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Abstract

Distributed model predictive control refers to a
class of predictive control architectures in which
a number of local controllers manipulate a subset
of inputs to control a subset of outputs (states)
composing the overall system. Different levels
of communication and (non)cooperation exist,
although in general the most compelling prop-
erties can be established only for cooperative
schemes, those in which all local controllers opti-
mize local inputs to minimize the same plantwide
objective function. Starting from state-feedback
algorithms for constrained linear systems, exten-
sions are discussed to cover output feedback, ref-
erence target tracking, and nonlinear systems. An
outlook of future directions is finally presented.
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Introduction and Motivations

Large-scale systems (e.g., industrial processing
plants, power generation networks, etc.) usually

comprise several interconnected units which
may exchange material, energy, and information
streams. The overall effectiveness and prof-
itability of such large-scale systems depend
strongly on the level of local effectiveness and
profitability of each unit but also on the level
of interactions among the different units. An
overall optimization goal can be achieved by
adopting a single centralized model predictive
control (MPC) system (Rawlings et al. 2017) in
which all control input trajectories are optimized
simultaneously to minimize a common objective.

This choice is often avoided for several rea-
sons. When the overall number of inputs and
states is very large, a single optimization problem
may require computational resources (CPU time,
memory, etc.) that are not available and/or com-
patible with the system’s dynamics. Even if these
limitations do no hold, it is often the case that
organizational reasons require the use of smaller,
local controllers, which are easier to coordinate
and maintain.

Thus, industrial control systems are often
decentralized, i.e., the overall system is divided
into (possibly mildly coupled) subsystems,
and a local controller is designed for each
unit disregarding the interactions from/to other
subsystems. Depending on the extent of dynamic
coupling, it is well-known that the performance
of such decentralized systems may be poor
and stability properties may be even lost.
Distributed predictive control architectures arise
to meet performance specifications (stability
at minimum) similar to centralized predictive
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control systems, still retaining the modularity
and local character of the optimization problems
solved by each controller.

Definitions and Architectures
for Constrained Linear Systems

Subsystem Dynamics, Constraints,
and Objectives
We start the description of distributed MPC algo-
rithms by considering an overall discrete-time
linear time-invariant system in the form:

xC D Ax C Bu; y D Cx (1)

in which x 2 R
n and xC 2 R

n are, respectively,
the system state at a given time and, at a successor
time, u 2 R

m is the input and y 2 R
p is the

output.
We consider that the overall system (1) is

divided into M subsystems, Si , defined by (dis-
joint) sets of inputs and outputs (states), and each
Si is regulated by a local MPC. For each Si , we
denote by yi 2 R

pi its output, by xi 2 R
ni

its state, and by ui 2 R
mi the control input

computed by the i th MPC. Due to interactions
among subsystems, the local output yi (and state
xi ) is affected by control inputs computed by
(some) other MPCs. Hence, the dynamics of Si
can be written as

xCi D Aixi C Biui C
X

j2Ni

Bij uj ; yi D Cixi

(2)
in which Ni denotes the indices of neighbors
of Si , i.e., the subsystems whose inputs have
an influence on the states of Si . To clarify the
notation, we depict in Fig. 1 the case of three
subsystems, with neighbors N1 D f2; 3g, N2 D
f1g, and N3 D f2g.

Without loss of generality, we assume that
each pair (Ai , Bi ) is stabilizable. Moreover, the
state of each subsystem xi is assumed known (to
the i th MPC) at each decision time. For each
subsystem Si , inputs are required to fulfill (hard)
constraints:

Distributed Model Predictive Control, Fig. 1
Interconnected systems and neighbors definition

ui 2 Ui ; i D 1; : : : ;M (3)

in which Ui are polyhedrons containing the
origin in their interior. Moreover, we consider

a quadratic stage cost function `i .x; u/
Δ
D

1
2
.x0Qix C u0Riu/ and a terminal cost function

Vf i .x/
Δ
D 1

2
x0Pix, with Qi 2 R

ni�ni , Ri 2
R
mi�mi , and Pi 2 R

ni�ni positive definite.
Without loss of generality, let xi (0) be the state
of Si at the current decision time. Consequently,
the finite-horizon cost function associated with
Si is given by:

Vi .xi .0/;ui ; fuj gj2Ni
/

Δ
D

N�1X

iD0

`i .xi .k/; ui .k//

C Vf i .xi .N // (4)

in which ui D .ui .0/; ui .1/; : : :; ui .N � 1// is
a finite-horizon sequence of control inputs of
Si and uj is similarly defined as a sequence
of control inputs of each neighbor j 2 Ni .
Notice that Vi .�/ is a function of neighbors’ input
sequences, fuj gj2Ni

, due to the dynamics (2).

Decentralized, Noncooperative, and
Cooperative Predictive Control
Architectures
Several levels of communications and (non)co-
operation can exist among the controllers, as
depicted in Fig. 2 for the case of two subsystems.
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Distributed Model Predictive Control, Fig. 2 Three distributed control architectures: decentralized MPC, noncoop-
erative MPC, and cooperative MPC

In decentralized MPC architectures, interac-
tions among subsystems are neglected by forcing
Ni D ¿ for all i even if this is not true.
That is, the subsystem model used in each local
controller, instead of (2), is simply

xCi D Aixi C Biui ; yi D Cixi (5)

Therefore, an inherent mismatch exists between
the model used by the local controllers (5) and
the actual subsystem dynamics (2). Each local
MPC solves the following finite-horizon optimal
control problem (FHOCP):

Pi
De W min

ui
Vi .�/ s.t. ui 2 U

N
i ;Ni D ¿ (6)

We observe that in this case, Vi .�/ depends only
on local inputs, ui , because it is assumed that
Ni = ¿. Hence, each P

De
i is solved indepen-

dently of the neighbors computations, and no
iterations are performed. Clearly, depending on
the actual level of interactions among subsys-
tems, decentralized MPC architectures can per-

form poorly, namely, being non-stabilizing. Per-
formance certifications are still possible resorting
to robust stability theory, i.e., by treating the
neglected dynamics

P
j2Ni

Bij uj as (bounded)
disturbances (Riverso et al. 2013).

In noncooperative MPC architectures, the
existing interactions among the subsystems are
fully taken into account through (2). Given a
known value of the neighbors’ control input
sequences, fuj gj2Ni

, each local MPC solves
the following FHOCP:

P
NCDi
i W min

ui
Vi .�/ s.t. ui 2 U

N
i (7)

The obtained solution can be exchanged with
the other local controllers to update the assumed
neighbors’ control input sequences, and iterations
can be performed. We observe that this approach
is noncooperative because local controllers try
to optimize different, possibly competing, objec-
tives. In general, no convergence is guaranteed in
noncooperative iterations, and when this scheme
converges, it leads to a so-called Nash equilib-
rium. However, the achieved local control inputs
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do not have proven stability properties (Rawlings
et al. 2017, �6.2.3). To ensure closed-loop sta-
bility, variants can be formulated by including
a sequential solution of local MPC problems;
exploiting the notion (if any) of an auxiliary sta-
bilizing decentralized control law, non-iterative
noncooperative schemes are also proposed, in
which stability guarantees are provided by ensur-
ing a decrease of a centralized Lyapunov function
at each decision time.

Finally, in cooperative MPC architectures,
each local controller optimizes a common
(plantwide) objective:

V.x.0/;u/
Δ
D

MX

iD1

�iVi .xi .0/;ui ; fuj gj2Ni
/

(8)
in which �i > 0, for all i , are given scalar weights

and u
Δ
D .u1; : : : ;uM / is the overall control

sequence. In particular, given a known value
of other subsystems’ control input sequences,
fuj gj¤i , each local MPC solves the following
FHOCP:

P
CDi
i W min

ui
V.�/ s.t. ui 2 U

N
i (9)

As in noncooperative schemes, the obtained solu-
tion can be exchanged with the other local con-
trollers, and further iterations can be performed.
Notice that in P

CDi
i , the (possible) implications of

the local control sequence ui to all other subsys-
tems’ objectives, Vj .�/ with j ¤ i , are taken into
account, as well as the effect of the neighbors’
sequences fuj gj2Ni

on the local state evolution
through (2). Clearly, this approach is termed
cooperative because all controllers compute local
inputs to minimize a global objective. Conver-
gence of cooperative iterations is guaranteed,
and under suitable assumptions the converged
solution is the centralized Pareto-optimal solution
(Rawlings et al. 2017, �6.2.4). Furthermore, the
achieved local control inputs have proven stabi-
lizing properties (Stewart et al. 2010). Variants
are also proposed in which each controller still
optimizes a local objective, but cooperative iter-
ations are performed to ensure a decrease of the
global objective at each decision time (Maestre
et al. 2011).

Cooperative Distributed MPC

Cooperative schemes are preferable over nonco-
operative schemes from many points of view,
namely, in terms of superior theoretical guaran-
tees and no larger computational requirements. In
this section we focus on a prototype cooperative
distributed MPC algorithm adapted from Stewart
et al. (2010), highlighting the required compu-
tations and discussing the associated theoretical
properties and guarantees.

Basic Algorithm
We present in Algorithm 1 a streamlined descrip-
tion of a cooperative distributed MPC algorithm,
in which each local controller solves PCDi

i , given
a previously computed value of all other subsys-
tems’ input sequences. For each local controller,
the new iterate is defined as a convex combination
of the newly computed solution with the previous
iteration. A relative tolerance is defined, so that
cooperative iterations stop when all local con-
trollers have computed a new iterate sufficiently
close to the previous one. A maximum number
of cooperative iterations can also be defined, so
that a finite bound on the execution time can be
established.

Algorithm 1 (Cooperative MPC). Require:

Overall warm start u0
Δ
D .u01; : : : ;u

0
M /, convex

step weights wi > 0, s.t.
PM
iD1 wi D 1, relative

tolerance parameter � > 0, maximum coopera-
tive iterations cmax

1:Initialize: c 0 and ei  2� for i = 1, . . . ,M .
2:while .c < cmax/ and (9i jei > �) do
3: c c C 1.
4: for i D 1 toM do
5: Solve P

CDi
i

in (9) obtaining u�

i
.

6: end for
7: for i D 1 toM do
8: Define new iterate: uc

i

Δ
D wiu�

i
C .1�wi / uc�1

i
.

9: Compute convergence error: ei
Δ
D
kuc
i

�uc�1
i k

kuc�1
i k

.

10: end for
11:end while
12:return Overall solution: uc

Δ
D .uc1; : : : ; u

c
M /.

We observe that Step 8 implicitly defines the
new overall iterate as a convex combination of the
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overall solutions achieved by each controller, that
is,

uc D
MX

iD1

wi .uc�11 ; : : : ;u�i ; : : : ;u
c�1
M / (10)

It is also important to observe that Steps 5, 8, and
9 are performed separately by each controller.

Properties
The basic cooperative MPC described in Algo-
rithm 1 enjoys several nice theoretical and practi-
cal properties, as detailed (Rawlings et al. 2017,
�6.3.1):

1. Feasibility of each iterate: uc�1i 2 U
N
i implies

uci 2 U
N
i , for all i D 1, . . . , M and c 2 I>0.

2. Cost decrease at each iteration: V.x.0/;uc/ �
V.x.0/;uc�1/ for all c 2 I>0.

3. Cost convergence to the centralized optimum:
limc!1 V.x.0/;uc/ D minu2UN V.x.0/; u/,

in which U
Δ
D U1 � � � � � UM .

Resorting to suboptimal MPC theory, the
above properties (1) and (2) can be exploited
to show that the origin of closed-loop system

xC D AxCB�c.x/;with �c.x/
Δ
D uc.0/ (11)

is exponentially stable for any finite c 2 I>0. This
result is of paramount (practical and theoretical)
importance because it ensures closed-loop stabil-
ity using cooperative distributed MPC with any
finite number of cooperative iterations. As in cen-
tralized MPC based on the solution of a FHOCP
(Rawlings et al. 2017, �2.4.2), particular care of
the terminal cost function Vf i .�/ is necessary,
possibly in conjunction with a terminal constraint
xi .N / 2 Xf i . Several options can be adopted as
discussed, e.g., in Stewart et al. (2010, 2011).

Moreover, the results in Pannocchia et al.
(2011) can be used to show inherent robust sta-
bility to system’s disturbances and measurement
errors. Therefore, we can confidently state that
well-designed distributed cooperative MPC and
centralized MPC algorithms share the same guar-
antees in terms of stability and robustness.

Complementary Aspects

We discuss in this section a number of comple-
mentary aspects of distributed MPC algorithms,
omitting technical details for the sake of space.

Coupled Input Constraints and State
Constraints
Convergence of the solution of cooperative
distributed MPC toward the centralized (global)
optimum holds when input constraints are in the
form of (3), i.e., when no constraints involve
inputs of different subsystems. Sometimes this
assumption fails to hold, e.g., when several
units share a common utility resource, that is, in
addition to (3) some constraints involve inputs of
more than one unit. In this situation, it is possible
that Algorithm 1 remains stuck at a fixed point,
without improving the cost, even if it is still
away from the centralized optimum (Rawlings
et al. 2017, �6.3.2). It is important to point out
that this situation is harmless from a closed-
loop stability and robustness point of view.
However, the degree of suboptimality in
comparison with centralized MPC could be
undesired from a performance point of view.
To overcome this situation, a slightly different
partitioning of the overall inputs into non-disjoint
sets can be adopted (Stewart et al. 2010).

Similarly the presence of state constraints,
even in decentralized form xi 2 Xi (with i D
1; : : :;M ), can prevent convergence of a coopera-
tive algorithm toward the centralized optimum. It
is also important to point out that the local MPC
controlling Si needs to consider in the optimal
control problem, besides local state constraints
xi 2 Xi and also state constraints of all other
subsystems Sj such that i 2 Nj . This ensures
feasibility of each iterate and cost reduction;
hence closed-loop stability (and robustness) can
be established.

Another route to address the presence of cou-
pling constraints is that based on suitable decom-
position methods for distributed optimization,
such as the dual decomposition and alternative
direction method of multipliers (Doan et al. 2011;
Farokhi et al. 2014).
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Parsimonious Local System
Representations
In cooperative distributed algorithms, each local
optimization problem (9) is solved considering
the evolution of the overall system state over the
prediction horizon, so that the centralized cost
function can be optimized by each local con-
troller. Depending on the interconnections among
the subsystems, this approach could be simplified
by considering a subset of overall state dynamics,
without losing the global optimality guarantees,
as proposed in Razzanelli and Pannocchia (2017)
and briefly reviewed.

From graph theory, we define the outlet star of
each local subsystem Si , as the set of subsystems
Sj of which Si is neighbor, i.e., OiDfj ji2Nj g.
Thus, the augmented state dynamics that should
be considered by Si is composed by (2) and

xCj D Ajxj C Bj iui C Bj uj C
X

k2Nj ni

Bjkuk ;

yj D Cjxj 8j 2 Oi (12)

Thus, the FHOCP (9) can be simplified to the
following, more parsimonious, problem:

P
PaCDi
i W min

ui
Vi .�/C

X

j2Oi

Vj .�/ s.t. ui 2 U
N
i

(13)
obtaining the same solution with significant com-
putational savings (Razzanelli and Pannocchia
2017).

Output Feedback and Offset-Free Tracking
When the subsystem state cannot be directly mea-
sured, each local controller can use a local state
estimator, namely, a Kalman filter (or Luenberger
observer). Assuming that the pair (Ai , Ci ) is
detectable, the subsystem state estimate evolves
as follows:

OxCi D Ai OxiCBiuiC
X

j2Ni

Bij ujCLi .yi � Ci Oxi /

(14)
in whichLi 2 R

ni�pi is the local Kalman predic-
tor gain, chosen such that the matrix .Ai �LiCi /
is Schur. Stability of the closed-loop origin can be

still established using minor variations (Rawlings
et al. 2017, �6.3.3).

When offset-free control is sought, each local
MPC can be equipped with an integrating distur-
bance model similarly to centralized offset-free
MPC algorithms (Pannocchia 2015). Given the
current estimate of the subsystem state and dis-
turbance, a target calculation problem is solved
to compute the state and input equilibrium pair
such that (a subset of) output variables corre-
spond to given set points. Such a target calcula-
tion problem can be performed in a centralized
fashion or in a distributed manner (Razzanelli
and Pannocchia 2017). Furthermore, the target
calculation problem can be embedded into the
FHOCP (Ferramosca et al. 2013; Razzanelli and
Pannocchia 2017).

Distributed Control for Nonlinear Systems
Several nonlinear distributed MPC algorithms
have been recently proposed (Liu et al. 2009;
Stewart et al. 2011). Some schemes require the
presence of a coordinator, thus introducing a
hierarchical structure (Scattolini 2009). In Stew-
art et al. (2011), instead, a cooperative distributed
MPC architecture similar to the one discussed in
the previous section has been proposed for non-
linear systems. Each local controller considers
the following subsystem model:

xCi D fi .xi ; ui ; uj /; with j 2 Ni
yi D hi .xi /

(15)

A problem (formally) identical to P
CDi
i in (9)

is solved by each controller, and cooperative
iterations are performed. However, non-convexity
of P

CDi
i can make a convex combination step

similar to Step 8 in Algorithm 1 not necessarily
a cost improvement. As a workaround in such
cases, Stewart et al. (2011) propose deleting
the least effective control sequence computed
by a local controller (repeating this deletion if
necessary). In this way it is possible to show a
monotonic decrease of the cost function at each
cooperative iteration (Rawlings et al. 2017, �6.5).
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Summary and Future Directions

We presented the basics and foundations of
distributed model predictive control (DMPC)
schemes, which prove useful and effective in
the control of large-scale systems for which a
single centralized predictive controller is not
regarded as a possible or desirable solution,
e.g., due to organizational requirements and/or
computational limitations. In DMPCs, the overall
controlled system is organized into a number of
subsystems, in general featuring some dynamic
couplings, and for each subsystem a local MPC
is implemented.

Different flavors of communication and coop-
eration among the local controllers can be cho-
sen by the designer, ranging from decentralized
to cooperative schemes. In cooperative DMPC
algorithms, the dynamic interactions among the
subsystems are fully taken into account, with
limited communication overheads, and the same
overall objective can be optimized by each local
controller. When cooperative iterations are per-
formed upon convergence, such DMPC algo-
rithms achieve the same global minimum control
sequence as that of the centralized MPC. Ter-
mination prior to convergence does not hinder
stability and robustness guarantees.

In this contribution, after discussing an
overview on possible communication and
cooperation schemes, we addressed the design of
a state-feedback and distributed MPC algorithm
for linear systems subject to input constraints,
with convergence and stability guarantees. Then,
we discussed various extensions to coupled input
constraints and state constraints, output feedback,
reference target tracking, and nonlinear systems.

The research on DMPC algorithms has been
extensive during the last decade, and some excel-
lent review papers have been recently made avail-
able (Christofides et al. 2013; Scattolini 2009).
Still, we expect DMPC to attract research efforts
in various directions, as briefly discussed:

• Nonlinear DMPC algorithms (Liu et al. 2009;
Stewart et al. 2011; Hours and Jones 2015)

will require improvements in terms of global
optimum goals.

• Economic DMPC and tracking DMPC (Fer-
ramosca et al. 2013; Razzanelli and Pannoc-
chia 2017; Köhler et al. 2018) will replace
current formulations designed for regulation
around the origin.

• Reconfigurability, e.g., addition/deletion of
new local subsystems and controllers, is
an ongoing topic, which finds particular
applicability in the context of smart-grid
systems (Molzahn et al. 2017). Preliminary
results, discussed in Riverso et al. (2013) for
decentralized control structures, have been
also extended to distributed nonlinear systems
(Riverso et al. 2016).

• Constrained distributed estimation, prelim-
inarily addressed in Farina et al. (2012),
is drawing attention (Yin and Liu 2017),
although further insights are needed to bridge
the gap between constrained estimation and
control algorithms.

• Specific distributed optimization algorithms
tailored to DMPC problems (Doan et al. 2011;
Farokhi et al. 2014; Molzahn et al. 2017)
will increase the effectiveness of DMPC algo-
rithms.

Cross-References

�Cooperative Solutions to Dynamic Games
�Nominal Model-Predictive Control
�Optimization Algorithms for Model Predictive

Control
�Tracking Model Predictive Control

Recommended Reading

General overviews on DMPC can be found
in Christofides et al. (2013), Rawlings et al.
(2017), and Scattolini (2009). DMPC algorithms
for linear systems are discussed in Ferramosca
et al. (2013), Riverso et al. (2013), Stewart et al.
(2010), Maestre et al. (2011), and Razzanelli and
Pannocchia (2017) and for nonlinear systems in

http://link.springer.com/Cooperative Solutions to Dynamic Games
http://link.springer.com/Nominal Model-Predictive Control
http://link.springer.com/Optimization Algorithms for Model Predictive Control
http://link.springer.com/Tracking Model Predictive Control
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Farina et al. (2012), Liu et al. (2009), and Stewart
et al. (2011).
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