

Productivity changes in the Mediterranean Sea drive foraging movements of yelkouan shearwater *Puffinus yelkouan*from the core of its global breeding range

Journal:	Marine Ecology
Manuscript ID	MAE-2769.R1
Manuscript Type:	Regular Paper
Date Submitted by the Author:	18-Apr-2021
Complete List of Authors:	Pezzo, Francesco; ISPRA, Zenatello, Marco; ISPRA Cerritelli, Giulia; University of Pisa, Ethology Unit, Department of Biology Navone, Augusto; MPA of Tavolara-Punta Coda Cavallo Giunchi, Dimitri; University of Pisa, Ethology Unit, Department of Biology Spano, Giovanna; MPA of Tavolara-Punta Coda Cavallo Pollonara, Enrica; University of Pisa, Ethology Unit, Department of Biology Massolo, Alessandro; University of Pisa, Ethology Unit, Department of Biology Gagliardo, Anna; University of Pisa, Ethology Unit, Department of Biology Baccetti, Nicola; ISPRA
Keywords:	Yelkouan Shearwater, <i>Puffinus yelkouan </i> , Mediterranean Sea, foraging ecology, GPS logger, marine primary productivity

1 2	
³ 294	Productivity changes in the Mediterranean Sea drive foraging movements of yelkouan shearwater
4 5 295	Puffinus yelkouan from the core of its global breeding range
6 7 296	
8	
10 297	
12 298	
13 ¹⁴ 200	
15 ²⁹⁹ 16	
17 300 18	Authors
¹⁹ 301	Francesco Pezzo ¹ , Marco Zenatello ¹ , Giulia Cerritelli ² , Augusto Navone ³ , Dimitri Giunchi ² ,
20 21 302	Giovanna Spano ³ , Enrica Pollonara ² , Alessandro Massolo ² , Anna Gagliardo ² , Nicola Baccetti ¹
22 23 202	
24 ³⁰³ 25	
26 304	¹ Istituto Superiore per la Protezione e Ricerca Ambientale (ISPRA), Via Ca' Fornacetta 9, 40064,
²⁷ 305	Ozzano Emilia (BO), Italy
29 30 306	² Ethology Unit, Department of Biology, University of Pisa, Via Volta 6, 56126 Pisa, Italy
31 32 307	³ Area Marina Protetta "Tavolara, Punta Coda Cavallo", Via San Giovanni 14, 07026 Olhia (SS)
33 ³⁰⁷ 34 308	Italy
35	
³⁰ 309 37	
38 39 310	Correspondence
40 41 311	Francesco Pezzo
42 43	
44 312	Email: francesco.pezzo@isprambiente.it
46 313	
⁴⁷ ⁴⁸ 314	
49 ⁵¹¹ 50	
51 315 52	Key-words
53 316	Yelkouan Shearwater, Puffinus yelkouan, Mediterranean Sea, foraging ecology, GPS logger,
55 317	marine primary productivity
50 57 318	
58 59	
60	1

319 Abstract

5 6 320 7

1 2 3

4

321 Pelagic seabirds are tied to their breeding colonies throughout their long lasting breeding 8 9 -10 322 season, but at the same time they have to feed in a highly dynamic marine environment where $^{11}_{12}323$ prey abundance and availability rapidly changes across space and seasons. Here we describe 13 324 the foraging movements of yelkouan shearwater Puffinus velkouan, a seabird endemic to the 14 15 325 Mediterranean Sea that spends its entire life cycle within this enclosed basin and whose future $^{16}_{17}326$ conservation is intimately linked to human driven and climatic changes affecting the sea. The aim 18 327 19 was to understand the main factors underlying the choice of foraging locations during the 20 3 28 reproductive phases. A total of 34 foraging trips were obtained from 21 breeding adults tagged and 21 22 329 tracked on Tavolara Archipelago (N Sardinia, Italy). This is the largest and most important breeding ²³ 24 330 area for the species, accounting for more than 50% of the world population. The relationships 25 331 26 between foraging movements during two different breeding stages and the seasonal changes of 27 3 32 primary productivity at sea were modeled. Movements appeared to be addressed toward inshore (< 28 29 333 20 km), highly productive and relatively shallow (< 200 m) foraging areas, often in front of river ³⁰ 334 mouths and at great distances from the colony. During incubation the Bonifacio Strait, as well as 32 335 other coastal areas close to North and West Sardinia, were the most preferred locations (up to 247 33 34 3 36 km from the colony). During the chick rearing phase, individuals reached areas placed at greater ³⁵ 36</sub>337 35 distances from the colony (up to 579 km), aiming at food rich hotspots placed as far north as the ³⁷ 338 38 Gulf of Lion (France). The need for such long distance and long lasting foraging trips are 39 3 39 hypothesized to be related to unfavorable conditions on the less productive (and already depleted) 40 41 340 Sardinian waters.

- 42 43 341
- 44 342 45 46
- 47 48
- 49
- 50 51
- 52 53

54 55

- 56
- 57 58
- 59

60

Introduction

Marine Ecology

1	
2	
3 1	343
4 5	344
6	345
7 8	216
9	340
10 11	347
12	348
13	349
14 15	350
16	251
17	331
19	352
20 21	353
22	354
23 24	255
24 25	555
26	356
27 20	357
20 29	358
30	250
31 22	359
32 33	360
34	361
35 36	362
37	202
38	363
39 40	364
41	365
42	266
43 44	300
45	367
46	368
47 48	369
49	270
50	5/0
51 52	371

The Mediterranean Sea is an almost completely enclosed basin characterized by a low concentration of nutrients especially in its Eastern part (Kress et al. 2003; Bosc et al. 2004) and can be classified as an oligotrophic or even ultra-oligotrophic basin (Pujo-Pay et al. 2011). Its biological productivity is typically dominated by a winter-spring bloom occurring in some restricted areas mostly concentrated in its NW portion (D'Ortenzio and Ribera d'Alcala 2009; Tanhua et al. 2013). As a consequence, if compared to the Atlantic Ocean, it hosts a simplified community of strictly marine seabirds (sensu Gaston 2004), both in terms of species diversity and populations abundance, and characterized by a high proportion of endemic *taxa* of major conservation concern (Blondel et al. 2010; Coll et al 2010; Zotier et al. 2013). Among them, the yelkouan shearwater Puffinus yelkouan shows a decreasing population trend: it is currently considered as a threatened species and has been categorized as Vulnerable on the IUCN Red List (BirdLife International **2018**). Despite this, it is still a poorly monitored species and large undiscovered colonies may exist in the Eastern Mediterranean or even in the Black Sea (Derhé 2012; BirdLife International 2018). Known breeding sites are mainly distributed in the central Mediterranean basin, from Menorca island and the Southern French coasts (Bourgeois and Vidal 2008; Derhé 2012) to the Sicilian Channel and the Aegean Sea, with a global population size recently re-assessed at 21,000-36,000 pairs (Gaudard 2018). However, as for most other burrowing petrels breeding at hardly accessible locations such as cliffs and caves, reliable long-term trends and population estimates are scarce (Buxton et al. 2016). Hence, most population estimates have been, achieved by imprecise methods such as counting birds while rafting on the water surface in the proximity of colonies (Bourgeois and Vidal 2008; Raine et al. 2010). Not surprisingly, available data are subject to substantial reassessments following steady improvements in knowledge. It has been reliably ascertained that the range of this species, contrary to other procellariids, is confined to the Mediterranean and Black Sea both during the breeding and non-breeding seasons (Pérez-Ortega and İsfendiyaroğlu 2017; Gaudard 2018). As a consequence, the whole population appears to be strongly exposed to the overall condition of this area which is currently affected by major transformations (e.g. Lejeusne et al. 2010; Macias et al. 2015) and which is considered a climate-change hot-spot (Giorgi 2006). The 53 372 54 human pressure is constantly increasing with a number of impacts on ecosystems of the 55 373 Mediterranean Sea (Micheli et al. 2013) and on seabirds as a direct consequence. Concerning the 56 57 374 yelkouan shearwater, main threats have been identified such as fisheries bycatch within foraging ⁵⁸ 375 59 areas, mortality by alien predators such as rats and cats at breeding sites, fish stock depletion and 60

2 3 376 chronic sea pollution (Bourgeois and Vidal 2008; Ruffino et al. 2009; Capizzi et al. 2010; Gaudard 4 2018). Information on the spatial ecology of the species is scarce and the knowledge on feeding 377 5 6 378 movements and feeding areas is based on observations carried out at diurnal concentration sites or 7 8 379 near bottleneck areas such as the Bosphorous or the Bonifacio Strait (Sahin et al. 2012, Zenatello et 9 10 380 al. 2006). Tracking studies on yelkouan shearwaters breeding in the Mediterranean Sea 11 12 381 indicated that birds from French colonies in the Hyères Archipelago mainly move westward 13 13 382 along the coast to the adjacent Gulf of Lion (Péron et al. 2013), whereas those from the 15 383 Maltese colonies show a high individual variability moving both toward the coast of 16 17 384 Tunisia/western Libya and to the Aegean Sea (Raine et al. 2013; Gatt et al. 2019). The 18 19 385 Sardinian key-site of Tavolara-Punta Coda Cavallo Marine Protected Area hosts the largest known ²⁰₂₁ 386 breeding population of the species, estimated at 9,991-13,424 pairs (Zenatello et al. 2012) which, 22 387 considering the most recent population estimates (Gaudard 2018), could represent up to 55% of the 23 24 388 global breeding population. Conservation actions in the last decades consisted of rat eradication 25 26 389 attempts on Molara (Sposimo et al. 2012a, 2012b; Ragionieri et al. 2013) and Tavolara ²⁷ 390 (http://www.lifepuffinustavolara.it) islands in 2008 and 2017, respectively. However, no 29 391 protection on foraging areas has been specifically enforced so far, and information on foraging 30 31 392 strategies of this breeding population was totally lacking, despite its relevance for the conservation ³² 33 393 of this and other populations. ³⁴ 394 35 Here we provide the first study describing the foraging movements of the yelkouan shearwaters 36 395 from the world-largest colony of Tavolara, with the aims of: a) identifying main foraging and 37 38 396 rafting areas by means of GPS loggers; b) describing how key ecological factors affect the selection ³⁹ 397 40 of foraging and resting areas and, as a consequence, the foraging trips length and duration in the 41 398 course of incubation and chick rearing; c) hypothesizing how changes in the Mediterranean habitat 42 43 399 could **possibly** affect spatial ecology; d) providing information for conservation scenarios to come. ⁴⁴₄₅400 ⁴⁶ 401 47 48 4 0 2 49 50 403 ⁵¹ 404 53 405 54 55 406 56 57 407 Materials and methods ⁵⁸ 408 59 60 4

Marine Ecology

Page 5 of 40

1 2

Marine Ecology

3 409 Study Site and Model Species 4 The study was carried out from 2011 to 2015 on Tavolara Island (40°54'N, 09°42'E; Sardinia), in 410 5 6 the largest known breeding site of the yelkouan shearwater (Zenatello et al. 2012; Gaudard 2018). 411 7 8 412 All activities were performed in a single cavern hosting up to 15 accessible nests, that were usually 9 10413 in a rat-free condition. Birds were captured by hand on the nest and equipped with GPS loggers 11 12414 (Gypsy-2 and Gypsy-4 by Technosmart and I-gotU GT120 by Mobile Action Technology). The 13 13 415 weight of GPS-loggers was 3.1%-4.7% of the average mass of adults (424.5 g ± 28.6 g SD, ¹⁵ 416 n=29). GPS-loggers were attached to the mantle feathers of breeding adults by adhesive TESA 16 17417 tape (total weight: 13-20 g according to battery size). Birds were handled for 15-30 minutes 18 19418 and then released where trapped (i.e. at their nest). Loggers were retrieved by recapturing ²⁰ 419 breeders on their nests or at the entrance of the cave when returning from their foraging 22 4 2 0 trips. Nests were regularly monitored during the whole study period to assess their breeding 23 24 4 2 1 success (Table 1). Capture, handling and tagging procedures were conducted by the Italian ²⁵ 26 422 Institute for Environmental Protection and Research (ISPRA), under the authorization of ²⁷ 423 Law 157/1992 (Art.4.1 and Art 7.5), which regulates research on wild bird species. Three 29 4 2 4 birds were tracked in subsequent years (Table 1). All tracks are deposited in Movebank 30 31 425 (www.movebank.org) (DOI provided at publication). ³² 33 426

³⁴ 427 Data Analysis ³⁵

36 4 28 The sampling rate of the loggers changed during the study period (10, 20 or 60 min) depending on 37 38 429 GPS receiver, battery size and breeding stage (see Table 1 for details). For each fix, the GPS ³⁹ 430 loggers recorded date, time, speed and positional data (Longitude and Latitude). Tracks were 41 431 plotted on Qgis (http://www.ggis.org/) and individual foraging trips were identified as round-trips 42 43 4 3 2 flights from the colony to feeding areas. One to four trips per individual were recorded. For each fix 44 45 433 the distance from the preceding fix and the distance from the colony (i.e., the minimal distance a ⁴⁶ 434 bird can fly to reach the current point, assuming shearwaters did not fly over land) was calculated. 47 48 4 3 5 In order to identify the foraging areas and the activity of the birds, each fix was classified into one 49 50 4 3 6 of the following three categories: travelling (T), resting (R), foraging (F) corresponding to three ⁵¹ 52 437 distinct movement patterns. While travelling, the bird moves with a consistent high speed 53 4 38 between two distant sites. The resting behaviour is characterized by low speed movements 54 55 439 within a short range attributable to the sea currents and waves. In the foraging areas 56 57 440 shearwaters perform short range movements either at low or medium speed (see below). ⁵⁸ 441 59 In detail, the classification was based on the following criteria:

60

3 442 a) Fixes with a speed greater than 10 km/h have been classified as T (Guilford et al. 2008), 4 443 provided that their distance from the preceding fix was greater than 5, 10 and 30 km for the 5 6 444 sampling rate of one fix every 10, 20 and 60 mins, respectively. In addition, each fix with a speed 7 8 445 greater than 10 km/h not meeting the previous conditions was anyhow classified as T, 9 10 4 4 6 provided that the absolute difference between its distance from the colony and the preceding 11 12 447 fix distance from the colony was greater than 2.5, 5 and 15 km, for the sampling rate of one 14 448 fix every 10, 20 and 60 mins, respectively. The latter criterion was adopted to discriminate ¹⁵ 449 patterns of birds travelling along a curved path (e.g. as the one needed to circumnavigate islands) 16 17 4 50 from those displayed by birds moving rapidly within a restricted foraging area. All the distances 18 19 451 categories for the classification of the T fixes have been arbitrarily chosen on the basis of the ²⁰₂₁ 452 direct observation of the tracks of birds that were travelling between two distant areas. 22 4 5 3 b) R fixes included all the fixes with a speed lower than 5 km/h, provided that the distance from the 23 24 4 5 4 preceding fix was shorter than 0.5 km when the sampling rate was every 10 and 20 min, and 1.5 km ²⁵ 26 455 when the sampling rate was of 1 fix every 60 min. The criterion based on the distance from the ²⁷ 456 preceding fix was actually unreliable in case of either strong drift or short range movements within 29 4 5 7 the foraging area (see below for the detection of foraging areas). 30 31 458 c) All the remaining fixes have been assigned to the F category. ³² 33 459 Each individual track was subsequently plotted in Qgis for visual inspection. When a bird was ³⁴ 460 35 resting for several hours sitting on the sea surface, a characteristic pattern of fixes resulted, due to 36 461 the sea current and/or wind drifting the bird in a constant direction (Fayet et al 2015). In these cases, ³⁷ 38 462 the mean vector length (Batschelet 1981) for a set of R fixes, computed averaging the direction of ³⁹ 463 movement between two subsequent fixes, was greater than 0.90. Therefore, the mean vector length 41 464 was used as a criterion when a visual inspection revealed possible inconsistencies in the fix class 42 43 465 assignment. If the mean vector length of consecutive F fixes was greater than 0.90, the fixes were 44 45 466 re-assigned to the R category. **Conversely**, if the mean vector length of consecutive R fixes was ⁴⁶ 467 smaller than 0.75, the fixes were re-assigned to the F category. For each track the first fixes (1-3) 47 48 468 were not classifiable with the above criteria and therefore they have been excluded from the 49 50 469 analysis. ⁵¹ 52 470 The tracks sampled at one fix every 10 min were re-sampled at one fix every 20 minutes and used,

⁵² 470 The tracks sampled at one fix every 10 min were re-sampled at one fix every 20 minutes and used,
 ⁵³ 471 together with the other 20 min sampling rate tracks, to perform a density kernel analysis with those
 ⁵⁴ locations (n=27 tracks). The core foraging distributions were calculated on the basis of the
 ⁵⁶ distribution of F fixes. The density of the distribution of F fixes was modeled using the fixed kernel
 ⁵⁸ 474 technique (Worton 1989) available in R-package adehabitatHR 4.15 (Calenge 2006). The ad-hoc

Page 7 of 40

Marine Ecology

2	
³ 475	bandwidth for the smoothing parameter (h_{ad-hoc}) was selected by sequentially reducing the reference
5 476	bandwidth of the smoothing factor (h_{ref} , i.e. the optimal bandwidth under the assumption of
6 7 477	bivariate normality) in 0.10 increments and choosing the smallest increment of h_{ref} that: 1) resulted
8 478	in a contiguous K95% isopleth, and 2) contained no lacuna within K95% (Kie 2013). Core areas
10 479	were identified by applying the Area Independent Method developed by Seaman and Powell (1990).
11 12 480	The method divides the range in areas of high and low fix density using an objective criterion
13 14 481	which is based on a graphical representation of the range area in relation to the density of the
¹⁵ 482	considered fixes. In this way it is possible to identify the dividing point between high- and low-
16 17 483	density areas, as the point where the plot is maximally distant from a straight line of slope +1, that
18 19 484	represents a distribution of random use. We performed the analysis considering steps $= 5\%$
²⁰ / ₂₁ 485	calculating subsequent range area sizes using <i>adehabitatHR</i> . On the basis of the point of
²¹ 22 486	maximum distance we defined the core areas with a different percentage of volume contour per
23 24 487	individual (median: 55%; IQR: 50%-55% volume contours).
25 26 488	We used the R fixes distribution to assess whether and which of the tracked birds rested in areas
²⁷ 489	proximal (within 5 km radius; the distance range from the colony within which rafts are usually
28 29 490	observed) to yelkouan shearwaters colonies other than those of Tavolara archipelago and adjacent
30 31 491	Cape Figari area, that are all located one next to another. A 5 km radius buffer was created with
³² ₃₃ 492	Qgis around each yelkouan shearwater colony known in Italy and France (Baccetti et al. 2009;
³⁴ 493	Cadiou et al. 2004). We intersected the 5 km radius buffer with the R fixes distribution, in order to
35 36 494	count which colonies were approached by the tracked birds. In addition, we identified the areas
37 38 495	mostly used for resting by the tracked birds. To do so, a 10 km hexagonal grid was created in
³⁹ 496	Qgis; for each individual we computed the percentage of R fixes falling in each hexagon. For each
41 497	track the number of R fixes in each cell was computed and categorized in 3 categories depending on
42 43 498	the proportion of R fixes contained in a cell: 1, number of fixes below the median value; 2, number
44 45 499	of fixes ranging between the median value and the third percentile; 3, values higher than the third
⁴⁶ 500	percentile. For each cell we summed the scores obtained from all the tracks in order to identify
47 48 501	areas with the highest score, i.e. those most likely frequented by resting birds.
49 50 502	For each fix of the tracks the distance from the nearest coast was computed. In order to assess
$\frac{51}{52}503$	whether the birds had a preference for staying near to or far from the coast, for each bird the
⁵³ 504	percentage of fixes of each considered category (T, R, F) located within 20 km and further
54 55 505	than 20 km was compared by Wilcoxon test for paired data. When more than one tracks per
56 57 506	bird were available, the individual mean values were considered.
58 59	
60	7

2 3 507 Each location was classified as "day" or "night" according to their corresponding time of nautical 4 dawn and dusk obtained using the "R-package" suncalc 0.5.0 (Thieurmel and Elmarhraoui 2019). 508 5 6 509 Differences in the activity between day and night were tested by applying the Wilcoxon test for 7 8 510 paired data to the individual percentage of each behavioural category. As before, when more than 9 10 5 1 1 one track per bird were available, the individual mean values were considered. 11 12 512 To analyse **foraging** habitat selection (sensu Manly et al. 2002) by yelkouan shearwaters, we used ¹³ ₁₄ 513 remote sensing data to quantify Bathymetry (ETOPO Global Relief Model, NOAA) and Ocean ¹⁵ 514 Productivity (MODIS) at a resolution of 1.6 and 9 km respectively. Productivity data (g $\mathbf{C} \cdot \mathbf{m}^{-2}$. 16 17 5 1 5 day⁻¹) used were averaged over eight days (octads) and were as much as possible contemporary to 18 19 516 each foraging trip. Given the resolution of the remote sensing data, use and availability were ²⁰ 517 estimated at the individual and population level, respectively (first order resource selection; Meyer 22 518 and Thuiller 2006). On the basis of the productivity raster data, a grid with 9 km squared cell was 23 24 519 created. For each cell with at least one F fix, five cells were randomly sampled within the ²⁵ 26 520 population 95% range (calculated with the same kernel approach described above) by considering ²⁷ 521 28 the F fixes of all tracks. This process was repeated for all available foraging trips. For all used and 29 522 random locations, we extracted the values of bathymetry, distance from the colony site to the centre 30 31 523 of the cell, and productivity. Due to the low sample size, the year of tagging was not included in the ³² 33 524 analysis. Data exploration was carried out following the protocol described in Zuur and Ieno (2016). ³⁴ 525 35 The resource selection function (Manly et al. 2002) was calculated with a Generalized Linear 36 526 Mixed Model with a binomial error distribution, and bird ID and track ID (nested within bird ID) ³⁷ 38 527 as random intercepts by means of the R-package glmmTMP 1.0.2.1 (Brooks et al. 2017). The ³⁹ 528 variables considered in the full model were: sea productivity (PROD, inverse transformed), 41 529 bathymetry (BATHY), distance from the colony (DCOL), and the reproductive stage 42 43 530 (STAGE, two-levels factor: incubation and chick rearing). We hypothesized that the probability 44 45 531 of selection use was higher for cells with higher PROD, and lower BATHY and DCOL. We tested 46 532 47 whether the incubation period modified the way the birds used the resources by including the 48 533 second order interactions STAGE:DCOL, STAGE:BATHY, STAGE:PROD. The fixed part of the 49 50 534 model was simplified by means of the Akaike Information Criterion corrected for small sample size ⁵¹ 52 535 (AICc, Burnham and Anderson 2002), considering all the models between the full model and the ⁵³ 54 536 model which included all main effects. Significance was tested by means of the type II Wald χ^2 55 56 537 test using the R-package car 3.0-10 (Fox 2019). Model fit, overdispersion, collinearity and 57

- 58 59 538 spatial autocorrelation of the residuals were checked before using the final model for
- 60

Page 9 of 40

1 2

³ 539	inference by means of the R-packages <i>DHARMa 0.3.3.0</i> (Hartig 2020) and <i>perfomance 0.7.0</i>
5 540	(Lüdecke et al. 2020). The marginal R^2 (m R^2), which represents the variance explained by fixed
6 7 541	factors only (Nakagawa and Schielzeth 2013), was calculated using the R-package MuMIn 1.43.17
8 9 542	(Bartoń 2020). The performance of the final models was also evaluated using the Area Under the
10 543	Curve (AUC) generated by the Receiver Operating Characteristic (ROC; Fielding and Bell 1997;
12 544	Pearce and Ferrier 2000) by means of the R-package ROCR 1.0-7 (Sing et al. 2005). All
$^{13}_{14}$ 545	calculations were performed using R 4.0.4 (R Core Team 2021).
$^{15}_{16}546$	To further investigate bird foraging strategies in the two phases of the nesting period, we analysed
17 547	how sea productivity varied in cells located at different distance from the colony over the
18 19 548	study period. In this analysis we considered only the cells with at least one F fix during the whole
²⁰ 549	study period, i.e. the cells used at least once by tracked birds for foraging, and with no missing data
²² 550	on productivity ($n = 333$). To reduce sampling bias, we excluded the years where birds were tracked
23 24 551	during incubation or chick rearing only (i.e. 2011 and 2015). The available cells were then
²⁵ 26 552	resampled in order to not include adjacent cells in the analysis, in order to reduce spatial
$\frac{27}{28}553$	autocorrelation, by means of the R-package <i>spThin 0.2.0</i> (Aiello-Lammens et al. 2015). The
29 554	number of cells considered in the analysis was 91. Data were modelled by means of Linear
30 31 555	Mixed Models considering productivity (inverse transformed) as dependent variable and cell ID as
³² 33 556	random intercept. The independent variables considered in the model were: octad (OCTAD, 5-level
³⁴ 557	factor coded using the first Julian day of the octad: 81, 89, 105, 161, 169), distance from the colony
36 558	(DCOL), bathymetry (BATHY) and the second order interactions OCTAD:DCOL and
37 38 559	OCTAD:BATHY. Based on observed productivity variations, we hypothesised that the
$\frac{39}{40}560$	productivity of cells nearest to the colony decreases over time much more strongly than that of cells
41 561	more distant from the colonial site, thus inducing birds to increase the frequency of long foraging
42 43 562	trips. The packages and the procedures used to check model assumptions, to test significance
44 45 563	and to evaluate model fit were the same as described above. Throughout the text, means are
46 47 564	reported along with their standard deviation (mean±SD) unless otherwise specified.
48 565	
49 50 566	Results

Out of a total of 43 capture events in subsequent years and 60 GPS deployed, net of the birds not recaptured (n=7), recaptured without logger (n=14) or recaptured with improperly functioning loggers (n=5), we obtained 34 foraging trips from 21 birds tracked during incubation (March-April; n=21 trips) and chick rearing period (May-June; n=13 trips). Table 1 reports the details of the tracks recorded, such as whether they were complete (the entire journey from the colony to

1 2 3 572 the foraging area and back was recorded), or interrupted (the power run out before the bird 4 573 homed after the foraging trip), and which tracks were excluded from the analysis due to both 5 6 574 the low sampling rate (1 fix every 60 minutes) and low number of fixes (less than 45). 7 8 575 Birds returned to the colony after 6.5 days (median; range 1-8 days) during the incubation period 9 10 576 (n=12 complete tracks from 11 birds) and after 2.0 days (median; range 1-10 days) during the chick 11 12 577 rearing period (n=11 complete tracks from 6 birds). Considering only the complete tracks 13 13 14 578 included in the analysis (9 tracks from 9 birds in the incubation period, and 8 tracks from 5 ¹⁵ 579 birds during the chick rearing period; see Table 1), it appeared that during the incubation 16 17 580 and chick rearing periods the mean track length was 1030±140 km and 733±225 km, 18 19 581 respectively, reaching a distance from the colony of 193±24 km and 181±53 km, respectively. ²⁰ 582 No breeding failures were recorded between capture and recapture. 22 583 During the incubation period, foraging trips was mostly concentrated in proximity of the 23 24 584 Western and Northern coasts of Sardinia and South Corsica (Figure 1a). During the chick 25 26 585 rearing period, Western Sardinia was almost entirely deserted, and new core feeding areas ²⁷ 586 28 were used in the French waters of the Gulf of Lion. A number of birds continued to feed along 29 587 North Sardinia and South Corsica (Figs. 1b and 4). During the incubation foraging trips ranged 30 31 588 from 1 to 9 days, while during chick rearing period, most foraging trips lasted less than 4 days (Fig. ³² 33 589 2), although some individuals (n=3) returned to the colony after much longer trips. Yelkouan ³⁴ 590 35 shearwaters were mainly detected within coastal marine areas (Fig. 1 and tracks deposited in 36 591 Movebank). In particular, most of the fixes of all three behavioural categories, were collected ³⁷ 38 592 within 20 km from the coast (Fig. 3). Proportions of fixes obtained within 20 km from the ³⁹ 593 coast were significantly higher than those located further (Wilcoxon test, Resting N=18, T=2, 41 594 p<0.001; Feeding, N= 18, T= 3, p<0.001; Travelling N=18, T=3, p<0.001) and core foraging 42 43 595 areas were located in coastal marine areas. 44 45 596 Considering both the tracks collected during the incubation and the chick rearing periods, it 46 597 emerged that birds spent half of their time resting on the water (R, 50.8±8.2%), while the 47 48 598 remaining time was spent mostly foraging (F, $35.6\pm6.6\%$) and, to a lesser extent, travelling (T, 49 50 599 13.6±4.0%). The 24 hours pattern of activity (Fig. 5) showed that foraging (F) and travelling (T) ${}^{51}_{52}600$ fixes turned out to mostly occur, for all birds, during the day (Wilcoxon test, N=18, T=0, ⁵³ 601 p<0.001). Foraging fixes (F class) occurred during the whole daytime and immediately after sunset. 54

Travelling started one hour after sunrise. In June, the travelling activity was not performed
 throughout the day, showing a decrease during the central part of the day (Fig. 5). The time spent

- 58
- 59 60

Page 11 of 40

1

Marine Ecology

2	
³ 604	by the birds resting on the water during day and night was comparable (Wilcoxon test, N= 18,
5 605	T= 56, p>0.05).
6 7 606	The analysis of the spatial distribution of the Resting fixes (Fig. 6) showed that the mean and
$^{8}_{9}$ 607	median score computed on 273 cells containing at least one R fix was 3.18 and 2, respectively.
10 608	Only 12 hexagonal cells of the grid obtained the highest scores ranging from 9 to 29 (see Materials
12 609	and Methods for details) showing that birds were highly concentrated for resting near their
$^{13}_{14}610$	breeding colony and along the Western Sardinian coast, near the Oristano Gulf. Lower
¹⁵ 611	concentration areas were also observed along the coast of Northern Sardinia (Fig. 6).
17 612	According to AICc, the most supported model for foraging habitat selection among the considered
18 19 613	set included all main effects and the interactions between nesting period and bathymetry or distance
²⁰ 614	from the colony (Table 2 and 3). This model had a strong support, as the second best model was not
22 615	truly competitive because its additional parameter did not significantly improve the fit. Indeed, the
23 24 616	value of the maximized log-likelihood increased only slightly (-807.19 vs -806.95; see Burnham
25 26 617	& Anderson 2002) and the two measures of performance (mR ² and AUC) did not change
²⁷ 618	noticeably (Table 2).
29 619	As expected, sea productivity had a positive effect on the probability of use, irrespective of the
30 31 620	reproductive stage (Table 3). During incubation, birds foraged preferentially in areas relatively
$\frac{32}{33}621$	near to the colony and at shallow sea depths, while during chick rearing they preferred to use
³⁴ 622	cells located at a greater distance from the colony and did not avoid areas with deeper sea
36 623	(Fig. 7).
37 38 624	The results of the model used to investigate the variability of sea productivity during the
³⁹ ₄₀ 625	tracking period revealed a significant effect of the interactions between sampled octad and
41 626	bathymetry or distance from the colony (OCTAD:BATHY and OCTAD:DCOL) (Table 4). As
42 43 627	expected, cells located near the colony showed a marked productivity decrease late in the
44 45 628	breeding season; the productivity of cells located far from the colony site was high and did not
46 629	show any trend across octads (Fig. 8).
48 630	
49 50 631	Discussion
${}^{51}_{52}632$	Yelkouan shearwaters showed a strong spatial preference for coastal waters (< 20 km from the
53 633	coast) that were located within the continental shelf (< 200 m isobaths, neritic zone) and
55 634	characterized by a high primary productivity. These findings are consistent with what has been
56 57 635	described for yelkouan shearwaters breeding in France (Péron et al. 2013, Lambert et al. 2017) as
⁵⁸ 636 59	well as for the closely related Balearic shearwater Puffinus mauretanicus within the NW
60	11

637 Mediterranean and along the Portuguese coasts during the post-breeding period (Meier et al. 638 2015; Araújo et al. 2017). The positive selection of coastal and relatively shallow waters by the 639 yelkouan shearwater has been documented also during the non-breeding period, both in the 640 Northern African coastal waters (Raine et al. 2013) and in the Black Sea (Pérez-Ortega and 10 6 4 1 İsfendiyaroğlu 2017).

11 12 642 Tagged birds mostly used the North and Western coast of Sardinia and the Southern coast of 13 13 643 Corsica during their foraging activities through the incubation. The importance of the Bonifacio ¹⁵ 644 Strait, as a bottleneck for birds that move between the breeding and the feeding areas, has since 16 17 645 long been known from land based observations (Cesaraccio 1989; Thibault and Bonaccorsi 1999) 18 19 646 and from counts aimed at assessing the size and distribution of yelkouan shearwater stocks around ²⁰ 647 Sardinia (Zenatello et al. 2012). It is noteworthy that all birds seemed to prefer to circumnavigate 22 6 4 8 Sardinia anticlockwise from the North side to reach the Western side of Sardinia, instead of moving 23 24 6 49 southward from their home colony along a route of comparable length. As a consequence, the ²⁵ 26 650 coastal marine area south of Tavolara appeared to be unexpectedly under-exploited by the tagged ²⁷ 651 28 birds. Our data do not exclude important feeding areas in East Sardinia under different conditions 29 6 5 2 from those prevailing during our study periods but the narrow continental shelf and the deep waters 30 31 653 characterizing this stretch of coastline suggest that it could be less suitable as a feeding zone. ³² 33 654 Key foraging areas changed during the course of the breeding season. Incubating birds mostly ³⁴ 655 35 concentrated in the Bonifacio Strait, along the coast of North Sardinia (Asinara Gulf) and in West 36 6 5 6 Sardinia (waters off the Oristano Gulf), whereas during chick rearing foraging trips heading to 37 ₃₈ 657 North Sardinia and Southern Corsica decreased, and trips towards more distant foraging areas ³⁹ 658 (namely the Gulf of Lion and Northern Tuscany) increased. Notably, the West Sardinian waters, 41 659 which represented the main foraging area during incubation, were not visited during the chick 42 43 660 rearing stage. Two birds travelled with a direct flight in a NW direction across the Mediterranean to 44 45 661 the Gulf of Lion, which appeared to be an important foraging area for birds nesting at Tavolara 46 47 662 during the late breeding stages. It is worth noticing that breeding yelkouan shearwaters from the French islands of Porquerolles and Port-Cros colonies also show regular movements to the Gulf of 48 663 49 50 664 Lion (Péron et al. 2013), where their distribution largely **overlaps** the core foraging areas locally ⁵¹ 52 665 identified by the present study. The Gulf of Lion hosts up to 10,000 yelkouan shearwaters, with ⁵³ 666 peaks in February-June (Bourgeois and Vidal 2008). Since the French breeding population is 54 relatively small (500-1000 breeding pairs) (Gaudard 2018), this area likely acts as foraging ground 55 667 56 57 668 also for birds coming from more distant colonies (Carboneras 2013). Our study confirms this

58 59 60

1 2 3

4

5 6

7 8

9

Page 13 of 40

Marine Ecology

1	
2	
3	
4	

5

observation and the role of this gulf as a feeding hotspot for yelkouan shearwaters coming from thecore of the breeding range.

6 As a general pattern, the main foraging areas were largely located in shallow (<200 m depth) areas 671 7 8 672 with high nutrient inflows brought to the sea by large rivers, which trigger complex food chains 9 10 673 (Darnaude 2005; Caddy 2000; Ludwig et al. 2009) and increase local biodiversity (Harmelin-Vivien 11 12 674 et al. 2009). In particular the Gulf of Lion, owing to hydrographic features that include the Rhône 13 13 675 river run-off and wind-driven coastal upwelling processes, is one of the most productive areas of the ¹⁵ 676 Mediterranean (Millot 1990) where small epipelagic teleosts (European pilchard Sardina pilchardus 16 17 677 and European anchovy Engraulus encrasicolus) are the dominant species in term of fish biomass 18 19 678 (Banaru et al 2013). As a consequence, a large number of marine predators (whales, dolphins, ²⁰ 679 seabirds) are attracted and congregate here, especially during summer (David and Di-Méglio 2013; 22 680 Lambert et al. 2016).

23 24 681 Most seabirds occurring in the Gulf of Lion are supposed to originate from colonies situated 150-²⁵ 26 682 500 km away, because the surrounding area offers few opportunities for rocky island-nesters to ²⁷ 683 breed (Carboneras 2013). Food richness and seasonal availability may well account for the long 29 684 distance travels of Tavolara's yelkouan shearwaters late in the breeding season and fits with the 30 31 685 general pattern of other predators migrating in this gulf at the same time. As shown by our analysis, ³² 33 686 the departure toward farthest feeding areas is also concurrent to, and could be explained by, the ³⁴ 687 35 shortness of food resources closer to the natal colony during the highly demanding chick rearing 36 688 period. We should also remark that some of the Sardinian hotspots fall near river mouths, such as 37 38 689 the Tirso in the Oristano Gulf and the Coghinas on the northern coast, and this may explain the ³⁹ 690 high levels of productivity recorded in spring time during the incubation period that may have 41 691 allowed individuals to find sufficient food resources relatively near to the colony. 42

43 692 From a behavioural point of view, the decision of undertaking long distance foraging trips might 44 45 693 entail the adoption of a dual-foraging strategy (Chaurand and Weimerskirch 1994; Weimerskirck et ⁴⁶ 694 al. 1994). The paucity of data from consecutive trips of a same individual (Table 1) and the absence 47 48 695 of tracks simultaneously involving both members of a pair prevent us from confirming whether the 49 50 696 bimodal pattern of trip duration, particularly obvious during the chick rearing period, could be ⁵¹ 52 697 safely interpreted as a dual strategy. Among seabirds, a dual foraging strategy has been explained as ⁵³ 698 the need to alternate short trips for searching food for the chick with long trips for self-provision 54 55 699 (Weimerskirck et al. 1994; Stahl and Sagar 2000; Terauds and Gales 2006). Such a pattern has been 56 57 700 associated to conditions of low/insufficient prey availability in the vicinity of the colonies for ⁵⁸ 701 59 several species, such as the closely related Manx shearwater *Puffinus puffinus*, (Riou et al. 2011,

60

3 702 Fayet et al. 2015, Tyson et al. 2017), Cory's shearwater Calonectris borealis (Granadeiro et al. 4 1998; Magalhães et al. 2008), Scopoli's shearwater Calonectris diomedea (Cecere et al. 2014). In 703 5 6 704 the case of Tavolara's birds, the need to cope with increased food requirements and decreasing 7 8 705 productivity in foraging areas used during incubation may force parents to perform longer trips to 9 10 706 richer (albeit distant) feeding areas such as the Gulf of Lion. We believe that this is the main 11 12 707 reason for the long trips rather than a dual foraging strategy per se.

13 14 708 13 The location of seabird colonies has been positively associated to areas of high minimum food ¹⁵ 709 availability across years (Sandvik et al. 2016). Direct flights across the open sea to predictably rich 16 17710 and shallow feeding areas along the North Mediterranean coasts during the chick rearing period 18 19711 show that adult yelkouan shearwaters from the Tavolara colony can efficiently adapt their foraging ²⁰₂₁712 range to seasonal changes of marine productivity. Under increasingly frequent scenarios of food 22 713 shortage, the ability to shape their foraging strategy according to productivity changes (as suggested 23 24714 by the recent northerly shift in the foraging areas of manx and balearic shearwaters; Wynn et al. 25 26 715 2007; Guilford et al. 2008) may allow yelkouan shearwaters to maintain their breeding philopatry 27 28 716 even when the colonies are misplaced with respect to the most profitable feeding locations (cf. 29717 Grémillet et al. 2008). 30

31 718 Concerning the daily time budget, fixes of yelkouan shearwaters breeding at Tavolara were ³² 33 719 classified as indicating "resting" activities in 50.1% of the cases and "foraging" activities in 35.7% ³⁴720 of the cases. Péron et al. (2013) obtained similar findings at their study colonies on the French 35 36 721 Mediterranean coast. Feeding turned out to be almost totally diurnal. The birds mostly travelled in ³⁷ 38 722 the first hours of the day (soon after their morning rafts) and in the evening, before and after sunset. ³⁹ 723 This overall activity pattern agrees with data collected on the closely-related balearic shearwater 41 724 (Meier et al. 2015) and on the manx shearwater (Dean et al. 2013; Fayet et al. 2015). Such 42 43 725 findings could help to interpret and standardize the raft census methodology which is already in use 44 45 726 for population size assessment.

46 47 727 During their excursions at sea, the tracked birds spent most of the time resting on the sea surface. 47 particularly at night, in the early morning and during the central hours of the day. Early morning 48 728 49 50 729 rafts, after leaving the colony, had been specifically described by Raine et al. (2010), and could ⁵¹ 52 730 allow information exchanges before heading to different diurnal feeding areas. The rather high 53 731 proportion of time spent "resting" in water has been associated to other additional functions, such as 54 55 732 prey digestion (Ropert-Coudert et al. 2004), resting during feeding trips (Shamoun-Baranes et al. 56 57 733 2011), waiting for a proper time to enter their nest (Shiomi et al. 2012), either in proximity of the ⁵⁸ 734 59 colony or at more distant sites (Raine et al. 2010; Dean et al. 2013; Borg et al. 2016). A sit-and-wait

60

1 2

6

7 8

9

feeding strategy in areas rich of food (Freeman et al. 2013; Yoda et al. 2014) and the location of
productive areas by odour transported by the ocean flow (Nevitt and Bonadonna, 2005) have been
proposed as possible additional explanations, when this behaviour takes place within the feeding
areas.

10739 Since most of population estimates of this species rely on counting birds rafting near or heading to 11 12 740 colonies, we evaluated the spatial distribution of resting areas. The location of coastal patches 13 14 741 selected for rafting suggests an important role of the waters surrounding Tavolara island as a resting ¹⁵ 742 area before and after visiting the colony. The other selected patches coincide with some of the most 16 17 743 important feeding areas: mouth of Coghinas river (North Sardinia), Alghero (Northwest Sardinia) 18 19 744 and Oristano (West Sardinia). The latter area is the main feeding destination of yelkouan ²⁰ 745 shearwaters from Tavolara during the incubation stage. An attractive effect of non-home colonies 22 746 (as suggested by e.g. Bourgeois and Vidal 2008; Borg et al. 2015) did not emerge from our data, 23 24 7 47 although one of the resting spots is close to known colonies (Alghero, Northwest Sardinia). 25 26 748 Travelling toward distant feeding localities could also be interpreted as an indirect consequence of ²⁷ 749 28 bluefin tuna *Thunnus thynnus* overfishing in the Italian waters (Sardinia included). Since the 29 7 50 traditional tuna trapping fisheries were almost completely replaced by industrial fishing, bluefin 30 31 751 tuna started to be harvested at a rate exceeding the reproductive capabilities of the existing stock ³² 33 752 (Longo and Clark 2012) and, in a few decades, the stocks have collapsed to the current low ³⁴ 753 35 abundance (MacKenzie et al. 2009; ICCAT 2010). Tunas drive small fishes toward the surface and 36 7 54 are considered as "facilitators" for seabirds to whom they are strongly associated both in tropical ³⁷ 38 755 and temperate seas (Le Corre and Jaquemet 2005; Veit and Harrison 2017). In late spring in the ³⁹ 756 Mediterranean Sea tunas, during their migration, get close to the coasts when yelkouan 41 757 shearwaters are raising chicks. Then the drop of tuna population may have reduced the 42 43 758 feeding opportunities for shearwaters, forcing them to move further. Because the yelkouan 44 45 759 shearwater is an endemism confined to the Mediterranean and Tavolara island hosts around 46 47 760 half of its global population, our findings suggest that, beside direct threats (mortality due to 47 by-catch and overfishing of prey species: Gaudard 2018), conservation measures to be 48 761 49 ₅₀ 762 enforced at sea should address the full sustainability of all fisheries across an area ⁵¹ 52 763 encompassing the foraging hotspots identified (namely the Oristano and Alghero waters, the 53 764 Bonifacio Strait and the Gulf of Lion). 54

In conclusion, despite the limitations associated with the relatively low number of marked
 individuals, some relevant patterns of the spatial ecology of the yelkouan shearwater could be
 described. Their main value seems that of referring to the globally most important colony known to

1 ว	
² ³ 768	date. Studies on different populations are strongly needed in order to assess and implement an
4 5 769	effective pan-Mediterranean conservation strategy for this endemic and charismatic taxon.
6 7 770	
8 771	
9 10 772	
11 12 773	
¹³ 774	
14 ′ ′ ′ 15 ₇₇₅	
16 ⁷⁷⁷	Author contributions
18 10 777	NB_MZ conceived the project: NB_MZ_FP_AN and GS co-ordinated the data collection: GC_DG
²⁰ 778	AM AG and FP performed data management/analyses and drafted part of the manuscript: FP and
21 ′′° 22 779	MZ drafted the manuscrint and FP and FP guided the final writing with contributions from all
23	authors NB supervised all phases of the project since its beginning. All authors read and approved
²⁴ /80 ²⁵ 781	the final manuscript
26 ⁷⁰¹ 27 ₇₈₂	
28 ^{7 8 2} 29 7 8 2	Conflict of interest
30	The authors have no conflicting interests
31 / 04 32 ₇₀₅	The authors have no conflicting interests.
33 ⁷⁰³ 34 706	Ethical approval
35	All approval
36 / 8 / 37	All procedures performed in this study were in accordance with the ethical standards of the
38 / 88	institution or practice at which the studies were conducted.
40 /89	
41 /90	
43 /91	Acknowledgements
45 792	Fabio Cherchi, Gianmario Pitzalis and Massimo Putzu gave an invaluable field support for GPS
47	retrieval, challenging bad sea and inclement weather during long-lasting nights in the field. We
48 794 49	warmly thank Francesco Angioni, Roberto Cogoni, Sergio Nissardi, Pier Panzalis, Tore Vitale for
50 795	supporting us during deployment and retrieval, joining monitoring activities and helping organising
51 796 52 ⁷⁹⁶	periodical field trips. FP was funded by the Italian Ministry for Environment, Land and Sea
53 797 54	Protection of Italy (MATTM) which also provided funds for fieldwork and data loggers.
55 56	
57	
58 59	
60	16

Page 17 of 40

2	
3 798 4	References
5 6 799	Aiello-Lammens ME, Boria RA, Radosavljevic A, Vilela B, Anderson R P (2015) spThin: an R
7 800	package for spatial thinning of species occurrence records for use in ecological niche
8 9 801 10	models. Ecography, 38: 541-545. doi: 10.1111/ecog.01132
¹¹ 802	Araúio H. Bastos-Santos I. Rodrigues PC. Ferreira M. Pereira A. Henriques AC. Monteiro SS. Fira
12 002 13 002	C. Vinceda I (2017) The importance of Portuguesa Continental Shalf Waters to Delegric
13 803	C, vingada J (2017) The importance of Portuguese Continental Shell waters to Balearic
15 804 16	Shearwaters revealed by aerial census. Mar Biol 164:55. doi: 10.1007/s00227-017-3089-x
¹⁷ 805	Baccetti N Capizzi D Corbi F Massa B Nissardi S Spano G Sposimo P (2009) Breeding
18	shoerwaters on Italian islands: nonulation size island selection and so evistones with their
20	shear waters on italian Islands, population size, Island selection and co-existence with then
21 807	main alien predator, the Black Rat. Riv Ital Ornitol 78:83–100
22 23 808	Banaru D, Mellon-Duval C, Roos D, Bigot JL, Souplet A, Jadaud A, Beaubrun P, Fromentin JM
24 25 809	(2013) Trophic structure in the Gulf of Lions marine ecosystem (north-western
26 ₈₁₀	Moditerron on See) and fishing impacts. I Mar Syst 111, 112:45, 69
27 ⁰¹⁰ 28	Mediterranean Sea) and fishing impacts. J Mar Syst 111–112.45–68
29 811	Bartoń K (2020). MuMIn: Multi-Model Inference. R package version 1.43.17.
30 31 812 32	https://CRAN.R-project.org/package=MuMIn
33 813	Bates D, Maechler M, Bolker B, Walker S (2015) Fitting Linear Mixed-Effects Models Using Ime4.
34 35 814	J Stat Softw 67:1–48
36	
37 815 38	Batschelet E (1981) Circular Statistics in Biology. Academic Press, London
³⁹ 40 816	BirdLife International (2018) Puffinus yelkouan. The IUCN Red List of Threatened Species 2018:
$\frac{41}{42}$ 817	e.T22698230A132637221. https://dx.doi.org/10.2305/IUCN.UK.2018-
43 818	2.RLTS.T22698230A132637221.en.
44 45	
45 819 46	Blondel J, Aronson J, Bodiou JY, Boeuf G (2010) The Mediterranean region: biological diversity in
47 820 48	space and time. 2nd edn. Oxford University Press, Oxford
49 50 821	Borg JJ, Sultana J, Metzger B, Barbara N (2016) Population estimates in Maltese pelagic breeding
⁵¹ 822	birds: numbers, trends and an appeal to assess these cautiously. Pp. 38-42 in: Yesou P,
52 53 823	Sultana J, Walmsley J, Azafzaf H, Conservation of Marine and Coastal Birds in the
54 55 824	Mediterranean. Proceedings of the Unep-Map-Rac/Spa Symposium. Hammamet. Tunisia
56	
57 58	
59	
60	

³ 825	Bosc E, Bricaud A, Antoine D (2004) Seasonal and interannual variability in algal biomass and
5 826	primary production in the Mediterranean Sea, as derived from 4 years of SeaWiFS
6 7 827	observations. Global Biogeochem Cy 18:GB1005. doi: 10.1029/2003GB002034v
8 9 828	Bourgeois K, Vidal E (2008) The endemic Mediterranean yelkouan shearwater Puffinus yelkouan:
10 11 829 12	distribution, threats and a plea for more data. Oryx 42:187–194
13 830	Brooks ME, Kristensen K, van Benthem Kj, Magnusson A, Berg CW, Nielsen A, Skaug HJ,
14 15 831	Maechler M, Bolker BM (2017) glmmTMB Balances Speed and Flexibility Among
16 17 832	Packages for Zero-inflated Generalized Linear Mixed Modeling. The R Journal 9: 378-
¹⁸ 833 19	400
20 21 834	Buxton RT, Gormley AM, Jones CJ, Lyver PO (2016) Monitoring burrowing petrel populations: A
$\frac{22}{23}835$	sampling scheme for the management of an island keystone species: Petrel Survey Design. J
24 836 25	Wildl Manage 80:149–161. doi: 10.1002/jwmg.994
26 27 837	Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical
²⁸ 838 29	information-theoretic approach. Springer-Verlag, New York
30 31 839	Caddy J (2000) Marine catchment basin effects versus impacts of fisheries on semi-enclosed seas.
³² 33 840	ICES J Mar Sci 57:628–640
34 35 841	Cadiou B, Pons JM, Yésou (Eds)(2004) Oiseaux marins nicheurs de France métropolitaine
³⁶ 37 842	(1960-2000). Éditions Biotope, Mèze
39 843	Calenge C (2006) The package adehabitat for the R software: a tool for the analysis of space
40 41 844	and habitat use by animals. Ecological Modelling 197:516-519
42 43 845	Capizzi D, Baccetti N, Sposimo P (2010) Prioritizing rat eradication on islands by cost and
44 45 846	effectiveness to protect nesting seabirds. Biol Conserv 143:1716–1727
46 47 847	Carboneras C (Editor) (2013) Seabirds in the Gulf of Lions shelf and slope area. UNEP-MAP-
48 49 848 50	RAC/SPA. Tunis
⁵¹ 849	Cecere JG, Gaibani G, Imperio S (2014) Effects of environmental variability and offspring growth
53 850	on the movement ecology of breeding Scopoli's shearwater Calonectris diomedea. Curr
54 55 851 56	Zool 60:622–630. doi: 10.1093/czoolo/60.5.622
57 852	Cesaraccio G (1989) Avifauna dell'Arcipelago della Maddalena. Quaderni di Italia Nostra Vol 1.
58 59 853	Italia Nostra, La Maddalena
60	18

Page 19 of 40

1

Marine Ecology

2	
³ 854	Chaurand T, Weimerskirch H (1994) The regular alternation of short and long foraging trips in the
5 855 6	blue petrel Halobaena caerulea: a previously undescribed strategy of food provisioning in a
7 856	pelagic seabird. J Anim Ecol 63:275–282. doi: 10.2307/5546
8 9 857	Coll M, Piroddi C, Steenbeek J, Kaschner K, Ben Rais Lasram F, Aguzzi J, et al. (2010) The
10 11 858	Biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats. PLoS ONE 5:
12 13 859	e11842. doi: 10.1371/journal.pone.0011842
14 15 860	D'Ortenzio F, Ribera d'Alcala M (2009) On the trophic regimes of the Mediterranean Sea: a
16 17 861	satellite analysis. Biogeoscience 6:139–148
18 19 862	Darnaude AM (2005) Fish ecology and terrestrial carbon use in coastal areas: implications for
20 21 863	marine fish production. J Anim Ecol 74:864–876. doi: 10.1111/j.1365-2656.2005.00978.x
23 864	David L, Di-Méglio N (Eds.) (2013) Important areas for the conservation of cetaceans in the Gulf of
24 25 865	Lions shelf and slope area: synthesis of existing data on cetaceans and threats. UNEP-MAP-
²⁶ 27 866	RAC/SPA, Tunis
28 29 867	Dean B, Freeman R, Kirk H, Leonard K, Phillips RA, Perrins CM, Guilford T (2013) Behavioural
30 31 868	mapping of a pelagic seabird: combining multiple sensors and a hidden Markov model
³² 869	reveals the distribution of at-sea behaviour. J R Soc Interface 10: 20120570
34 35 870	Derhé MA (2012) Developing a population assessment for Yelkouan Shearwaters Puffinus
³⁶ 37 871	yelkouan (Pp. 65–73). In Yésou, P., Baccetti, N., & Sultana, J. (Eds.), Ecology and
³⁸ 872	Conservation of Mediterranean Seabirds and other bird species under Barcelona Convention
40 873	- Proceedings of the 13th Medmaravis Pan-Mediterranean Symposium, Alghero (Sardinia)
41 42 874	14-17 Oct. 2011, Medmaravis, Alghero
43 44 875	Fayet AL, Freeman, Shoji A, Padget O, Perrins CM, Guilford T (2015) Lower foraging efficiency
45 46 876	in immatures drives spatial segregation with breeding adults in a long-lived pelagic seabird.
47 48 877	Anim Behav 110: 79-89. https://doi.org/10.1016/j.anbehav.2015.09.008
49 50 878	Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in
51 52 879	conservation presence/absence models. Environ Conserv 24:38-49
55 54 880 55	Fox J, Weisberg S (2019) An R Companion to Applied Regression, Third Edition. Sage,
56 881	Thousand Oaks (CA)
58	
59 60	
	19

³ 882	Freeman R, Dean B, Kirk H, Leonard K, Phillips RA, Perrins CM, Guilford T (2013) Predictive
4 5 883	ethoinformatics reveals the complex migratory behaviour of a pelagic seabird. J R Soc
6 7 884	Interface 10: 20130279
8	
9 885 10	Gaston AJ (2004) Seabirds: a natural history. Christopher Helm, London, Yale University Press,
11 886	New Haven
13 13 14	Gatt MC, Lago P, Austad M, Bonnet-Lebrun AS, Metzger BJ (2019) Pre-laying movements of
15 888	Yelkouan Shearwaters (Puffinus yelkouan) in the Central Mediterranean. Journal of
16 17 889 18	Ornithology 160: 625-632. https://doi.org/10.1007/s10336-019-01646-x
19 890	Gaudard C. (compiler) (2018) Single International Species Action Plan for the Yelkouan Shearwater
20 21 891	Puffinus yelkouan. Project LIFE 14 PRE/UK/000002. Coordinated Efforts for International
²² 23 892	Species Recovery EuroSAP. LPO/BirdLife France. Rochefort
24 25 893	Gelman A, Hill J (2007) Data Analysis Using Regression and Multilevel/Hierarchical Models.
26 27 894	Cambridge University Press, Cambridge
28 29 895	Gelman A, Su YS (2016) arm: Data Analysis Using Regression and Multilevel/Hierarchical
30 31 896	Models. R package version 1.10-1. https://CRAN.R-project.org/package=arm
33 897	Giorgi F (2006) Climate change hot-spots. Geophys Res Lett 33: L08707. doi:
34 35 898	10.1029/2006GL025734
36 37 899	Granadeiro JP, Nunes M, Furness, RW (1998) Flexible foraging strategy of Cory's shearwater,
38 39 900 40	Calonectris diomedea, during the chick-rearing period. Anim Behav 56:1169–1176
⁴¹ 901	Grémillet D, Lewis S, Drapeau L, van der Lingen CD et al. (2008) Spatial match-mismatch in the
43 902	Benguela upwelling zone: Should we expect chlorophyll and SST to predict marine predator
44 45 903	distributions? J Appl Ecol 45:610-621. doi:10.1111/j.1365-2664.2007.01447.x
46 47 904	Guilford TC, Meade J, Freeman R, Biro D, Evans T, Bonadonna F, Boyle D, Roberts S, Perrins CM
48 49 905	(2008) GPS tracking of the foraging movements of Manx Shearwaters Puffinus puffinus
⁵⁰ 51 906	breeding on Skomer Island, Wales. Ibis 150:462–473
52 53 907	Harmelin-Vivien ML, Banaru D, Dierking J, Hermand R, Letourneur Y, Salen-Picard C (2009)
54 55 908	Linking benthic biodiversity to the functioning of coastal ecosystems subjected to river
⁵⁶ 909 57	runoff (NW Mediterranean). Anim Biodivers Conserv 32:135-145
58 50	
60	

2	
³ 910	Hartig F (2020) DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed)
4 5 911	Regression Models. R package version 0.3.3.0. https://CRAN.R-
6 7 912	project.org/package=DHARMa
8 9 913	ICCAT (2010) Report of the Standing Committee on Research and Statistics (SCRS). Madrid:
10 11 914 12	International Commission for the Conservation of Atlantic Tuna
13 915 14	Kie JG (2013) A rule-based ad hoc method for selecting a bandwidth in Kernel home-range
15 916 16	analyses. Anim Biotelem 1:1–12
¹⁷ 917	Korner-Nievergelt, F, Roth F, von Felten S, Guélat J, Almasi B, Korner-Nievergelt P (2015)
19918	Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and Stan:
20 21 919 22	Including Comparisons to Frequentist Statistics. Elsevier, Amsterdam
23 920	Kress N, Manca BB, Klein B, Deponte D (2003) Continuing influence of the changed thermohaline
24 25 921	circulation in the eastern Mediterranean on the distribution of dissolved oxygen and
26 27 922	nutrients: Physical and chemical characterization of the water masses. J Geophys Res 108:
²⁸ 923 29	8109. doi: 10.1029/2002JC001397
³⁰ 31 924	Lambert C, Laran S, David L, Dorémus G, Pettex E, Van Canneyt O, Ridoux V (2017) How does
³² 33 925	ocean seasonality drive habitat preferences of highly mobile top predators? Part I: The
34 926 35	north-western Mediterranean Sea. Deep Sea Res Part II Top Stud Oceanogr 141:115–132.
36 927 37	doi: 10.1016/j.dsr2.2016.06.012
38 928	Le Corre M, Jaquemet S (2005) Assessment of the seabird community of the Mozambique Channel
40 929	and its potential use as an indicator of tuna abundance. Estuarine, Coastal and Shelf Science
41 42 930 43	63(3): 421-428. https://doi.org/10.1016/j.ecss.2004.11.013
44 931 45	Lejeusne C, Chevaldonné P, Pergent-Martini C, Boudouresque CF, Pérez T (2010) Climate change
46 932	effects on a miniature ocean: the highly diverse, highly impacted Mediterranean Sea. Trends
⁴⁷ 48 933	Ecol Evol 25:250-260. doi: 10.1016/j.tree.2009.10.009
49 50 934	Longo SB, Clark B (2012) The commodification of Bluefin Tuna: the historical transformation of
51 52 935	the Mediterranean fishery. J Agrar Change 12:204-226
54 936 55	Ludwig W, Dumont E, Meybeck M, Heussner S (2009) River discharges of water and nutrients to
56 937	the Mediterranean and Black Sea: Major drivers for ecosystem changes during past and
57 58 59	future decades? Progr Oceanogr 80:199–217
60	21

1 2	
³ 939	Lüdecke D, Makowski D, Waggoner P, Patil I (2020) Assessment of Regression Models
4 5 940 6	Performance. CRAN. Available from https://easystats.github.io/performance/
⁷ 941	MacKenzie BR, Mosegaard H, Rosenberg AA (2009) Impending Collapse of Bluefin Tuna in the
9 942 10	Northeast Atlantic and Mediterranean. Conserv Lett 2:25-34
$^{11}_{12}943$	Magalhães MC, Santos RS, HAmer KC (2008) Dual-foraging of Cory's shearwaters in the Azores:
13 944	feeding locations, behaviour at sea and implications for food provisioning of chicks. Mar
14 15 945 16	Ecol Prog Ser 359:283–293
¹⁷ 946	Manly BFJ, McDonald LL, Thomas DL, McDonald TL, Erickson WP (2002) Resource selection by
19 947	animals: statistical analysis and design for field studies. Second Edition. Kluwer, Boston,
20 21 948 22	Massachusetts
23 949 24	Macias DM, Garcia-Gorriz E, Stips A (2015) Productivity changes in the Mediterranean Sea for the
25 950	twenty-first century in response to changes in the regional atmospheric forcing. Front Mar
²⁶ 27 951	Sci 2. doi: 10.3389/fmars.2015.00079
28 29 952	Meier R, Wynn R, Votier S, McMinn Grive M, Rodriguez A, Maurice L, Van Loon E, Jones
30 31 953	A, Suberg L, Arco J, Morgan G, Josev S, Guilford, T. (2015) Consistent foraging and
$\frac{32}{33}954$	commuting corridors of the critically endangered Balearic shearwater <i>Puffinus</i>
34 955	mauretanicus in the northwest Mediterranean. Biol Conserv 190:87–97.
35 36 956 37	doi.org/10.1016/j.biocon.2015.05.012
³⁸ 957	Meyer CB, Thuiller W (2006) Accuracy of resource selection functions across spatial scales.
39 40 958 41	Diversity and Distributions 12:288–297. doi: 10.1111/j.1366-9516.2006.00241.x
42 959 43	Micheli F, Halpern BS, Walbridge S, Ciriaco S, Ferretti F, Fraschetti S, et al. (2013) Cumulative
44 960	Human Impacts on Mediterranean and Black Sea Marine Ecosystems: Assessing Current
45 46 961 47	Pressures and Opportunities. PLoS ONE 81: e79889
⁴⁸ 962 49	Millot C (1990) The Gulf of Lions' hydrodynamics. Cont Shelf Res 10:885-894
⁵⁰ 51 963	Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized
⁵² 964 53	linear mixed effects models. Methods Ecol Evol 4:133-142
54 55 965	Nevitt GA, Bonadonna F (2005) Sensitivity to dimethyl sulphide suggests a mechanism for
⁵⁶ 966	olfactory navigation by seabirds. Biol Lett 1:303-305. doi:10.1098/rsbl.2005.0350
57 58 59	
60	22

1	
² 3 967	Pearce J, Ferrier S (2000) Evaluating the predictive performance of habitat models developed using
4 5 968 6	logistic regression. Ecol model 133:225–245
⁷ 969	Pérez-Ortega M, İsfendiyaroğlu S (2017) Predicting foraging hotspots for Yelkouan Shearwater in
9 970	the Black Sea. Deep Sea Res. Part II Top. Stud Oceanogr 141:237-247. doi:
10 11 971	10.1016/j.dsr2.2016.07.007
12 13 072	Péron C. Grémillet D. Prudor A. Pettey F. Sarauy C. Soriano-Redondo A. Authier M. Fort I (2013)
14 15 073	Importance of coastal Marine Protected Areas for the conservation of pelagic seabirds: The
15 975 16 074	case of Vulnerable velkouan shearwaters in the Mediterranean Sea. Biol Conserv 168:210
17 ⁹⁷⁴ 18 ₀₇₅	221 doi:10.1016/i biocon 2013.00.006 AGP:IND500715841
19 ⁹⁷⁵ 20	221. doi:10.1010/j.000c0ii.2013.09.000. AGR.ind500/15841
21 976	Pujo-Pay M, Conan P, Oriol L, Cornet-Barthaux V, Falco C, Ghiglione JF, Goyet C, Moutin T,
22 23 977	Prieur L (2011) Integrated survey of elemental stoichiometry (C,N,P) from the western to
24 978 25	eastern Mediterranean Sea. Biogeosciences 8:883–899. doi: 10.5194/bg-8-883-2011
26 27 979	R Core Team (2018) R: A language and environment for statistical computing. R Foundation for
²⁸ 980 29	Statistical Computing, Vienna, Austria. https://www.R-project.org/
30 31 981	Ragionieri L, Cutuli G, Sposimo P, Spano G, Navone A, Capizzi D, Baccetti N, Vannini M, Fratini
³² ₃₃ 982	S (2013) Establishing the eradication unit of Molara Island: a caseof study from Sardinia,
34 983 35	Italy. Biol Invasions 15:2731-2742 DOI 10.1007/s10530-013-0487-y
36 37 984	Raine A, Raine H, Meirinho A, Borg JJ (2010) Rafting behaviour of Yelkouan Shearwater Puffinus
³⁸ 985 39	yelkouan breeding at Rdum tal-Madonna, Malta. Il-Merrill 32:26–30
40 41 986	Raine AF, Borg JJ, Raine H, Phillips RA (2013) Migration strategies of the Yelkouan Shearwater
⁴² 987 43	Puffinus yelkouan. J Ornithol 154:411–422
44 45 988	Riou S, Gray CM, Brooke ML, Quillfeldt P, Masello JF Perrins CM, Hamer K (2011) Recent
46 47 989	impacts of anthropogenic climate change on a higher marine predator in western Britain.
48 990	Mar Ecol Prog Ser 422:105–112
⁴⁹ 50 51 991	Ropert-Coudert Y, Grémillet D, Kato A, Ryan PG, Naito Y, Le Maho Y (2004) A fine-scale time
⁵² 992	budget of Cape gannets provides insights into the foraging strategies of coastal seabirds.
53 54 993	Anim Behav 67:985–992. https://doi:10.1016/J.ANBEHAV.2003.09.010
55 56	•
57	
58 59	
60	

1 2	
³ 994	Ruffino L, Bourgeois K, Vidal E, Duhem C, Paracuellos M, Escribano F, Sposimo P, Baccetti N,
4 5 995	Pascal M, Oro D (2009) Invasive rats and seabirds after 2,000 years of an unwanted
6 7 996	coexistence on Mediterranean. Biol Invasions 11:631–1651
8 9 997	Şahin D, Bacak E, Bilgin S, Atay C, Boyla KA, Tavares J (2012) Presence and behaviour of
10 11 998	Yelkouan Shearwaters Puffinus yelkouan at the Bosphorus. Pp. 54–57 in Yésou P, Baccetti
¹² 999	N, Sultana J (Eds.) Ecology and Conservation of Mediterranean Seabirds and other bird
¹⁴ 1000	species under Barcelona Convention - Proceedings of the 13th Medmaravis Pan-
15 161001	Mediterranean Symposium, Alghero (Sardinia) 14-17 Oct. 2011, Medmaravis, Alghero
¹⁸ 1002	Sandvik H, Barrett RT, Erikstad KE, Myksvoll MS, Vikebø F, Yoccoz NG, Anker-Nilssen T,
2q 003	Lorentsen SH, Reiertsen TK, Skarðhamar J, Skern-Mauritzen M, Systad GH (2016)
21 221004	Modelled drift patterns of fish larvae link coastal morphology to seabird colony distribution.
$^{23}_{24}005$	Nature Communications 7:11599
25 2d 006	Seaman DE, Powell RA (1990) Identifying patterns and intensity of home range use. Int. Conf.
27 28 ¹ 007	Bear Res. and Manage 8:243–249
29 301008	Shamoun-Baranes J, Bouten W, Camphuysen CJ, Baaij E (2011) Riding the tide: intriguing
31 321009	observations of gulls resting at sea during breeding. Ibis 153:411–415
3 4 010	Shiomi K, Yoda K, Katsumata N, Katsufumi S (2012) Temporal tuning of homeward flights in
35 3d011	seabirds. Anim Behav 83:355–359. doi: 10.1016/j.anbehav.2011.11.010
381012	Sing T, Sander O, Beerenwinkel N, Lengauer T (2005) ROCR: visualizing classifier
40013 41	performance in R. Bioinformatics 21:3940–3941
⁴² 1014	Sposimo P, Spano G, Navone A, Fratini S, Ragionieri L, PutzuM, Capizzi D, Baccetti N (2012a)
44015	Rodent eradication on Molara Island and surrounding islets (NE Sardinia): from success to
45 4d 016 47	the riddle of reinvasion. Aliens 32:33–38
481017	Sposimo P, Spano G, Navone A, Fratini S, Ragionieri L, Putzu M, Capizzi D, Baccetti N, Lastrucci
5d018	B (2012b) Rat eradication at Yelkouan Shearwater Puffinus yelkouan colonies on NE
51 52 ¹ 019	Sardinian islets: success followed by unexplained re-appearance. Pp. 58-64 in Yésou P,
⁵³ 1020	Sultana G & Baccetti N (Eds.), Ecology and Conservation of Mediterranean Seabirds and
59021	other bird species under the Barcelona Convention. Proceedings of the 13th Medmaravis
50 571022 58	Pan-Mediterranean Symposium. Medmaravis, Alghero
59 60	
	24

Page 25 of 40

1

Marine Ecology

2	
4 1023	Stahl JC, Sagar PM (2000) Foraging strategies of southern Buller's albatrosses <i>Diomedea b. bulleri</i>
5 1024 6	breeding on the Snares, New Zealand. J Roy Soc New Zeal 30:299–318
⁷ ₈ 1025	Tanhua T, Hainbucher D, Schroeder K, Cardin V, Álvarez M, Civitarese G (2013) The
91026	Mediterranean Sea system: a review and an introduction to the special issue. Ocean Sci 9:
10 1 1027 12	789-803, https://doi.org/10.5194/os-9-789-2013
131028	Terauds A, Gales R (2006) Provisioning strategies and growth patterns of light-manted sooty
151029 16	albatrosses Phoebetria palpebrata on Macquarie Island. Polar Biol 29:917–926
¹⁷ 1030	Thieurmel B, Elmarhraoui A (2019) Suncale: Compute Sun Position, Sunlight Phases, Moon
19031	Position and Lunar Phase. R package version 0.5.0. https://CRAN.R-
20 211032	project.org/package=suncalc
22 23 0 2 2	
24	Tyson C, Kirk H, Fayet A, Van Loon EE, Shoji A, Dean B, Perrins CM, Freeman R, Guilford I
251034 26	(2017) Coordinated provisioning in a dual-foraging pelagic seabird. Anim Behav 132:73–
² 7035	79. https://doi.org/10.1016/j.anbehav.2017.07.022
28 291036	Thibault JC, Bonaccorsi G (1999) The Birds of Corsica: An annotated checklist. BOU Checklist
30 31 ¹ 037	Number 17. British Ornithologists' Union, Tring
32 331038	Veit RR, Harrison NM (2017) Positive Interactions among Foraging Seabirds, Marine Mammals
34 3£1039	and Fishes and Implications for Their Conservation. Front Ecol Evol 5:121
³⁶ 37040	https://doi.org/10.3389/fevo.2017.00121
38 391041	Weimerskirch H, Chastel O, Ackermann L, Chaurand T, Cuenotchaillet F, Hindermeyer X, Judas J
40 41042	(1994) Alternate long and short foraging trips in pelagic seabird parents. Anim Behav
⁴² 1043 43	47:472–476
44 49044	Worton BJ (1989) Kernel methods for estimating the utilization distribution in home range studies.
46 47 045	Ecology 70:164–168
48 491046	Wynn RB, Josey SA, Martin AP, Johns DG, Yésou P (2007) Climate-driven range expansion of a
50 511047	critically endangered top predator in northeast Atlantic waters. Biol Lett 3:529-532
52 5 3 048	Yoda K, Shiomi K, Sato K (2014) Foraging spots of streaked shearwaters in relation to ocean
54 59049	surface currents as identified using their drift movements. Progr Oceanogr 122:54-64
57050	Zenatello M, Spano G, Zucca C, Navone A, Putzu M, Azara C, Trainito E, Ugo M, Baccetti N,
58 59051	(2012) Movements and "moving" population estimates of Yelkouan Shearwater Puffinus
60	25

 <i>yelkouan</i> at Tavolara, Sardinia. Pp 39–47 in: Yésou P, Baccetti N, Sultana J. Ecology and Conservation of Mediterranean Seabirds and other bird species under the Barcelona Convention. Proceedings of the 13th Medmaravis pan-Mediterranean Symposium, Alghero, Sardinia, Italy Zenatello M, Zucca C, Nissardi S, Baccetti N (2006) Distribuzione di Berta maggiore e Berta minore in Sardegna (Giugno 2006). Relazione tecnica INFS. http://www.infs- acquatici.it/PDF/bertc/bertcsardcgna2006_31ago2006.pdf Zotier R, Bretagnolle V, Thibault JC (2003) Biogeography of the marine birds of a confined sea, the Mediterranean. J Biogeogr 26:297–313 Zuur AF, Ieno EN (2016) A protocol for conducting and presenting results of regression-type analyses. Methods Ecol Evol 7(6):636–645. http://doi: 10.1111/2041-210x.12577 	1	
 Conservation of Mcditerranean Scabirds and other bird species under the Barcelona Convention. Proceedings of the 13th Medmaravis pan-Mediterranean Symposium, Alghero, Sardinia, Italy Zenatello M, Zucca C, Nissardi S, Baccetti N (2006) Distribuzione di Berta maggiore e Berta minore in Sardegna (Giugno 2006). Relazione tecnica INFS. http://www.infs- acquatici.it/PDF/berte/bertes/ardegna2006_31ago2006.pdf Zottier R, Bretagnolle V, Thibault JC (2003) Biogeography of the marine birds of a confined sea, the Mcditerranean. J Biogcogr 26:297-313 Zuur AF, Ieno EN (2016) A protocol for conducting and presenting results of regression-type analyses. Methods Ecol Evol 7(6):636-645. http://doi: 10.1111/2041-210x.12577 	² ³ 1052	velkouan at Tavolara, Sardinia. Pp 39–47 in: Yésou P, Baccetti N, Sultana J. Ecology and
1054 Convention. Proceedings of the 13th Medmaravis pan-Mediterranean Symposium, Alghero, 1055 Sardinia, Italy 1056 Zenatello M, Zucca C, Nissardi S, Baccetti N (2006) Distribuzione di Berta maggiore e Berta 1057 minore in Sardegna (Giugno 2006). Relazione tecnica INFS. http://www.infs- 1058 acquatici it/PDF/berte/bertesardegna2006_31ago2006.pdf 1059 Zotier R, Bretagnolle V, Thibault JC (2003) Biogeography of the marine birds of a confined sea, the 1060 Mediterranean. J Biogeogr 26:297-313 1061 Zuur AF, Ieno EN (2016) A protocol for conducting and presenting results of regression-type 1062 analyses. Methods Ecol Evol 7(6):636-645. http://doi: 10.1111/2041-210x.12577	4 5 1053	Conservation of Mediterranean Seabirds and other bird species under the Barcelona
 Sardinia, Italy Zenatello M, Zucca C, Nissardi S, Baccetti N (2006) Distribuzione di Berta maggiore e Berta minore in Sardegna (Giugno 2006). Relazione tecnica INFS. http://www.infs-acquatici.it/PDF/berte/bertesardegna2006_31ago2006.pdf Zotier R, Bretagnolle V, Thibault JC (2003) Biogeography of the marine birds of a confined sea, the Mediterranean. J Biogeogr 26:297–313 Zuur AF, Ieno EN (2016) A protocol for conducting and presenting results of regression-type analyses. Methods Ecol Evol 7(6):636–645. http://doi: 10.1111/2041-210x.12577 	6 71054	Convention. Proceedings of the 13th Medmaravis pan-Mediterranean Symposium, Alghero,
 Zenatello M, Zucca C, Nissardi S, Baccetti N (2006) Distribuzione di Berta maggiore e Berta minore in Sardegna (Giugno 2006). Relazione tecnica INFS. http://www.infs-acquatici.it/PDF/berte/bertesardegna2006_31ago2006.pdf Zotier R, Bretagnolle V, Thibault JC (2003) Biogeography of the marine birds of a confined sea, the Mediterranean. J Biogeogr 26:297–313 Zuur AF, Ieno EN (2016) A protocol for conducting and presenting results of regression-type analyses. Methods Ecol Evol 7(6):636–645. http://doi: 10.1111/2041-210x.12577 	⁸ 1055	Sardinia, Italy
26 26	9 10 1056	Zanatalla M. Zuaga C. Niggardi S. Dagastti N. (2006) Distriburiana di Darta maggiana a Darta
1303 Initiate in saturgia (Origin 2006). Relizione technica INF3. http://www.inise 1305 acquatici.it/PDF/berte/bertesardegna2006_31ago2006.pdf 1306 Zotier R, Bretagnolle V, Thibault JC (2003) Biogeography of the marine birds of a confined sea, the 1306 Mediterranean. J Biogeogr 26:297–313 1306 Zuur AF, Ieno EN (2016) A protocol for conducting and presenting results of regression-type 1306 analyses. Methods Ecol Evol 7(6):636–645. http://doi: 10.1111/2041-210x.12577 1306 Mediterranean.j 1317 State St	11/030	minoro in Sordogno (Ciugno 2006). Pologiono toonico INES, http://www.info
1053 acquate:.tb*PDF/tereboresardegita2006_51ag02006.pdf 1059 Zotier R, Bretagnolle V, Thibault JC (2003) Biogeography of the marine birds of a confined sea, the 1060 Mediterranean. J Biogeogr 26:297–313 20061 Zuur AF, Ieno EN (2016) A protocol for conducting and presenting results of regression-type 20062 analyses. Methods Ecol Evol 7(6):636–645. http://doi: 10.1111/2041-210x.12577 20073 analyses. Methods Ecol Evol 7(6):636–645. http://doi: 10.1111/2041-210x.12577 20084 analyses. Methods Ecol Evol 7(6):636–645. http://doi: 10.1111/2041-210x.12577 20095 analyses. Methods Ecol Evol 7(6):636–645. http://doi: 10.1111/2041-210x.12577 20096 analyses. Methods Ecol Evol 7(6):636–645. http://doi: 10.1111/2041-210x.12577	13 ¹⁰⁵⁷ 14059	acquatici it/DDE/harta/hartacardagna2006_21aga2006_rdf
2059 Zotier R, Bretagnolle V, Thibault JC (2003) Biogeography of the marine birds of a confined sea, the 1960 Mediterranean. J Biogeogr 26:297–313 2061 Zuur AF, Ieno EN (2016) A protocol for conducting and presenting results of regression-type 2062 analyses. Methods Ecol Evol 7(6):636–645. http://doi: 10.1111/2041-210x.12577 2063 Methods Ecol Evol 7(6):636–645. http://doi: 10.1111/2041-210x.12577 2064 Methods Ecol Evol 7(6):636–645. http://doi: 10.1111/2041-210x.12577	1038 15 16	acquatici.it/PDF/berte/bertesardegila2000_51ag02000.pdf
1960 Mcditerranean. J Biogeogr 26:297–313 2061 Zuur AF, Ieno EN (2016) A protocol for conducting and presenting results of regression-type analyses. Methods Ecol Evol 7(6):636–645. http://doi: 10.1111/2041-210x.12577 333 343 353 364 373 384 373 384 374 375 384 376	171059	Zotier R, Bretagnolle V, Thibault JC (2003) Biogeography of the marine birds of a confined sea, the
20061 Zuur AF, Ieno EN (2016) A protocol for conducting and presenting results of regression-type analyses. Methods Ecol Evol 7(6):636–645. http://doi: 10.1111/2041-210x.12577	181060 19	Mediterranean. J Biogeogr 26:297–313
22 23 24 24 25 27 28 29 20 20 20 20 21 22 23 24 25 27 28 29 20 20 21 20 21 21 21 21 21 21 21 21 21 21	20 21/061	Zuur AF, Ieno EN (2016) A protocol for conducting and presenting results of regression-type
26	$^{22}_{23}062$	analyses. Methods Ecol Evol 7(6):636–645. http://doi: 10.1111/2041-210x.12577
26 27 28 29 30 30 31 32 33 34 35 36 37 38 39 40 41 41 42 44 45 50 51 52 53 54 55 56 57 56 57 56 57 56 57 56 57 57 56 57 57 57 57 57 57 57 57 57 57	24 25	
26	26	
26	27 28	
26	29 30	
22 22 23 24 25 26 26 26 26 27 28 29 20 20 20 20 20 20 20 20 20 20	31	
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 9 90 91 92 93 94 95 95 96 10 11 12 13 14 15 15 16	32 33	
26 27 28 29 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 72 78 78 78 78 78 78 78 78 78 78	34 35	
26	36	
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 26	37 38	
1 1 42 1 43 1 44 1 45 1 46 1 47 1 48 1 49 1 50 1 51 1 52 1 53 1 54 1 55 1 56 1 57 1 58 1 59 1 60 26	39 40	
42 43 44 45 46 47 48 49 50 51 52 53 53 54 55 56 57 58 59 60 26	41	
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 26	42 43	
46 47 48 49 50 51 52 53 53 54 55 56 57 58 59 60 26	44 45	
48 49 50 51 52 53 54 55 56 57 58 59 60 26	46 47	
49 50 51 52 53 54 55 56 57 58 59 60 26	48	
51 52 53 54 55 56 57 58 59 60 26	49 50	
53 54 55 56 57 58 59 60 26	51 52	
55 56 57 58 59 60 26	53	
56 57 58 59 60 26	54 55	
58 59 60 26	56 57	
60 26	58 59	
	60	26

Table 1. Characteristics of the tracks obtained from GPS data loggers mounted on yelkouan shearwaters at Tavolara Island (Sardinia, IT) from 2011 to 2015. For each bird, Bird ID, Track ID (*not included in the analysis), Breeding stage (I, incubation; CR, chick rearing), date and time of First and Last location recorded, GPS sampling rates and number of fixes per track are reported. In the Track column is specified if the tracking was complete (c) or if interrupted abruptly before the bird returned to the colony (i). The beeline between the maximum distant point reached and the colony is reported as Distance from Tavolara, while the Total Travelled Distance was measured as the sum of all the distances between successive locations.

Bird ID	Track ID	Breeding stage	First location	Last location	Total duration (days)	Year	Track	Sampling interval (min)	Fix	Distance from Tavolara (km)	Total travelled distance (km)
TA2226	5 T24*	Ι	03/04/2011 06:06:00	03/04/2011 13:16:00	1	2011	i	10	21	63	84
TJ3259	T23	Ι	05/04/2011 04:08:00	09/04/2011 10:38:00	4	2011	i	10	464	190	538
TA2229) T25	Ι	04/04/2011 05:35:00	08/04/2011 11:55:00	4	2011	i	10	87	165	361
	T18	CR	11/06/2012 03:37:00	17/06/2012 23:41:00	7	2012	с	60	162	141	941
	T19*	CR	18/06/2012 03:43:00	18/06/2012 23:42:00	1	2012	c	60	21	69	
	T06	Ι	27/03/2013 07:23:00	03/04/2013 22:19:00	8	2013	c	20	511	225	1266
TJ3270	T10*	Ι	16/04/2012 04:20:00	17/04/2012 23:35:00	2	2012	с	60	42	18	
TJ3267	T13*	Ι	16/04/2012 06:25:00	17/04/2012 00:19:00	1	2012	с	60	19	27	
	T14*	Ι	17/04/2012 07:18:00	18/04/2012 23:38:00	2	2012	с	60	42	33	
TJ3263	T17	CR	03:10:00	15/06/2012 00:58:00	4	2012	с	60	94	118	586
TA2223	5 T22	Ι	17/04/2012 05:30:07	18/04/2012 05:50:08	1	2012	i	20	58	53	286
	T15	CR	11/06/2012 03:03:00	13/06/2012 00:56:00	2	2012	c	60	47	107	406
	T16	CR	13/06/2012 05:54:00	16/06/2012 02:56:00	3	2012	с	60	70	128	553
TA2225	5 T11*	CR	07:27:00	22:17:00	1	2012	с	60	16	21	
	T12*	CR	07:21:00	22:56:00	1	2012	с	60	17	26	
	T08	Ι	06:41:00	21:41:16	5	2013	c	20	309	120	189
TA2236	5 T20	CR	03:57:00	23:41:00	3	2012	с	60	67	134	389
	T21	CR	05:37:00	01:42:00	2	2012	с	60	45	137	357
	T03	Ι	04:33:00	22:58:00 30/03/2013	7	2013	с	20	465	184	1041
TJ3290	T04	Ι	07:29:00	22:49:00 31/03/2013	8	2013	с	20	506	144	1249
TA2228	3 T09	Ι	03:35:00	23:38:00	7	2013	с	20	468	120	1073
TJ3258	T07	Ι	04:09:00	22:37:00 31/03/2013	6	2013	с	20	399	189	887
TJ3300	T28	Ι	18:42:00	03:20:06	4	2013	i	20	303	247	636
TA2235	5 T02	Ι	04:42:00	00:48:00	9	2013	с	20	609	374	1808
TH1332	2 T05	Ι	05:51:00	23:13:00	8	2013	с	20	524	177	1097
TJ3288	T29	Ι	01:09:00	01:18:00	4	2013	i	20	279	217	785
TJ3262	T26	Ι	05:44:00	04:20:04	1	2013	i	20	69	70	106
Т86753	T01	Ι	07:06:00	13:16:00	7	2013	i	20	468	184	897
TJ3261	T27	Ι	00:45:25	17:44:00	5	2013	i	20	341	238	892

	T31 T32 T33	CR CR CR	14/06/2013 23/06/2013 03:47:00 22:16:00 24/06/2013 24/06/2013 03:49:00 22:29:00 25/06/2013 28/06/2013	10 1 4	2013 2013 2013	c c i	10 10 10	1387 107 516	579 100 315	2341 291 550
TA2231	Т30	CR	15/06/2013 28/06/2013 03:42:00 04:44:00	13	2013	i	10	1846	570	2601
TJ3271	T34	Ι	17/04/2015 21/04/2015 04:47:00 00:00:00	4	2015	c	20	270	206	658

to per peries

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
10
20
20
21
22
25
24
25
20
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

 Table 2. Comparison of Generalized Linear Mixed Models developed to describe foraging habitat selection of Yelkouan shearwaters tagged at the colony of Tavolara Island (Sardinia, IT) from 2011 to 2015 (error distribution: binomial; random intercepts: bird ID and track ID nested within bird ID). k, number of parameters; logLik, log-likelihood; AICc, corrected Akaike's information criterion value; Δ AICc, difference in AICc between a given model and the model with the lowest AICc; w_i, Akaike weights; mR² = marginal R²; AUC, area under the ROC curve. STAGE, reproductive stage (two-levels factor: incubation and chick rearing; BATHY, bathymetry (km); DCOL, distance from the colony site (100 km); PROD, inverse transformed sea productivity (mg C · m⁻² · day⁻¹); STAGE:BATHY, STAGE:DCOL and STAGE:PROD, interaction terms. mR² and AUC were reported only for the models within 2 AICc units from the the best model.

Model	k	logLik	ΔAICc	\mathbf{w}_{i}	mR ²	AUC
STAGE+BATHY+DCOL+PROD+STAGE:BATHY+STAGE:DCOL	9	-807.19	0	0.68	0.88	0.93
STAGE+BATHY+DCOL+PROD+STAGE:BATHY+STAGE:DCOL+STAGE:PROD	10	-806.95	1.52	0.32	0.88	0.93
STAGE+BATHY+DCOL+PROD+STAGE:DCOL+STAGE:PROD	9	-841.75	69.11	0.00		
STAGE + BATHY + DCOL + PROD + STAGE:DCOL	8	-844.76	73.12	0.00		
STAGE+BATHY+DCOL+PROD+STAGE:BATHY+STAGE:PROD	9	-876.20	138.02	0.00		
STAGE+BATHY+DCOL+PROD+STAGE:BATHY	8	-889.96	163.53	0.00		
STAGE+BATHY+DCOL+PROD+STAGE:PROD	8	-923.01	229.63	0.00		
STAGE+BATHY+DCOL+PROD	7	-929.74	241.08	0.00		

Table 3. Estimated parameter (Coeff), with SE, Wald 95% confidence interval (95% CI), and variable testing (the type II Wald χ^2 test) results of the best Generalized Linear Mixed Model developed to describe foraging habitat selection of Yelkouan shearwaters tagged at the colony of Tavolara Island (Sardinia, IT) from 2011 to 2015 (error distribution: binomial; random intercepts: bird ID and track ID nested within bird ID). STAGE, reproductive stage (two-levels factor: incubation and chick rearing; BATHY, bathymetry (km); DCOL, distance from the colony site (100 km); PROD, inverse transformed sea productivity (g C \cdot m⁻² \cdot day⁻¹); STAGE[chick rearing]:BATHY and STAGE[chick rearing]:DCOL, interaction terms. Number of considered cells: 3288; Number of birds: 21; Number of tracks: 27. Variance for the random factors (bird ID and track ID nested within bird ID) \approx 0.

Variable	Coeff	SE	95% CI	Wald χ^2	df	Р
(Intercept)	3.55	0.30	2.96 - 4.15			
STAGE[chick rearing]	-2.82	0.34	-3.52.15	5.34	1	0.02
BATHY	4.32	0.44	3.45 - 5.19	192.88	1	< 0.0001
DCOL	-1.28	0.12	-1.511.05	11.15	1	0.0008
PROD	-0.84	0.20	-1.220.45	17.94	1	< 0.0001
STAGE[chick rearing]:BATHY	-3.04	0.45	-3.932.16	45.07	1	< 0.0001
STAGE[chick rearing]:DCOL	1.36	0.13	1.10 - 1.62	107.09	1	< 0.0001

Table 4 - Estimated parameter, with corresponding SE, Wald 95% confidence interval (95% CI), , and variable testing (the type II Wald χ^2 test) results of the linear mixed model (LMM) analyzing the inverse-transformed sea productivity (g C · m⁻² · day⁻¹) in the cells with at least one foraging fix during the study period as a function of the distance from the colony site (DCOL, 100 km), bathymetry (BATHY, km), the octads when the foraging trips of yelkouan shearwaters tagged at the Tavolara Island (Sardinia, IT) from 2011 to 2015 were recorded (OCTAD) and the interactions OCTAD:DCOL and OCTAD:BATHY. The years where birds were tracked during incubation or chick rearing only (i.e. 2011 and 2015) were excluded to reduce the sampling bias. Number of observations: 536; number of cells: 91. Variance for the random factor (cell ID) = 0.03. Marginal R² = 0.53.

Marine Ecology

Variable	Coeff	SE	95%CI	Wald χ^2	df	Р
(Intercept)	0.80	0.05	0.70 - 0.90			
OCTAD				634.08	4	< 0.0001
89 vs 81	0.00	0.05	-0.11 - 0.10			
105 vs 81	0.77	0.06	0.66 - 0.89			
161 vs 81	0.96	0.05	0.87 - 1.05			
169 vs 81	0.97	0.05	0.86 - 1.07			
BATHY	0.03	0.02	-0.01 - 0.06	75.91	1	< 0.0001
DCOL	-0.10	0.05	-0.20 - 0.00	6.33	1	0.01
OCTAD:BATHY				393.08	4	< 0.0001
89:BATHY vs 81:BATHY	-0.01	0.02	-0.04 - 0.02			
105:BATHY vs 81:BATHY	-0.11	0.02	-0.150.08			
161:BATHY vs 81:BATHY	-0.21	0.01	-0.240.18			
169:BATHY vs 81:BATHY	-0.22	0.02	-0.250.19			
OCTAD:DCOL				81.39	4	< 0.0001
89:DCOL vs 81:DCOL	0.05	0.05	-0.05 - 0.16			
105:DCOL vs 81:DCOL	0.29	0.05	0.19 - 0.39			
161:DCOL vs 81:DCOL	-0.10	0.05	-0.190.01			
169:DCOL vs 81:DCOL	-0.09	0.05	-0.19 - 0.02			

Fig. 1 Tracks of yelkouan shearwaters GPS tagged from 2011 to 2015 at Tavolara Island, Sardinia, IT (white star). The blue shades show sea net primary productivity (expressed as mg C • m⁻² • day⁻¹) grouped according to Octads (8 days periods) in 2011-2015. Each panel contains the tracks obtained in the octad for which sea productivity was calculated and included in the analysis (see Table 1). T indicate the track ID; the apical letters (a to d) denote tracks from the same individual. The reproductive stage (A=incubation; B=chick rearing) of birds at the time of recording is written in each panel.

655x773mm (96 x 96 DPI)

[same as fiure_1A]

304x686mm (96 x 96 DPI)

Fig. 2. Trip duration in days estimated from yelkouan shearwaters tracks (N=34) recorded during incubation and chick rearing stages from 2011 to 2015 at Tavolara Island (Sardinia, IT). Open dots represent incomplete tracks.

297x209mm (300 x 300 DPI)

293x446mm (120 x 120 DPI)

Fig. 4 Foraging core areas with a different percentage of volume contour per individual (median: 55%; IQR: 50%-55% volume contours) obtained from the distribution of the fixes categorised as F (feeding activity) of yelkouan shearwaters GPS tagged from 2011 to 2015 at Tavolara Island (red dot; Sardinia, IT).
A: Incubation period (n tracks = 17, n individuals = 16); B: Chick rearing period (n tracks = 10, n individuals = 6).

March-April (incubation)

Fig. 5 Daily distribution (in %) of fixes classified as Foraging, Resting and Travelling in the 24 h. The mean nautical dawn and dusk were used to identify the night-hours (grey shadow in the graph) for the two periods considered: March-April (incubation): 18:30-3:30; June (chick rearing): 20:00-2:00. Boxplots represent: Box, 1st and 3rd quartiles; thick line, 2nd quartile (median); whiskers, extreme values; dots, outliers.

209x297mm (300 x 300 DPI)

Marine Ecology

Fig. 6 Resting sites of yelkouan shearwaters GPS tagged from 2011 to 2015 at the Tavolara Island (Sardinia, IT). Score of use in cells of a 10 km spaced hexagonal: white, grey and black cells represent a score ranging from 9-15, 16-22 and 23-29 respectively. See Materials and Methods for details. Stars represent the locations of known colonies of yelkouan shearwaters in Sardinia.

297x209mm (300 x 300 DPI)

Fig. 7 Plots of the effects of sea productivity (A; bathymetry = -100 m, distance from the colony = 100 km), of the interaction between reproductive stage and bathymetry (B; distance from the colony = 100 km, sea productivity = 2000 mg C • m-2 • day-1) and of the interaction between reproductive stage and distance from the colony (C; bathymetry = -100 m, sea productivity = 2000 mg C • m-2 • day-1) on the probability of use of a given 9 x 9 km cell. Shaded areas = 95% Confidence bands. Results from the best Generalized Linear Mixed Model developed to describe foraging habitat selection of yelkouan shearwaters tagged at the colony of Tavolara Island (Sardinia, IT) from 2011 to 2015 (error distribution: binomial; random intercepts: bird ID and track ID nested within bird ID). Number of considered cells: 3288; Number of birds: 21; Number of tracks 27. See Table 3 for numerical results.

147x203mm (300 x 300 DPI)

59

60

Fig. 8 Plot of the effects of octads and distance from the colony on sea productivity estimated at bathymetry = -100 m. Error bars = 95% Confidence Intervals. Results from the linear mixed model (LMM) analysing the inverse-transformed sea productivity in the cells with at least one foraging fix in the octads where foraging trips of yelkouan shearwaters tagged at the Tavolara Island (Sardinia, IT) were recorded as a function of the distance of the colony and bathymetry (see Table 4 for numerical results). Number of observations: 536; number of cells: 91.

274x128mm (300 x 300 DPI)