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Abstract: This paper aims to show that it is possible to improve security for over the air update
functionalities in an automotive scenario through the use of a cryptographic scheme called
“Attribute-Based-Encryption" (ABE), which grants confidentiality to the software/firmware update
done Over The Air (OTA). We demonstrate that ABE is seamlessly integrable into the state of the
art solutions regarding the OTA update by showing that the overhead of the ABE integration in
terms of computation time and storage is negligible w.r.t. the other overheads introduced by the OTA
process, also proving that security can be enhanced with a minimum cost. To support our claim, we
report the experimental results of an implementation of the proposed ABE OTA technique on a Xilinx
ZCU102 evaluation board, which is an automotive-oriented HW/SW platform equipped with a Zynq
UltraScale+ MPSoC chip that is representative of the computing capability of real automotive ECUs.
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1. Introduction

Over the last few decades, we saw a complete transformation of the automotive world. Vehicles
rely more and more on electronic components to provide new features to the customers. With well
over 80 ECU’s per vehicle[1], software maintenance is a serious issue. In industry, it has been estimated
that the number of bugs per 1000 lines of code oscillates from 0,5 to 25 [2]. It would be foolish to
think that a vehicle that is on the market has no bugs, and it would be even more foolish to assume
that none of them can lead to a vulnerability issue. New attacks and exploits [3,4] emerge every day,
and it is impossible to prevent them all. However, in most cases, it is possible to find a solution to a
newly discovered vulnerability and fix it with a software or firmware update. A safe way to update
the software or the firmware of a vehicle is to bring it to the nearest licensed workshop: clearly, this
scenario must be avoided since it can cause a serious disservice to the customer and also extra costs for
the automotive OEM (Original Equipment Manufacturer). This is a serious problem that caught also
the attention of the European Processor Initiative (EPI) project committee [5,6] and its partners such as
BMW and Elektrobit. One solution is to update the software/firmware over the air (OTA), with the
user that can manage the update in the same way as he/she does with a smartphone or a home PC.
The basic idea is that inside each vehicle there is a special ECU, called gateway, that connects the outer
world to all the vehicle’s ECUs. For example, the gateway provides for infotainment to the vehicle’s
passengers or — in our case — an internet connection with the manufacturer to download the updates.
There are many state-of-the-art solutions[1,7,8], that already implement OTA software update, and all
of them focus on providing the authenticity and the integrity of the update. Confidentiality instead, is
treated as an optional security feature. Unfortunately, the Intellectual Property (IP) of the update is not
protected, since in case the update is sent to the vehicle without any encryption, then the competitors
can easily capture and analyze its content. This is not desirable, in particular, if the update contains
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innovative countermeasures to new attacks, or if it introduces new features for the vehicle. Another
problem is that, even if the update is confidentially transmitted through the establishment of a secure
channel (e.g., TLS), confidentiality is not guaranteed when the update is at rest. When a piece of data is
“at rest", it means that is not traveling through the internet, for example, data stored on a cloud server
is at rest. This means that a manufacturer that uses secure channels to provide confidentiality to its
updates cannot use a third-party untrusted server for storage and distribution, since when an update is
uploaded to such servers it will not be encrypted. Furthermore, even if the manufacturer uses its own
trusted cloud server to transmit the update to each vehicle, once the update arrives at the vehicle’s
gateway it can be still easily captured by someone who tampered with the gateway itself. This can
happen since the gateway is the only ECU directly connected to the internet, and therefore prone to
cyber-attacks and more vulnerable to tampering than all the other ECUs. Indeed, even in the Autosar
Specification of Update and Configuration Management document [9], it is specified that is convenient
to have a dedicated ECU, different from the gateway, in charge of managing the SW update of the
vehicle. A solution to the “data at rest" problem is to asymmetrically encrypt the update itself (e.g.,
using RSA) so that only such a dedicated ECU (not even the gateway) is able to decrypt it. However,
this approach can be costly, because it means that the manufacturer should encrypt the update as many
times as many are the vehicles to be updated. Attribute-Based Encryption (ABE) greatly reduces the
cost of multiple-receiver end-to-end encryption, and solves the problem of update at rest, making it
worth and efficient to provide confidentiality. Using ABE, even if an adversary successfully tampers
the vehicle’s gateway, the update is still encrypted and signed with long-term keys in posses of the
dedicated ECU, thus making the tampering useless. The only way that an adversary has to analyze a
copy of the update is to tamper with either the dedicated ECU or the ECU that needs the update. The
automotive industry is aware of such risks, and to contrast such issues they developed some security
strategy such as the multi-layer security architecture [1]. Basically, the internal architecture of a vehicle is
classified over different security levels based on the security requirements of the involved application,
ranging from low-level security (e.g., infotainment) to high-level security (e.g., the brake system in an
autonomous vehicle). Among other things, this strategy ensures that the ECUs not directly connected
to the internet are hard to tamper with.

Despite many high-quality works have been published during the years [10–12] presenting the
feasibility of ABE on a wide range of devices, to the authors’ knowledge, the literature has not tested
the impact of the ABE on a real hardware automotive embedded platform. In this paper, our task is
to demonstrate that ABE schemes, in general, are well supported by a platform that is very close to
a real ECU mounted on a vehicle. In order to do this, we selected the CP-ABE by Bethencourt et al.
[13] since is the one considered in the previously cited feasibility works. Showing that this scheme
has little-to-no impact over the OTA process, we show that ABE is able to perform well over such a
category of devices.

The contribution of this paper consists in: (i) show an ABE technique for OTA secure update
of software/firmware that can be seamlessly integrated into state-of-the-art solutions; (ii) proving
that ABE is compliant with the in-vehicle network organization in modern cars as well as with the
computing capabilities of real automotive ECUs; (iii) provide an experimental evaluation of the ABE
performances on a real automotive compliant platform, namely the Xilinx ZCU102 board. The rest of
the paper is structured as follows: in Section 2 we give some backgrounds and show the related works;
in Section 3 we explain the setup of our performance evaluation; in Section 4 we show and discuss our
results; and finally in Section 5 we conclude our paper.

2. Related Work

2.1. Attribute-Based Encryption

Attribute-Based Encryption (ABE) is a cryptographic technique that embeds an access control
mechanism within the encrypted data. ABE describes data and decrypting parties by means of
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attributes, and it regulates access to data with policies, which are Boolean formulas defined over these
attributes. In ABE, an encrypting party (from now on, data producer) uses an encryption key, which
is public and unique, whereas any decrypting party (from now on, data consumer) uses a decryption
key, which is private and different for each of them. ABE has two main paradigms: Ciphertext-Policy
Attribute-Based Encryption (CP-ABE)[13–16] and Key-Policy Attribute-Based Encryption (KP-ABE)
[17–20]. In CP-ABE, each data consumer holds a list of attributes (attribute set), which is embedded
in the decryption key. Each piece of data is described by one access policy, which is embedded in the
ciphertext. An access policy can be seen as a tree, where the inner nodes are the logical operators
“AND” and/or “OR” and the leaves are attributes. Four main algorithms are used in every CP-ABE
scheme: Setup, KeyGen, Encrypt, and Decrypt.

• The Setup algorithm generates a master key and an encryption key;
• the KeyGen algorithm generates a decryption key, taking as input the master key and an an

attribute set which describes the owner of the generated decryption key;
• the Encrypt algorithm generates a ciphertext, taking as input the encryption key, a message, and

an access policy which describes the data being encrypted;
• the Decrypt algorithm takes as input a decryption key and a ciphertext, returning the decrypted

message if and only if the attribute set satisfies the access policy.

KP-ABE shares the same algorithms with CP-ABE. However, in KP-ABE the KeyGen algorithm
takes as input an access policy rather than an attribute set, while the Encrypt algorithm takes as input
an attribute set rather than a policy. ABE guarantees collusion resistance, which implies that two
consumers cannot use their combined keys to access data that, singularly, neither of them can access.
Furthermore, one of the main perks of ABE is that it allows someone to encrypt a piece of information
only once and mathematically enforcing on it an access control mechanism in such a way that only
decryption keys with adequate access rights are able to decrypt them.

This means that, if a data producer wants to send a file to a number n of data producer using
RSA, the data producer has to encrypt such a file n times; instead, if the data producer uses ABE, it can
encrypt such file only once. Therefore, a car company can encrypt an update with ABE, sign it, upload
it to some third-party cloud-storage servers which will then distribute such an update to all the target
vehicles in a safe way, meaning that the transmission provides authenticity, integrity, and confidentiality
of the received update. ABE is a secure design choice even if the third-party cloud-storage server is
not trusted. For our performance evaluation, we used the CP-ABE by Bethencourt et al. [13] since we
think that a CP-ABE approach is the better solution for OEM, as the CP-ABE approach gives more
control to the data producer (i.e., the OEM) than a KP-ABE approach [21].

2.2. Over the Air Frameworks

The “Over the Air" update solution is the future of software and firmware update concerning the
ECUs inside a vehicle. To the user, not having to bring the car to the nearest licensed workshop is a
great relief, and it also can improve the chance that the update is actually installed. Moreover, reported
statistics show that automotive OTA can reduce warranty costs by a factor of 2 [22].

There are some state-of-the-art solutions that implement end-to-end encryption for OTA FW/SW
update as vConnect[23]. Their solution is to establish a secure channel through an encrypted session
between their servers and the vehicle’s gateway. This is dangerous because after the image download
is completed, it can be considered “at rest" inside the gateway. The gateway is the most probable ECU
to be compromised since it is the only one directly connected to the internet. In contrast, if a company
were to adopt the ABE OTA SW update technique shown in this paper, the gateway should forward
the downloaded encrypted and signed image to the Update and Configuration Manager (UCM). The
UCM, according to the Autosar Adaptive specification document [9], can also run on a dedicated ECU
different from the gateway, and therefore more protected from external attacks.

In 2016 Karthik et al. [8] released Uptane, a Framework for software and firmware update over
the air, created for securing ground vehicles. Uptane, optionally, allows one to encrypt software images
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(i.e., software updates) using symmetric, asymmetric, or digital envelope techniques. In this paper,
we design a simple framework integrated with ABE to measure its impact on the OTA software
update. Since ABE is, by all means, an asymmetric encryption scheme, we show that is possible
to integrate it in a real and complex framework, therefore showing that ABE is a viable solution to
provide confidentiality for the IP.

In 2018 Asokan et al. [7] proposed ASSURED, a framework for OTA firmware, based on Uptane
[8]. In their work, they claim that assured reaches 5 objectives:

1. End-to-End authentication and integrity: the update must be signed by the manufacturer and
verified by the device.

2. Update Authorization from Controller: only authorized devices can install the update.
3. Attestation of update installation: the device must provide proof of the update installation.
4. Protection of Code and secret key on device: the update must be stored and then installed in

secure storage and isolated execution of critical code.
5. Minimal burden for the device.

However, ASSURED does not consider as an adversary an external entity that eavesdrops on the
communication to retrieve the update’s code, or that retrieves it from a tampered gateway. Instead, in
our work, in addition to the objectives achieved by ASSURED, we consider such an adversary and
provide protection from it using Attribute-Based Encryption.

In 2020 Ghosal et al. [24] proposed STRIDE, an OTA software update scheme for autonomous
vehicles. In their work, the authors provide confidentiality to the software update by using the CP-ABE
scheme proposed by Bethencourt et al. [13]. Furthermore, they provide an extensive performance
evaluation by simulation through OMNeT++ [25]. However, they do not test the performance of the
introduction of ABE on a real automotive platform, as we do in this paper with the Xilinx ZCU102
evaluation board. This gives us a realistic estimation of the performances. Moreover, the authors do
not evaluate the performance of key revocation mechanisms, which cannot be neglected as they are
necessary for practical use in a real-world scenario.

Halder et al. published recently a survey [26] on secure over the air software updates in connected
vehicles. In their work, the update’s confidentiality is a mandatory requirement, and they investigated
and discussed many schemes. Covered techniques are, for example, OTA based singularly on:
symmetric key; hash functions; blockchain; RSA and steganography; HSM; secure update frameworks;
and so on. However, in their work, an approach explicitly based on Attribute-Based Encryption has
not been considered.

2.3. Testing Platforms and Automotive Hardware Background

The original Attribute-Based Encryption was proposed in 2005 by Sahai and Waters [27]. Since
then, many researchers have proposed their own schemes, and they evaluated such schemes over
various platforms. Moreover, many works have been written that discuss the feasibility of many
ABE schemes (both KP-ABE and CP-ABE) on limited-resource devices like smartphones [11], and IoT
devices [10,12]. However, to the authors’ knowledge, the literature has yet to test the impact of ABE
schemes on a real hardware automotive embedded platform. The main difference between traditional
IoT devices (e.g., smartphones, sensors, Raspberry Pi,. . . ) and automotive embedded platforms is
that the latter feature different hardware. As the reader will see at the end of this section, automotive
embedded platforms feature, among other things, multi-core processors and real-time processors,
hardware that is not available in common IoT devices. Therefore, in this section, we explain the
on-board network organization and the computation capability of real automotive platforms so that
the proposed ABE technique is integrated into a representative automotive scenario. We reference to
emerging vehicle architectures, describing how it is designed, to show that previous works cannot be
taken into consideration when arguing about the performances of ABE in the automotive domain.

In-vehicle networks are in a transition from legacy domain-based electronic architectures to zonal
architectures. Domain-based architectures with many simple and separate ECUs and networks will be
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used for commodity automotive subsystems (e.g. break or steer control). Instead, for high-performance
tasks (e.g. sensor fusion for obstacle detection, navigation, and trajectory planning) a small number
of supercomputers are needed. Besides classic local interconnect and controller area networks, in
emerging automotive platforms, the wireless V2X (vehicle to everything) connectivity is ensured by
vehicular versions of WLAN (e.g. 802.11p technology) and of Cellular networks (e.g. C-V2X). This
wide range of connectivity will highly increase the opportunity of SW OTA distributed dissemination
[26]. Such a wide range of connectivity solutions to the external world, however, can be a liability since
it opens the vehicle to external cyber threats. This is perceived as a serious threat by the automotive
companies, that tried to aggregate all the connectivity capabilities over a single ECU, called the
gateway. However, for critical applications like the OTA SW/FW update, it is recommended to
provide a dedicated ECU, different from the gateway, called Update and Configuration Manager
[9]. This ECU contains the cryptographic quantities needed for the OTA SW/FW update such as
public keys and private keys for signature verification and decryption, respectively. Indeed, the
recommended OTA update process inside the vehicle looks like this: i) the gateway downloads the
signed and encrypted update, and forwards it to the UCM; ii) the UCM verifies the signature; iii) the
UCM decrypts the update; and finally iv) the UCM forwards the decrypted update to the ECU that
needs it.

A key component of this new automotive networking architecture is the availability of
more powerful ECUs than before. Differently from commodity ECUs, characterized by low-cost
microcontrollers, powerful automotive ECU processors typically are equipped with i) interfaces
towards Ethernet physical layer and switches, ii) application processors like those of the Cortex-A
family with AArch64 64-bit instruction set, iii) Hardware Security Engine (HSE) for secure boot and
accelerated security services. Referring to point (iii) in particular, the UCM should be a “security level
IV" ECU, as specified by the de-facto standard on vehicular security hardware, the EVITA project [28].
In terms of intra-vehicle connectivity, the S32G chip sustains several network protocols, like Ethernet
and CAN. Those characteristics allows the UCM to easily perform many cryptographic operations and
also to be connected with every commodity ECUs which needs support for the OTA SW/FW update.

The reader should be aware that such resourceful ECUs are not future developments, but
they are already being used. The same concept of integrating multi-core Cortex-A processors in
automotive platforms is also followed by supercomputer platforms like the Renesas H3 heterogeneous
System-on-Chip. It integrates 4 Cortex-A72 and 4 Cortex-A53 cores, supervised by a dual lock-step
Cortex-R7 real-time microcontroller and a rich set of networking interfaces. To this aim, the European
Processor Initiative [6] is developing a High-Performance heterogeneous processor which integrates
multiple ARM cores with AArch 64-bit architecture with SVE (Scalable Vector Extension) plus
co-processor tiles for embedded FPGA, massively parallel processor array (MPPA), and RISC-V based
stencil and neurostream accelerators (STX). To assess the easy integration of ABE as an additional
feature, this work provides performance evaluation on a real automotive compliant board. To this aim,
the ZCU102 from Xilinx has been selected as a versatile prototyping platform, representative of both
automotive powerful ECUs processors, and of scaled versions of heterogeneous supercomputers. The
ZCU102 hosts a Zynq UltraScale+ MPSoC chip with quad Arm Cortex®-A53 cores with Arm Neon™
technology plus dual-core Cortex-R5F real-time processors, a Mali™-400 MP2 graphics processing unit.
The FPGA resources of the ZCU102 allow for further accelerators integration. ZCU102 also provides
a rich set of connectivity interfaces. From a SW development point of view, the ZCU102 sustains a
Linux-like OS (PetaLinux) and an integrated design environment (VITIS) to develop both HW and SW
parts. To be noted that the Xilinx Zynq UltraScale+ MPSoC platform is not only a rapid prototyping
tool but it can be also used as a product, being recently adopted by Continental for its 4D automotive
radar [29].
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3. Methods

In order to evaluate the impact that the introduction of ABE has on a vehicle’s performance, we
designed the following experiments. As ABE scheme for the experiments, we choose the CP-ABE by
Bethencourt et al. [13]. By default, CP-ABE encryption is performed using the digital envelope
technique. This means that the CP-ABE ciphertext protects a symmetric key which is used to
symmetrically encrypt the actual message. In our case, it is the Advanced Encryption Standard
(AES). Throughout this paper, we will consider CP-ABE encryption and CP-ABE decryption as always
using the digital envelope technique. Our scenario is composed of many vehicles, a manufacturer, and
an honest-but-curious cloud server. The manufacturer possesses the CP-ABE master key, the CP-ABE
encryption key, a pair of RSA keys, and knows each vehicle’s RSA public key. The manufacturer is in
charge of generating all the cryptographic keys needed in the system. We assume that each vehicle has
an ECU dedicated to the OTA update called Update and Configuration Manager (UCM), as specified in
the Autosar specification document [9]. This ECU is not connected directly to the internet, though it is
connected to the gateway, and to each ECU that supports the OTA update functionality. Each vehicle
possesses: i) a CP-ABE decryption key, which describes the vehicle’s components and characteristics;
ii) a pair of RSA keys; and iii) the manufacturer’s RSA public key. These vehicle-related cryptographic
keys are installed in the ECU that implements the UCM [9] by the OEM at the time of its construction.
The manufacturer is in charge to produce the software update, encrypts it with CP-ABE, signs it —
along with a version number — using RSA, and stores the signed and encrypted update on the cloud
server. The cloud server sends the signed and encrypted update to any vehicle that requests it. Upon
reception of the software update, the gateway forwards the message to the UCM, which first verifies
the manufacturer signature, then it decrypts the CP-ABE ciphertext. Finally, the UCM forwards the
software update to the intended ECU, which installs it as soon as the user gives his/her consent. The
use case and the interactions are depicted in figure 1.

OEM Cloud Server Vehicle

8. Check Version
9. Verify signature

10. Decrypt using DKVehicleID

11. Install FW Update

1. Generate FW Update.
2. Encrypt FW Update using CP-ABE, producing CT.
3. Generate a Timestamp.
4. Sign CT||timestamp using RSAOEM private key,

obtaining CTsigned.

5. send(CTsigned) 6.Request Update

7. send(CTsigned)

Figure 1. Use-case scenario of firmware over-the-air update using CP-ABE.

Furthermore, in case one or many decryption keys are compromised, the manufacturer provides
also new keys to the non-compromised vehicles. To do so, the manufacturer generates a new CP-ABE
decryption key for each non-compromised vehicle, encrypt said key using the vehicle’s RSA public key,
and signs the ciphertext using its RSA private key. Then, the manufacturer stores the encrypted and
signed decryption key (from now on, the key update) in the cloud server. If a new decryption key has
been released for a vehicle, when such a vehicle requests a software update, the cloud server also sends
to it the key update. In this case, the UCM first verifies the signature on the key update, then retrieves
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the new CP-ABE decryption key using RSA decryption. Finally, the UCM verifies the signature on the
software update and decrypts it using the new CP-ABE decryption key. Such interactions are depicted
in figure 2. The reader may argue that this revocation mechanism is inefficient. However our example

7. Check Version of SVehicleID

8. Verify signature of SVehicleID

9. Decrypt using RSAVehicleID private key

10. Update ABE DKVehicleID 

11. Check Version of CTSigned

12. Verify signature of  of CTSigned

13. Decrypt using freshly updated  DKVehicleID

14. Install FW Update

OEM Cloud Server Vehicle

4. send(SVehicleID) 5.Request Update

6. send(CTSigned, SVehicleID)

For each non-compromised vehicle:
1. Generate a new DKVehicleID

2. Encrypts DKVehicleID using        RSAVehicleID

public key, obtaining EVehicleID

3. Signs EVehicleID||Version using RSAOEM private

key, obtaining SVehicleID

Figure 2. CP-ABE decryption key distribution in case of key compromised.

is a worst-case scenario: if the impact of such a naive mechanism is limited on our test platform, this
means that more advanced and efficient revocation mechanisms will be well supported too.

3.1. Attacker Model

With reference to figure 2, which represents the most complex scenario treated in this paper, we
now define the attacker model: its capabilities, its motivation, its objectives, and how it would like to
achieve them.

We assume that the OEM, the UCM, and all the vehicle’s ECUs (except the gateway) are trusted,
whereas the Cloud Server and the gateway are considered to be untrusted. We think that this is a
good assumption to make since the gateway inside a vehicle is the only ECU directly connected to the
internet, and therefore it is more exposed to external attacks than the other ECUs.

We now analyze the considered threats: a passive attacker and an active attacker. A passive
attacker is able to intercept every message that is sent over the internet, both between the OEM and
the Cloud Server and between the Cloud Server and the vehicle. The objectives of a passive attacker
are two: p_i) to capture and decrypt an ABE ciphertext, obtaining an update; and p_ii) to capture
and decrypt an RSA ciphertext to retrieve an ABE decryption key. Objective (p_i) and (p_ii) however,
cannot be achieved since it would mean that the attacker is able to break the schemes in [13] and [30]
respectively.

The active attacker, instead, is able to gain access to and/or control of the Cloud Server and/or
the gateway. This can be done by leveraging one of the many vulnerabilities that have been discovered
over the years [3,4,31]. For example, an active adversary is able to install a spyware on the gateway (or
on the cloud server), so that each and every piece of information managed and manipulated by it is
forwarded to the attacker.
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The objectives of an active attacker are: a_i) to force a vehicle to install a malicious SW update;
a_ii) to decrypt an ABE ciphertext; and a_iii) to acquire a decryption key and a private RSA key from a
vehicle.

Objective (a_i) cannot be achieved without forging a valid signature applied to the SW update by
the OEM, therefore breaking the RSA signature scheme. The attacker can pursue objective (a_ii) by
gaining control of the cloud server, or by gaining control of the gateway. In both cases, however, the
attacker cannot achieve such an objective since neither the Cloud Server nor the gateway possesses
any decryption key. If in some way, the attacker retrieves a vehicle’s CP-ABE decryption key and the
RSA private key — achieving (a_iii) — it will be capable to decrypt any ciphertext that such ABE key
complies with, and it will be capable to retrieve and decrypt the key update made for said vehicle.
This attack is effective until the OEM performs a revocation for the key. When the OEM does this, it
removes the associated RSA public key from its database of public keys, and it stops to generate key
updates for the compromised vehicle. The methods through which the OEM learns about the attacks,
and therefore it is able to issue a revocation, fall out of the scope of this paper.

4. Performance Evaluation

In this section we briefly explain how we recreated the scenario, showing the software and
hardware we used.

4.1. Experimental Setup

We designed a client-server application that reflects the interaction between the cloud server
and the vehicles. We used C as the programming language and OpenSSL, libswabe, the CP-ABE
toolkit [32], GMP, and the Pairing Based Cryptography (PBC) as libraries. The objective is to measure
the time passed from the moment an update is requested to the moment it is installed. Ultimately,
we show that CP-ABE has little-to-no impact on the performance while providing a fundamental
feature. We investigated three different scenarios: i) NO CP-ABE; ii) only CP-ABE encryption; iii)
CP-ABE encryption + key update. In the first scenario, when the vehicle requests an update, the
cloud sends to the vehicle the update in the clear along with the associated version, all signed by
the OEM. This scenario will be our reference for the CP-ABE performance evaluation. In the second
scenario, the interaction between the cloud server and the vehicle is depicted in figure 1. The cloud
server stores the SW update encrypted with CP-ABE, along with the update’s version, all signed by
the OEM. In the third scenario, the interaction between the cloud server and the vehicle is similar
to the one in the second scenario. However, every once in a while in addition to the SW update
encrypted with CP-ABE, the cloud server will send to the vehicle also a new CP-ABE decryption
key as depicted in figure 2. For scenario 2 and 3, we used a single policy to encrypt the software
update, and two different attribute sets to represent two different vehicles (Vehicle1 and Vehicle2)
that are both able to satisfy the policy. The policy and attribute sets are depicted in figure 3. The
policy reads as: “A vehicle can access the data if and only if it has the ECU_MODEL_2247 OR it
is both a CAR_MODEL_21 AND it has the ECU_MODEL_2248". The attribute set of Vehicle1 is
composed of four different attributes and it reads as follow: “Vehicle1 is a CAR_MODEL_23 and it
has ECU_MODEL_2247, ECU_MODEL_2256, and ECU_MODEL_2268"; the attribute set of Vehicle2 is
composed of three different attributes and it reads as follow: “Vehicle2 is a CAR_MODEL_21 and it
has ECU_MODEL_2246, and ECU_MODEL_2248". Vehicle1 is able to decrypt the ciphertext because it
has the ECU_MODEL_2247 attribute, while Vehicle2 is able to decrypt the ciphertext because it has
both the attributes CAR_MODEL_21 and ECU_MODEL_2248.

We run the client (which simulates the vehicle) on a Xilinx ZCU102 evaluation board equipped
with a Zynq UltraScale+ MPSoC chip which features, as already discussed before, a quad Arm
Cortex®-A53 cores with Arm Neon™ technology plus dual-core Cortex-R5F real-time processors,
a Mali™-400 MP2 graphics processing unit, and 4 SLFP+ interfaces for Ethernet, 6 16.3Gb/s GTH
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Policy protecting the SW Update:

OR

ECU_MODEL_2247

CAR_MODEL_21

AND

ECU_MODEL_2248

Vehicle2's attribute set:
{ CAR_MODEL_21;
  ECU_MODEL_2246;
  ECU_MODEL_2248; }

Vehicle1's attribute set:
{ CAR_MODEL_23;
  ECU_MODEL_2247;
  ECU_MODEL_2256;
  ECU_MODEL_2268; }

Figure 3. The policy and the two attribute sets used for the experiments.

transceivers and 64 user-defined differential I/O signals, 600 system logic cells, 32Mb of memory, 2500
DSP slices.

For each scenario, we evaluated the performances of the ZCU102 board over 5, 000 iterations,
with a confidence interval of 95%. For the Elliptic Curve Cryptography operations, we used Type
A internals of PBC library with group order of 160 bits, element size of 512 bits, and an embedding
degree k = 2, which gives an 80-bit security level. To chose the revocation rate we based our analysis
on the frequency of update in Tesla vehicles [33]. From their websites, we can see that, from January
2020 to November 2020, 122 updates have been released, meaning that — on average — more than 11
updates are released each month. Therefore, we evaluated 4 different revocation rate, roughly from
weekly to monthly: once every 2 updates, once every 3 updates, once every 6 updates, and once every
12 updates.

4.2. Results

We show in figure 4 the results of our experiment. The results of scenario 1’s evaluation show us
that the download time and the verification of the RSA signature take about 256 milliseconds. The
introduction of only CP-ABE decryption in scenario 2 increases by 200 - 230 ms the time elapsed
from the request of the update to the starting of the installation. This increase in time is due to
CP-ABE decryption and the CP-ABE ciphertext overhead download. From the graph, we can see
that Vehicle2 spends on average about 24 ms more than Vehicle1. Indeed, in order to decrypt the
CP-ABE ciphertext, in Vehicle2 the attribute used to decrypt the policies are 2 (i.e., CAR_MODEL_21
and ECU_MODEL_2248), whereas Vehicle1 only has 1 (i.e., ECU_MODEL_2247). Finally, in scenario
3, we see that the additional seldom retrieval of a new decryption key costs on average 90-105 ms,
in case of a revocation frequency of once every 6 updates, which translates to a revocation every 15
days. Moreover, figure 5 shows that for a wide range of revocation frequencies, the impact of CP-ABE
decryption and key update is limited. Even at the higher measured frequency -once every 2 updates,
or once every 5 days- the download, key update, and the decryption processes are all performed in
just under 675 − 710 ms. If the revocation frequency drops to once every 12 updates (roughly, once a
month), the entire process takes between 518 − 535 ms.

Analyzing the results of the time spent in scenarios 2 and 3 compared to the time spent in scenario
1, it seems that CP-ABE has a non-negligible impact on the OTA SW update process. However, when
we compare these results to the time actually spent on the installation of the SW, we can see that the
time increase due to CP-ABE is negligible. Indeed, we also investigated the size of a software update
in the automotive scenario. We found out that, typically, an update’s size for a Tesla “Model 3" is about
100MB [34]. To replicate the installation process, we chose to install installation packages of different
sizes on the ZCU102. Namely, we measured the installation time for programs with sizes of ∼6.9 KiB,
∼2.7 MiB, ∼ 5.9 MiB, as shown in figure 6. We did not perform tests of greater SW size for two reasons:
i) we had difficulties to find programs with the size around 100MB; and ii) even with such small sizes,
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Figure 4. Elapsed time from the update request to the moment just before the installation. The
considered revocation frequency in Scenario 3 is once every 6 updates.
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varying the revocation frequency.
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the installation times are already orders of magnitude greater than decryption and download time.
Figure 6 shows that the software of size ∼6.9 KiB, ∼2.7 MiB, ∼ 5.9 MiB took, on average, 2100 ms,
12388 ms, and 22148 ms, respectively.
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Figure 6. A comparison of the installation times of various SW’s size.

In figure 7 we can see how much time it takes for each scenario from the update request to the
end of the update installation. We had to use the logarithmic scale in order to see the CP-ABE impact,
since when considering the installation time the three scenarios are practically equivalent. In fact, the
average time spent on the 5.9 MiB SW update is 22148 ms with a 95% confidence interval of ±247
ms. This means that the SW installation time is two orders of magnitude greater than all the previous
time computed in the three presented scenarios. Therefore, considering also that we measured the
installation times on SW images that are way smaller of the ones deployed in reality, we can conclude
that the time impact of CP-ABE is negligible.
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Figure 7. A comparison of the total time taken from the update request to the end of SW installation.
The considered SW size is 5.9 MiB, and the considered revocation frequency is once every 6 updates.

Furthermore, we also considered the impact of CP-ABE in terms of message size. Figure 8 shows
the size of the single components of the update message that the cloud sends to the vehicle. The main
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three fields of such a message are: i) the symmetrically encrypted SW update (5.9 MiB); ii) the CP-ABE
ciphertext containing the symmetric key; iii) the RSA signature of the OEM. Compared to the RSA
signature, the CP-ABE ciphertext amounts to over three times the size. However, compared to the
actual software update size, the impact of the CP-ABE ciphertext is so negligible that, in order to show
them both in the same graph, we have to use a logarithmic scale.
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Figure 8. The size of each field inside the update message that the cloud sends to the vehicle.

Considering that the OTA SW update operation is not a time-critical task, and considering that in
any case, the dominant time cost is the SW installation, we think that the adoption of CP-ABE also in
real-life application will be a great addition for the security of our vehicles.

5. Conclusions and Future Works

This paper has shown that the Attribute-Based Encryption technique improves security for over
the air update functionalities in an automotive scenario. Particularly, Attribute-Based-Encryption (ABE)
provides confidentiality to the software/firmware update done Over The Air, and also for data at rest.
This is a feature that is missing in alternative solutions available at the state of the art. Furthermore, we
tested a naive key revocation mechanism, another missing feature in the state-of-the-art systems. The
paper has demonstrated that ABE can seamlessly be integrated into the existing solutions regarding
the OTA update, and more broadly, it complies with automotive standards in terms of architecture
and documentations. Furthermore, the overhead of the ABE integration in terms of computation
time and storage is negligible w.r.t. the other tasks involved in an OTA software update, like the
installation. These results show that security can be enhanced at a minimum cost. As the University
of Pisa is an official partner of the EPI project [5] within the H2020 research program, we plan to
work and cooperate with other partners such as BMW and Elektrobit in order to integrate our work
in their already existing systems. In particular, we plan to port the OTA CP-ABE technique to be
AUTOSAR-adaptive [35] compliant.
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