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Abstract. The reliable analysis of DC operating point in circuits with
positive feedback topology is often challenging, and frequently performed
with ad hoc methods. These techniques are often error prone and lead
to the frequent use of sub-optimal or unnecessary additional circuits for
the stabilization or determination of the operating point (startup cir-
cuits). We present a simple and reliable technique for the determination
of “stable” circuit solutions, that is based on the use of available cir-
cuit simulators and hence takes advantage of accurate device models.
The method has been experimentally validated on a self-biasing current
generator fabricated with a standard 0.18 µm CMOS process.
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1 Introduction

In the realm of electronic circuits containing active devices, the determination
of the operating point is a basic step of the design process. It is one of the few
engineering techniques requiring the solution of an inherently non-linear physical
system. Since non-linear systems cannot generally be solved in closed form, the
electronic designer has to resort to approximate solutions, numerical analysis
tools or, sometimes, clever ad hoc tricks. In fact, this intrinsic non-linearity is
seldom a problem, since most circuits are designed to have an operating point
that can be easily determined.

However, some applications demand the use of circuits for which the compu-
tation of the operating point is non trivial. The typical case is a circuit with a
positive feedback such as the well known Eccles-Jordan flip-flop. These circuits
can have a few operating points, some of which ”unstable”. Due to the mentioned
non-linearity, the analysis of these circuits can be challenging; furthermore, in
this case commonly used circuit simulators, such as SPICE, often provide unre-
liable information, since they can converge to the ”unstable” solution.

General methods have been developed for the non-linear analysis of active
circuits[1–3], but are generally too abstract, provide poor physical insight on
circuit operation, and are of little help to the circuit designer. As a consequence,
non-linear circuits are usually analysed with simple pencil and paper methods[4].
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Fig. 1. Self-biased current generator: simplified proof of concept circuit (a) and com-
plete circuit (b); M6, M7 and M8 are needed to set the bias point of M1 (a na-
tive transistor with negative threshold voltage); the operational amplifier imposes
VDSM3 = VDSM4 improving the accuracy of the upper current mirror; since in the
complete circuit V2 = 0 no generator is connected in series with M2.

These calculations are constrained to the use of crude first-level device models,
which can lead to grossly approximated solutions, missed solutions and also to
spurious solutions. Another common way to investigate the stability properties of
circuits is the use of (time consuming) transient simulations, but these can also
provide unreliable information in case of circuits with widely separated time
constants (ill-conditioned systems). In order to overcome these shortcomings,
we propose a method that is able to find the operating points and the stability
properties of many commonly used non-linear feedback circuits.

2 Problem definition

A non-linear time-independent circuit (i.e., without capacitors and inductors)
can be described with a system of equations F (x) = 0, where the vector x is
composed by node voltages and/or branch currents. The system can have an un-
known number of solutions xi. Most circuits have only one solution, but circuits
with more than one solution are well known. Eccles-Jordan circuits generally
have three solutions, one of which is ”unstable”.

We must note that even the ”stability” of the solution is not a well-defined
concept. Solutions of time-independent circuits cannot be ”stable” or ”unstable”.
Indeed, unstable solution are not solutions at all. A formal definition of ”stable
solution” can be found in [5]: a solution of F (x) = 0 is potentially stable if it is
possible to build — adding capacitors between nodes and inductors in series to
the branches of the given circuit — an augmented circuit which is robustly stable
in the time domain. Robustly stable means that the stability is not compromised
by the addition of another set of sufficiently small capacitors and inductors to
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the given circuits (i.e. the values of the first set of capacitors and inductors must
not be critical). Solutions which are not potentially stable are unstable.

Many non-linear circuits with more than one solution are based on a positive-
feedback loop topology, like, for example, self-biased current generators, in which
two current-controlled current generators are connected back-to-back in a positive-
feedback loop. We will take this circuit as an example for illustrating the method
(Fig.1a).

Transistors M3 and M4 form a linear current mirror, duplicating the current
fed into the drain of M4 (Iin um) onto the drain of M3 (Iout um). This current
mirror provides a linear relationship between its input and output:

Iout um = kumIin um, (1)

where kum depends on the geometry of M3 and M4. On the other hand, the
lower mirror (M1, M2, V1, and V2) provides a nonlinear relationship between
the input current (the drain current of M1, Iin lm) and the output (the drain
current of M2 Iout lm):

Iout lm = f(Iin lm). (2)

The ratio of the input to the output current klm depends on the input current.
At equilibrium we must have

kum = 1/klm. (3)

If klm is a monotonic function of the input the (3) can be satisfied for a single
set of circuit currents. However, as [4] points out, both mirrors of the circuit
provide zero current when fed with a zero input and hence another equilibrium
point exists, with all null currents (where klm is undefined). For this reason most
designers of self-biased current generators include a startup circuit which forces
the circuit to the desired solution, avoiding the zero-current one [6–8].

However, the above discussion is oversimplified. Simulating the circuit (with
a UMC .18 µm CMOS technology, and with identically sized M3 and M4) we find
that if β1 > β2 and V1 > V2, where βi = µCoxWi/Li (Wi and Li are transistor
width and length, µ is carrier mobility and Cox is the gate oxide capacitance
per unit area) are referred to transistors Mi, the circuit undergoes a transient
ending at the equilibrium point with non-zero currents. Hence, no startup circuit
seems required. Instead, if β1 < β2 and V1 < V2 the circuit never settles in the
equilibrium point suggested by eq.(3), and no startup circuit can help. For the
other possible configurations (β1 < β2 and V1 > V2; β1 > β2 and V1 < V2 ) eq.
(3) is never verified and no equilibrium point is possible.

3 Proposed solution

To solve this problem we developed a technique that provides valuable informa-
tion on the equilibrium points of nonlinear circuit. If we can consider a nonlinear
circuit as a closed loop of nonlinear blocks (Fig. 2a), we can cut open the loop
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and insert the circuitry shown in Fig. 2b. Even if the method can be adapted to
cuts in any branch, we will discuss only the most useful case, when the current
flowing in the severed branch is non zero. The case of zero current is indeed
simpler, but less general. The independent current source sends in the circuit a
test current It which gives rise to a voltage Vp across its terminals. The voltage-
controlled generator imposes the same voltage Vp to node B, the other end of
the cut loop. Obviously, when the current Iv sinked by the voltage generator
is equal to It, the original uncut circuit is in equilibrium. The two sides of the
cut could be directly connected without altering the branch currents and the
node voltages. Hence if we plot Iv vs. It, equilibrium points can be identified
as the intersections between the Iv(It) curve and the Iv = It line. In addition,
the derivative ∂Iv/∂It = λ at the equilibrium point enables us to determine the
stability of the equilibrium point.

!
"

#$ %$

!
"

&'
&(
)*

+$

,
- &'.'

&(
/0

)* &' )*

/'

Fig. 2. Non-linear loop analysis

Let us call Rt the differential resistance seen by the It generator: if the
test current increases by ∆It, the voltage Vp increases by ∆Vp = Rt∆It. The
current Iv, instead, increases by ∆Iv = λ∆It. Since the nodes A and B are at
the same voltage, we connect them and redraw the circuit as in Fig. 2c. The
total differential resistance seen between nodes A ≡ B and ground (as shown in
Fig. 2c) can be written as:

Rd =
∆Vp
∆Itot

=
Rt∆It

∆It − λ∆It
=

Rt

1 − λ
(4)

where ∆Itot is indicated in Fig. 2c. From (4) we can conclude that if λ > 1
this solution is unstable. Let us underline that we assumed Rt > 0, which is
the typical situation is practical circuits, but the method can in theory be easily
generalized to any initial sign of Rt. Furthermore, λ is the small-signal DC loop
gain, and hence the fact that values in excess of 1 lead to instability is well
known.

Hence, the practical application of the method consists of cutting open a
loop, inserting the proper generators and performing a DC simulation of the
circuit with an input current sweep. The analysis of circuit Fig. (1a) (for which
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Fig. 3. SPECTRE dc sweep of circuit of Fig. 1, cut at the drain of M3: current generator
to gate-drain of M1, voltage generator to M3 drain. β1 > β2 and V1 > V2(a); particular
of low current region (b); β1 < β2 and V1 < V2(c); particular of low current region
(d) (λ is the derivative of the current at the intersection; the black straight lines are
IV = It, while the red lines show the simulation results.

is Rt > 0) leads to the results of Figures 3a-b, which show that a single and
stable operating point is obtained only for β1 > β2 and V1 > V2. It is worth
noticing that in this case no equilibrium point exist at It = 0 and hence no
startup circuitry is needed. Figures 3c-d show instead that for β1 < β2 and
V1 < V2 the solution is unstable, and another stable solution is present for
very small currents. Therefore, with the use a circuit simulator equipped with
accurate device models we can learn that often some pencil-and-paper results,
such as the zero-current stable solution, can indeed be artifacts due to the use
of too simplistic device models.

Furthermore, this approach provides valuable physical insights on the circuit.
Since the Iv(It) relationship provided by the simulations can be interpreted as
the input-output characteristic of an amplifier, a designer can usually devise
modifications to the circuit which can modify it in a foreseeable manner. Hence,
the above analysis not only can provide evidence of bias or stability problems,
but is also a tool for their solution.

The circuit of Fig. 1(b) has been designed and fabricated, using native tran-
sistors (with threshold voltage < 0) for M1 and M2. In this version of the circuit
M1 was not diode-connected and a proper bias circuit was added in order to bias
M1 in saturation. V1 and V2 were set to 335 mV and 0, respectively. Using the
proposed method, we obtained the results of Fig. 4(left). The current in M1 is
about 7 nA, and the operating point is stable. This is confirmed by measurements



6 Stability and startup of non linear loop circuits

!

5.2n 5.4n 5.6n 5.8n 6.0n 6.2n 6.4n 6.6n
0

1

2

3

4

5

6

7

Fig. 4. Iv vs. It for the complete circuit of Fig. 1(b) (left) and IM1 distribution in 14
samples of the Fig.1(b) circuit (right).

on 15 samples realized in a 0.18 µm UMC CMOS technology. Fig.4(right) shows
the current distribution in 14 working samples; the mean current is 5.85 nA
(σ = 0.24 nA) and no start up problems were observed.
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