
1.  Introduction
In magnetic reconnection, plasma flows toward the magnetic X line (a magnetic null in the reconnection 
plane, in which it appears as an X point) with an inflow velocity and is accelerated and ejected in an orthog-
onal direction with an outflow velocity because of the large curvature of the magnetic field in the vicinity 
of the X line (e.g., Sonnerup, 1979; Vasyliunas, 1975). To determine these velocities, one needs to determine 
the frame of reference in which the X line is stationary. Thus an important part of the process of under-
standing a magnetic reconnection event is to determine the velocity of the magnetic structure relative to 
the observing spacecraft. Although on large scales, plasma may be “frozen in” to the magnetic field, at least 
in directions perpendicular to the magnetic field, this is typically not the case on small scales close to the X 
line, especially in the region known as the electron diffusion region (Hesse et al., 2011, 2014).

Shi et al. (2019) has reviewed methods to determine a coordinate system and magnetic structure velocity. 
Methods to determine the velocity include calculating the deHoffmann-Teller frame in which the electric 
field is approximately zero, various types of timing analysis, various reconstruction methods, and the Spa-
tial-Temporal Difference (STD) method (Shi et al., 2006). STD has been used by Denton et al. (2016a, 2016b) 
and Yao et al. (2016, 2018) to determine the time-dependent velocity of a magnetic structure in the nor-
mal direction. Alm et  al.  (2017) used STD to calculate the time-dependent two-dimensional velocity of 
the spacecraft moving through a structure of ion-scale magnetopause flux ropes. Manuzzo et  al.  (2019) 
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described difficulties with calculating the structure velocity in multiple dimensions, and suggested new ap-
proaches to calculate the velocity. Their method includes the possibility of including mild time dependence. 
The implementation of STD that we will describe in this study is somewhat simpler and assumes that the 
structure velocity is constant on the timescale of motion across the spacecraft separation, as did the original 
STD.

Recently Torbert, Burch, Argall, et al. (2018) and Torbert et al. (2020) introduced a new method for recon-
struction of the instantaneous magnetic field in the region close to the Magnetospheric Multiscale (MMS) 
spacecraft using a polynomial expansion of the magnetic field with input from the spacecraft measurements 
of the magnetic field and particle current density. Denton et al. (2020) described a number of variations of 
Torbert and coworker's method and tested the validity of the magnetic field model during times in which 
the magnetic structure was roughly two dimensional. In this study, we will use Denton and coworker's 
Reduced Quadratic model that results from the assumption that λ1 ≫ λ2 ≫ λ3, where λi are the eigenvalues 
of Minimum Directional Derivative (MDD) analysis that determines the eigenvectors of the gradient of the 
vector magnetic field (Shi et al., 2005).

We will apply our implementation of STD to calculate the velocity of the magnetic structure for the magne-
totail reconnection event on July 11, 2017 described by Torbert, Burch, Phan, et al. (2018). In the process, 
we will elucidate several aspects of STD. Then we will use the polynomial reconstructions to get a second 
estimate of the velocity by following the motion of the reconstructed reconnection X point. We show that 
these velocity estimates are roughly in agreement with each other, at least when the reconnection X point 
is within about two spacecraft separations of the centroid of the MMS spacecraft, and thereby validate the 
reconstructed magnetic field at locations within that distance.

Most of our results will be presented in a way that assumes that the reconnection geometry is approximately 
two dimensional. There are a number of methods that can be used for defining a reconnection coordinate 
system (e.g., Denton et al., 2018; Genestreti et al., 2018). While the normal direction for the July 11, 2017 
event is fairly well determined, there is significant uncertainty about the best definition of the remaining 
directions, since different methods lead to different results (Genestreti et al., 2018). We will initially present 
results in a coordinate system based on MDD analysis (Shi et al., 2005, 2019), because, for reasons that we 
will explain below, that is the best coordinate system for testing our methods. But as discussed in Section 4, 
there are good reasons to consider other coordinate systems. So we will also show results in one of the co-
ordinate systems preferred by Genestreti et al. (2018). This will also facilitate comparison to calculations of 
the structure velocity by other researchers.

The study is organized as follows. In Section 2, we describe the data and methods to be used, in Section 3, 
we calculate the velocity of the magnetic structure using the two methods, and in Section 4, we discuss our 
results, including comparison to previous estimates of the structure velocity based on other methods.

2.  Data and Methods
2.1.  MMS Data

In this study, we will examine the magnetotail reconnection event on July 11, 2017 at 22:34 UT. The time t 
will be measured in seconds after this time. This event was first studied by Torbert, Burch, Phan, et al. (2018) 
and has been the subject of a number of other studies (e.g., Egedal et al., 2019; Genestreti et al., 2018; Haseg-
awa et al., 2019; Nakamura et al., 2019). The position of the spacecraft was in the magnetotail at [−21.53, 
4.23, 3.64] RE in geocentric solar ecliptic (GSE) coordinates. The average separation between spacecraft was 
18.3 km.

For context, Figure 1 shows plasma and field data from MMS3, which came closest to the reconnection X 
line for times surrounding the time interval that we will be concentrating on, t = 1.6–2.8 s, marked by the 
two vertical gray lines in each panel. This time interval was close to a magnetic minimum that was observed 
just after t = 2.8 s. Figure 1b shows that during t = 1.6–2.8 s, BX (in GSE coordinates) changed from negative 
values to a value close to zero, suggesting that MMS3 was approaching the current sheet from the south. 
The variation of BZ (Figure 1b) suggests that the magnetic structure was moving tailward, so that, relative 
to that structure, the MMS spacecraft skimmed past the reconnection X line nearly along but southward of 
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the current sheet. The reversal of the X component of ion velocity Vi (Fig-
ure 1c) and electron velocity Ve (Figure 1d) is evidence of reconnection 
outflow, and an intense current density (Y component of Ve in Figure 1d) 
and electric field near the current sheet (Figure 1e) is also evident.

As discussed by Denton et al. (2020), we use the magnetic field and par-
ticle current density from the MMS mission (Burch et  al.,  2015). The 
fluxgate magnetometer (FGM) (Russell et  al.,  2016) and search coil 
magnetometer (SCM) (Le Contel et al., 2016) data are combined into a 
single product with original resolution of 0.12  ms (Argall et  al.,  2018; 
Fischer et al., 2016). We boxcar average this to 1 ms resolution. We calcu-
late the particle current density, J, from the burst mode ion and electron 
bulk velocity moments from the Fast Plasma Instrument (FPI) (Pollock 
et al., 2016), using the formula   e i eenJ V V , where e is the proton 
charge, ne′ is an adjusted electron density, and Vi and Ve are respective-
ly the ion and electron bulk velocity. Within the time interval 1.6 –3.1 s 
(a slightly more complete time interval than the one we will analyze), a 
factor f is found at each time step such that  e i efn V V  averaged over 
the spacecraft is closest in a least squares sense to the current density 
obtained using the “curlometer” technique (Robert et al., 1998) (that de-
termines the current density from ∇ × B/μ0 using the spacecraft B val-
ues and spatial separations). During t = 1.6 –3.1 s, the values of f varied 
between 0.65 and 1.13. The quantity ne′ is the median value of f for the 
time series, 0.844, multiplied by the observed ne. This adjustment was 
made because particle instruments typically do not accurately measure 
all particles, so Jcurl is considered to be more accurate than J. But using 
the constant in time median value of f allowed for the possibility of real 
time variation of J averaged over the spacecraft. The effect of this adjust-
ment is discussed more in Section 4.

The resolution of the electron moments was 30 ms, and that of the ions 
(measured collectively) was 150 ms. To combine the numerical data in 
the calculations, we need to interpolate all of them to the same temporal 
grid. For this grid, we choose a resolution of 1 ms, which is somewhat 

lower than that of the highest resolution magnetic field data. This procedure leads to oversampling of most 
data. However, all the results are finally boxcar averaged to 0.5 s resolution, so none of the data are effective-
ly over-sampled. The purpose of this procedure is to focus on the low-frequency behavior and filter out wave 
phenomena. Despite the smoothing, use of the combined FGM/SCM magnetometer product reduces noise 
relative to that found using the burst mode data, probably by reducing the error associated with interpolat-
ing the individual MMS spacecraft field values (with different timestamps) to common times.

Because of this averaging, our methods are likely to be accurate only in some average sense on a timescale 
≤0.5 s. Our reconstruction technique has previously revealed some significant time dependence (Denton 
et al., 2020), and here we again find time variation in the structure velocity using both STD and the poly-
nomial reconstruction (Figure 4a). There may very well be more detailed short timescale behavior that we 
do not describe.

We examine how our results vary with respect to some variations in data processing in Section 4.

2.2.  Structure Velocity From STD

The Spatio-Temporal Difference (STD) method of Shi et al. (2006) is based on the convection equation,


   

 sc ,d
dt t
B B V B� (1)
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Figure 1.  Plasma and field values measured by MMS3 for times 
surrounding our event on July 11, 2017. (a) Magnitude of the magnetic 
field B, (b) vector components of B, (c) vector components of the ion 
velocity Vi, (d) vector components of the electron velocity Ve, and 
vector components of the electric field E, all at 30 ms resolution in GSE 
coordinates versus time in seconds after 22:34 UT on July 11, 2017. GSE, 
geocentric solar ecliptic.
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where Vsc is the velocity of the spacecraft relative to the magnetic structure and dB/dt is the rate of change 
of the magnetic field observed at the spacecraft. Shi et al. neglected the partial time derivative relative to the 
convective term (see Manuzzo et al., 2019, for a method to take this into account) to get

   str ,d
dt
B V B� (2)

where Vstr = −Vsc is the structure velocity relative to the spacecraft. This equation can be solved as a set 
of simultaneous equations at the resolution of the magnetometer data, yielding time-dependent structure 
velocities.

Assume that an event L-M-N coordinate system has been established (Denton et  al.,  2018; Genestreti 
et al., 2018, and references therein). Usually we want L to be the direction of the reconnection magnetic 
field; N may be the normal direction across the current sheet, and M is the remaining direction. In the com-
mon two-dimensional description of magnetic reconnection, M is assumed to be the direction of invariance, 
but sometimes the most invariant direction has a different orientation than that of M if the L direction is 
determined based on maximum variance of B (Denton et al., 2016a, 2018).

A local time-dependent coordinate system l-m-n is based on the eigenvectors of MDD analysis (Shi 
et al., 2005). In MDD, a symmetric tensor is formed by multiplying the gradient of the vector magnetic field 
by its transpose, and then the eigenvectors of the resulting symmetric tensor are found. In this case, n cor-
responds to the maximum gradient direction, m corresponds to the minimum gradient direction, and l cor-
responds to the intermediate gradient direction (The definitions of l and m are reversed from those recently 
used by Manuzzo et  al.  (2019)). If the coordinate system is time invariant, the l-m-n coordinate system 
would be the same as the event coordinate system L-M-N if the gradient is a minimum in the M direction. 
Below, l, m, or n as a subscript will indicate a component, and as a variable will indicate a component of a 
position vector, similar to the way that x, y, and z are often used.

As described by Shi et al. (2006), and further in Appendix A, we can solve Equation 2 for the local gradient 
k (l, m, or n) component of the structure velocity, str, k , using

 str, k , , / ,dt i k i k  � (3)

where ,dt i  is the i component of the time derivative of B as observed by the spacecraft, G = ∇B, λk is one 
of the MDD eigenvalues, the calligraphy letters indicate that the quantities are in the local gradient (l-m-n) 
coordinates system, and repeated indices are summed. Expanding this out explicitly,


   

        
str,

1 ,n n l l m m
k

k k k k

d d d
dt dt dt
     


  

� (4)

where   is the position vector in the MDD eigenvector frame. From Equation 4, we see that the dominant 
source of str,k  is from the term i  for which the product of its time derivative and spatial gradient in the k  
direction is the greatest.

For example, suppose that we can define a reconnection L-M-N coordinate system for which the larg-
est variation is for BL and the largest spatial variation is in the N direction (Denton et  al.,  2018). Then 

    
2/n L NB X , and Equation 4 would become

  
 

 
   

 
str, 2

/ /
.

/

L L N N
N

L N

dB dt B X dXV
dtB X

� (5)

(The minus sign is because the left-hand side of Equation 5 is the structure velocity, but dXN/dt on the right 
hand side of Equation 5 is the time derivative of the spacecraft displacement relative to the structure).
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In the following text, we will drop the calligraphy notation, so, for instance, Vstr,n is the structure velocity in 
the local MDD n direction.

2.3.  Reduced Quadratic Polynomial Reconstruction Model

As discussed by Denton et al. (2020), the 3D Reduced quadratic (RQ-3D) model was found by starting with 
the full quadratic expansion of the vector magnetic field in the local MDD l-m-n coordinate system (three-di-
mensional polynomial expansion with up to second derivatives, including mixed terms like ∂2Bl/∂l∂n), and 
then reducing the number of terms based on the ordering ∂/∂n ≫ ∂/∂l ≫ ∂/∂m. Because ∂/∂m is assumed 
to be small, we only allow “strictly linear” variation with respect to m. That is, the m-dependent terms are 
linear in m, and do not have l or n dependence. Then the m derivatives will be everywhere constant and 
therefore no greater than those determined from the linear gradients based on the MMS inter-spacecraft 
magnetic field variation. Although ∂/∂n is usually large compared to ∂/∂l and ∂/∂m, we expect ∂Bn/∂n to be 
small because of ∇ B = 0, so we also neglect ∂2Bn/∂n2 to ensure that ∂Bn/∂n remains small away from the 
spacecraft locations. This leads to neglect of other terms, as described in more detail by Denton et al. (2020). 
The resulting model is

   
    

   

2 2

,0 2 2
l l l l

l l
B B B B nB B n l m
n l m n

� (6)

     
      

     

2 2 2 2 2

,0 2 22 2
m m m m m m

m m
B B B B n B B lB B n l m nl
n l m n ln l

� (7)

   
    

   

2 2

,0 2 2
n n n n

n n
B B B B lB B n l m
n l m l

� (8)

Neglecting the displacement current in the Ampere-Maxell law, μ0J is the curl of Equations 6–8, which is 
written out in Appendix B (Here μ0 is the permeability of free space).

In addition to these equations, we have a constraint in order to ensure ∇⋅B = 0. Taking the divergence of 
(6–8), we find

  
  

  
0n l mB B B

n l m
� (9)

The three equations in Equations 6–8 can be solved at each spacecraft location, leading to 12 equations. 
Similarly the equations for μ0J in Appendix B also yield 12 equations. With Equation 9, there are a total of 25 
equations that can be used to solve for 17 parameters for a best least squares fit. A more detailed description 
of the method is given by Denton et al. (2020).

3.  Results
3.1.  MDD Analysis

Figure 2 shows the results of MDD and Minimum Gradient Analysis (MGA), both applied to the vector 
magnetic field (Shi et al., 2019). Figure 2a shows the eigenvalues for MDD, which are also the same as the 
eigenvalues for MGA (MGA will be described below). Figures 2b–2d show the local (time-dependent) MDD 
eigenvectors l, m, and n, respectively, expressed in terms of the global coordinates that we have chosen for 
this event, L-M-N. As one can see from Figures 2b–2d, l, m, and n are approximately equal to L, M, and N, 
respectively. In fact, eN and eM were found by taking the mean components of en and em, making a slight 
adjustment of eM so that it was perpendicular to eN, and then getting eL from the cross product, eM × eN. The 
local en direction is found from the maximum gradient eigenvector, representing the direction of the maxi-
mum gradient across the current sheet. The local em direction was the direction of the minimum gradient, 
so that an approximate two-dimensional representation of this system would include variation only in the 
N and L directions.
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Note that the l and L directions based on MDD might not well represent the Minimum Variance Analy-
sis (MVA) direction of maximum variance of the magnetic field (Sonnerup & Cahill, 1967; Sonnerup & 
Scheible, 1998), which is often associated with L (e.g., Denton et al., 2018). MGA is related to MDD in that 
the eigenvalues are calculated from the same tensor that is based on ∇B. But whereas for MDD the eigen-
vectors are sorted according to the directions of maximum and minimum gradient, for MGA the eigenvec-
tors are sorted to find the directions of maximally and minimally varying magnetic field component (Shi 
et al., 2019). Therefore MGA, which finds the directions of maximum and minimum variance from the mag-
netic field vectors measured by the four spacecraft at one time, is “MVA-like” (Shi et al., 2019) and functions 
like a local (time-dependent) version of MVA. An apparently equivalent procedure to implementing MGA 
is to create a series of four magnetic field measurements from the four spacecraft, and then implementing 
MVA on that series of data points. In Figures 2f–2h, el,MGA, em,MGA, and en,MGA are respectively the MGA 
maximum, intermediate, and minimum variance directions. Figure 2f shows that el,MGA is at first mostly in 
the −M direction (green curve with largest absolute value). Later in the interval, there is more variation in 
the L direction (blue curve with largest absolute value).

We will first examine this event using the L-M-N coordinate system based on MDD as described above, 
with [L; M; N]  =  [0.879,0.419,−0.230; −0.472,0.837,-0.277; 0.077,0.352,0.933] in GSE coordinates. These 
coordinate directions differ by 15°, 16°, and 7°, respectively, from the L, M, and N directions of Tor-
bert, Burch, Phan, et al.  (2018), and by 40°, 39°, and 11°, respectively, from the hybrid MDD-B/MVA-ve 
L, M, and N directions of Genestreti et al.  (2018) (coordinate system 14 in their Table A1, with [LG; MG; 
NG] = [0.948,−0.255,−0.189; 0.182,0.925,−0.335; 0.260,0.283,0.923] in GSE).
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Figure 2.  Minimum Directional Derivative (MDD) and Minimum Gradient Analysis (MGA). (a) MDD (or MGA) 
eigenvalues; (b–d) local MDD l, m, and n eigenvectors, respectively, with blue, green, and red curves showing the L, M, 
and N components, where [L; M; N] = [0.876,0.424,−0.230; −0.476,0.835,−0.275; 0.075,0.351,0.936] in GSE; (e) L-M-N 
components of the magnetic field averaged over the MMS spacecraft; (f–h) local MGA eigenvectors in the same format 
as for MDD. The grayed out panels are shown for completeness, but not discussed.
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3.2.  Velocity From STD

Equation 4 shows that the kth component of the structure velocity in the local MDD coordinates, Vstr,k ( str, k  
in Equation 4), has the kth eigenvalue, λk, in the denominator. Thus very small values of λk can lead to very 
large values of the corresponding velocity component. In principle, if the structure were truly two-dimen-
sional and time invariant, and λk became very small, the numerator of Equation 4 would also become very 
small, so that the resulting velocity would be well behaved. But in practice, non-two dimensionality, time 
dependence, and approximations and errors in the calculation of the gradients can result in small values of 
the denominator without correspondingly small values of the numerator. Thus very small λk yields what we 
call a “singularity,” leading to unrealistically large Vstr,m for the minimum eigenvalue m (see discussion by 
Manuzzo et al., 2019; Shi et al., 2019).

Since the relative DC magnetometer calibration of the MMS spacecraft is rated to be accurate to 0.1 nT, 
values of λk below   2

0 sc(0.1 nT / )d , where dsc is the average spacecraft spacing (here, 18.3 km), could 
be suspect (Shi et al., 2019). Calibration errors are especially serious, because they can lead to systematic 
(constant) error in the gradients. Figure 3 shows components of the STD structure velocity, Vstr, k, in the 
local MDD eigenvector directions versus the normalized eigenvalue, λk/λ0. One evidence that the gradient 
in a direction is not being calculated accurately would be that the inferred structure velocity, Vstr, k, increases 
as λk decreases. This is because, in principle, there should not be any correlation between the velocity in a 
certain direction and the gradient of the magnetic field in that same direction.

Evidence of this can be seen in Figure 3. Note that the velocities of the minimum gradient component of 
the structure, Vstr, min (green dots), increase with decreasing λk/λ0 for λk/λ0 < 10−1, that is, for data points to 
the left of the red vertical dotted line in Figure 3. However, it is not clear that the velocities increase with 
respect to decreasing λk/λ0 for larger eigenvalues than about λk/λ0 = 0.25. Consider for instance the blue 
points, representing the components in the intermediate gradient direction. The smallest values of Vstr, min 
occur at the smallest values of λmin/λ0. For the time being, we are going to proceed with the assumption that 
the velocities measured in the intermediate gradient direction (blue points in Figure 3) are accurate. This 
is equivalent to assuming that eigenvalues, λk/λ0, are accurately calculated if their values are greater than 
0.33, that is, for data points to the right of the vertical green dashed line in Figure 3. Note also that our main 
attention will be for the velocity before about 2.2 s, for which λl/λ0 is above unity (Figure 2a).

Figure 4 shows the results of the STD analysis. The solid curves in Figure 4a show the components of the 
2D STD magnetic structure velocity formed by projection of the local n and l components onto the global N 
(red solid curve) and L (blue solid curve) directions. The black curves in Figures 4b–4d are the n, l, and m 
components of the structure velocity, respectively. Comparison of the black curve in Figure 4b with the red 
curve in Figure 4a, and the black curve in Figure 4c with the blue curve in Figure 4a, shows that the n and 
l components of the STD velocity are nearly equal to the N and L components, respectively, as suggested by 
Figures 2d and 2b, respectively. Figures 4b–4d show Vstr,k for k = n, l, or m, respectively, where the red, blue, 
and green curves show the contributions from the Bn, Bl, and Bm dependent terms in Equation 4, respec-
tively. As indicated by the very large values of Vstr,m Vstr,m is often grossly inaccurate if the MDD minimum 
gradient (m) eigenvalue is very small. Figure 4d, which shows a singularity in Vstr,m, is included mainly to 
remind the reader of this fact.

Figures 4b and 4c show some possibly unexpected results. If the spacecraft cross the entire current sheet, 
often the largest magnetic variation is in the BL component, due to the strong dependence of BL on N. Then 
one would expect the value of Vstr,n to be dominated by the contribution from the BL-dependent terms in 
Equation 4, as was assumed in the derivation of Equation 5. But Figure 4b shows that the value of Vstr,n is 
dominated by the contribution from the Bm-dependent terms in Equation 4. This is because for this event 
the MMS spacecraft were skimming close to but under the current sheet (Hasegawa et al., 2019; Torbert, 
Burch, Phan, et al., 2018), so that there was little variation in BL over the time plotted in Figure 4. From Fig-
ure 2e, we can see that Bm is larger in magnitude than Bl, and that the variation in Bm is also larger, except at 
the end of the time interval after about t = 2.6 s. Consequently, Vstr,n is dominated by the contributions from 
the Bm-dependent terms in Equation 4 (green curve in Figure 4b) up until about t = 2.6 s, after which the 
Bl-dependent terms also contribute significantly (blue curve in Figure 4b).
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Similarly, in the frame of reference of the magnetic structure, if we define 
L = 0 as the L position of the X line, then Bn should change sign across 
L  =  0. So one might think that the Bn-dependent terms in Equation  4 
would make the greatest contribution to Vstr,l. But Bn is small (Figure 2e), 
and the greatest contributions to Vstr,l come from the Bm and Bl-dependent 
terms in Equation 4 (green and blue curves in Figure 4c, respectively).

The magnitude of Vstr,i, where i = L or N, can be found from the magni-
tudes of Vstr,k, where k = l, m, or n, using

         2 2 2 2 2 2
, , , , , , ,cos cos cos ,str i i n str n i l str l i m str mV V V V� (10)

where θi,k is the angle between the i (L or N) and k (l, m, or n) directions. 
Figure  4e shows cos2θi,m for i  =  L (blue curve) and i  =  N (red curve). 
Because these values are small, especially for i = N, the neglect of Vstr,m 
in the calculation of Vstr,N leads to almost no inaccuracy, and the neglect 
of Vstr,m in the calculation of Vstr,L is not a significant problem unless 
Vstr,m ≫ Vstr,l. But Figure 3 shows that Vstr,m (green dots) does not become 
much greater than Vstr,l unless the minimum eigenvalue λmin becomes 
very small (<0.1λ0), for which Vstr,m is not expected to be accurate. There-
fore, our STD values of Vstr,N should be very accurate, and despite the fact 
that λint in Figure 2a (blue curve) is not always above our desired value 
for accuracy (dotted black line), there are indications that Vstr,L may be 

accurate. These include the fact that neither the maximum or intermediate gradient components of Vstr,k 
increase with decreasing eigenvalue in Figure 3, and the comparison with the velocity calculated from re-
construction described below.

3.3.  Polynomial Reconstruction

Figure  5 shows that the RQ-3D polynomial model well represents B and J during the time interval 
t = 1.6 –2.8 s. The JN component is not as well modeled as the other components, but it is very small com-
pared to the other components of J. This shows that the model is reasonable in the vicinity of the spacecraft, 
though it does not necessarily show that the model is accurate away from the spacecraft.

Figure 6 shows reconstruction results for the magnetic field in the L–N plane at M = 0, where here L, M, 
and N are measured with respect to the centroid of the MMS spacecraft, at the origin in Figures 6b–6q. The 
reconstruction appears to show a reconnection X line (extending normal to the L–N plane, so that it is an X 
point in that plane), indicated by the gold asterisk, that appears slightly after t = 1.6 s. The X line does not 
move much until about t = 1.92 s. Then between t = 1.92  and 2.24 s it moves rapidly in the minus L direc-
tion relative to the spacecraft. Later, it reappears near the left (negative L) side of the plot from t = 2.4 –2.8 s. 
While the L position of the X line is somewhat variable, the X line appears to move uniformly in the minus N 
direction relative to the spacecraft. Movie S1 in the Supplementary Information shows the time dependence 
of the reconstruction in more detail.

3.4.  Path of the Spacecraft Through the Magnetic Structure

Figures 7a and 7b show the motion of the reconnection X line relative to the centroid of the MMS space-
craft in the L and N directions, respectively, based on the RQ-3D polynomial reconstruction using data 
such as in Figure 6. At each time, the position in the L-N plane is found where the in-plane magnetic field 
is a minimum (indicated by the gold asterisks in Figures 6b–6q) (There are also minima corresponding to 
reconnection O points, but these have been removed from Figure 7).

The red curve in Figure 7c makes use of the positions from Figures 7a and 7b to show the path of the cen-
troid of the MMS spacecraft relative to the X line, which is at the origin of Figure 7c. The LMMS and NMMS 
components in Figure 7c have been converted to km using dsc = 18.3 km. The path progresses generally 
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Figure 3.  Velocity components in the local MDD directions versus 
eigenvalue. The velocity components, Vstr, k, for the interval t = 1.6 –2.8 s 
are plotted versus the local normalized MDD eigenvalue, λk/λ0, for the 
maximum gradient n component (red dots), the intermediate gradient l 
component (blue dots), and the minimum gradient m component (green 
dots), where   2

0 (0.1 nT / )scL . The vertical dashed green and dotted red 
lines are at values of λk/λ0 equal to 0.33 and 0.1, respectively.
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from the left to the right, starting at the black circle. There are some rever-
sals with respect to time of the velocity in the L direction, vL, at positions 
indicated by the black arrows. At these positions, all outside a radius of 2 
spacecraft spacings (2 dsc) as indicated by the solid green curve, the recon-
nection X line seems to linger near the periphery of the reconstruction (at 
a distance of about 2–3 dsc).

The blue curve shows the path of the MMS spacecraft found from STD. 
The magenta circle at the left side of the plot shows the starting point 
of the path. While the STD path is shown for the entire time interval of 
Figures 7a and 7b, 1.6 –2.9 s, the points plotted within the red curve are 
only for the times when LX and NX determined from the reconstruction 
are within ±3dsc, that is, the times for which there are blue data points 
shown in Figures 7a and 7b.

The STD method yields only velocities, not positions, so the position of 
the path is determined in the following way. For an X-like reconnection 
configuration at (L, N) = (0,0), BN is expected to change sign with respect 
to L at L = 0, and BL is expected to change sign with respect to N at N = 0. 
So the path is adjusted in the left to right direction so that the N com-
ponent of the magnetic field averaged over the four spacecraft reverses 
at LMMS = 0 (red curve in Figure 2e at t = 2.12 s). This exact procedure 
cannot be followed to determine the vertical position of the path using 
BL, because BL,av does not reverse during our time interval (green curve in 
Figure 2e), indicating that the centroid of the spacecraft positions did not 
cross the N axis, as depicted in Figure 7c (blue curve). But MMS3 is dis-
placed 10.1 km in the positive N direction relative to the centroid of the 
MMS spacecraft (See the positions of the green circles in Figures 6b–6q 
relative to the origin at the centroid of the spacecraft). And MMS3 did 
cross the N = 0 line, as indicated by a reversal in BL at 2.81 s (green curve 
in Figure 5a just beyond the right side of the plot). At this time the cen-
troid of the MMS positions was at the large red circle on the right side 
of Figure 7c. The STD path was adjusted in the up to down direction by 
requiring that NMMS = 0 was 10.1 km above the red circle.

The path of the MMS spacecraft from the reconstruction (red curve) is 
mostly consistent with that from STD within a distance of 2 dsc from the 
X line (within the solid green circle). That is, with a slight shift of the 
blue curve downward, the two curves would almost exactly lie on top of 

each other for those parts of the curves that would be within the solid green circle. During the time that the 
centroid of the MMS spacecraft is within 2dsc of the X line (1.99 –2.20 s, indicated by the vertical solid green 
lines in Figures 7a and 7b), the L and N components of the velocity based on the reconstruction were 180 
and 32 km/s, respectively, whereas the L and N components of the velocity based on the STD method were 
236 and 32 km/s, respectively. So the N components of the velocity were the same for both methods, and 
the L components agreed within no more than 30% (depending on how we calculate the percent difference).

Note also that both STD and the reconstruction show the largest L component of the structure velocity at 
about t = 2.23 s (based on the solid blue curve in Figure 4a and the blue curve in Figure 7a). A more precise 
comparison is shown in Figure 4a, where the dotted curves are the L component (cyan dotted curve) and 
N component (magenta dotted curve) of the structure velocity based on the motion of the X line in the 
polynomial reconstruction. The N components from the reconstruction is quite similar to that from STD 
(comparing the red solid and magenta dotted curves in Figure 4a), especially at t = 2.0 s and between 2.1  
and 2.2 s. There are larger differences for the L component (comparing the blue solid and cyan dotted curves 
in Figure 4a), but both methods yield increasingly negative velocities with respect to time, and the average 
values are similar.
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Figure 4.  Spatial-Temporal Difference (STD) results. (a) STD velocity 
components in the L (blue solid curve) and N (red solid curve) directions 
calculated using only contributions from the MDD local n and l directions 
(b–d) STD velocity component in the MDD local (b) n, (c) l, and (d) m 
directions, where the black curve is the total component Vstr,k for k = n, l, 
or m, and the red, blue, and green curves are the contributions to Vstr,k from 
the Bn, Bl, and Bm terms in Equation 4, respectively; (e) squared cosine of 
the angle between the L (blue curve) or N (red curve) direction and the m 
direction; (f) net STD displacement from t = 1.6 s in the L (blue curve) and 
N (red curve) directions. The dotted curves in Figure 4a are the L (cyan 
curve) and N (magenta curve) velocity components found from RQ-3D 
reconstruction during the time when the centroid of the MMS spacecraft 
was within two average spacecraft separations, dsc, from the X line of the 
magnetic structure.
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4.  Discussion
We have explained aspects of the STD method of Shi et al. (2006, 2019), and have shown how STD and 
the polynomial reconstruction method of Denton et al. (2020) can be used to determine the velocity of the 
magnetic structure relative to the MMS spacecraft, and then the path of the MMS spacecraft relative to the X 
line of the magnetic structure (Figure 7c). In order to get the path from the STD method, we had to use the 
time of reversal in BN averaged over the MMS spacecraft to align the path in the L direction, and the time of 
reversal in BL as observed by MMS3 to align the path in the N direction. Because the latter event occurred 
significantly later in time than the closest approach to the X line (2.814 s; see position of the red circle in 
Figure 7c), the position of the STD path probably has more uncertainty in the N direction than in the L di-
rection. So it would not be unreasonable to shift the path from STD (blue curve in Figure 7c) slightly down 
to align it with the path from the reconstruction (red curve in Figure 7c). The two paths would then agree 
quite well for the time for which the centroid of the MMS spacecraft is within 2dsc from the X line (within 
the solid green circle of Figure 7c).

The reconstruction is more likely to be accurate when the centroid of the MMS spacecraft is close to the 
X line, but the path calculated from STD has no such restriction. The STD and reconstruction paths agree 
when the centroid of the spacecraft are within a distance of 2dsc from the X line, roughly validating both 
methods when the MMS spacecraft are close to the X line. Calculating the velocity of the MMS space-
craft relative to the X line based on these two methods during the interval of time that the centroid of the 
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Figure 5.  Model and observed magnetic field and current density. (a–c) observed (dotted curves) and RQ-3D model 
(solid curves) L, M, and N components of B for the individual Magnetospheric Multiscale (MMS) spacecraft, using the 
colors in the key of panel a; and (d–f) the particle current density J using the same colors and line styles as for B. The 
gold curves are the average of the observed values (dotted curves) and the model values at the centroid of the spacecraft 
positions (solid curves).
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spacecraft was within a distance of 2dsc from the X line based on the reconstruction, we found that the 
N component of the velocity from STD and the reconstruction agreed precisely, while the L components 
agreed to within no more than 30%. But there is no reason that the STD results should be less accurate 
when the MMS spacecraft are not close to the X line. So we conclude that the position of the X line from the 
reconstruction is only likely to be accurate when the centroid of the MMS spacecraft is within 2dsc from the 
X line, and the STD velocity is likely to be more accurate than the reconstruction velocity when the MMS 
spacecraft are farther away from the X line.

As mentioned in Section 3.1, Genestreti et al. (2018) found L, M, and N directions (their MDD-B/MVA-ve 
coordinate system, coordinate system 14 in their Table A1) that varied by 40°, 39°, and 11°, respectively, 
from our directions. Their analysis used MDD to get the N direction, but the maximum variance direction 
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Figure 6.  RQ-3D reconstruction of the magnetic field in the L–N plane at M = 0. (a) The magnetic field averaged over 
the spacecraft, Bav; and (b–q) streamlines of the in-plane magnetic field at M = 0 (black curves) and BM (color) for BM 
directed into the page using the color scale at the right side of the plot. Each plot is generated at the time indicated 
in the panel label corresponding to the time of the same label in panel (a) The coordinates L and N are measured 
relative to the centroid of the MMS spacecraft (at the origin of each panel), and the positions of the MMS spacecraft 
are indicated by the colored circles for MMS1 (black circle), MMS2 (red circle), MMS3 (green circle), and MMS4 (blue 
circle). The gold asterisks are the position of the X line determined from the in-plane magnetic field minimum.
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of the electron velocity to get the L direction. They were strongly moti-
vated by the goal of finding an M direction that yielded constant EM. The 
constancy of EM follows from Faraday's Law if the reconnection is two-di-
mensional (in the L–N plane) and time independent. In other words, this 
coordinate system was also motivated by the goal of determining M as 
the direction of invariance of the magnetic field. To avoid confusion with 
the directions based on MDD, we will indicate these directions by a “G” 
subscript. Unfortunately, we are not able to accurately calculate the ve-
locity in the LG–NG plane using STD, because the velocity in the LG di-
rection would have a significant contribution from the velocity in our M 
direction. Then, because the gradient in our M direction is very small, the 
velocity in the LG direction cannot be reliably determined. Nevertheless, 
we project our STD velocity onto the LG and NG directions to get what is 
probably a lower limit on these velocity components.

We also determine the velocity in the LG–NG plane using an RQ-3D re-
construction. Figure 8 shows the reconstructed magnetic field using the 
same format as Figure 6. In Figure 8, the X line moves across the field of 
view from right to left, as in Figure 6, but does not linger at the periphery 
of the plot where LG/dsc = ±3. Figure 9 is similar to Figure 7, but showing 
the motion of the spacecraft with respect to the LG and NG coordinates. 
The dashed blue curve in Figure 9 shows the path calculated from STD 
including all velocity components with eigenvalues to the right of the 
dotted vertical red line in Figure 3. Thus a small number of m velocity 
component values are included in the calculation of the LG and NG com-
ponents of the STD velocity. The fact that the dashed blue curve in Fig-
ure 9 is slightly closer to the red curve than the blue curve is suggestive 
that inclusion of the missing m component of velocity might possibly lead 
to better agreement between STD and the polynomial reconstruction.

Figure  10 compares velocity components in the LG and NG directions 
that we calculate to those that have appeared in several other references 
listed in Table 1. First of all, we use four spacecraft timing analysis us-
ing MGB  and MGJ  to determine the NG components of the velocity only 
(Dunlop & Woodward, 1998). The angle between the timing normal and 
the Genestreti et  al  (2018). NG direction, θN, is small in both cases, as 
shown in Table 1. Therefore, the timing analysis is approximately giving 
the velocity in the N direction. But the results differ greatly depending 
on the quantity used, as indicated by −122 km/s value found using MGB  
and the −40 km/s value found using MGJ  (see the red horizontal lines in 
Figure 10). The velocity found from projection of our STD velocity onto 
the LG and NG directions is indicated in Table 1 and Figure 10 by the “S” 
symbol (red in Figure 10), and for the reconstruction using the “R” sym-
bol (red in Figure 10). Velocities from Nakamura et al. (2019), Hasegawa 

et al. (2019), and Egedal et al. (2019) are indicated in Table 1 and Figure 10 respectively by the “N,” “H,” and 
“E” symbols (blue in Figure 10).

The NG components from STD and RQ-3D and the three studies referenced are fairly consistent (letter sym-
bols in Figure 10), and lie between the values from the timing analysis (red horizontal lines in Figure 10). 
The LG velocity component from STD is significantly less in magnitude than the other estimates, probably 
owing to the problem of evaluating the STD velocity component in the MG direction, mentioned previously. 
The LG velocity component from the reconstruction is equal to that from the Egedal et al. (2019) reference, 
and this estimate has the largest magnitude.
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Figure 7.  Motion of the spacecraft in the L-N plane. (a–b) L and N 
coordinates of the X line relative to the centroid of the MMS spacecraft 
from the RQ-3D reconstruction, (a) LX and (b) NX, respectively, in units of 
the average spacecraft spacing, dsc, versus time t. (c) Path of the centroid 
of the MMS spacecraft through the L-N plane relative to the X line at 
the origin. The blue curve is from the Spatio-Temporal Difference (STD) 
method, and the red curve is from the reconstruction. Both paths start 
toward the left side of the plot and progress generally toward the right 
side. The black circle marks the starting point of the reconstruction path, 
and the black arrows represent positions along that path where there is a 
reversal of the L component of the velocity, vL. The magenta circle marks 
the starting point of the STD path. The solid green circle is at 2dsc from the 
origin.
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In the L-N coordinate system based on MDD analysis, the STD and reconstruction velocities agree fairly 
well (within about 30%), at least when the centroid of the MMS spacecraft is within 2dsc of the X line. This 
would appear to roughly validate both of these methods (“roughly” because the L components of the veloci-
ties in Figure 4a are certainly not exactly the same). Also, the L coordinate in Figure 6 based on MDD seems 
to be much better aligned with the current sheet than that in Figure 8.

There are some differences in results with different data processing. If we do not make any adjustment of 
the electron current density (Section 2.1), the reconstruction yields some additional time-dependent behav-
ior (as shown in Movie S2 in the Supplementary Information). There appears to be coalescence-like merg-
ing of a plasmoid with the large scale island. Because the merging plasmoid is elongated in the L direction, 
this process would not be energetically favorable; so we do not regard this short timescale behavior to be 
realistic. Furthermore, electron magnetohydrodynamic (EMHD) reconstructions of the July 11, 2017 event 
for each of the four MMS spacecraft (shown in the Supplementary Information of Hasegawa et al. (2019)) 
did not reconstruct any plasmoid structures, so the reconstruction results are more consistent with the 
adjustment of the electron density. If the electron density is adjusted as described in Section 2.1, but the 
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Figure 8.  RQ-3D reconstruction of the magnetic field in the LG–NG plane at MG = 0. Same as Figure 6, except showing 
the magnetic field in the LG–NG rather than L–N plane.
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data are smoothed over 0.3 s rather than 0.5 s, the reconstructions are 
similar to those without the density adjustment (as shown in Movie S3 
in the Supplementary Information). An elongated plasmoid merges into 
the magnetic island in such a way that appears to be unrealistic. With 
smoothing of 1.0 s, the velocities are not surprisingly more constant, but 
there is less agreement between the velocities from STD and the recon-
struction (reconstruction L component 35% lower in magnitude than the 
STD L component). We repeat the results of this study for 1.0 s smoothing 
in the Supplementary Information (Movie S4 and Text S2).

Our L-M-N coordinate system based on MDD is best for comparing the 
results for velocity from STD and the reconstruction, because STD cannot 
reliably determine the component of the velocity in the minimum gradi-
ent (M) direction. Genestreti et al. (2018), however, argued that relatively 
small magnetic field calibration errors could significantly alter the MDD 
directions. In particular, their Figure 8 suggests that calibration errors for 
B of order 0.05 nT can cause errors in the L and M directions with typical 
values of 10°, but ranging from small values to 20°. There is definitely an 
inconsistency between the M component directions based on the mini-
mum gradient from MDD or the constancy of EM, used to validate Gen-
estreti et al.'s coordinate system. This is because the argument that EM 
should be constant is based on supposed invariance of B in the M direc-
tion, which should be the MDD minimum gradient direction. Genestreti 
and coworkers looked for coordinate systems for which the small value 
EM was not dependent on the larger EN. They found that EM in the MDD 
coordinate system varied with EN, and on average was negative, implying 
that reconnection would not be occurring. On the other hand, EM,G was 
relatively independent of EN,G.

Other results favoring a coordinate system similar to that of Genestreti 
and coworkers are the optimal coordinate system for Electron MHD 
(EMHD) reconstruction (Hasegawa et al., 2019) and the good correlation 
between B and the electron velocity as the magnetic field rotates from 
the L to M direction (Le et al., 2010) found in the simulation of this event 
by Egedal et al. (2019). This rotation is consistent with the wave recon-
nection dynamics first described by Mandt et al.  (1994), and then later 
generalized to electron scale structures (Le et al., 2010, 2013). Another 

argument favoring the Genestreti and coworkers coordinate system is that the LG component of the elec-
tron velocity shows a reversal when the spacecraft passed near the X line in the LG direction, whereas the L 
component of the electron velocity in our MDD coordinate system has a single peak, similar to that of the 
M component.

Of course, evaluating the coordinate system based on the constancy of 
EM also involves assumptions, two dimensionality, no time dependence, 
and accurate calculation of the electric field. But we cannot rule out the 
possibility that magnetic field calibration errors are affecting the inferred 
magnetic structure (like the orientation of the current sheet in Figure 6) 
and our results for Vstr,L. For that reason, we also calculated the recon-
struction velocity in Genestreti and coworker's coordinate system. The 
gradient in the N direction, and hence Vstr,N, however, is much better de-
termined than that in the L direction, and at any rate, the N directions of 
both coordinate systems were fairly similar, differing by 11°.

Even if the minimum magnetic field gradient direction was determined 
correctly, results by Denton et  al.  (2016a,  2018) indicate that the min-
imum gradient direction can be the L direction determined to have 
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Figure 9.  Motion of the spacecraft in the LG–NG plane. Similar to Figure 7, 
except showing the motion using the LG and NG rather than L and N 
coordinates. The blue dashed curve in Figure 8c is found from STD making 
use of all velocity components to the right of the red vertical dotted line in 
Figure 3.

Figure 10.  Magnetic structure velocities in the LG-NG plane. Velocities 
calculated in this study (red symbols) along with velocities in various 
references (blue symbols), using the symbols listed in Table 1.
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maximum variation in the magnetic field, which we usually associate with the reconnection magnetic field. 
Perhaps some sort of reconciliation for the difference in the M direction based on the magnetic field gra-
dient or constancy in the electric field results from the fact that the magnetic field geometry is in some 
sense approximately one dimensional based on the relative size of the maximum and intermediate gradient 
eigenvalues in Figure 2a. From that perspective, there are two directions of relatively small spatial inhomo-
geneity relative to that of the N direction. At any rate, it seems that different kinds of data align themselves 
better to different coordinate systems.

Because the STD and reconstruction velocities are not exactly the same, and because the reconstruction 
results differ somewhat depending on the data processing, the methods as implemented here must be re-
garded as only providing a rough estimate of the magnetic structure velocity. But both STD and the recon-
struction would work better if the spacecraft spacing were somewhat larger, so that the gradients would 
be better determined and λk would be larger relative to λ0 (The spacing should be not so much larger that 
the spacecraft are sampling different structures). Both the STD and reconstruction results strongly depend 
on the observed gradients in the magnetic field components. It is encouraging, however, that for this event 
the STD L component of the velocity was affected most strongly by the variation of BM and BL, and less so 
(though not insignificantly) by the variation of BN (Figure 4b), whereas the L component of the velocity 
from the polynomial reconstruction was affected mostly by the spatial variation in BN (since the X line was 
at the reversal in BN). Also our estimate for Vstr in the Genestreti et al. (2018) coordinate system based on the 
reconstruction did not differ greatly from other velocity estimates (Figure 10).

Appendix A:  Derivation of STD Structure Velocity
Expressing (2) as a matrix equation,

  str ,dtB V G� (A1)

where Bdt and Vstr are row vectors, and

 G B� (A2)

is a matrix with the partial spatial derivatives varying along the column direction.

Now we multiply (A1) by the transpose of G, GT, to get

       str str G,T T
dtB G V G G V M� (A3)

where

 G .TM G G� (A4)
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Symbol in Figure 6 θL
a (°) LGV  (km/s) θN

b (°) NGV  (km/s) References

MGB – – 3.7 −122 This study, timing with MGB

MGJ – – 11.5 −40 This study, timing with MGJ

S 0 −174 0 −61 This study, STD

R 0 −333 0 −87 This study, RQ-3D 
reconstruction

N 0 −250 0 −83 Nakamura et al. (2019)

H 5.0 −232 0.6 −59 Hasegawa et al. (2019)

E 10.6 −333 6.5 −72 Egedal et al. (2019)
aAngle between the LG and reference L directions. bAngle between the NG and reference N directions.

Table 1 
Magnetic Structure Velocities in the Genestreti et al. (2018) LG–NG Plane
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Assume that we have used MDD to get the local time-dependent gradient directions, n, l, and m. At each 
time, we define a rotation matrix, M, that has the eigenvectors along the columns.

Now we transform to the local eigenvector frame by multiplying (A3) by M on the right and using M⋅MT = I, 
where I is the identity matrix, to get

         str G ,T T T
dtB M M G M V M M M M� (A5)

or

   str G.T
dtB G  � (A6)

Then, as described by Shi et al. (2006), we can solve for str  in closed form (Equation 3) using the fact that 
G  is diagonal in the local MDD coordinate system l-m-n with the gradient eigenvalues, λk.

Appendix B:  Model Current Density
To calculate the current density μ0J for the Reduced Quadratic model of Denton et al. (2020), we simply take 
the curl of Equations 6–8. For instance, μ0Jl = ∂Bn/∂m − ∂Bm/∂n. The result is:


    

         

2 2

0 2
n m m m

l
B B B BJ n l
m n n ln

� (B1)


    

        

2 2

0 2 2
l l n n

m
B B B BJ n l
n ln l

� (B2)

    
   

   

2 2

0 2
m m m l

n
B B B BJ n l
l n l ml

� (B3)

Note that μ0J is at most linear with respect to l and n since the curl operation involves a derivative.

Data Availability Statement
The MMS data set is available on-line at https://lasp.colorado.edu/mms/sdc/public/links/.
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