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Abstract 

Objective:  In HIV+ individuals, the virus enters the central nervous system and invades innate immune cells, produc-
ing important changes that result in neurological deficits. We aimed to determine whether HIV plays a direct role in 
neuronal excitability. Of the HIV peptides, Tat is secreted and acts in other cells. In order to examine whether the HIV 
Tat can modify neuronal excitability, we exposed primary murine hippocampal neurons to that peptide, and tested its 
effects on the intrinsic membrane properties, 4 and 24 h after exposure.

Results:  The exposure of hippocampal pyramidal neurons to Tat for 4 h did not alter intrinsic membrane properties. 
However, we found a strong increase in intrinsic excitability, characterized by increase of the slope (Gain) of the input–
output function, in cells treated with Tat for 24 h. Nevertheless, Tat treatment for 24 h did not alter the resting mem-
brane potential, input resistance, rheobase and action potential threshold. Thus, neuronal adaptability to Tat exposure 
for 24 h is not applicable to basic neuronal properties. A restricted but significant effect on coupling the inputs to the 
outputs may have implications to our knowledge of Tat biophysical firing capability, and its involvement in neuronal 
hyperexcitability in neuroHIV.
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Introduction
Neuronal plasticity and regeneration are interrelated 
phenomena, tightly dependent on the normal func-
tioning of the Central Nervous System (CNS). Changes 
in glia drastically affect neuronal capacity to recover 
and rewire [1–3]. Microglia invade the CNS at prenatal 
stages, increasing density during the first weeks of post-
natal life, reaching a maximum by P18, concomitant 
to an intense synaptogenesis period [4–6]. Microglia 
express cytokines, neurotrophins [7, 8], glutamate and 
NO [9–12], which regulate synaptic properties. Impor-
tantly, microglia are critical during Human Immunode-
ficiency Virus (HIV) infection, because they get infected 

by virus carried into the brain by macrophages at early 
time points [13, 14].

The consequences of HIV in the brain include high 
incidence of neurological dysfunctions, even in the 
post-antiretroviral age [14]. Of all HIV-1 peptides, Tat is 
involved in viral transcription, and is unconventionally 
secreted by infected targets [15–18], with consequences 
to neighboring cells, including neurons. HIV-Tat has 
been linked to impaired learning and memory, and gray 
matter deficits [19, 20], suggesting its involvement in the 
development of HIV-associated neurological disorders 
(HAND).

The hippocampus is a brain region involved in cog-
nition, and memory formation, organization, and 
retrieval, where the main cell type is the excitatory 
glutamatergic pyramidal neuron, integrating spatial, 
contextual, and emotional information, while trans-
mitting all outputs to cellular targets throughout the 
brain, in response to glutamate, a key neurotrans-
mitter [21]. Pyramidal cells in the CA1 and subicu-
lum regions carry output by firing individual or high 
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frequency bursts of action potentials (AP), increasing 
synaptic communication through evoking a postsyn-
aptic spike [22, 23]. They also participate in plasticity 
and place field development [24, 25]. Excitatory synap-
tic transmission in hippocampal neurons is suscepti-
ble to changes, contributing to cognitive impairments. 
Due to the abundance of these neurons, the hip-
pocampus is crucial for recalling when and where an 
event occurred, or ‘episodic memory’ [26], one of the 
first functions lost in HAND and in aging [27, 28]. 
Importantly, we have demonstrated that HIV Tat pre-
vents long-term potentiation in the hippocampal CA1 
region [29]. Our goal was to further characterize the 
neuronal response to HIV Tat in primary cultures.

Neuronal membrane properties are characterized by 
means of the input–output response function, giving 
the rate of AP discharge as a function of the injected 
current strength. The linear relationship between 
neuronal input and output is defined by the rheobase 
(minimum synaptic input that generates an AP), and 
by the slope (gain). The gain control is a central fea-
ture of neural information processing [30]. Changes 
in gain control, associated with alterations in the con-
ductance of voltage-gated channels such as the A-type 
(IA), the delayed-rectifier K+ (Id) and L-type voltage-
gated Ca2+ (IKCa) channels, are critical in several 
pathophysiological conditions. An increase in IA, Id 
and IKCa reduces neuronal gain. In contrast, increases 
in the slow voltage-gated Ca2+ channel conductance 
(GCaS) increase neuronal gain. The hyperpolariza-
tion-activated inward channel (Ih) is ‘gain neutral’. The 
functional relevance of such changes include protect-
ing neurons from over-excitation during ischemia, 
infection, or aging, and for making neurons more 
excitable during associative learning [31–36].

We used the slope of the fitted linear function (gain, 
I–O slope) as a quantitative measure of biophysical 
firing capabilities under DC step stimulation [37], to 
examine whether HIV-1 Tat can modulate hippocam-
pal neuron properties, explaining changes in memory 
functions experienced by HIV+ subjects. In neuronal 
primary cultures we modeled Tat exposure, and tested 
its effects on excitability.

In cell line studies, Tat internalization by neurons 
was detected at 4  h [38]. Effects on molecular func-
tions and morphology were detected at 24  h [39, 40], 
preceding neurotoxicity at 48 h [38]. The ability of Tat 
to modify neuronal excitability in the primary hip-
pocampal neuron culture system was tested on whole 
cell patch electrophysiological testing paradigms, at 4 
and 24-h time points. We found a significant effect of 
Tat at 24 h after exposure.

Main text
Methods
Hippocampal cultures
Animal use was approved by Institutional Animal Care 
and Use Committees of The Scripps Research Institute 
(TSRI) and San Diego Biomedical Research Institute. In 
three independent experiments, two pregnant C57Bl/6 
females, 5–8  weeks old, were purchased from TSRI 
Department of Animal Resources. E17 pups [41] (~ 7/
experiment) were sacrificed by CO2 inhalation. Hip-
pocampi were dissected in Ca2+/Mg2+-free, HEPES-
buffered Hank’s balanced salt solution (HBSS), pH7.45, 
dissociated through flame-narrowed Pasteur pipettes of 
decreasing aperture, and resuspended in DMEM without 
glutamine, 10% fetal bovine serum and penicillin/strep-
tomycin (100  U/ml and 100  μg/ml, respectively). Cells 
were plated (120,000/dish) onto 25  mm round Matrigel 
(200  μl, 0.2  mg/ml; BD Biosciences) pre-coated cover 
glass glued to cover a 19-mm-diameter opening drilled 
through the bottom of a 35 mm Petri dish. Neurons were 
grown in 10% CO2, at 37  °C, and fed on days 1 and 6, 
by exchanging 75% of the media with DMEM contain-
ing 10% horse serum and penicillin/streptomycin. In all 
experiments, pyramidal-shaped neurons behaved as such 
in patch-clamp.

Tat stimulation
Recombinant HIV-1 Tat (Clade B) was from the National 
Institutes of Health AIDS Research and Reference Rea-
gent Program, Division of AIDS, National Institute of 
Allergy and Infectious Diseases. In control experiments, 
Tat was heat-inactivated at 85  °C for 30  min. The cells 
were incubated with Tat 10 ng/ml (6.4 nM). Tat (or inac-
tivated Tat) was added to the media 4 or 24  h prior to 
recordings. Coded cultures were removed from 37  °C, 
and a 95% O2/5% CO2 injector was placed in wells, under 
a differential interference contrast microscope (Leica). 
Electrophysiology was performed in randomized cul-
tures, in a blinded manner.

Whole‑cell patch clamp recordings and intracellular 
stimulation
Patch clamp recordings and intracellular stimulation 
were performed and captured using Multiclamp 700B 
amplifier (Axon Instruments). Stimulus waveforms were 
generated using data acquisition software DASYLab11.0 
(National Instruments) in Windows computer equipped 
with National Instruments PCI-MIO-16-E4 board. We 
used rectangular hyperpolarizing and depolarizing cur-
rent pulses as stimuli for physiological characteriza-
tion. Specifically, 350  ms current pulses starting from 
− 200 pA, were incremented by 10 pA. Voltage responses 
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were analyzed using software developed by Delphi, 2009, 
using the following parameters: Resting membrane 
potential, Resting input resistance, Rheobase, AP Thresh-
old, AP amplitude and duration, AP after hyperpolari-
zation, and the I-O function (gain). The spontaneous 
excitatory postsynaptic currents (sEPSCs) were recorded 
in voltage clamp mode at − 70 mV holding potential. The 
spontaneous inhibitory postsynaptic current (sIPSC) 
was recorded in voltage clamp mode at − 40 mV holding 
potential.

Statistical analysis
Using Prism5 (GraphPad Software Inc, La Jolla, CA), we 
examined deviations from normality in the data using 
Kolmogorov–Smirnov test. Slopes were tested using 
Pearson’s correlation coefficient (r) (p < 0.01), and linear 
regression. The mean of input–output relationship [42] 
was compared by ANOVA, and Bonferroni’s post hoc 
test (p < 0.05). Individual parameters between controls 
and Tat 24 h were compared using Student’s t test.

Results
We examined whether dysfunctional properties are 
detectable in hippocampal neurons exposed to HIV-1 Tat 
for 4 and 24 h. We measured electrophysiological prop-
erties in the pyramidal subset, in comparison to cultures 
treated with inactivated Tat. In both time-points, control 
cultures showed similar behaviors and thus measure-
ments were pooled.

Figure  1 summarizes the parameters characterizing 
neuronal subsets. Baseline recordings showed that hip-
pocampal neuronal subsets in primary cultures exhibit 
expected behaviors, and are a valid system for study-
ing the direct effects of HIV peptides such as Tat, or 
neuroimmune factors. In control cultures, pyramidal 
Glutamatergic neurons (Fig.  1, red lines) differed from 
GABAergic interneurons (Fig. 1, blue lines), in recording 
patterns during whole cell patch-clamp assays. Pyrami-
dal neurons displayed characteristic voltage sag during 
hyperpolarizing pulse, and strong adaptation (Fig.  1a, 
upper trace), while interneurons fired at higher frequency 

Fig. 1  Summary of baseline electrophysiological function behaviors that distinguish neuronal subsets in hippocampal primary cultures, and that 
were utilized to examine the effect of Tat exposure. The expected recording profiles distinguish pyramidal glutamatergic neurons (red lines) from 
GABAergic interneurons (blue lines), as seen in this representative electrophysiological characterization of hippocampal neurons in culture. a Whole 
cell patch-clamp recording from pyramidal neuron (upper red traces) and interneuron (lower blue traces). Voltage responses to hyperpolarizing 
and depolarizing current pulses differ in the 2 types of neurons. Pyramidal neurons show their characteristic voltage sag during hyperpolarizing 
pulse, and a strong adaptation. In contrast, interneurons fire at higher frequency without signs of adaptation. b Action potentials (AP) evoked by 
a short depolarizing current pulse. In the pyramidal neurons, AP shows a depolarizing potential during the repolarization phase (upper trace). In 
interneurons, the AP is followed by a fast hyperpolarization, referred to as fast after-hyperpolarization (fAHP) (lower trace), which is a characteristic 
oh hippocampal interneurons. c The action potential width is shorter in interneurons (blue lines) when compared to pyramidal neurons (res lines). 
We tested the hypothesis that HIV Tat has the ability to interact with neurons affecting their performance, which can be detectable by changes 
(increase or decrease) in the pulse current intensity that is necessary to elicit an AP
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without signs of adaptation (Fig. 1a, lower trace). Regard-
ing AP evoked by a short depolarizing current pulse, 
pyramidal neurons showed depolarizing potential during 
the repolarization phase (Fig.  1b, upper trace), while in 
interneurons, AP was followed by a fast after-hyperpolar-
ization (fAHP) (Fig. 1b, lower trace). The AP width was 
shorter in interneurons (Fig.  1c, blue line) compared to 
pyramidal neurons (Fig. 1c, red line). All parameters were 
according to predicted results for these subsets.

Using this system, we tested the hypothesis that Tat 
can directly affect neuronal performance, detectable by 
increase or decrease in pulse current intensity necessary 
to elicit an AP. We have focused on glutamatergic pyram-
idal neurons, due to their excitatory role in circuitry 
architecture, and due to their consistent pattern of Tat-
elicited changes, compared to control neurons. All cul-
tures showed a linear relationship between the injected 
current and the number of spikes, determined by Pear-
son’s coefficient (Control r2 = 0.9969, p = 0.0031; Tat 4 h 
r2 = 0.9989, p = 0.0011; Tat 24 h r2 = 0.9827, p = 0.0004). 
Compared to control cultures, Tat did not alter neuronal 
behaviors at 4 h. However, a strong increase of the gain 
function was seen at 24 h (Fig. 2). The slope comparison 
by linear regression revealed a significant difference, with 
F = 16.4446, DFn = 2, DFd = 8, and p = 0.001465, and 

with a 0.15% chance of randomly choosing data points 
exhibiting these differences. The comparison of the mean 
of the slopes input–output (I/O) relationship within the 
tested interval showed a significant difference between 
Control and Tat 24  h (p = 0.002, Bonferroni’s p < 0.05). 
Yet, pyramidal neurons treated with Tat did not alter the 
RMP, input resistance, rheobase (or the minimal depolar-
izing current input that generates an AP), and AP thresh-
old at 24 h (Table 1).

Discussion
We found that Tat critically affects neuronal intrinsic 
excitability in cultured hippocampal pyramidal neurons, 
as a result of a lower reactive threshold to current. This 
effect was not observed at 4 h after HIV-1 Tat exposure, 
but only at the 24 h time point.

In cell line studies, conflicting results relate to the 
diversity of models. In a neuro-epithelial-like stem (NES) 
cell line from human fetal hindbrain, Tat at 10 times 
lower doses than in our study caused deep changes in 
gene expression and cytoskeletal structure at 24 h, and a 
reduction of output excitability at 48 h [40], likely due to 
neurotoxicity.

In primary cultures, Tat-induced changes are subset, 
dose and time-depend. For instance, in rat dorsal root 

Fig. 2  Input/output function slope (gain) is enhanced in Tat-treated pyramidal neurons. a The graph shows the mean number of action potentials 
(AP) generated by the pyramidal neurons is response to depolarizing current pulses of different intensities, in one representative experiment. 
In a defined range of current intensities, the relationship between number of spikes and current intensity is linear. The slope of this function, 
referred to as “Gain”, is higher in the pyramidal neurons treated wit Tat for 24 h (red), when compared to the control (blue) or to Tat for 4 h (green) 
in pyramidal neurons in culture, as determined by Pearson’s correlation coefficient. b The bar graph shows the mean (± SEM) slope of the input/
output (I/O) function of controls (n = 10, blue bar) and Tat treated neurons for 4 h (n = 5, green bar) or for 24 h (n = 5, red bar). The mean slope of 
the I/O function was 1.95 ± 0.53 (SEM) for untreated pyramidal neurons and 5.89 ± 0.59 (SEM) for Tat treated neurons (p < 0.002, ANOVA followed by 
Bonferroni’s test)
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ganglion small diameter capsaicin-sensory neurons, Tat 
at 20 nM greatly enhanced excitability, suggesting a direct 
role in pain [43]. On the other hand, studies in rat hip-
pocampal neurons show Tat-induced biphasic changes 
in NMDA-evoked increases in intracellular Ca2+, with 
consequences to spontaneous activity [42, 44]. Tat (at 
5-fold higher concentrations than in our study) acutely 
reduced spontaneous spike frequencies while increasing 
AP bursts amplitude and duration, followed by attenua-
tion, and adaptation at 24 h. These changes were hypoth-
esized to result from aberrant network activity, attributed 
to changes in NMDA-gated intracellular Ca2+, mediated 
by Src kinase and NO signaling [42, 45]. Our results com-
plement those, suggesting that neuronal adaptability to 
lower Tat concentrations may be relative, or not applica-
ble to all aspects of neuronal function. Our findings are 
in agreement with the excitatory effect of Tat on cultured 
human fetal neurons, and rat hippocampal slices [46–48].

The neuronal ability to receive and transmit informa-
tion depends on neurotransmitter concentrations in 
presynaptic terminals, numbers and intrinsic properties 
of postsynaptic receptors on dendritic trees, and receiv-
ing synaptic inputs, which depend on the type of voltage-
dependent membrane ionic channels. These channels, 
upon inputs and AP, allow ionic movement, changing 
the excitability. We observed that Tat increases neuronal 
excitability, or the slope of the input–output relationship. 
Tat may enhance firing via Ca2+ influx [49, 50], by pro-
longing Ca2+ potentials mediated by L-channels. Impor-
tantly, neuronal voltage-gated K+ channels (Kv) are 
involved in memory processes [51, 52], and in acquired 
neuronal channelopathies observed in HIV-associated 
neurocognitive disorders [53]. Further studies must 
determine what conductance is affected by Tat exposure, 
and whether these findings apply to neuroHIV models 
in vivo. If so, these may have consequences to how HIV 
in the brain affects perception, reactivity to sensory stim-
ulation, and memory, in part explaining HIV-associated 
neurobehavioral changes.

Conclusions
HIV-Tat acts on hippocampal pyramidal neurons by 
lowering the current pulse intensity threshold that 

elicits an action potential response, and increases gain 
slope 24 h following exposure, indicating an enhanced 
intrinsic neuronal excitability.

Limitations
This study was in isolated neurons in culture, not sub-
jected to neuroimmune changes, or active infection, 
differing from the HIV-infected brain. Yet, it is a sys-
tem for the examination of direct effects of HIV and its 
peptides, and that can accommodate complexities from 
neuroimmune cells. More studies are need for identify-
ing mechanisms by which Tat affects excitability, with-
out affecting other functions.
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