of using such a
reduced mass ratio are discussed in Sect. 4. We use an ion-to-
electron temperature ratio Ti/Te = 1, and a plasma-to-cyclotron
frequency ratio of ωI

pe/ω
I
ce = 4. The magnitude of the density

asymmetry used in these simulations encompasses the typical
parameters observed in small planetary magnetospheres such as
Mercury (Gershman et al. 2015).

Two different simulations are investigated using two different
layer widths: (i) a steeper boundary case (with the inverse gra-
dient scale length εn = 1, defined in Eq. (7)), hereafter called a
“strong gradient” simulation; and (ii) a smoother boundary case
(with εn = 0.5), hereafter called the “weak gradient” simulation.
These parameters are chosen to ensure that the amplitude of the
LHDI fluctuations is well above the PIC noise level and also

to saturate through the two different mechanisms introduced in
Sect. 2.1: ion trapping or current relaxation.

3. Evolution of LHDI and associated electron
acceleration: Simulations results

First, we show the results of the full-kinetic model. Then we
show those obtained with the QL model using the same param-
eters as for the full-kinetic simulations. Finally, we compare the
results of the two models showing the range of validity and the
limitations of the QL model.

3.1. Results from the full-kinetic 3D-3V simulations

In both the “strong gradient” and “weak gradient” full-kinetic
simulations, the layer is unstable to the LHDI due to the
presence of a density gradient on ion kinetic scales. The LHDI
fluctuations grow exponentially in the layer for times t < tsat
as predicted by kinetic linear theory. The fastest growing mode
(FGM) is electrostatic and directed along the y-axis with wavevec-
tor of kyρe ≈ 1, frequency of ω / ωLH and a growth rate of γ /
ωLH, which are in agreement with the linear estimation (Eq. (5))
for both simulations. The growth of the electric field energy –
normalized to the ion thermal energy and integrated over the
unstable layer – is shown in Fig. 3 with green curves for both sim-
ulations. At t ≈ tsat (corresponding to the first vertical dashed lines
in each panel of Fig. 3), the electric field fluctuation’s growth satu-
rates. Using the growth rate and the saturation level from Eqs. (5)
and (6), we compute the saturation time analytically as

tsat =
ln [S max/S (t = 0)]

γLHDI
. (11)

We note that the initial amplitude of the electric field energy,
S (t = 0) ≈ 10−4nTi in both simulations, is due to the particle
noise intrinsic to the full-PIC algorithm that we use.

The saturation mechanism of the LHDI has been exten-
sively addressed in the past, see, e.g., (Winske & Liewer 1978;
Davidson 1978; Chen & Birdsall 1983; Brackbill et al. 1984),
with results demonstrating that LHDI saturates because of ion
trapping (resp. current relaxation) in the case of strong (resp.
weak) density gradients. The saturation mechanisms at play in
our simulations are shown in Fig. 2. First, in the strong gradient
simulation, we give evidence for ion trapping (top left panel) in
the potential well of the LH waves (bottom left panel). These
phase space vortices are not observed in the weak gradient simu-
lation. Second, we show a significantly stronger decrease of the
total charge current in the layer in the weak gradient simula-
tion (orange) compared to that in the strong gradient one (blue)
(right panel). This is consistent with saturation taking place via
current relaxation in the weak gradient simulation, that is, the
LHDI fluctuations inhibit its source of free energy by reducing
the electron drift in the layer. We conclude that in the strong gra-
dient simulation the LHDI saturates due to ion trapping, while
in the weak gradient simulation, the LHDI saturates due to cur-
rent relaxation, as is expected based on past studies. This is
further confirmed by the fact that in both cases, the saturation
levels are comparable with the ones obtained by Eq. (6). Subse-
quently, in the strong gradient simulation, we observe for t > tsat
a rapid decrease of the electric fluctuations amplitude, character-
istic of an overshoot pattern, which is shown in the electric-to-
thermal energy ratio in Fig. 3 (left panel, green curve) at a time
t = tsat. Such an overshoot of the electric field fluctuations is not
observed in the weak gradient simulation. An important point to
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Fig. 2. Saturation mechanisms at play in the two simulations: ion trap-
ping (left panels) and current relaxation (right panel). Left panels: iso-
contour of the ion phase space density (top panel) together with the
electric potential of the LHDI waves (bottom panel) on the same spatial
axis, both quantities being computed in the unstable layer. Right panel:
evolution of the difference between the average charged current in the
unstable layer (2 < x < 4) and its value at t = 0, for both simulations.

note is that in both simulations, the electric field energy always
remains much smaller than the thermal energy of the particles (it
never exceeds 1%).

We also note that a common issue with PIC simulations is
the possible occurrence of spurious numerical heating of the
macroparticles population during the simulation. This effect,
due to the so-called “finite grid instability” (Birdsall & Langdon
1991; Markidis & Lapenta 2010; McMillan 2020), appears
when the Debye length is not sufficiently resolved by the numer-
ical grid. In such a case, the electrons would be numerically
heated, which would hide the wave-particle interaction we are
looking for. We carefully checked that our PIC simulations are
free from such numerical spurious heating, by comparing the
evolution of the supra-thermal electron density in the unstable
layer to the one outside the layer on both sides, where the plasma
is stable, to check that the numerical heating of the electrons is
negligible compared to the one arising from wave-particle inter-
action in the layer.

To quantify the efficiency of the LHDI in accelerating elec-
trons parallel to the ambient magnetic field, we define a supra-
thermal electrons density as follows:

Ne,sup(t) =

∫ 2vthe

−∞

fe(vz, t)dvz +

∫ ∞

2vthe

fe(vz, t)dvz. (12)

Here, the supra-thermal electrons density Ne,sup is used as a
quantitative tracer of the LHDI electron acceleration. The growth
and saturation of Ne,sup is shown for both simulations in Fig. 3,
with red curves.

In both simulations, the efficiency of the LHDI electron
acceleration process can be described through a three-phase evo-
lution: (i) the linear phase, 0 < t < tsat; (ii) the quasilinear phase,
tsat < t < τNL; and (iii) the strongly nonlinear phase, t > τNL. The
characteristic time scales, tsat and τNL, computed from Eqs. (11)
and (16), respectively, are marked in Fig. 3 by vertical dashed
lines. The latter time scale constitutes the fundamental outcome
of the full-kinetic model and an extensive discussion is provided
in Sect. 4.2.

In the linear phase (phase I in Fig. 3), the electric field grows
exponentially, as predicted by linear theory. In the weak gra-
dient case, in phase I, the electron acceleration remains weak
compared to the overall electron acceleration observed at sat-
uration. This is understandable since the resonant electric field
fluctuations themselves remain weak compared to their steady-
state value at saturation. On the contrary, in the strong gradient
case, in phase I, around tsat, the electric field of the LHDI waves
reaches values even higher than the saturation value. As a result,

Fig. 3. Full-kinetic simulations: evolution of the electron supra-thermal
density Ne,sup(t)/Ne,sup(0) (red curves) and of the electric field energy
normalized to the ion thermal energy S/nTi(t) (green curves), both
curves are integrated over the unstable layer (3.5 < x < 4 for strong
gradient and 3.5 < x < 4.5 for weak gradient). We note that time axes
are different for the two simulations.

we observe a non-negligible increase of the supra-thermal elec-
tron density in a very short time scale around tsat, this process is
discussed in detail in Sect. 4.

In the quasilinear phase (phase II in Fig. 3), electron acceler-
ation starts to take place as observed in both simulations. In this
phase, the efficiency of the acceleration is directly related to the
driver intensity (i.e., the stronger the electric field the stronger
the acceleration), as expected from the QL diffusion equations
(Eqs. (1) and (2)).

Finally, in the strongly nonlinear phase (phase III in Fig. 3),
while the electric field amplitude remains constant and finite, the
acceleration stops due to the onset of nonlinear LD-like effects.

Such a multi-phase evolution is observed in both strong and
weak gradient simulations (see Fig. 3). One main difference
between the two simulations is the presence – in the strong
gradient simulation – of an overshoot in the electric energy,
which is not observed in the weak gradient simulation. Such an
overshoot corresponds to a sharp peak in the electric-to-thermal
energy ratio at t ≈ tsat, which subsequently leads to a strong
electron acceleration for the overshoot duration (see Fig. 3, left
panel around tsat). However, the overall contribution of this phe-
nomenon to the total amount of accelerated electrons is shown
not to be significant in Sect. 4. In the end, for both simulations,
the supra-thermal electron density in the inhomogeneous layer
is increased by around 15%−20%. However, in the two cases,
this same final value is attained through a different evolution:
in the strong gradient simulation, the acceleration is faster but
stops sooner (at τNL ≈ 10), while in the weak gradient simula-
tion the acceleration occurs at a slower rate but remains efficient
on longer time scales (up to τNL ≈ 40). Interestingly, these two
effects seems to compensate each other.

The nonlinear LD-like time scale τNL, which is not acces-
sible to quasilinear models, represents the original result of our
full-kinetic simulations. An extensive discussion of this is given
in Sect. 4.

3.2. Results of the standard quasilinear model

To enable a quantitative comparison between the QL model
described in Sect. 2.1 and the full-kinetic one, the former is
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solved using the same plasma parameters as for the unstable
layer of the full-kinetic simulations. More precisely, the input
parameters of the QL model are obtained by averaging the
plasma density, and the magnetic field in the layer 3.5 < x < 4
(resp. 3.5 < x < 4.5) for the strong (resp. weak) gradient full-
kinetic simulation.

Numerical integration of the QL model (Eqs. (1)–(4)) pro-
vides the time evolution of the electron distribution function
fe(vz) shown in Fig. 4 at different time instants. We observe a
diffusion in velocity space for both “strong” and “weak” gradi-
ent cases, corresponding to electron acceleration by LHW. The
characteristic timescale for such acceleration turns out to be of
the order of hundreds of ion cyclotron periods. As expected, this
time scale is longer in the weak gradient case than in the strong
gradient one.

Eventually, electron acceleration described by QL theory
slows down after long times. Indeed, as already explained
in Cairns & McMillan (2005), the characteristic time scale to
accelerate an electron of velocity v‖ by an amount δv‖ scales
as ∼ v5

‖
for δv‖∼v‖. With the parameters used in our two sim-

ulations, the electron acceleration obtained from the QL model
becomes negligible after time τDiff ' 150 (resp. τDiff ' 400) in
the strong (resp. weak) gradient case, as shown in Fig. 4.

Such LHDI electron acceleration appears much weaker than
those presented in the work of Cairns & McMillan (2005). This
discrepancy is directly associated with the choice of the param-
eter S max/nTi, the electric-to-thermal energy at the saturation
of the LHDI, which is proportional to the quasilinear diffusion
coefficient (Eq. (2)). In this study, we use S max/nTi = 0.01 (resp.
0.002) for the strong (resp. weak) gradient case to obtain the
results shown in Fig. 4. These values are obtained from Eq. (6)
and are consistent with those observed in our full-kinetic simu-
lations. Differently, in the seminal paper of Cairns & McMillan
(2005) the authors have used a value S max/nTi = 0.5 that is two
orders of magnitude larger than what is expected from the theory
of saturation of the LHDI in Davidson (1978) using the config-
uration considered in that study. Such a choice for an overesti-
mated value of the parameter S max/nTi unavoidably leads to an
overestimation of the quasilinear diffusion coefficient and, there-
fore, of a higher electron acceleration efficiency. This indicates
that a consistent choice of the electric-to-thermal energy ratio at
saturation is crucial in quasilinear models in order to accurately
assess a reliable value of the quasilinear diffusion coefficient.

Despite the different choice of the parameter S max/nTi, the
time evolution of the electron distribution function obtained
with the QL model agrees qualitatively with the one presented
in Cairns & McMillan (2005). The comparison with the evolu-
tion obtained from the full-kinetic model is given in the next
section (Sect. 4.1).

4. Discussion: Toward an extended quasilinear
model and beyond

In this section, we first compare the full-kinetic and standard
quasilinear results, then we show the discrepancies between the
two models, and we highlight the physical processes that give
rise to such discrepancies. Next, in order to overcome the intrin-
sic limits of the standard quasilinear theory, we build an extended
quasilinear model (eQL) that includes the consequences of non-
linear LD-like effects. Finally, we validate such eQL and extrap-
olate how it scales with the plasma parameters of interest (e.g.,
ion-to-electron mass ratio, gradient length) in order to enable its

Fig. 4. Results of the QL model for the strong and weak gradient param-
eter case, shown in the left and right panel, respectively. Both panels
show the electron distribution function at different time instants in the
direction parallel to the magnetic field. Grey vertical dashed lines at
v = 2vthe ≈ vphz correspond to the point from where the supra-thermal
electron density (Eq. (12)) is computed.

use beyond the two specific set of parameters of our full-kinetic
simulations.

4.1. Comparison between the full-kinetic and the QL models

To quantitatively compare the results of the full-kinetic and QL
models on LHDI electron acceleration, we focus on the evolu-
tion of the supra-thermal electron density (defined in Eq. (12)),
shown for both strong and weak gradient cases in Fig. 5, where
the two characteristic times, tsat and τNL, (previously identified
from the full-kinetic simulations) are recalled for sake of clarity
(vertical dashed lines). The three-phase evolution of LHDI elec-
tron acceleration observed in the full-kinetic simulations (red
lines in Fig. 5) is not explicable in terms of the QL model (blue
lines in Fig. 5). Two main discrepancies are identified.

First, we observe a minor discrepancy between the two mod-
els around t = tsat in the strong gradient case, see Fig. 5 left
panel. At this time, the supra-thermal electron density obtained
from the full-kinetic simulation (red curve) is higher than that
obtained from the QL model (blue curve). This enhanced elec-
tron acceleration is due to the overshoot of the electric field in
the full-kinetic simulation, an effect that is not included in the
QL model and not observed in the weak gradient case. However,
this short and sharply peaked phenomenon brings a negligible
contribution to the total amount of supra-thermal electrons at the
end of the simulation.

Second, we observe a strong discrepancy between the two
models for times t > τNL (phase III in Fig. 5). Indeed, on the
one hand, the electron acceleration stops at time t ≈ τNL in
full-kinetic simulations (red curve) due to the onset of nonlinear
LD-like effects, while on the other hand, the electron accelera-
tion goes on in the QL model (blue curve) up to time t ≈ τDiff .
The fact that the value of τNL (obtained from full-kinetic simula-
tions) is about one order of magnitude lower than τDiff (obtained
from QL simulations) is the main reason for the strong discrep-
ancy between the two models. Such discrepancy is due to the fact
that the QL model does not include the nonlinear LD-like effects
that are responsible for the abrupt stop of electron acceleration
observed at t = τNL in the full-kinetic simulations. Therefore,
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Fig. 5. Comparison of the evolution of supra-thermal electron density
(tracer of LHDI electron acceleration) computed from full-kinetic simu-
lations (red curve), QL model (blue curve), extended QL model (orange
curve). Vertical dashed lines indicate the saturation time tsat, and non-
linear time τNL. Horizontal dotted gray lines indicate the results of
Eq. (20). We note that time axes are different for the two simulations.

even though the two models are in good agreement in the linear
and quasilinear phases (phases I and II in Fig. 5), the final value
of the supra-thermal electron density is strongly overestimated
by the QL model. In the following, we use the increase in the
supra-thermal electron density, defined as:

∆Ne,sup = Ne,sup(t → +∞) − Ne,sup(0) (13)

to quantify the discrepancy between the models. In particular,
the value of ∆Ne,sup is 50 (resp. 20) times higher in the strong
(resp. weak) gradient case for the QL model as compared to the
full-kinetic model.

4.2. Need for an extended quasilinear model

Quasilinear theory is a powerful tool to study wave-particle
interaction in an analytical framework due to its relative simplic-
ity. Therefore, it represents an ideal way to provide quantitative
predictions on LHDI electron acceleration or heating.

However, due to its derivation via a perturbative approach,
QL theory does not include “strong” nonlinear effects (i.e., those
effects, arising at sufficiently long times, that alter the wave fluc-
tuations due to the feedback from the modified distribution func-
tion to the fields), also called nonlinear LD-like effects. Although
they are not included in the QL model, these effects are well
self-consistently reproduced by the full-kinetic simulations. The
comparison between both models (Sect. 4.1) highlights the need
to build an extended QL model (hereafter called eQL) that over-
comes the intrinsic limitations of standard QL model and provide
a dynamics consistent with that observed in full-kinetic models.
For this purpose, we argue that such eQL model: (1) does not
require us to include the possible overshoot of the electric field,
as we have shown it is not a dominant process in energizing elec-
trons; (2) does require us to include the eventual inhibition of
LHDI electron acceleration by nonlinear LD-like effects through
the parameter τNL.

The nonlinear time τNL is the parameter used in the eQL to
define when nonlinear LD-like effects become dominant in the
layer, inhibiting efficient wave-particle interactions. From such
time, the QL diffusion coefficient (Eq. (2)) becomes negligible
even though the amplitude of the electric field remains constant,

Fig. 6. Evolution of the electric field energy S (t)/S max (green curve),
and of the QL diffusion coefficient De(t, vz = 2vthe)/De,max in Eq. (2)
(blue curve), computed for both full-kinetic simulations. We note that
time axes are different for the two simulations.

as shown in Fig. 6 for both full-kinetic simulations. This is due to
its integral dependence on k2

‖
/k2
⊥. The underlying physical pro-

cess is the energy transfer, in k-space, from resonant, oblique
modes to out-of-resonance, more perpendicular modes, which
physical mechanism is discussed below. Therefore, we explic-
itly switch off the QL diffusion coefficient for t > τNL in the
eQL model (Eqs. (14) and (15)).

We now focus on the estimation of this new parame-
ter τNL. Previous works on the LHDI addressing its non-
linear evolution using 2D full-kinetic simulations suggest a
connection between LHDI modes and drift-kink-instability
(fvDKI) modes (Pritchett et al. 1996; Shinohara & Hoshino
1999; Lapenta & Brackbill 2002). The DKI is driven unstable in
the presence of a current sheet on a scale length on the order of
(or smaller than) the ion gyroradius, as in our full-kinetic sim-
ulations setup (see Fig. 1, left panel). The main characteristics
of the LHDI are as follows: (i) While the LHDI is an electro-
static instability, the DKI is electromagnetic; (ii) The growth rate
of the DKI is much smaller than that of the LHDI: indeed, the
DKI frequency and growth rate γDKI are both smaller than the
ion gyrofrequency; (iii) The DKI wavevectors are smaller than
the inverse of the ion gyroradius; (iv) The DKI modes propagate
perpendicular to the magnetic field (Daughton 1998, 1999). In
our simulations, the LHDI saturates and start to behave nonlin-
early when the DKI is still in its linear stage. As a consequence
of the nonlinear dynamics of the LHDI, we observe a coupling
between the two instabilities that allows energy to flow from
oblique LHDI modes (in their nonlinear stage) to perpendicular
DKI modes (in their linear stage). Such a coupling mechanism
between LHDI and DKI has been reported and studied in past
numerical studies (Pritchett et al. 1996; Shinohara & Hoshino
1999; Lapenta & Brackbill 2002). Therefore, we assume that
the mechanism underlying the energy transfer from oblique to
strictly perpendicular modes at t > τNL, observed in our full-
kinetic simulations, is a LHDI-DKI coupling. Consequently, we
estimate that the time of onset of LHDI nonlinear LD-like effects
scales as the inverse linear growth rate of the DKI, that is,
τNL ∝ 1/γDKI. The DKI linear growth rate, γDKI, scaling with
plasma physical parameters has been addressed in Daughton
(1998) using kinetic theory, and validated in Daughton (1999)
using a two-fluid theory. In our work, we use such results to build
our eQL model (Eq. (16)).
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Taking all those considerations into account, the eQL model
is defined as follows:

∂t fe(v‖, t) = ∂v‖DNL∂v‖ fe, (14)

DNL(v‖, t) =

{
De(v‖, t) t < τNL

0 t ≥ τNL,
(15)

τNL = τ0

(
mi

me

)1/2

(εnρi)−2
(
1 +

Te

Ti

)−1

, (16)

where τ0 = 1.5 is a constant obtained from our two full-kinetic
simulations. This value is obtained by fitting the evolution of
the supra-thermal electron density of the full-kinetic simulations
with the one of the eQL model.

4.3. Validation of the extended quasilinear model

The eQL model presented in Sect. 4.2 (Eqs. (14)–(16)) retains all
the advantages of the standard QL model (namely being analyti-
cal and easily integrable using a numerical solver) while extend-
ing its range of validity to asymptotically long time scales. This
now enables us to provide quantitative predictions of LHDI elec-
tron acceleration. Indeed, as shown by the time evolution of the
supra-thermal electron density in Fig. 5, unlike the standard QL
predictions (blue), the eQL model (orange) is able to reproduce
the predictions of the nonlinear Vlasov-Maxwell theory (red).
The relative discrepancy between the two curves does never
exceed 5% in both simulations. This validation of the eQL model
is of particular interest with regard to quantifying the LHDI elec-
tron acceleration over a long time scale.

The results of the eQL model strongly depend on the esti-
mation of the nonlinear time τNL, identified as the inverse linear
growth rate of the DKI 1/γDKI. This choice is justified both (i)
a priori via previous numerical works that have shown evidence
that the long time evolution of a LHDI-unstable layer gets cou-
pled to a DKI (Pritchett et al. 1996; Shinohara & Hoshino 1999);
and (ii) a posteriori by validating that the scaling γDKI ∝ (εnρi)2

in Eq. (16) is consistent with the outputs of our two full-kinetic
simulations.

In our two full-kinetic simulations – which have enabled us
to both define and validate the eQL model – we used a reduced
ion-to-electron mass ratio mi/me = 100. Using such a reduced
mass ratio is standard procedure in PIC plasma simulations since
it allows us to reduce the scale separation among the two species
in order to run the numerical simulation on reasonable amount
of CPU time (still about one million computational hours per
simulation, in our case), while maintaining the necessary tempo-
ral and spatial scales separations between both species dynam-
ics. However, the properties of the LHDI actually depend on
the ion-to-electron mass ratio because of the hybrid character
of the instability. Therefore, the quantitative predictions of our
full-kinetic simulations are not directly applicable to a realistic
plasma configuration (with a physical proton-to-electron mass
ratio of 1836). This is exactly where an eQL model becomes
extremely useful.

4.4. Using the extended quasilinear model to assess LHDI
electron acceleration at physical mass ratio

The eQL model does not suffer from the strong computational
constraints of full-PIC simulations and enables us to address, in
this section, the question of LHDI electron acceleration using a
realistic proton-to-electron mass ratio. The results of the eQL
models are summarized in Fig. 7, showing both the electron

Fig. 7. Output of the eQL model using the strong (left panels) and weak
(right panels) set of plasma parameters with realistic proton-to-electron
mass ratio. Top panels: electron distribution function at different time
instants in the direction parallel to the magnetic field. Grey vertical
dashed lines correspond to v = 2vthe ≈ vphz. Bottom panels: evolution
supra-thermal electron density in Eq. (12). Vertical dashed line indicate
the nonlinear time τNL in Eq. (16). Horizontal dotted gray lines indicate
the results of Eq. (20). We note that time axes are different for the two
simulations.

distribution function evolution averaged in the inhomogeneous
layer (top panels) and the resulting supra-thermal electron den-
sity (bottom panels), for both strong and weak gradient setups.
Here, we use the two setups described in Sect. 2, where only
the mass ratio is modified to address the case mi/me = 1836.
We emphasize that full kinetic simulations using such a physical
mass ratio would have been extremely challenging computation-
ally, so that we consider the eQL model as a way to extrapolate
the results of our full-kinetic simulations (done using a reduced
mass-ratio) to a physical plasma environment.

Compared to results shown in Sect. 4.3 for a reduced mass
ratio, using a physical mass ratio the nonlinear time increases
following Eq. (16). This means that the LHW-particle interaction
occurs over longer times, thus more electrons are accelerated.
However, on the one hand, this effect can be compensated by the
reduction of the electric field energy of order ∼ me/mi (Eq. (6))
if the LHDI saturates through current relaxation, namely, in the
weak gradient case, see Fig. 7 right panel. On the other hand,
if the LHDI saturates through ion trapping the saturation level
does not depend on the mass-ratio (Eq. (6)); therefore, the LHDI
electron acceleration is more efficient by a factor ∼ mi/me due to
the increase in the nonlinear time.

All in all, the mass ratio does not affect the weak gradient
case, while it increases the fraction of LHDI accelerated elec-
trons by a factor ∼ 1836/100 in the strong gradient case. These
predictions – solely based on scaling arguments – are well repro-
duced by the numerical solution of the eQL using a realistic
proton-to-electron mass-ratio, as shown in Fig. 7, and are also
confirmed by the analytical estimates developed below in this
section.

Now, we focus on the value of the supra-thermal electron
density at asymptotically long times, since, all in all, this is the
quantity relevant for space plasma observations of LHDI acceler-
ated electrons. Under some simplifying assumptions, we derive
an analytical expression for this quantity in the framework of the
eQL model.
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Table 1. Values of ∆Ne,sup/N0
e,sup for the different plasma configurations

considered in this study, computed using the eQL model outlined in
Sect. 4.2 and the approximated analytical expression in Eq. (20).

Gradient εnρi mi/me eQL model Eq. (20) Error [%]

1 100 0.18 0.16 12
0.5 100 0.12 0.14 15
1 1836 7.62 3.67 70
0.5 1836 0.14 0.15 7

Notes. The last column shows the relative discrepancy between these
two results.

First, we approximate the evolution of the supra-thermal
electron density by a linear interpolation in the time interval
tsat < t < τNL to get

∆Ne,sup = Ne,sup(τNL) − Ne,sup(0) = (τNL − tsat)
d
dt

Ne,sup(t), (17)

then, we integrate Eq. (1) in v‖-space to get

d
dt

Ne,sup(t) =
[
De∂v fe

]
v‖=2vthe

, (18)

which is constant in the interval tsat < t < τNL since we assume
that (i) the distribution function is weakly modified by the inter-
action with the wave, that is, fe(t, v‖) ≈ fe(0, v‖), and (ii) the
amplitude of the resonant electric field wave |E(k⊥, k‖)| remains
constant after the saturation of the LHDI for t > tsat. Finally,
under the previous assumptions, using the expression for the QL
diffusion coefficient (Eq. (2)) and assuming a Maxwellian dis-
tribution function for the electrons, Eqs. (17) and (18) lead us
to:

∆Ne,sup

N0
e,sup

= 0.1
τNL − tsat

ω−1
ci

 ω2
pe

ω2
ce

S max

n0Ti

√
mi

me

(
Ti

Te

)3/2 , (19)

Before going on, we stress here that the increase in supra-
thermal density ∆Ne,sup is proportional to the amplitude of the
electric field at saturation, S max. This emphasizes how the input
parameter S max/nTi impacts the output of QL theory and fur-
ther supports the discussion regarding the difference between our
results and the ones by Cairns & McMillan (2005) in Sect. 3.2.

Finally, expressing the electric field at saturation S max using
Eq. (6), the nonlinear time, τNL, using Eq. (16), the saturation
time, tsat, using Eq. (11), and the LHDI growth rate, γLHDI, using
Eq. (5), and under the assumption ωpe > ωce, the supra-thermal
density increase in Eq. (19) becomes:

∆Ne,sup

N0
e,sup

=

0.3
(
1 + Te

Ti

)−1
(1 − χme

mi
) current relaxation

0.004
(
1 + Te

Ti

)−1
(1 − χme

mi
) mi

me
(εnρi)3 ion trapping,

(20)

where χ reads:

χ =
1.6
τ0

(
1 +

Te

Ti

) √
1 + βi/2 ln [S max/S (t = 0)] . (21)

With the parameters considered in this study, and typically
encountered in space plasmas, χme

mi
� 1. As a consequence,

the supra-thermal electron density increase at long times is well
approximated analytically by:

∆Ne,sup

N0
e,sup

=

0.3
(
1 + Te

Ti

)−1
current relaxation

0.004
(
1 + Te

Ti

)−1 mi
me

(εnρi)3 ion trapping,
(22)

depending on the LHDI saturation mechanism at play.
This estimation leads to a total increase in the supra-thermal

electron density summarized in Table 1 for the different sets
of parameters used throughout this work. These values are also
shown as horizontal gray dotted lines in both panels of Fig. 5 –
for reduced mass ratio – and Fig. 7 for a physical mass ratio.

From the values in Table 1, we infer that our analyti-
cal approximation (Eq. (20)) is valid (error of the order of
10%) in the limit of “weak” LHDI electron acceleration (i.e.,
∆Ne,sup/N0

e,sup / 1). Stronger discrepancies arise for stronger
electron acceleration (see third row in Table 1), as expected.

4.5. Application to Mercury’s magnetopause

Mercury’s magnetopause represents an excellent “textbook”
example of a plasma boundary with an ion kinetic scale density
gradient potentially LHDI-unstable. Previous space missions
at Mercury – Mariner 10 (Russell et al. 1988) and MESSEN-
GER (Solomon et al. 2007) – did not bring an instrumental
payload capable of providing simultaneous measurements of
electric field in the lower-hybrid frequency range and of the elec-
tron distribution function. Therefore, the expected LHW physics
at Mercury cannot yet be tackled from past observations. How-
ever, the physics at these scales is exactly one of the main
scientific objectives of the ongoing ESA/JAXA space mission
BepiColombo (Benkhoff et al. 2010). Different plasma instru-
ments onboard the Mio spacecraft will provide measurements
of: (i) the plasma density profile along the spacecraft trajectory,
using different complementary experiments, namely, Langmuir
probe measurements (Karlsson et al. 2020), quasi-thermal noise
measurements (Moncuquet et al. 2006), and mutual impedance
measurements (Gilet et al. 2019), all within the Plasma Wave
Investigation (PWI) consortium (Kasaba et al. 2020), (ii) the
electric field in the lower-hybrid frequency range (PWI), and
(iii) the electron distribution function (MPPE/MEA, Mercury
Plasma Particle Experiment and Mercury Electron Analyzer
(Saito et al. 2010)). This will enable us to directly address the
physics of Mercury’s strongly inhomogeneous magnetopause.
In this section, we quantify the expected efficiency of LHDI
electron acceleration at Mercury’s magnetopause using the eQL
model developed in our work in support for future BepiColombo
observations.

As previously pointed out in Sect. 2.2, the parameters
used in our strong and weak gradient cases are taken in the
range expected at Mercury’s magnetopause (Slavin et al. 2008;
Gershman et al. 2015). Therefore, we make use of the results of
our eQL model with physical mass ratio in Sect. 4.4 to assess
the importance of electron acceleration driven by the LHDI at
Mercury’s magnetopause.

First, we discuss the features of the LHW that are expected
to be generated by the development of the LHDI at Mercury’s
magnetopause. These waves have a frequency of f ≈ fLH ≈ 5–
20 Hz (in the frame of the drifting ions) and wavelength λ ≈
2πρe ≈ 5−15 km (hereafter using typical magnetic field val-
ues at Mercury’s magnetopause of 10–30 nT, ion temperature
30–70 eV, and density 10–30 cm−3; see Milillo et al. 2020). In
the reference frame of the spacecraft, given that those waves
are advected by the shocked solar wind flow, estimated to have
a speed VSW ≈ 100 km s−1, and with an ion drift speed vDi ≈

vthi ≈ 50−80 km s−1, the Doppler-shifted frequency of the LHW,
expected to be observed in the spacecraft frame, lies in the range
f ′ = f ± k(vDi + VSW) ≈ 50−200 Hz. We note that the Doppler-
shifted component is expected to be much higher that the intrin-
sic frequency, so that the Taylor’s hypothesis is valid for these
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Fig. 8. Instrumental response of the instrument
MPPE/MEA simulated using our extended QL
model for both strong εnρi = 1 and weak εnρi = 0.5
gradient cases (left and right panels), in the direc-
tion parallel to the magnetic field. Unperturbed elec-
tron distribution function using temperature Te =
50 eV in blue, and results of eQL model at time
t = τNL in red. The dashed vertical line indicates
the energy from which the supra-thermal electron
density Ne,sup is computed.

waves at Mercury’s magnetopause. Moreover, the electric field
amplitude of these LHW at saturation is E ≈ 10−100 mV m−1, as
obtained from Eq. (6). These typical frequency and energy range
of LHW at Mercury suggests the use of electric field instruments
onboard Mio spacecraft to address the LHW physics at Mer-
cury’s magnetopause. In particular, the sensors MEFISTO and
WPT that are part of the PWI consortium (Kasaba et al. 2020)
will provide electric field observations in this frequency range
with a sensitivity on the order of 10−3 mV m−1, which is well
below the expected amplitude of these waves.

Second, we discuss the features of electron distribution func-
tions possibly modified by resonant interaction with the previ-
ously discussed LHW. This resonant wave-particle interaction
accelerates sub-thermal electrons (with speed vz / vthe) to
supra-thermal energies (with speed vz ' 2vthe) in the direc-
tion parallel to the ambient magnetic field, as shown in Fig. 7
top panels. In the following we assume an unperturbed elec-
tron temperature of 50 eV (typical values at Mercury’s mag-
netopause being ∼20−100 eV (Ogilvie et al. 1974; Uritsky et al.
2011)). This acceleration process is well in the range of obser-
vations of the electron instrument MPPE/MEA onboard the
Mio spacecraft of the BepiColombo mission (Saito et al. 2010),
since this instrument includes two electron analyzers that can
measure the three-dimensional energy distribution of electrons
in the range 3–3000 eV (in solar wind mode) or 3–25 500 eV
(in magnetospheric mode), with a time resolution of 1 sec-
ond (Milillo et al. 2020). Here, we simulate the instrumental
response of MPPE/MEA when encountering electrons acceler-
ated by a LHDI at Mercury’s magnetopause, as shown in Fig. 8,
with the unperturbed electron distribution function in blue, and
the one resulting from interaction with LHDI at long times in
red. In Fig. 8, the uncertainties on the simulated response of
the sensor MEA are obtained using the uncertainty on the G-
factor of the instrument reported in Saito et al. (2010) (of the
order of 10%). So, on the one hand we predict that the modi-
fications in the electron distribution function above 100 eV are
observable by MPPE/MEA in the case of a strongly inhomoge-
neous magnetopause (width around one ion gyroradius, or less),
as shown in the left panel of Fig. 8. On the other hand, since

this process is very sensitive to the width of the magnetopause
layer, we expect negligible modifications in the electron distri-
bution function for less inhomogeneous magnetopause condi-
tions (width around two ion gyroradii or more), as shown in the
right panel of Fig. 8. With typical magnetic field and temperature
values at Mercury’s magnetopause the ion gyroradius is around
20−80 km.

We also assess that the interaction between LHDI and elec-
trons increases both (i) the density of supra-thermal electrons
Ne,sup (i.e., electrons with energy higher than 100 eV; see
Eq. (12)) and (ii) the electron temperature. In the simulated
responses with a strong (resp. weak) density gradient, the for-
mer increases by 20% (resp. 0.3%), due to the interaction with
the LHW, and the latter increases by 80% (resp. 1.5%). We stress
here how these two scalar quantities could be used as tracers of
LHDI-electron interaction events in MPPE/MEA data, and how
this response is limited to the direction parallel (anti-parallel) to
the ambient magnetic field (i.e., around θ = 0◦ and 180◦ in the
electron pitch-angle distributions).

Third, we present electron observations made by the NASA
spacecraft Mariner 10 during its first Mercury flyby on 29 March
1974 (Ogilvie et al. 1974). In Fig. 9, we show the data for the
magnetic field (upper panels) and electrons (bottom panels) for
the inbound (left) and outbound (right) magnetopause crossings.
In particular, we observe a bimodal character of the electron
energy distribution during the crossing (bottom panels), with
one ambient electron population around 10–30 eV and a sec-
ond energized population around 100–300 eV. This is consistent
with the signatures expected for LHDI-accelerated electrons.
Although these observations suggest that the LHDI might play
a role in the electron energization at Mercury’s Magnetopause,
the Mariner 10 data cannot unambiguously confirm this hypoth-
esis because of the lack of electric field observations. Moreover,
the low time resolution of Mariner 10 electron measurements
(1/6 s−1), along with the narrow energy range (13.4–687 eV) and
the lack of a statistically significant number of crossings mean
that the Mariner 10 observations stand in the way of establishing
conclusive evidence of LHDI-accelerated electrons at Mercury’s
magnetopause.
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Fig. 9. Mariner 10 observations during its first Mer-
cury flyby on the 29 March 1974, inbound (left panels)
and outbound (right panels) magnetopause crossings
are shown, the associated time intervals are 20:36:30–
20:37:30 and 20:53:30–20:54:30, respectively. Magne-
tosphere (MSP) and magnetosheat (MSH) plasma mea-
surements are shown. From top to bottom, we show the
magnetic field module (first row) and its components
in MSEQ coordinate (second row) obtained from the
magnetometer onboard Mariner 10. Moreover, we show
the electron energy spectra as a function of time (third
row) and the electron energy spectrum at the time of the
crossings (fourth row), obtained from the PLS instru-
ment onboard Mariner 10. The time of the crossings
is highlighted by black vertical dashed lines in the first
three panels.

The limits of such Mariner 10 measurements will be over-
come by the more advanced and complete payload of the
ESA-JAXA BepiColombo space mission, especially the joint
electric field observations of LHW (with PWI/MEFISTO and
PWI/WPT) and electrons (with MPPE/MEA). We are therefore
confident that the Mio plasma and electric field instrumental
suites of BepiColombo will soon enable us to shed some light
on the statistical relevance of LHDI and associated electron heat-
ing in the global dynamics of Mercury’s magnetosphere frontier
with the solar wind.

5. Conclusions

In this work, we address the question of electron acceleration
efficiency by lower-hybrid waves generated by the lower-hybrid-
drift instability.

For this purpose, we have performed 3D, full-kinetic numer-
ical simulations to provide numerical evidence of electrons
acceleration parallel to the ambient magnetic field by resonant
wave-particle interaction with LHDI waves. Our self-consistent
nonlinear model has also enabled us to address the consequences
of the saturation of the instability on the eventual stoppage of the
electron acceleration. To our the best of our knowledge, this is
the first time that this process is self-consistently observed in
full-kinetic simulations. This represents the first original contri-
bution of this work.

Moreover, we have provided quantitative estimates of the
efficiency of this resonant acceleration process. To model this
process, we have (i) used a standard QL model based on the work
of Cairns & McMillan (2005), and (ii) developed an extended
QL model that includes the consequences of nonlinear LD-like
effects on long time scales evolution of the electron distribution

function. We compared the results of these two quasilinear mod-
els and the full-kinetic model. Such comparison highlighted the
limitations at long time scales of the standard quasilinear theory
that paved the way for an extended one, designed to overcome
such limitations. Such a comparison also enabled us to validate
the eQL model. This new extended quasilinear (eQL) model suc-
cessfully captures the electron acceleration properties found on
full-kinetic simulation results and represents the second original
contribution of this work.

Thanks to its simplicity, the eQL model has enabled us
to explore a range of parameter space that is not accessible
to full-kinetic simulations due to computational constraints.
In particular, we have addressed the efficiency of LHDI elec-
tron acceleration at Mercury’s magnetopause, using a realis-
tic proton-to-electron mass ratio. In this context, we estimate
that LHDI electron acceleration is an efficient mechanism for
energizing electrons during periods of strong magnetospheric
compression (when the magnetopause boundary steepens on
scales of the order or lower than the ion gyroradius). This effi-
ciency strongly depends on the density gradient at the magne-
topause. Under such conditions of a “steep” magnetopause at
Mercury, we expect strong signatures of LHDI electron acceler-
ation in the BepiColombo instrumental suite response (PWI and
MPPE/MEA).

We are confident that our extended quasilinear model will
enable quantitative studies of the efficiency of electron acceler-
ation in inhomogeneous space plasmas in support of past and
future space plasma observations. More importantly, this work
also provides a validated framework for extending the range of
the validity and applicability of quasilinear modeling, not only
associated with the lower-hybrid-drift instability – as in this
study – but also to a broader variety of waves and instabilities
in space plasmas.
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