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Abstract: In consideration of the high vulnerability of the built environment, the assessment of seismic behavior of existing masonry
buildings is a key topic in view of their retrofitting and reuse. Because masonry’s behavior depends on complex nonhomogeneous, aniso-
tropic, asymmetric, and nonlinear properties, the definition of suitable mechanical models is still a critical issue, especially for stone masonry.
Structural analyses of existing masonry buildings in seismic-prone areas are thus significantly influenced by the adopted mechanical models
and assumptions about their relevant masonry properties, which are characterized by large uncertainty. In this study, a procedure for the
definition of masonry classes and probability density functions of relevant mechanical parameters, such as elastic modulus and shear modu-
lus, is proposed. The general procedure is illustrated referring to a significant number of in situ double-flat-jack test results on stone masonry
obtained by the authors during an ad hoc experimental campaign. Finally, combining information on masonry quality obtained by visual
inspection with results of in situ tests, a Bayesian methodology is proposed for the updating of masonry mechanical parameters, thereby
providing the basis for a more refined probabilistic assessment of the seismic risk index. DOI: 10.1061/AJRUA6.0001110. This work is
made available under the terms of the Creative Commons Attribution 4.0 International license, https://creativecommons.org/licenses/by/4.0/.
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Introduction

In the past, masonry was the most used building material; conse-
quently, masonry buildings are a significant part of existing struc-
tures, especially in historical towns (Domanski and Matysek 2018).
Masonry structures, although mostly built according to empirical
rules and architectural canon far away from modern design ap-
proaches, generally successfully perform their functions over time.
Nevertheless, there is a strong need to measure their structural
performance, especially in seismic-prone areas, mainly in view of
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prioritization strategies for planning of maintenance and strength-
ening interventions.

In the assessment of unreinforced masonry buildings’ behavior
under vertical and horizontal loads, the proper definition of mechani-
cal parameters of the masonry is still a crucial issue. Because a vari-
ety of masonry types characterizes existing buildings, depending on
materials, block shape and texture, and workmanship, the relevant
mechanical parameters can vary in a wide range. Obviously, their
evaluation cannot overlook the assessment of the related uncertainty
that should be appropriately expressed in probabilistic terms (Sykora
et al. 2013; Sykora and Holicky 2010; Marsili et al. 2017a).

A sound definition of probability distribution functions requires
a significant amount of material tests, which are not only expensive
and time-consuming, but also often incompatible with the needs of
preservation of existing structures. For that reason, modern struc-
tural codes often provide typical ranges of values for compression
and shear strength as well as elastic and shear modulus of the most
used masonry types. In this context, the Italian code (Italian Ministry
of Infrastructure and Transport 2018; Italian Public Works Council
2019) identifies eight recurrent masonry typologies, also providing
coefficients to adjust the values as a function of relevant information,
like quality of mortar, thickness of mortar joints, existence of hori-
zontal courses, efficiency of transverse connections, quality of inner
core, presence of grout injection and reinforced concrete layers, and
so on. Nonetheless, even if the masonry typology is well-defined,
subjective judgements can notably influence the estimation of me-
chanical properties. In practical cases, a workaround could consist in
supplementing the reference values of the mechanical properties per-
taining to the identified masonry typology, with the results of limited
semidestructive or nondestructive in situ tests.

Various studies often reported significantly scattered mechani-
cal properties (Bosiljkov et al. 2005; Croce et al. 2018a), even
regarding the same masonry typology, thus making difficult a
proper identification of masonry classes and associated mechanical
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properties, especially when shear modulus and stiffness of masonry
walls are involved. Because the intrinsic scattering of these param-
eters is not enough in itself to justify their huge variability, a critical
discussion of the test results, as well as of the individual test arrange-
ments, is always necessary to make the assessment more reliable.
Moreover, because the number of in situ destructive or semidestruc-
tive tests is often necessarily limited, test results are generally not
sufficient to derive the accurate statistics of the mechanical param-
eters needed for the reliability assessments. In fact, even in the most
favorable cases, they may just allow one to evaluate the mean values
of the relevant mechanical parameters or assess the material’s degree
of homogeneity throughout the structure.

To overcome that lack of information about the masonry
mechanical properties, a wide database of test results on masonry
walls was collected (Croce et al. 2018a) in the framework of the in
situ experimental campaign for the assessment of seismic vulner-
ability of masonry school buildings in the Municipality of Florence,
Italy. Aiming to identify the masonry classes in terms of probability
density functions (PDFs) and relevant statistical parameters, namely
mean value and standard deviation, a robust methodology has thus
been set up, starting from the analysis of a wide database of test re-
sults for stone masonry walls.

The proposed method relies on a more general original pro-
cedure for the identification of homogenous material classes in
secondary databases of raw test results, illustrated by Croce et al.
(2018b). The rationale of the procedure, already successfully
implemented to identify concrete classes (Croce et al. 2018b)
and reinforcing steel classes (Croce et al. 2020) used in Italy during
the 1960s, is to partition, by means of a cluster analysis based on
Gaussian mixture models (GMMs) (Mclachlan and Peel 2000), a
database of mechanical test results to recognize homogenous stat-
istical populations of relevant mechanical parameters. In the fol-
lowing, the focus is on the main mechanical parameters of stone
masonry: compressive strength, f,,, elastic modulus, E, and shear
modulus, G, but the method can be easily extended to other relevant
parameters and different masonry typologies provided that ad-
equate data sets of experimental results are available.

Once masonry classes are identified, a Bayesian procedure is set
up for the updating of PDFs of masonry mechanical parameters
based on specific information collected for the structure under in-
vestigation. In recent years, Bayesian inference has become a popu-
lar approach to model and solve inverse problems in different areas
(Dashti and Stuart 2017), but few applications can be found in the
field of existing masonry structures. Bayesian model updating tech-
niques have been applied by Bartoli et al. (2017, 2019) for the
analysis of masonry towers, by Conde et al. (2018) and De Falco
et al. (2018) for the parameter identification of existing masonry
bridges, and by Beconcini et al. (2016) to establish PDFs for the
variables involved in the probabilistic reliability assessment of her-
itage buildings, describing the case study of a masonry water work.
However, the Bayesian approach is one of the most suitable way for
defining probabilistic models for the assessment of existing build-
ings (Beconcini et al. 2016) due to the possibility to combine in-
formation coming from theoretical models, experts’ judgments, and
databases of test results with a limited number of experimental test
results obtained on the considered structure.

In this work, Bayesian updating is performed supplementing the
information obtained by visual inspection, consisting on the ma-
sonry quality index (Borri et al. 2015, 2018), with semidestructive
double-flat-jack in situ test results (ASTM 2014). Finally, the un-
certainty associated with the definition of masonry walls capacity
curves, based on the prior and posterior PDFs of mechanical param-
eters, is discussed, illustrating the suitability of the proposed
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procedure in the assessment of the seismic performance of masonry
buildings for a relevant case study.

General Methodology for the Definition
of Masonry Classes

The proposed procedure relies on a more general methodology
defined by Croce et al. (2018b) for the evaluation of statistical
parameters of existing concrete. The methodology, based on the
identification of classes by means of a GMM, can be used to es-
timate mechanical properties and their statistical parameters on the
condition that enough data are available. The method described in
the following and summarized in the flowchart in Fig. 1 hypothe-
sizes that the probability distribution of the considered mechanical
property can be approximated by a normal distribution, but it could
be easily extended and generalized to different PDFs.

The procedure, starting from literature or archive test results ob-
tained on similar masonry typologies, integrated, if necessary, with
experimental in situ tests on masonry panels, allows one to recog-
nize, by means of the cluster analysis, homogenous statistical pop-
ulations of data and the associated masonry classes.

Database of Test Results

To identify the class of a given masonry type, valuable sources of
preliminary information are, besides historical documentation and
technical literature, knowledge about building practice at the time
of the execution and, above all, analysis of reliable databases of test
results. Even if they are generally not easily accessible, the avail-
ability of such databases is a necessary starting point for a reliable
identification of masonry classes.

In the present study, reference is made to a wide database of
compression test results, mainly obtained by the authors in the
framework of seismic vulnerability assessments of school masonry
buildings in Florence, Italy. That database currently contains the
relevant results of 95 double-flat-jack in situ tests, carried out
according to the ASTM standard (ASTM 2014). Among these tests,
67 concern irregular partially and fully dressed stone masonry

Study of the literature on existing masonry
buildings, documentary search and review

Collection of data from double flat jack tests

Cluster analysis based on
Expectation-Maximization algorithm

Evaluation of COV of relevant classes YES

Collect more data?

| Class identification based on test results

Fig. 1. Flowchart for the definition of masonry classes by means
of GMM.
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Fig. 2. (a) Representative stone masonry walls tested during the experimental campaign (images by Benedetta Puccini); and (b) double-flat-jack test

on a masonry wall.

walls, 25 relate to solid brick masonry walls, and the remaining
three refer to other kinds of masonry walls. Some representa-
tive examples of the texture of the tested walls are shown in
Fig. 2(a).

In situ double-flat-jack testing is a semidestructive compressive
test method suitable to evaluate the elastic modulus (E) and com-
pressive strength (f,,) of masonry walls. As described in ASTM
C1197-91 (ASTM 2014), the basic idea of the test is to carry out
a compressive test directly in situ. The load is applied onto the in-
vestigated masonry panel via two flat jacks, inserted in horizontal
cuts, within the panel’s thickness. In Fig. 2(b), the test arrangement
is illustrated, showing the four pairs of measurement bases, three
longitudinal and one transversal, placed between the two jacks.

According to ASTM (2014), the height of the panel X, which is
the distance between the two flat jacks, should satisfy

A <X <min(1.54;2.5B) (1)

where A = diameter of the flat jack; and B = average depth of the
jack. The base length L of the vertical transducers should be se-
lected in the interval 0.75A — 0.90A.

The maximum stress registered during the test, 0.y, corre-
sponding to the first cracking load as deduced by visual inspection
and by monitoring a sudden increase of the strain (Carpinteri et al.
2009), duly corrected as a function of the jack geometry, is used to
estimate the compressive strength of masonry. The elastic modulus
E is evaluated as the ratio between applied stress and measured
vertical strain in reference sections of the stress-strain, o-¢, diagram
representing elastic and postelastic behavior. The apparent value of
Poisson ratio, v, is also determined from the measured horizontal
displacements; because it is evaluated in a postcracking state, its
value often falls outside the theoretical limits for isotropic and
homogenous materials, —1 < v < 0.5. Finally, from the in situ com-
pression tests, the apparent shear modulus of masonry can be also
estimated through the usual relationship for isotropic and homog-
enous materials, again disregarding cracks
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To evaluate the relevant mechanical parameters, test results were
elaborated in a consistent way for the whole database. Because the
main focus of the assessment is the evaluation of the seismic behav-
ior of masonry walls, different sections of the stress-strain (o-€)
diagram have been analyzed to estimate elastic and shear modulus.
The masonry behavior has been thus approximated linearizing three
different sections of the o-¢ curve: (1) a first section ranging between
10%0 e and 40%o0 ., Which represents the quasi-elastic section
of the diagram; (2) a second intermediate section ranging between
40%0 e and 70%0 ., representing the behavior in cracked
conditions; and (3) a final section ranging between 70%0,,, and
100%0 ay, reflecting the plastic section. In Fig. 3, as an example,
the trilinear curve approximating the experimental o-¢ curve is illus-
trated for one of the investigated walls.

The values collected in the database have thus been critically
discussed, also referring to the recommended values in the guide-
lines for the application of the Italian building code (Italian
Ministry of Infrastructure and Transport 2018; Italian Public Works
Council 2019) for the relevant existing masonry typologies. In ad-
dition, the masonry quality index (MQI) (Borri et al. 2015, 2018)
has been evaluated starting from the information on masonry qual-
ity obtained by visual inspection. As an example, the final synthesis
report pertaining to an investigated stone masonry wall is also illus-
trated in Fig. 3. That report gives the actual normal stress in the
masonry o, measured by single-flat-jack testing; the maximum
registered stress oy, elastic moduli E, and shear moduli G in
the different sections of the o-¢ diagram; the range for the apparent
Poisson ratios v; the recommended mean values for f,,, E, and G
provided by the Italian Public Works Council (2019); and the esti-
mated value of MQL

The database, which includes also in situ diagonal shear and
shear compression tests available in the literature (Croce et al.
2018a), as well as shear tests carried out by the authors, is contin-
uously updated once new in situ tests are carried out.
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Fig. 3. In situ double-flat-jack test, resulting stress-deformation diagram, and test data processing. (Image by Benedetta Puccini.)

From the test results collected in the database, the statistical
parameters, i.e., mean and coefficient of variation (COV), of the
relevant masonry mechanical parameters have been derived.

Results in terms of compressive strength f,,, elastic modulus E,
and shear modulus G, are summarized in Table 1 considering stone
masonry in different conditions.

As expected, due to the wide variability of masonry properties,
data are characterized by high COV, especially concerning elastic
and shear moduli (Bosiljkov et al. 2005; Croce et al. 2018a). The
phenomenon is evident even referring to the same masonry typol-
ogy; in fact, the properties depend not only on the quality of the
original raw materials, but also on the texture, workmanship, and
degradation. Moreover, the quality of the mortar, the presence of
irregular or dressed stones, and the different shape and size of the
stones well justify the existence of different masonry classes within
the same masonry typology.

A further analysis is then needed to identify homogenous stat-
istical populations for masonry mechanical parameters. In particu-
lar, the general procedure already successfully applied by Croce
et al. (2018b, 2020) to identify concrete and steel rebar classes
can be used.

Table 1. Statistical parameters for stone masonry properties

Cluster Analysis

The basic idea of the method is to identify by means of a cluster
analysis based on GMM homogenous statistical populations in the
database of test results pertaining a given masonry typology.

Mixture models (MMs) approach the statistical modeling of
heterogeneity in a cluster analysis on a mathematical basis. In fact,
MMs are able to analyze quite complex distributions, composed of
several homogenous populations belonging to the same distribution
family, thus allowing different individual components to be recog-
nized. Such kinds of complex distributions cannot be described by
a single probability density function, which is unable to provide a
satisfactory model for local variations in the observed data. In these
cases, assuming the distribution is composed by one single homog-
enous population could lead to erroneous statistical information,
e.g., an unrealistically high COV (Verderame et al. 2001), as well
as an inaccurate estimation of the mean value.

Due to their flexibility, mixture models are applied for the stat-
istical modeling of a wide variety of random phenomena. When all
the distributions of the mixture belong to the normal family, the
model is a GMM (Mclachlan and Peel 2000), but different distri-
butions can be also adopted for the components of the mixture de-
pending on the data. GMMs have been successfully used by Croce
et al. (2018b, 2020) to identify coherent material resistance classes

Variable Mean (N/mm?) lelo)\% in a whole database of test results, even if the origin of individual
P 1.88 033 data were unknown. GMMs will be also adopted in the following
E'" analyses for the investigated masonry parameters; in fact, statistical
Eio0 1,816 0.39 tests such as Kolmogorov-Smirnov carried out on the entire data set
E40-70 1,151 0.57 do not show a preference for distribution other than normal. How-
E70-100 618 0.55 ever, if necessary, the MM can be easily modified to take into ac-
G count different distribution family, e.g., lognormal.
G1o-40 665 0.53 In reliability assessment of existing buildings, preliminary ma-
Gao-10 351 074 nipulations of the collected data, like a priori assignment of some
Gro-100 149 0.63 test result to a given class on the basis of information recorded on
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the test report or on the base of engineering judgments, can influ-
ence the results, so they should be avoided. The mixture model, in
which each cluster is defined by an appropriate PDF, solves that
issue, providing results that can be directly used for the reliability
assessment of existing buildings.

Mixture models are methods of classification by unsupervised
learning (Press et al. 2007), and they can be used for two purposes:
modeling situations in which a single distribution is unable to pro-
vide a satisfactory model, and/or the existence of distinct groups for
the investigated variable is known a priori in some physical sense.

Suppose that yy, ...y, is a random sample of size n, where Y;
represents the p-dimensional random vector with PDF f(y;) on R”.
In practice Y; includes the random variables corresponding to
p-measurements made on the jth recording of some features on
the phenomena under study: Y = (Y7, ..., ¥D)T represents a
n-tuple of points in R”, and y = {, o y,{)T is the observed ran-
dom sample. A MM with k& components, whose densities are
fi(y;), i=1,...,k, is the distribution f(y;) characterized by
the density (Mclachlan and Peel 2000)

k
fyj) = Zwifi(yj) (3)
i—1
where w; (0 <w; < 1) = mixing proportions or weights

w; =1 4)
i=1

Here, Y; has the k-component mixture form when it is drawn
from a population C, which consists of k groups Cy, ..., C; in pro-
portion wy, ..., wy, and the density of ¥; in group C; is given by
fily;),i=1,... k.

A GMM can fit a group of data belonging to k different pop-
ulations normally distributed if the population to which each datum
belongs is identified, or, equivalently, the statistical parameters of
the probability distribution function of each population are known.
Because these details are usually unknown, in order to fit the
model, an iterative procedure that maximizes the log-likelihood
of the data, called expectation-maximization (EM) algorithm, is ap-
plied. A detailed description of the EM algorithm has been given by
Hastie et al. (2008).

The EM algorithm is a quick converging tool able to reach the
maximum likelihood in two steps of iteration. In the first step (ex-
pectation phase), an initial assignment of each observation is done
for each model, based on Euclidean distance [k-means algorithm
(Jin and Han 2011)]; in the second step (maximization phase), start-
ing from the expectation-phase estimations, weights, variance, and
mixing probability are evaluated. The two steps are iterated until
convergence. In this way, clusters are identified with associated
weights w; and statistical parameters y; and o;.

In the following, the results of the cluster analysis are reported
and discussed for the compressive strength f,, elastic modulus E,
and shear modulus G in three relevant sections of o-¢ curve of stone
masonry

[0.1£5. 0.4f ], [0.4f,,. 0.7,]. [0.7f . 1.0f ] (5)

The number of components, ., has been considered, in turn as
k = 2, k = 3. The reason for such a choice is that for the statistical
treatment of this type of test results, notwithstanding that the num-
ber of available data can be considered significantly large, consid-
eration of more than three classes could lead to classes including
only few data, and therefore the results would scarcely be signifi-
cant. Furthermore, from an engineering point of view, the simple
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classification into low-, medium-, and high-quality masonry, al-
ready applied by Marsili et al. (2017a), seems very effective for
the structural assessment.

Identification of Masonry Classes

As anticipated, the aforementioned cluster analysis of test results
allows one to derive the statistical parameters of compressive
strength, elastic modulus, and shear modulus of each relevant ma-
sonry class.

Masonry Compressive Strength

The evaluation of the compressive strength of masonry walls and
pillars is a fundamental step in structural assessment of existing
masonry buildings. Despite relatively extensive research into ma-
sonry structures, the issue of a reliable determination of the load-
bearing capacity of existing stone masonry structures, particularly
if historical, is still waiting for a satisfactory solution.

A probabilistic description of compressive strength of regular
masonry types has been given by Sykora et al. (2013) and Witzany
et al. (2016), based on the EN1996-1-1 model (CEN 2005a), con-
sidering and combining test results and related probabilistic models
for masonry units and mortar. But this approach can be seldom ap-
plied to irregular stone masonry, also because the extraction of an
appropriate number of samples from the investigated walls is often
impossible.

The frequency histogram and the distributions of compressive
strength of stone masonry found with the proposed procedure
are reported in Fig. 4. The diagram reports, together the probability
density functions obtained by fitting the whole data set with a nor-
mal distribution and lognormal distribution, the GMMs obtained
considering k = 2 components [Fig. 4(a)] and k = 3 components
[Fig. 4(b)]. In the Figure for each curve relevant statistical param-
eters, mean value, standard deviation and COV, are given in the
legend. The same information is provided also in the following
Figs. 5-10. The resulting Akaike information criterion (AIC) and
Bayesian information criterion (BIC) are also compared for the
models with two and three components.

As already noted by Croce et al. (2018b, 2020), statistical
parameters derived via cluster analysis are much more refined than
those obtained analyzing the whole data set, and the estimate of the
COV associated with each cluster is significantly improved. For
example, in the case of k = 3, the COV of compressive strength,
which is 33% for the whole data set, reduces to 28% for the lower
class, 14% for the intermediate class, and 11% for the upper class.

Elastic and Shear Modulus of Masonry

The results obtained according to the proposed procedure for differ-
ent stone masonry classes are reported in Fig. 5 for the secant elas-
tic moduli, Ejg_49, E40_70, and in Fig. 6 for the secant elastic
modulus E5q_;qo, calculated considering the three previously men-
tioned intervals of masonry strength [Eq. (5)]. In each figure, the
frequency histogram is reported, together with the probability den-
sity function obtained by fitting the whole data set with a normal
distribution and a lognormal distribution, as well as the obtained
GMMs (k = 2 components and k = 3 components).

To supplement the results, Fig. 7 illustrates the secant elastic
modulus curves E;y_7o. As already observed for masonry compres-
sive strength, the proper identification of subclasses for masonry
allows one to significantly improve the estimate of the COV to
be associated with each class.

For example, the COVs of the Ey_49 modulus is 20% for the
lower class, 15% for the intermediate class, and 8% for the upper
class, significantly smaller than that resulting from the analysis of
the whole data set, 39%. Meanwhile, the COVs of the E;y_q
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fm for stone masonry (AIC=108, BIC=118)
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Fig. 4. Identification of stone masonry classes for the compressive strength f,,: (a) k = 2; and (b) k = 3.

modulus (plastic section) are 39% for the lower class, 18% for the
intermediate class, and 10% for the upper class, again significantly
smaller than that resulting from the analysis of the whole data
set (55%).

Similar results are derived for the shear moduli Gy_49, G49—70>
and Gy9_1g9, as shown in Figs. 8 and 9. The COVs of the shear
modulus Gyy_y49 is 32% for the lower class, 11% for the intermedi-
ate class, and 5% for the upper class (even if containing only five
items of data), again significantly smaller than that resulting from
the analysis of the whole data set (COV = 52%). The COVs of
G0—100 are 34% for the lower class, 11% for the intermediate class,
and 26% for the upper class, certainly sounder than that resulting
from the whole data set (63%).

The study has been integrated with the secant shear modulus
G1o_70 diagrams in this case as well (Fig. 10).

The implementation of the GMM models for the elastic modu-
lus and the shear modulus, on the one hand, offers the opportunity
to properly assess the statistical parameters, thus identifying
homogenous populations. On the other hand, it improves the
knowledge of the COVs associated to each distribution, avoiding
unrealistically severe assumptions.

Identification of Masonry Classes based on
MQI and In Situ Tests

Aiming to improve the identification of the masonry classes for the
investigated structure, a Bayesian methodology is proposed com-
bining the robust prior knowledge on the masonry parameters, pro-
vided by the GMM, with the observations on a specific masonry
typology, which can be derived from qualitative assessment and in
situ tests.
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Indeed, as observed by Croce et al. (2018b) and Marsili et al.
(2017b) for the assessment of concrete mechanical properties, the
identification of material classes with a Gaussian mixture model
automatically leads to the definition of a Bayesian network made
up of two nodes: a discrete node, which represents the material
class, and a continuous node corresponding to the investigated
mechanical parameter.

For the direct link between the parent node X, e.g., the material
class, and the child node, e.g., the material property Y, a conditional
probability p(Y|X) is defined, and, provided that observations of Y
are available, inference on the material class X can be made accord-
ing to the well-known Bayes rule

p(Y =y X=x)p(X=1x)
p(Y=y)

B P(Y=y,X=x)

Y xP(Y=y.X=1x)

In the general case, when evidence of the observation ¢ is avail-
able, the posterior for a discrete variable is a probability p(X|e),
whereas the posterior for a continuous variable is a density function
f(x|e) with mean  and variance o2, derived from the components
of the Gaussian mixture models

H= Z Wi (7)
k=1

pX=x|Y =y)=

(6)

n n n 2
2= ot St (Yown) ®
k=1 k=1 k=1

The proposed procedure then allows one to update the proba-
bility associated to each material class and, via Egs. (7) and (8),
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E for stone masonry (AIC=747, BIC=756)

E for stone masonry (AIC=750, BIC=765)
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Fig. 5. Identification of stone masonry classes for elastic moduli Ejq_49 and E49_70: (a) k = 2; and (b) k = 3.

to derive the updated statistical parameters of material properties,
initially making inference on X, on the basis of the observation of
the masonry quality, and subsequently on the basis of results of in
situ tests.
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Considering information on masonry quality obtained by visual
inspection, a masonry quality index can be defined (Borri et al.
2015, 2018). The MQI takes into account all the main param-
eters defining the workmanship skills for a masonry structure.
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Fig. 6. Identification of stone masonry classes for the secant elastic modulus E7q_;o0: (@) k = 2; and (b) k = 3.
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Fig. 7. Identification of stone masonry classes for the secant elastic modulus E_7¢: (a) k = 2; and (b) k = 3.
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Fig. 8. Identification of stone masonry classes for the shear moduli Gy_49 and G4o_7¢: (a) k = 2; and (b) k = 3.

In order to classify the masonry typology, MQI focuses on seven

parameters:

e conservation state and the mechanical properties of bricks or
stones (SM),

* stone/brick dimension properties (SD),

e stone/brick shape (SS),
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e wall leaf connections (WC),
* horizontal mortar joints characteristics (HJ),
» vertical joints characteristics (VJ), and
* mortar mechanical properties (MMP).
The MQI for the stone masonry is obtained combining the afore-
mentioned parameters according to the following formula:
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Fig. 10. Identification of stone masonry classes for the shear modulus Gy_7: (a) k = 2; and (b) k = 3.
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Table 2. Probability associated to each stone masonry class obtained with
MQI and cluster analysis based on elastic modulus E and shear modulus G

Table 3. Probability associated to each stone masonry class obtained with
MQI and cluster analysis based on compressive strength f,

MQI Data analysis cluster Ejy_4y Data analysis cluster Gy_49 MQI Data analysis cluster f,,
classification Class I Class I Class III Class I Class II Class III classification Class 1 Class II Class IIT
MQI-Class 1 0.06 0 0 0.14 0 0 MQI-Class 1 0.06 0.22 0
MQI-Class I  0.43 0.23 0.20 0.48 0.14 0.03 MQI-Class 1I 0.11 0.29 0.23
MQI-Class Il 0 0.02 0.06 0.09 0.09 0.03 MQI-Class III 0 0.06 0.03

Note: Bold values are used for values in the diagonal of the matrix and
correspond to the probability of having the same class identification with
the two methods.

MQI = SM x (SD + SS + WC + HJ + V] + MMP)  (9)

and can be evaluated for vertical actions (MQI,), horizontal in-
plane actions (MQI,,), and horizontal orthogonal actions (MQIL,)
as a function of the actions acting on the wall.

Each parameter influences the index according to its quality. In
more detail, the method takes into account the level of fulfillment of
the single parameter with respect to the ideal standard for that cat-
egory, e.g., the brick shape (SM) can have different values depend-
ing on the level of accordance between the analyzed bricks with the
best-performing standard shape. Therefore, each parameter corre-
sponds a numerical value and a different weight.

Finally, by means of empirical relationships, a range of variation
for mechanical parameters of masonry is obtained, i.e., compressive
strength f,, and modulus of elasticity £ depending on MQI,,, and
shear strength 7, and shear modulus G depending on MQI,.

Obviously, like every scoring system, MQI is extremely subjec-
tive, being strongly dependent on engineering judgement, i.e., on
the inspector’s skills. One of objectives of the proposed procedure
is to make it more objective. In the present study, MQI, and MQI,
have been estimated through a refined evaluation of all needed
parameters for relevant stone masonry panels for which the results
of double-flat-jack tests were available.

For vertical actions
* stone masonry associated with MQI, <2 was assigned to the

low-quality stone class (Class 1),

* those characterized by 2 <MQI, <4 were assigned to the
medium-quality stone class (Class II), and
* those associated with MQI, >4 were characterized as high-

quality stone (Class III).

For horizontal actions
* stone masonry associated with MQI,, < 1.5 were assigned to the

low-quality stone class (Class 1),

e those characterized by 1.5 <MQI, <2 were assigned to the
medium-quality stone class (Class II), and
e those associated to MQI, > 2 were characterized as high-

quality stone (Class III).

These results are subsequently compared with those obtained
for the identified clusters as derived from compression tests. The
combined probabilities associated to the two classification methods
are summarized in Table 2 referring to Ey_49 and Gy_4 and in
Table 3 referring to f,,.

Combining the probabilities in Tables 2 and 3 by means
of Eq. (6), it is then possible to evaluate the probability to cor-
rectly identify a masonry class, given its MQI, in short, p(Class
I “OR” Class II “OR” Class III | MQI).

For example, the probability to have a masonry in Class I for the
elastic modulus E given a MQI, < 2 will be

p(MQI, < 2|Class I)p(Class I)
p(MQI, <2)

p(Class I]MQI, < 2) = (10)
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Note: Bold values are used for values in the diagonal of the matrix and
correspond to the probability of having the same class identification
with the two methods.

Statistical parameters of the marginal distribution are finally de-
rived from the updated probabilities via Eqs. (6) and (7). It is worth
mentioning that the probability of a correct identification based
only on MQI is generally very low. In fact, as said previously,
the identification of masonry classes based only on visual inspec-
tion by means for example the masonry quality index (MQI) is not
sufficient for a complete and reliable classification. Considering,
for example, vertical actions, MQI,, is a very useful tool to recog-
nize high-quality masonry, MQI, >4, or low-quality masonry,
MQI, < 2, so avoiding expensive experimental in situ tests and pre-
serving the structural integrity. However, for the majority of stone
masonry, for which 2 <MQI, <4, experimental tests could be
essential.

The latter remark is confirmed by comparing the estimated
MQI, with experimental test results such as those referring to
E1g_40 in Fig. 11. Examining the diagrams, it clearly emerges that
MQI,, < 2 reliably identifies low-quality masonry and MQI, > 4
reliably identifies high-quality masonry, but 2 < MQI,, < 4 identi-
fies masonry belonging to every experimental classes and so is not
capable of classifying precisely the masonry itself.

The results of the inference procedure for E,_4, based only on
the MQI are reported in Table 4, confirming the capability of the
method to reduce the uncertainty associated to the investigated
parameter only for low-quality masonry (MQI, = 1) and high-
quality masonry (MQI, = 4).

Of course, further sequential updates are possible as soon as new
in situ measurements become available, leading to a more precise
identification of material classes. Performing, for example, a dou-
ble-flat-jack test on the investigated masonry wall, a more satisfac-
tory update can thus be obtained.

The results of the inference procedure for Ey_4 are reported
in Table 5 for a masonry wall of the primary school Giotto in
Florence, Italy, which is the masonry school building further
investigated in the following sections. In this case, the capability
of the method to reduce the uncertainty associated to the investi-
gated parameter is confirmed also for medium-quality masonry
(MQI, = 3 and MQI, = 2).

Case Study

Updating the Capacity Curves of Masonry Walls

To obtain a proper evaluation of the vulnerability of existing ma-
sonry buildings and to design efficient strengthening interventions,
not only are reliable analysis methods necessary, but also refined
characterization of the seismic behavior of masonry walls is
needed. In that perspective, accurate estimations of mechanical
parameters are essential to obtain a consistent classification of seis-
mic performance by means of a seismic risk index (Croce et al.
2018c; Beconcini et al. 2019).
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Fig. 11. Identification of stone masonry classes for the elastic modulus Eq_4: (a) according to cluster analysis; (b) according to MQI; and
(c) comparison between cluster analysis classification and MQI classification.

Table 4. Statistical parameters of the PDFs for elastic modulus E before Assuming a diagonal tension-shear failure mode (TurnSek and
and after the update according to different MQI,, Cacovie 1971) for the wall, according to the provision in the
Prior (whole BN+MQI ~ BN+MQI BN + MQI Eurocode 8 Part 3 (CEN 2005b), the following formulas apply:
Statistical data set) MQI, =1) MQIL, =25 MQI, =4) GA G /h\2\-!
parameters Ej_49 Eyg_49 Eo_40 Eyo_49 k= 121 (1 + 1.2E (7) ) (1)
1 (N/mm?) 1,815 1,131 1,803 2,395
o (N/mm? 715 322 681 688 1.57 o
C(gV/ : 0.39 0.29 0.38 0.29 Hra=A b S/ + 1 5:' (12)
DTk
6, = 0.004h (13)

In the previous sections, a procedure for the identification of Considering that the geometry of the wall is well defined and
masonry classes and their associated PDFs for material parameters that the ultimate displacement can be generally represented as a
has been illustrated. The assessment of material properties and their function of the interstory height (Italian Public Works Council
associated uncertainty in terms of PDFs provides the basis for a 2019; CEN 2005b; NZSEE 2006; ATC 1997), the shear behavior
probabilistic description of the capacity curves of masonry walls is mainly characterized by a significant inherent uncertainty in the
to be used in nonlinear static analysis. identification of the effective stiffness k through the moduli £ and

Nonlinear static analyses are commonly adopted for the evalu- G and shear strength 7,. Finally, the identification of masonry
ation of the seismic performance of masonry buildings because classes and the consequent update of the PDFs of masonry param-
in many standards, such as Eurocode 8 Part 3 (CEN 2005b) or eters obtained by means of the proposed methodology allow for a
the Italian Building Code (Italian Ministry of Infrastructure and refined probabilistic description of the capacity curves.
Transport 2018; Italian Public Works Council 2019), that technique Ilustrative results for a specific masonry panel characterized by
is indirectly recommended. h=0.97m, =090 m, t =0.48 m, and o, = 0.47 N/mm?, for

Simplified elastoplastic bilinear curves with given displacement which a shear compression test has been also carried out, are re-
limits are used to model the actual hysteretic behavior of masonry ported in Fig. 12. Because insufficient data are currently available
walls subjected to vertical and horizontal loads. The bilinear curve in the database to perform the illustrated cluster analysis for the
is identified by an initial linear-elastic branch defined by the lateral shear strength, the shear strength 7 has been derived from the shear
stiffness k, followed by a plastic plateau corresponding to the shear modulus according to the procedure suggested by Croce et al.
strength of the wall Hp, and limited by the interstory elastic drift 6, (2018a, 2019a), assuming for the G/ ratio a lognormal distribu-
and ultimate interstory drift, 0,,. tion with mean equal to 1,500 and COV = 0.3.

Table 5. Statistical parameters of the PDFs for elastic modulus E and shear modulus G before and after the update

BN + test
BN + MQI (MQI, = 3, (E1o_s0 = 3,022 N/mm?,
Prior (whole data set) MQI, =2) Go_sp = 413 N/mm?)

Statistical parameters Ejp49 G1o-40 Eyg_49 Gio-40 Ey9_40 G1o_40
st (N/mm?) 1,815 665 1,803 625 2,840 429
o (N/mm?) 715 355 681 341 238 138
COv 0.39 0.53 0.38 0.54 0.09 0.32
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Fig. 12. Prior and posterior range of variation (1 + 20) of capacity
curves for the stone masonry.

Fig. 12 shows the prior range of variation based on the lognor-
mal fit of the whole data set of moduli £ and G as well as the up-
dated range obtained with the proposed procedure.

When shear compression in situ test results are also available, the
obtained capacity curves can be further updated. Figs. 13(a and b)
show the test arrangement on the stone masonry panel described pre-
viously, as well as the results of the tests carried out by the authors in
terms of horizontal load-displacement H-6 curves.
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Finally, the updated range of variation for the capacity curves
can be used for a robust probabilistic assessment of the seismic risk
index in nonlinear static analysis (Croce et al. 2019a). In the fol-
lowing section, a relevant case study concerning the assessment of
the seismic performance of a 3-story existing masonry building is
illustrated to highlight the capabilities of the proposed procedure.

Updating the Seismic Risk Index

The case study refers to the already mentioned primary school
Giotto in Florence, Italy. The school, built in 1907-1908 and par-
tially raised by a floor in 1968, is a 3-story building with an overall
height of 15 m and interstory height around 5 m.

The structure has a U-shaped layout for the first two stories,
which have an area of around 780 m? each, and the last floor
presents a reduced rectangular area of 620 m?>.

The load-bearing structure is made of stone masonry with a
thickness of 0.60 m for the perimeter walls and 0.50 m for the in-
ternal walls. These large volumes and the massive stone walls char-
acterize the shape of the building, conferring a robust and compact
appearance. The horizontal floors are characterized by the presence
of horizontally rigid nondeformable slabs. Fig. 14 shows the inves-
tigated building together with a three-dimensional (3D) model of
resistant walls.

In order to evaluate the seismic assessment of the structure,
a global nonlinear static analysis (pushover analysis) has been car-
ried out by means of the E-PUSH version 4.1. program (Croce et al.
2019a; Beconcini et al. 2018).

The global capacity curve of the structure is evaluated and com-
pared with the displacement demand in the acceleration displace-
ment response spectra (ADRS) plan. Comparing the displacement
capacity and demand, the seismic risk index of the structure (/) is
obtained. As known, I is defined as the ratio between the maxi-
mum peak ground acceleration resisted by the structure PGA and
the design peak ground acceleration PGAp,.

T T T

- - - - Experimental curve
— Bilinear curve 4

6 [mm]

(b)

Fig. 13. (a) Shear compression test of stone masonry panels (image by Pietro Croce); and (b) load-displacement curve.
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Fig. 14. (a) Giotto primary school (image by Vincenzo Zotti); and (b) E-PUSH 3D model for the case study.

7 T T T T T T
—Prior - ©=1.13; 0=0.21 ; COV=0.19
— Posterior - 4=0.85 ; 6=0.07 ; COV=0.08

Fig. 15. Prior and posterior PDF for the seismic risk index IR in the
case study.

As discussed previously, because the results of nonlinear static
analysis, in terms of seismic risk indexes, are highly influenced by
the capacity curves adopted for the masonry walls, a probabilistic
analysis should be carried out (Croce et al. 2019a, b), aiming to
obtain a reliable assessment. With this objective, a wide Monte
Carlo simulation has been carried out. In that simulation, nonlinear
static analysis is performed, and the corresponding seismic risk in-
dex is thus computed for each individual experiment, whose param-
eters are obtained by suitable random sampling from the previously
identified PDFs of the mechanical parameters.
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The probability density functions of the seismic risk index ob-
tained considering the prior distributions for E and G and the up-
dated PDFs are compared in Fig. 15. The results highlight that
thanks to identification of masonry classes, the method contributes
to reduce the uncertainty in the evaluation of seismic risk index.
Evidently, the refined assessment of the seismic risk index, al-
lowing a more reliable seismic performance classification, can help
the owners to identify most vulnerable structures and thus better
address maintenance and seismic retrofit strategies and give guid-
ance about prioritization of the interventions as well.

Conclusions

A procedure for the identification of masonry classes and their
mechanical parameters is presented, aiming to provide a refined
probabilistic description of shear behavior of masonry walls to
serve as a basis for seismic assessment of existing buildings. The
focal point of the whole methodology is a cluster analysis of avail-
able data sets of mechanical parameters based on Gaussian mixture
model allowing suitable classification of existing buildings in terms
of masonry classes as well as definition of the PDFs of influencing
mechanical parameters.

The Gaussian mixture model automatically leads to the defini-
tion of a Bayesian network composed by two nodes, namely the
material class and the mechanical property, which can be used
to infer the material class of an investigated structure provided that
specific observations are available.

The a priori identification of masonry classes is assessed by
means of a simplified method based on visual inspection of the ma-
sonry, whose outcome is the masonry quality index. Like other
scoring systems, the MQI is extremely subjective and highly de-
pendent on engineering judgment and skill of the inspector. In fact,
it results are trustworthy only in recognizing low- or high-quality
masonry, characterized by well-evident properties. Then, a further,
more effective, update is performed relying on results of experi-
mental semidestructive in situ tests.

The proposed method has been applied to some identification
of masonry classes in a relevant case study. Starting from avail-
able results of standard in situ compression tests, in terms of the
elastic modulus E, shear modulus G, and compressive strength
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fm obtained on similar structures supplemented by specific in situ
tests, if any, the relevant homogenous populations have been iden-
tified by means of a cluster analysis based on a GMM. In this way
the need to carry out expensive and often very invasive destructive
tests is significantly limited. The procedure, leading to a significant
reduction of the uncertainties in the characterization of masonry
mechanical parameters and facilitating the appropriate identifica-
tion of stone masonry classes, largely confirmed its potentialities.

The updated PDFs of masonry mechanical parameters obtained
according the aforementioned procedure can be used to improve
the evaluation of capacity curves of masonry walls, obtain a more
refined probabilistic description of their shear behavior, and thus
reduce the uncertainty in the assessment of seismic performance
of existing buildings, as demonstrated by a relevant case study
concerning the evaluation of the seismic risk index of a masonry
building school in Florence, Italy.

Data Availability Statement

Some or all data, models, or code that support the findings of this
study are available from the corresponding author upon reasonable
request.
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