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ABSTRACT KEYWORDS

In this study, new analytical solutions to the equations of motion of a propelled spacecraft

are investigated using a shape-based approach. There is an assumption that the spacecraft

travels a two-dimensional spiral trajectory in which the orbital radius is proportional

to an assigned power of the spacecraft angular coordinate. The exact solution to the

equations of motion is obtained as a function of time in the case of a purely radial

thrust, and the propulsive acceleration magnitude necessary for the spacecraft to track

the prescribed spiral trajectory is found in a closed form. The analytical results are

then specialized to the case of a generalized sail, that is, a propulsion system capable of

providing an outward radial propulsive acceleration, the magnitude of which depends on

a given power of the Sun-spacecraft distance. In particular, the conditions for an outward

radial thrust and the required sail performance are quantified and thoroughly discussed.

It is worth noting that these propulsion systems provide a purely radial thrust when

their orientation is Sun-facing. This is an important advantage from an engineering point

of view because, depending on the particular propulsion system, a Sun-facing attitude

can be stable or obtainable in a passive way. A case study is finally presented, where the

generalized sail is assumed to start the spiral trajectory from the Earth’s heliocentric

orbit. The main outcome is that the required sail performance is in principle achievable

on the basis of many results available in the literature.
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1 Introduction

Analytical solutions to the differential equations that

govern the motion of an orbiting propelled spacecraft are

available in few cases only [1–3]. Closed-form solutions

represent a very useful tool in the preliminary phase of

mission design as they significantly reduce the compu-

tational cost that would otherwise be required by the

numerical propagation of spacecraft dynamics.

Analytical solutions to the equations of motion can

be found by using two different approaches. The first

possibility is to solve the equations of motion for an as-

signed thrust profile, such as the case of a spacecraft

subjected to a constant radial or circumferential propul-

sive acceleration. This problem was first investigated

by Tsien [4], who found an explicit and an approximate

solution to the radial and the circumferential case, respec-

tively. Since then, many other authors have discussed the

constant radial thrust problem. Prussing and Coverstone-

Carroll addressed the problem of determining the escape

conditions and the amplitude of the spacecraft radial

displacement (in the absence of an escape) by introduc-

ing the concept of potential energy well, but confining

their analysis to the case of a circular parking orbit [5].

Later, Mengali and Quarta adopted the same approach in

order to extend the previous results to the more general

case of an elliptic parking orbit [6]. The explicit solu-

tion found by Battin in terms of elliptic integrals is also

noteworthy [7], as well as the accurate approximations

of the spacecraft trajectory and the flight time found

by Quarta and Mengali in terms of a Fourier series [8].

Gonzalo and Bombardelli found alternative solutions that
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Nomenclature

a semimajor axis (km)
ac characteristic acceleration (mm/s2)

ar propulsive acceleration, with ar , ar · r̂ (mm/s2)
{c1, c2} constants of integration, see Eq. (12)

e eccentricity vector, with e , ‖e‖
h specific angular momentum magnitude (km2/s)
O primary body center of mass
p semilatus rectum (km)
r orbital radius (km)
r̂ radial unit vector
r⊕ reference distance 1 au
S spacecraft center of mass
t time (year)
T polar reference frame
v spacecraft velocity vector (km/s)
vr radial component of v (km/s)
vθ transversal component of v (km/s)
α dimensionless spiral parameter, see Eq. (6)
β constant, see Eq. (61)
γ dimensionless design parameter, see Eq. (38)
θ polar angle (rad)

θ̂ transversal unit vector
µ gravitational parameter (km3/s2)
ν spacecraft true anomaly (rad)
χ dimensionless auxiliary function, see Eq. (14)
ω argument of periapsis (rad)

Subscripts

0 initial, parking orbit
max maximum
⊕ the Earth
� the Sun

Superscripts

· time derivative
∼ threshold value
? optimal

involve asymptotic expansions [9], while Izzo and Biscani

showed that a solution relating the state variables to a

time parameter can be expressed in terms of Weierstrass

elliptic and related functions [10].

After the pioneering work of Tsien [4], the constant

circumferential thrust problem has also been an object

of study. For example, Battin proposed an approximate

solution under the assumptions of circular parking or-

bit, two-dimensional motion, and low thrust [7]. More

recently, Quarta and Mengali proposed an analytical

approximation of the spacecraft escape conditions and

provided a simple expression for the escape distance [11],

while Niccolai et al. [12] analyzed the two-dimensional

dynamics of a spacecraft with a constant and circumfe-

rential low propulsive acceleration using the perturbative

approach conceived by Bombardelli et al. [13]. Finally,

Quarta et al. investigated the minimum-time trajecto-

ries from a circular parking orbit towards the apocenter

of a rectilinear ellipse assuming that the spacecraft is

subjected to a continuous circumferential thrust [14].

Benney was the first author to propose approximate

solutions to the motion of a spacecraft subjected to a

constant tangential thrust [15], while Boltz addressed

the same problem assuming that the ratio of the thrust

to the local gravitational pull is constant [16]. Finally,

it is worth mentioning the work of Roa et al. [17], who

presented a new analytical solution to the motion of a

continuously accelerated spacecraft, wherein its thrust

magnitude is assumed to decrease with the square of the

spacecraft orbital radius. In particular, Roa et al. found
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out that the dynamical system admits two integrals of

motion resulting from the energy and angular momentum

equations, and identified three subfamilies of spiral tra-

jectories depending on the sign of a modified mechanical

energy [17].

The second possibility to determine the analytical so-

lutions to the equations of motion is represented by the

shape-based approach. In this case, the thrust profile is

derived such that a given trajectory may be followed by

the spacecraft. For example, the possibility of generating

a logarithmic spiral trajectory was first investigated by

Bacon [18] and Tsu [19], the latter suggesting the use of

solar sails [20–22]. In fact, a solar sail can travel along a

logarithmic spiral with a constant attitude with respect

to the Sun–spacecraft line, as thoroughly discussed by

Bassetto et al. [23], who focused on the requirements to

be met to place a spacecraft in a logarithmic spiral trajec-

tory without any impulsive maneuver. Petropoulos and

Longuski introduced an exponential sinusoid where four

independent constants are used for describing the shape

of the spacecraft trajectory [24]. In particular, Ref. [24]

derived closed-form relations for the angular rate and

the required tangential acceleration. Then, Izzo used

the concept of the exponential sinusoid for solving the

multi-revolution Lambert’s problem [25], while Wall and

Conway proposed fifth- and sixth-degree inverse polyno-

mial functions that are capable of providing near-optimal

solutions to many mission scenarios [26]. Finally, Taheri

and Abdelkhalik developed a new flexible and effective

method, suitable for the preliminary design of different

scenarios, to approximate low-thrust trajectories using

the finite Fourier series [27–29].

In the context of shape-based approaches, the aim of

this paper is to analyze the generation of two-dimensional

spiral trajectories in which the spacecraft orbital radius

is proportional to a given power of its angular coordinate.

There is an assumption that the spacecraft is subjected

to a purely radial propulsive acceleration of adjustable

magnitude during the entire transfer. It turns out that

an exact solution to the equations of motion exists, al-

lowing all of the spacecraft state variables and the orbital

elements of the osculating orbit to be explicitly written

as a function of time.

The general solution, which can be applied to any

propulsion system that can provide a purely radial thrust,

is specialized in a heliocentric framework to the class

of the generalized sails [30–32]. This type of thrusters

includes all the propellantless propulsion systems that

provide an outward radial propulsive acceleration with

a magnitude that scales as a certain power of the Sun–

spacecraft distance. Electric solar wind sails (E-sails) [33–

37], magnetic sails (magsails) [38–42], solar sails [20–22],

and smart dusts (SDs) [43, 44] belong to this class of

propulsion systems. Each of them exploits a peculiar

form of energy coming from the Sun. In particular, E-

sails and magsails extract momentum from the charged

particles constituting the solar wind by using an artificial

electric and magnetic field, respectively. Differently, solar

sails and SDs take advantage of solar radiation pressure,

which acts on a membrane made of reflective material,

thus generating a propulsive acceleration. It is worth

noting that these propulsion systems provide a purely

radial thrust when their orientation is Sun–facing, that

is, when the sail nominal plane is orthogonal to the

propagation direction of photons or solar wind particles.

From an engineering point of view, this is a significant

advantage because such an attitude is easy to maintain in

most cases. For example, a Sun–facing attitude is shown

to be stable when using an E-sail [45], while SDs are able

to passively obtain a Sun–facing orientation thanks to an

appropriate system architecture (which is composed of

a single plate with many surface etches called “facets”)

that exploits solar radiation torques [46].

E-sail- and solar sail-based trajectories have already

been analyzed in an attempt to find approximate analy-

tical solutions to the equations of motion. For example,

Quarta and Mengali proposed an analytical approxima-

tion for the trajectory of a low-performance E-sail with

a constant thrust angle [47]. In a subsequent work [48],

Quarta and Mengali offered an approximate expression

of the E-sail heliocentric trajectory by reducing the pro-

blem to the dynamics of an equivalent nonlinear oscillator

with a single degree of freedom, and assuming that the

E-sail provides a purely outward radial thrust. Moreover,

Niccolai et al. analyzed the two-dimensional heliocentric

dynamics of an E-sail with a fixed attitude, and found an

approximate solution to the equations of motion through

the use of an asymptotic expansion procedure [49]. In the

field of solar sails, Quarta and Mengali investigated ap-

proximate solutions to circle-to-circle orbit transfers [50],

and Niccolai et al. analyzed solar sail trajectories with

an asymptotic expansion method [51], while Caruso et

al. presented a procedure to generate an approximate

optimal trajectory through a finite Fourier series [52].
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In this study, the characteristic acceleration necessary

for the generalized sail to track the desired heliocentric

spiral trajectory is found analytically. The characteristic

acceleration, which is a sail performance parameter, is

here defined as the magnitude of the radial propulsive

acceleration at the reference distance of one astronomi-

cal unit from the Sun. A continuous modulation of the

characteristic acceleration is actually feasible for all the

aforementioned sails. For example, the characteristic ac-

celeration of an E-sail may be controlled by modulating

the tether electrical voltage [45]. For a solar sail, such a

control may be achieved by partially or totally refolding

the reflective film, by rotating parts of it, or by vary-

ing the sail orientation over time to obtain a modulated

thrust that, on average, is purely radial [3, 53]. Another

option for controlling the characteristic acceleration of a

solar sail is to cover its reflective film with electrochromic

materials [54], which can change their reflectivity coeffi-

cient through the application of an electrical voltage.

The same strategy is commonly used for millimeter-scale

solar sails and SDs [43, 44]. Finally, the characteristic

acceleration of a Magsail can be adjusted, in principle, by

varying the electrical current flowing in its ring [40,41].

The remainder of this paper is organized as follows.

Section 2 deals with the trajectory analysis and presents

the analytical solution to the equations of motion assum-

ing a purely radial thrust and a direct proportionality

between the spacecraft orbital radius and a given power of

its angular coordinate. The magnitude of the propulsive

acceleration that is required for the spacecraft to track

the prescribed spiral trajectory is also derived in Section

2. Section 3 investigates the possibility of generating

heliocentric spiral trajectories using a generalized sail

and quantifies the conditions for an outward radial thrust

and the required sail performance. Section 4 discusses a

case study assuming that the sail enters the spiral trajec-

tory starting from the Earth’s heliocentric orbit. Finally,

Section 5 presents the concluding remarks.

2 Trajectory analysis

With reference to Fig. 1, consider a spacecraft S that ini-

tially covers a Keplerian parking orbit around a primary

body O of gravitational parameter µ, and introduce a

polar reference frame T (O; r̂, θ̂) with origin at O, where r̂

and θ̂ are the radial and transversal unit vectors, respec-

tively. The spacecraft position is described by the orbital

Fig. 1 Polar reference frame and spacecraft state variables.

radius r (i.e., the primary-spacecraft distance) and by the

polar angle θ, the latter being measured counterclockwise

on the parking orbit plane from a fixed direction. Be-

sides, let vr , v · r̂ and vθ , v · θ̂ be the two components

of the spacecraft velocity vector v; see Fig. 1. At the

initial time t = t0 , 0, the spacecraft angular position is

θ0 , θ(t0), the orbital radius is r0 , r(t0), and the two

components of the spacecraft velocity are vr0 , vr(t0)

and vθ0 , vθ(t0).

The spacecraft is equipped with a continuous-thrust

propulsion system that provides a purely radial propulsive

acceleration ar = arr̂ of adjustable magnitude |ar|. As

ar · θ̂ = 0, the specific angular momentum h , rvθ is a

constant of motion, and the transversal component of the

velocity vector may be written as vθ = r0vθ0/r. Hence,

the spacecraft dynamics is described by the following

system of nonlinear differential equations:

ṙ = vr (1)

θ̇ =
r0vθ0
r2

(2)

v̇r = − µ
r2

+
r20v

2
θ0

r3
+ ar (3)

v̇θ = −r0vθ0vr
r2

(4)

with initial conditions

r(t0) = r0, θ(t0) = θ0, vr(t0) = vr0 , vθ(t0) = vθ0 (5)

There is an assumption that the spacecraft is able to

exactly track a generic spiral trajectory in the form

r = r0

(
θ

θ0

)α
(6)

provided that the radial thrust magnitude may be suit-
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ably modulated. In Eq. (6), α ∈ R6=0 is a dimensionless

parameter that characterizes the type of spiral. Typical

examples are obtained with α = −1 (the hyperbolic spi-

ral), α = −1/2 (the lituus), α = 1/2 (the Fermat’s spiral),

and α = 1 (the Archimedean spiral). Note that, when the

trajectory is in the form of Eq. (6), the spacecraft radial

velocity vr is constrained to the transversal velocity vθ.

In fact, according to Eq. (6), the time derivative of r can

be written in a compact form as

ṙ =
αrθ̇

θ
(7)

Bearing in mind that vr = ṙ and vθ = rθ̇, Eqs. (6) and

(7) provide

vr
vθ

=
α

θ
(8)

so that the initial conditions in Eq. (5) must be selected

to satisfy the constraint

vr0 =
αvθ0
θ0

(9)

The time evolution of the spacecraft state variables

{r, θ, vr, vθ} can now be found. To that end, first consider

the time variation of the polar angle θ , θ(t), which may

be obtained by substituting Eq. (6) into Eq. (2) to get

the following first order differential equation:

θ̇ =
α2αv2α+1

θ0

r0v2αr0
θ−2α (10)

which can be solved by separation of variables. The

result is

θ =

{
c2[c1 + (1 + 2α)t]

1
1+2α , if α 6= {−1/2, 0}

c2 exp (c1t), if α = −1/2
(11)

where {c1, c2} are two constants of integration, given by

c1 =


αr0
vr0

, if α 6= {−1/2, 0}

−2vr0
r0

, if α = −1/2

c2 =


vθ0
r0

(
αr0
vr0

) 2α
1+2α

, if α 6= {−1/2, 0}

− vθ0
2vr0

, if α = −1/2
(12)

The two cases of α 6= {−1/2, 0} and α = −1/2 are now

analyzed separately.

2.1 Case of α 6= {−1/2,0}

In this scenario, rearranging Eqs. (11) and (12), the time

variation of the spacecraft polar angle can be rewritten

as

θ =
αvθ0
vr0

χ
1

1+2α (13)

where

χ , 1 +
(1 + 2α)vr0t

αr0
(14)

is a dimensionless auxiliary function of time. Substituting

Eq. (13) into Eq. (6), the χ-variation of the primary-

spacecraft distance becomes

r = r0χ
α

1+2α (15)

while, with the aid of Eqs. (7) and (10), the two compo-

nents of the spacecraft velocity vector are

vr = vr0χ
− 1+α

1+2α , vθ = vθ0χ
− α

1+2α (16)

Equation (15) provides a positive value of r as long as

(1 + 2α)vr0/α > 0. When, instead, (1 + 2α)vr0/α < 0,

the physical constraint r > 0 is met provided that

t < tmax , − αr0
(1 + 2α)vr0

(17)

Finally, note that, when vr0 > 0, r → +∞ as t→ +∞
(or t→ tmax) if α < −1/2 or α > 0 (or −1/2 < α < 0).

Conversely, r → 0 as t→ tmax (or t→ +∞) if α < −1/2

or α > 0 (or −1/2 < α < 0).

The closed-form expressions of the state variables allow

the orbital elements {a, e, ω, ν} of the osculating orbit to

be analytically determined as a function of time. To that

end, consider the eccentricity vector e, defined as

e , err̂ + eθθ̂ =
p− r
r
r̂ − rvrvθ

µ
θ̂ (18)

where p ≡ p0 , r20v
2
θ0
/µ is the (constant) semilatus

rectum of the spacecraft osculating orbit. From Eqs. (15)

and (16), the radial and transversal components of e may

be explicitly written as

er =
r0v

2
θ0

µ
χ−

α
1+2α − 1 (19)

eθ = −r0vr0vθ0
µ

χ−
1+α
1+2α (20)

Accordingly, the eccentricity e of the spacecraft oscu-

lating orbit is

e = ‖e‖ =

√√√√√√√
r20v

4
θ0

µ2
χ−

2α
1+2α −

2r0v
2
θ0

µ
χ−

α
1+2α

+1 +
r20v

2
r0v

2
θ0

µ2
χ−

2+2α
1+2α

(21)
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whereas the semimajor axis a is

a =
p0

1− e2
=

µr0

2µχ−
α

1+2α − r0v2θ0χ
− 2α

1+2α − r0v2r0χ
− 2+2α

1+2α

(22)

Because the argument of periapsis is here defined as the

angle between the initial primary-spacecraft line and the

direction of e (see Fig. 2), the expression of ω ∈ [0, 2π)

rad is

ω =
αvθ0
vr0

(χ
1

1+2α − 1) + arctan

 −vr0
vθ0

χ−
1+α
1+2α

χ−
α

1+2α − µ

r0v2θ0


(23)

Finally, the spacecraft true anomaly ν ∈ [0, 2π) rad

along the osculating orbit is

ν = − arctan

 −vr0
vθ0

χ−
1+α
1+2α

χ−
α

1+2α − µ

r0v2θ0

 (24)

2.2 Case of α = −1/2

In this case, using again Eqs. (11) and (12), the function

θ , θ(t) can be written as

θ = − vθ0
2vr0

exp

(
−2vr0t

r0

)
(25)

Substituting Eq. (25) into Eq. (6) provides the time

variation of the orbital radius, viz.

r = r0 exp

(
vr0t

r0

)
(26)

with r > 0 for any t > t0. Note that now r → +∞ (or

r → 0) when vr0 > 0 (or vr0 < 0) as t→ +∞. Moreover,

the two components of the spacecraft velocity vector are

vr = vr0 exp

(
vr0t

r0

)
, vθ = vθ0 exp

(
−vr0t
r0

)
(27)

Fig. 2 Eccentricity vector components and angle ω.

while the radial and transversal components of e are

er =
r0v

2
θ0

µ
exp

(
−vr0t
r0

)
− 1 (28)

eθ = −r0vr0vθ0
µ

exp

(
vr0t

r0

)
(29)

Accordingly, the osculating orbit eccentricity e is

e =

√√√√√√√
r20v

4
θ0

µ2
exp

(
− 2vr0 t

r0

)
−

2r0v
2
θ0

µ
exp

(
− vr0 tr0

)
+1 +

r20v
2
r0v

2
θ0

µ2
exp

(
2vr0 t

r0

)
(30)

whereas the semimajor axis a becomes

a =
µr0

2µ exp

(
−vr0t
r0

)
− r0v2θ0 exp

(
−2vr0t

r0

)
−r0v2r0 exp

(
2vr0t

r0

)
(31)

Finally, the angle ω is given by

ω =
vθ0
2vr0

[
1− exp

(
−2vr0t

r0

)]

+ arctan


−vr0
vθ0

exp

(
vr0t

r0

)
exp

(
−vr0t
r0

)
− µ

r0v2θ0

 (32)

while the spacecraft true anomaly ν along the osculating

orbit is

ν(t) = − arctan


−vr0
vθ0

exp

(
vr0t

r0

)
exp

(
−vr0t
r0

)
− µ

r0v2θ0

 (33)

2.3 Required propulsive acceleration

Having shown that a spiral trajectory in the form of

Eq. (6) is actually a particular solution to the equations

of motion of a radially propelled spacecraft, the required

propulsive acceleration can now be calculated. To that

end, recall that ar must satisfy Eq. (3) at any time t > t0.

Substituting Eqs. (1) and (2) into Eq. (3) yields

ar = αr0
θα−2

θα0
[θθ̈ + (α− 1)θ̇2]

− r0θ̇2
(
θ

θ0

)α
+
µ

r20

(
θ0
θ

)2α

(34)
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where {θ̇, θ̈} are obtained from Eqs. (13) and (25) as

θ̇ =


vθ0
r0
χ−

2α
1+2α if α 6= {−1/2, 0}

vθ0
r0

exp

(
−2vr0t

r0

)
if α = −1/2

(35)

θ̈ =


−2vr0vθ0

r20
χ−

1+4α
1+2α if α 6= {−1/2, 0}

−2vr0vθ0
r20

exp

(
−2vr0t

r0

)
if α = −1/2

(36)

Accordingly, Eq. (34) can be rewritten using Eqs. (13),

(25), (35), (36) to obtain the expression of ar , ar(t) as

a function of {α, r0, vr0 , vθ0}, viz.

ar =



−1 + α

α

v2r0
r0
χ−

2+3α
1+2α −

v2θ0
r0
χ−

3α
1+2α +

µ

r20
χ−

2α
1+2α ,

if α 6= {−1/2, 0}

v2r0
r0

exp
(
vr0 t

r0

)[
1−

v2θ0
v2r0

exp

(
−4vr0t

r0

)]
+
µ

r20
exp

(
−2vr0t

r0

)
, if α = −1/2

(37)

Equation (37) provides the spacecraft propulsive ac-

celeration that is required to travel an assigned spiral

trajectory with r ∝ θα. The next section analyzes the

problem of creating a generic spiral trajectory using a

generalized sail-based spacecraft [30–32].

3 Generalized sail-based spiral trajecto-
ries

The results obtained so far are general because they may

be applied to any propulsive system that is able to provide

a purely radial thrust. An interesting class of propulsion

systems that may be employed for generating spiral tra-

jectories is offered by the generalized sails [30–32]. The

concept of generalized sail is useful for describing, in a

heliocentric mission scenario, the propulsive acceleration

of a propellantless propulsion system when the thrust

vector is oriented along the outward radial direction and

its magnitude depends on a given power of the Sun–

spacecraft distance r. Precisely, the expression of ar · r̂
for a generalized is

ar · r̂ = ac

(r⊕
r

)γ
(38)

where r⊕ , 1 au is a reference distance, ac > 0 is the

spacecraft characteristic acceleration (that is, the value

of ar · r̂ at a Sun–spacecraft distance equal to r⊕), and

γ > 0 is a dimensionless design parameter that defines

the type of propulsion system. For example, a value

of γ = 1 models an E-sail [45, 55], γ = 4/3 describes

the heliocentric behavior of a magsail with a large loop

radius [56,57], while γ = 2 is consistent with the thrust

model of a solar sail [20] or a magsail with a huge loop

radius [56,57].

In order to make the generalized sail-based spacecraft

capable of following the assigned spiral trajectory, the

radial propulsive acceleration of Eq. (38) must comply

with the required value of Eq. (37). To that end, it is

useful to rewrite Eq. (37) so that the dependence of ar
on the Sun–spacecraft distance r is made explicit, viz.

ar = −
(1 + α)v2r0r

2+2α
α

0

αr
2+3α
α

+
µ�
r2
−
r20v

2
θ0

r3
(39)

where µ� is the Sun’s gravitational parameter. Note that

Eq. (39) is valid for any α 6= 0 and, therefore, it also

includes the special case of α = −1/2. From Eqs. (38)

and (39), the required characteristic acceleration ac can

now be written as a function of r as

ac = −
(1 + α)v2r0r

2+2α
α

0

αrγ⊕r
2+3α−αγ

α

+
µ�

rγ⊕r
2−γ −

r20v
2
θ0

rγ⊕r
3−γ (40)

The characteristic acceleration of a generalized sail

must therefore be adjusted with continuity according to

Eq. (40) to maintain the spacecraft along the assigned

spiral trajectory of parameters {α, r0, vr0 , vθ0}.

3.1 Condition for a generalized sail outward
radial thrust

A generalized sail can only generate an outward propul-

sive acceleration, which amounts to stating that its char-

acteristic acceleration must be non-negative. For a given

value of α that defines the spiral type, it is therefore nec-

essary to investigate the conditions under which ac > 0

for t > t0.

First, consider the value of ac when r = r0. From

Eq. (40), one has

ac0 , ac(r0) = −
(1 + α)v2r0r

γ−1
0

αrγ⊕
+
µ�r

γ−2
0

rγ⊕
−
rγ−10 v2θ0
rγ⊕

(41)

which is positive when

vθ0 < ṽθ0 ,

√
µ�
r0
−

(1 + α)v2r0
α

(42)
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while it is equal to zero when vθ0 = ṽθ0 . In particular,

when α < −1 or α > 0, the inequality of Eq. (42) exists

only if |vr0 | 6
√

(1 + α)µ�/(αr0). Figure 3 shows the

maximum values of vθ0 that ensure a non-negative value

of ac0 . The contour lines in Fig. 3 are reported in the

plane (vr0 , r0) for α = {−1,−1/2, 1/2, 1}, that is, for a hy-

perbolic spiral, a lituus, a Fermat’s (or parabolic) spiral,

and an Archimedean (or arithmetic) spiral, respectively.

Note that, when α = −1, the initial transversal velocity

component must be less than
√
µ�/r0, regardless of vr0 ;

see Eq. (42) and Fig. 3(a). Instead, when α = −1/2, the

value of ṽθ0 is greater than vr0 for any r0; see Fig. 3(b).

Finally, the grey areas in Figs. 3(c) and 3(d) correspond

to the loci in which |vr0 | >
√

(1 + α)µ�/(αr0).

Equation (41) allows the designer to find the initial

orbital parameters such that ac0 = 0. To that end, the

initial radial velocity component may be written as

vr0 =

√
µ�
p0
e0 sin ν0 (43)

where e0 , e(t0) is the parking orbit eccentricity and ν0 ,

ν(t0) is the initial spacecraft true anomaly. Substitute

Eq. (43) into Eq. (42) to obtain

ṽθ0 =

√
µ�
p0

√
1 + e0 cos ν0 −

(
1 + α

α

)
e20 sin2 ν0 (44)

from which the tangent of the flight path angle when

ac0 = 0 is found as

e0 sin ν0
1 + e0 cos ν0

=
vr0
ṽθ0

≡ e0 sin ν0√
1 + e0 cos ν0 −

(
1 + α

α

)
e20 sin2 ν0

(45)

Assuming e0 ∈ (0, 1], Eq. (45) can now be solved with

respect to cos ν0, and the result is

cos ν0 =
α− sign (α)

√
α2 + 4e20(1 + α)

2e0
(46)

where sign (2) is the signum function. When e0 > 1

(hyperbolic parking orbit), Eq. (45) provides

cos ν0 =



α±
√
α2 + 4e20(1 + α)

2e0
,

if − 2e0(e0 −
√
e20 − 1) < α < −1

α+
√
α2 + 4e20(1 + α)

2e0
, if − 1 6 α < 0

(47)

which implies that no solutions exist if α 6 −2e0(e0 −√
e20 − 1) or α > 0.

When investigating generalized sail-based spiral tra-

jectories, it is reasonable to confine the analysis to the

case of outward heliocentric spirals. In fact, an inward

spiral would entail a negative value of ac in some parts

of the propelled trajectory and, as such, it could not be

followed by a generalized sail. The following analysis is

also limited to the case of elliptic parking orbits.

Assume now that the spacecraft starts a heliocentric

spiral when ac0 = 0. According to Eq. (46), the spacecraft

initial true anomaly is given by

(a) Hyperbolic spiral (α = −1). (b) Lituus (α = −1/2).

(c) Fermat’s spiral (α = 1/2). (d) Archimedean spiral (α = 1).

Fig. 3 Variation of ṽθ0 with {vr0 , r0} for α = ±{1/2, 1}.
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ν0 = ν̃0 , arccos

[
α− sign (α)

√
α2 + 4e20(1 + α)

2e0

]
(48)

Note that ac0 < 0 when ν0 ∈ (0, ν̃0), while ac0 > 0 when

ν0 ∈ (ν̃0,π rad). For example, Fig. 4 shows the variation

of ν̃0 with α for e0 = {0.1, 0.2, 0.3}. In particular, ν̃0 <

π/2 rad if α ∈ (−1, 0), ν̃0 = π/2 rad if α = −1, while

ν̃0 > π/2 rad if α < −1 or α > 0.

When ν0 = ν̃0, the value of ac is non-negative along

the generic spiral when

(1 + α)v2r0r0

αµ�

[
1−

(r0
r

)2/α]
+

r

r0
− 1 > 0 (49)

where, bearing in mind Eq. (48), v2r0 and r0 are given by

v2r0 =
µ�
p0

[
e20 −

(p0 − r0)2

r20

]
(50)

r0 =
2p0

α− sign (α)
√
α2 + 4e20(1 + α) + 2

(51)

Equation (49) is met for any r > r0 when α 6 −2 or

α > −1. If, instead, α ∈ (−2,−1), Eq. (49) is valid as

long as the orbital radius is less than a threshold value,

beyond which the value of the required characteristic

acceleration becomes negative.

In other terms, when α ∈ (−2,−1), the required charac-

teristic acceleration increases until a maximum is reached,

after which it starts decreasing and eventually takes neg-

ative values. The value of r at which ac becomes negative

depends on α and on the parking orbit characteristics, as

shown in Fig. 5 for e0 = {0.1, 0.2, 0.3}. In particular, the

grey areas in Fig. 5 correspond to the combinations of α

Fig. 4 Variation of ν̃0 with α for e0 = {0.1, 0.2, 0.3}.

(a) e0 = 0.1.

(b) e0 = 0.2.

(c) e0 = 0.3.

Fig. 5 Sign of ac as a function of {α, r} when ac0 = 0 and
e0 = {0.1, 0.2, 0.3}.

Fig. 6 Sign of ac as a function of {α, r} for ac0 = 0 and
e0 = e⊕.

and r when ac < 0, while the contour lines represent the

condition ac = 0.

Note that ac < 0 occurs when r is several orders of

magnitude greater than r0. Thus, the required charac-

teristic acceleration is in practise always non-negative,
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especially when small values of e0 are handled. For ex-

ample, when e0 = e⊕, the minimum value of r that would

yield a negative ac is more than 5 orders or magnitude

greater than r0, and it occurs when α ' −1.04; see Fig. 6.

3.2 Required sail performance

Having found the conditions under which the general-

ized sail is able to provide an outward radial propulsive

acceleration, the maximum required characteristic accel-

eration can now be determined. First, it is necessary to

find the values of {α, γ} such that ac is upper limited,

that is, it converges to a finite value as r → +∞. To

that end, since no propellantless propulsion systems are

known with γ > 2, assume that γ 6 2. In this case,

the sum of the second and third term in the right-hand

side of Eq. (40) reaches zero as r → +∞ when γ < 2,

while it tends to µ�/r
2
⊕ as r → +∞ when γ = 2. There-

fore, bearing in mind Eq. (40), the required characteristic

acceleration is upper limited as long as

2 + 3α− αγ
α

> 0 (52)

Figure 7 shows the limits of ac as r → +∞ for α ∈
[−2, 2] and γ ∈ [0, 2]. When {α, γ} belong to the grey

areas in Fig. 7, the inequality (52) is met and the required

propulsive acceleration tends to zero. In particular, when

the limit is 0−, the required characteristic acceleration

first reaches a positive global maximum, then a negative

global minimum and finally tends to zero. Instead, when

the limit is 0+, ac simply reaches the global maximum

before decreasing to zero without ever having negative

values. In the white region, ac reaches a positive global

maximum and then it decreases indefinitely. Note that

Fig. 7 confirms what was shown in the previous section

about the sign of ac. In fact, when α < −1, ac actually

reaches negative values, even if this occurs when r is

several orders of magnitude greater than r0. Finally, in

the hatched area ac → +∞. It is worth noting that the

hatched area is crossed by a dotted line. When {α, γ} lie

below the dotted line, the required propulsive acceleration

first reaches a local maximum, then a local minimum and

finally tends to +∞. Instead, when {α, γ} lie above the

dotted line, ac is a monotonic increasing function of r. For

example, when α = −1/2, ac has both a local maximum

and a local minimum as long as γ 6 1.6350. Moreover,

when γ = {0, 1, 4/3}, ac becomes a monotonic increasing

function of r when α > {−0.2395,−0.3361,−0.4000},
respectively.

Fig. 7 Limit of ac as r → +∞ as a function of {α, γ}.

The solid black line that delimits the gray region in

the lower left part of Fig. 7 is described by the equation

γ = 3 + 2/α with α ∈ [−2,−2/3]. If {α, γ} belong to

that locus, then the required value of the characteristic

acceleration becomes

ac = −
(1 + α)v2r0r

2+2α
α

0

αr
2+3α
α
⊕

+
µ�

r
2+3α
α
⊕ r−

2+α
α

(
1− p0

r

)
(53)

from which

lim
r→+∞

ac =



µ�
r2⊕

(
1−

r0v
2
r0

2µ�

)
, if α = −2

−
(1 + α)v2r0r

2+2α
α

0

αr
2+3α
α
⊕

, if α ∈ (−2,−2/3)

v2r0
2r0

, if α = −2/3

(54)

In particular, the sign of the second expression in the

right-hand side of Eq. (54) is

−
(1 + α)v2r0r

2+2α
α

0

αr
2+3α
α
⊕

< 0, if α ∈ (−2,−1)

−
(1 + α)v2r0r

2+2α
α

0

αr
2+3α
α
⊕

= 0, if α = −1

−
(1 + α)v2r0r

2+2α
α

0

αr
2+3α
α
⊕

> 0, if α ∈ (−1,−2/3)

(55)
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Another special case occurs when γ = 2 and the re-

quired characteristic acceleration becomes

ac = −
(1 + α)v2r0r

2+2α
α

0

αr2⊕r
2+α
α

+
µ�
r2⊕

(
1− p0

r

)
(56)

from which

lim
r→+∞

ac =



µ�
r2⊕

(
1−

r0v
2
r0

2µ�

)
, if α = −2

−∞, if α ∈ (−2,−1)
µ�
r2⊕

, if α = −1

+∞, if α ∈ (−1, 0)
µ�
r2⊕

, if α ∈ (0, 2]

(57)

Finally, note that the hatched and the white areas are

separated from each other by the vertical line of equation

α = −1, where ac → 0+. In this case, which is consistent

with a hyperbolic spiral, Eq. (40) reduces to

ac =
µ�

rγ⊕r
2−γ

(
1− p0

r

)
(58)

which is non-negative as long as r0 > p0.

The stationary points of ac may be computed (provided

that they exist) as a function of {α, γ} by solving the

equation ∂ac/∂r = 0 for a given value of ν0. Assuming

ν0 = ν̃0 (i.e., when vθ0 = ṽθ0), the result is

(1 + α)v2r0r0

αµ�

[
γ − 3 +

3α− αγ + 2

α

(r0
r

)2/α]
+ (γ − 2)

r

r0
− γ + 3 = 0 (59)

Fig. 8 Maximum value of a?c as a function of {p0, γ} for a
hyperbolic spiral (α = −1).

Equation (59) admits an analytical solution when α =

{−2,−1, 2}. In those special cases the result is

r? =



(3− γ)r0
2− γ

, if α = {−2,−1}[
(3− γ)(1− β)+√

(3− γ)2(1− β)2 + 4(2− γ)(4− γ)β

]
r0

2(2− γ)
,

if α = 2

(60)

where

β ,
3v2r0r0

2µ�
(61)

It is worth noting that the equation ∂ac/∂r = 0 can

also be analytically solved when α = −1 (see Eq. (58))

for any value of ν0. In this case, the necessary condition

for a maximum (i.e., ∂ac/∂r = 0) provides

r? =
(3− γ)p0

2− γ
(62)

which is valid as long as γ < 2 because r? must also

satisfy the constraint r? > p0. Substituting Eq. (62) into

Eq. (58), the maximum value of ac is given by

ac(r
?) = a?c ,

µ�

rγ⊕p
2−γ
0

(2− γ)2−γ

(3− γ)3−γ
(63)

Figure 8 shows the maximum value of the required

characteristic acceleration as a function of {p0, γ} when

α = −1. It is worth noting that a?c decreases as p0
increases.

4 Case study

Consider a generalized sail-based spacecraft that leaves

the Earth’s sphere of influence on a parabolic escape

trajectory. Assume that the sail deployment occurs when

the true anomaly on the heliocentric parking orbit (which

therefore coincides with the Earth’s orbit) is ν0 = ν̃0; see

Eq. (48). In this scenario, the variation of ν̃0 with α is

shown in Fig. 9 for α ∈ [−2, 2], illustrating that, owing

to the small Earth’s orbit eccentricity, the value of ν̃0 is

very close to π/2 rad when |α| ∈ [1/2, 1].

The ratios r?/r0 that solve Eq. (59) are represented

in Fig. 10 for α ∈ [−1, 1], γ = {0, 4/3, 1, 1.635}, and

e0 = e⊕.

Note that, when α ∈ (−0.2395, 0), no stationary point

exists for all the considered values of γ, which implies that

ac always increases with r in that range; see also Fig. 7.
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Fig. 9 Variation of ν̃0 with α when e0 = e⊕.

Moreover, consistently with Fig. 7, Fig. 10 shows that ac

actually has two stationary points (that is, a positive local

maximum and a positive local minimum) before going

to +∞ when α ∈ (−1,−0.2395). It is also worth noting

that the second stationary point (i.e., the positive local

minimum) is much greater than the first one (i.e., the

positive local maximum) when α ∈ (−1,−1/2] and γ =

{0, 1, 4/3}. This implies that the required characteristic

acceleration becomes greater than its local maximum

after a such large time interval that, basically, the local

maximum may be used as a design parameter of the

generalized sail.

Figure 10 shows that the dimensionless distance r?/r0,

at which a local maximum occurs, is nearly independent

of α when γ = {0, 4/3, 1} and α 6 −1/2 or α > 0.

This implies that, in those cases, the maximum required

characteristic acceleration is substantially independent of

the type of spiral that the spacecraft is travelling, but only

depends on the specific propulsion system. Therefore,

Eq. (63) may be used to estimate a?c when α 6= −1.

In the presented case study, p0 = p⊕ ' 0.9997208 au

and e0 = e⊕. Accordingly, Eq. (63) provides
a?c ' 0.8790 mm/s2, if γ = 0

a?c ' 1.4829 mm/s2, if γ = 1

a?c ' 1.9320 mm/s2, if γ = 4/3

(64)

Figures 11–14 show the trajectories and the re-

quired characteristic accelerations as a function of α =

{−1,−1/2, 1/2, 1}, when p0 = p⊕, e0 = e⊕, and ν0 = ν̃0.

In all cases, as expected, ac0 = 0. By comparing

Figs. 11(a), 12(a), 13(a), and 14(a), it is worth not-

ing that the orbital radius grows faster when α = −1/2,

that is, when the spacecraft travels a lituus. Instead, the

slowest growth of r occurs when α = 1/2, that is, when

the spacecraft travels a Fermat’s spiral. In fact, after

a 20 year-long journey, the spacecraft orbital radius is

approximately equal to 8.1684 au when α = −1/2, while

it is only 1.7512 au when α = 1/2. However, note that

the orbital radius grows even faster if α ∈ (−1/2, 0). In

fact, comparing Eqs. (15) and (26) it may be verified

that, when α ∈ (−1/2, 0):

χ
α

1+2α > exp

(
vr0t

r0

)
(65)

(a) α < 0 (b) α > 0

Fig. 10 Ratio r?/r0 that solves Eq. (59) as a function of {α, γ} for ac0 = 0 and e0 = e⊕.
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(a) Hyperbolic spiral trajectory from Earth’s orbit
assuming ν0 = ν̃0 = 90 deg.

(b) Required ac as a function of {t, γ}.

Fig. 11 Generalized sail-based hyperbolic spiral.

(a) Lituus trajectory from Earth’s orbit assuming
ν0 = ν̃0 ' 89.04 deg.

(b) Required ac as a function of {t, γ}.

Fig. 12 Generalized sail-based lituus.

for all t ∈ (0, tmax); see Eq. (17). Finally, Figs. 11(b),

12(b), 13(b), and 14(b) confirm that the maximum value

of ac essentially depends on γ only and prove that Eq. (63)

(which is exact when α = −1) provides an accurate

estimate of a?c when α 6= −1.

5 Conclusions

In this study, new analytical solutions to the equations

of motion of a radially propelled spacecraft have been

investigated, with the starting hypothesis that the space-

craft orbital radius is proportional to a given power of

its angular coordinate. The expressions of the spacecraft

state variables and the orbital elements of the osculating

orbit have been derived in exact form as a function of

time, and the required propulsive acceleration necessary

for the spacecraft to track the prescribed spiral trajectory

has been calculated a posteriori.

The analytical results have been specialized to the case

of a generalized sail, a propulsion system in which the

magnitude scales with an assigned power of the Sun–

spacecraft distance. The conditions for an outward radial
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(a) Fermat’s spiral trajectory from Earth’s orbit as-
suming ν0 = ν̃0 ' 92.87 deg.

(b) Required ac as a function of {t, γ}.

Fig. 13 Generalized sail-based Fermat’s spiral.

(a) Archimedean spiral trajectory from Earth’s orbit
assuming ν0 = ν̃0 ' 91.91 deg.

(b) Required ac as a function of {t, γ}.

Fig. 14 Generalized sail-based Archimedean spiral.

thrust and the required sail performance have been quan-

tified and thoroughly discussed, demonstrating that the

maximum required characteristic acceleration (a sail per-

formance parameter) is substantially independent of the

type of spiral, but it only depends on the features of

the specific propulsion system. Moreover, an analytical

approximation of the maximum required characteristic

acceleration has been proposed, which is valid for any

spiral and any type of generalized sail.

A case study has finally been presented, in which the

spacecraft parking orbit coincides with the Earth’s he-

liocentric orbit. In particular, it has been shown that

the maximum required characteristic acceleration is on

the order of one millimeter per second squared when the

spacecraft travels some reference spiral trajectories, a

feasible value on the basis of many results available in

the literature.
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