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a b s t r a c t 

The mechanical response of peripheral nerves is crucial to understand their physiological and pathologi- 

cal conditions. However, their response to external mechanical solicitations is still partially unclear, since 

peripheral nerves could behave in a quite complex way. In particular, nerves react to longitudinal strains 

increasing their stiffness to keep axons integrity and to preserve endoneural structures from overstretch. 

In this work, the strain stiffening of peripheral nerves was investigated in vitro through a recently intro- 

duced computational framework, which is able to theoretically reproduce the experimental behaviour of 

excised tibial and sciatic nerves. The evolution and the variation of the tangent modulus of tibial and sci- 

atic nerve specimens were quantitatively investigated and compared to explore how stretched peripheral 

nerves change their instantaneous stiffness. 

© 2019 Published by Elsevier Ltd on behalf of IPEM. 
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. Introduction 

Nerve impulses travel up peripheral nerves [45,48] to the cen-

ral nervous system, connecting the brain to the periphery of the

ody. Peripheral nerves differently react to external mechanical

timuli, according to their state of health. A deep knowledge of

heir mechanical response is, therefore, required to recognise phys-

ological and pathological conditions, as well as to avoid damages

ue to excessive mechanical solicitations. Indeed, healthy nerves

an withstand mechanical loads and increase their length to

ccomplish the movement of joints [48] . However, in pathological

onditions (i.e., neuromalacia) peripheral nerves apparently keep

heir structural integrity, but lose their stiffness. This pathological

oftening was described by Johnson and Storts [21] in animals

e.g.,chickens,birds) exposed to a diet highly deficient in riboflavin

vitamin B12). Similarly, Nonaka et al. [34] described neuromalacia

n human beings, as an adverse effect of particular medical treat-

ents (i.e., radiations). Millesi et al. [31] found that large cyclic

r suddenly mechanical solicitations (e.g., stretch, compression)

an damage the internal structure of healthy nerves, leading to

eversible or even irreversible neuropathies [26] . In a similar way,

ain et al. [29] found that the compression of median nerve

ay result in the carpal tunnel syndrome, while Williams et al.
∗ Corresponding author. 
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52] described how the looping of the laryngeal nerve around the

ortic arch could led to the unilateral vocal fold paralysis. Finally,

astro and Frank [4] , as well as Greenberg et al. [16] , reported that

he overstretch of healthy stiff nerves in arms and legs could led

o the ”stinger syndrome”. 

Furthermore, the knowledge of the mechanical response of

erves is strategic in novel emerging scientific fields (e.g., neuro-

ngineering), involving the connection between nerve tissue and

rtificial devices. To this aim, Ma et al. [28] studied the in vivo

nd in vitro mechanical response of nerves to asses intraopera-

ive conditions, while the interactions between peripheral nerves

nd tungsten microneedles [39,40,54] were investigated to opti-

ize the insertion of intraneural interfaces [6,37] . 

As a consequence, in this work a theoretical framework is pro-

ided to investigate the evolution of the instantaneous stiffness of

eripheral nerves subjected longitudinal strain, since it is crucial

n early identification of nerve disfunctions, as well as strategic

o better design the connection between nerves and biomaterials,

voiding tissue scarring formation due to stiffness mismatch [25] . 

. Materials and methods 

.1. Experiments 

Each specimen was dissected from a tibial nerve of an adult pig

nd frozen ( � −18 ◦C ) until experiments. The length and the cross

ectional area of the frozen specimens were measured through a

https://doi.org/10.1016/j.medengphy.2019.10.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/medengphy
http://crossmark.crossref.org/dialog/?doi=10.1016/j.medengphy.2019.10.012&domain=pdf
mailto:p.sergi@sssup.it
https://doi.org/10.1016/j.medengphy.2019.10.012
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graded aluminium scale and resulted in 82 mm and 26.073 mm 

2 .

Experiments were performed at room temperature ( � 25 ◦), using

an Instron R4464 testing machine (Instron Corporation, Canton,

MA) equipped with a standard load cell (Instron load cellâInstron

Corporationâcell type 2525 − 808 , max force 10 N, accuracy in

the range 0–1% Full Scale Output). The specimen was fixed to the

testing machine through custom clamps, so the length between

clamps was 70 mm. The mechanical characteristics of the nerve

were preserved by regularly spraying saline on its external surface,

while its viscous response was stabilized through a precondi-

tioning procedure [11] . The specimen was, therefore, stretched

up to 8% to shortly overcome its physiological limits. Finally, a

quantitative comparison between the mechanical response of a

tibial and a sciatic nerves was provided [14] . 

2.2. Theoretical framework 

Peripheral nerves were modelled as a homogeneous and incom-

pressible material, ruled by the following hyperelastic polynomial

strain energy function [13,53] : 

�(I 1 ) = 

3 ∑ 

i =1 

c i (I 1 − 3) i (1)

where c 1 , c 2 , c 3 ∈ � were scalar coefficients. The first strain in-

variant ( I 1 ) and the deformation gradient F were used to write the

Cauchy stress as: 

σ = −k I + 2 

∂�(I 1 ) 

∂ I 1 
FF T (2)

where k was an indeterminate Lagrange multiplier related to

boundary conditions, while I and F T were, respectively, the

unit tensor and the transposed deformation gradient. Since I 1 =
r( FF T ) and F were expressed as a function of principal stretches,

Eq. (2) was able to provide a theoretical relationship between

stress and stretch. 

A homogeneous triaxial stretch state was assumed and the k

coefficient was computed, accounting for the material incompress-

ibility together with the experimental boundary conditions. Then,

the longitudinal component of the Cauchy stress was expressed

as: 

σz (λ, c 1 , c 2 , c 3 ) = 

2(λ − 1)(λ2 + λ + 1) f (λ, c 1 , c 2 , c 3 ) 

λ3 
(3)

where f (λ) = 3 c 3 λ
6 + (2 c 2 − 18 c 3 ) λ

4 + 12 c 3 λ
3 + (27 c 3 − 6 c 2 +

c 1 ) λ
2 + λ(4 c 2 − 36 c 3 ) + 12 c 3 . 

The mean Cauchy stress was written as a function of strain

as: 

σz (ε, c 1 , c 2 , c 3 ) = 

Q(ε, c 1 , c 2 , c 3 ) 

ε3 + 3 ε2 + 3 ε + 1 

(4)

where Q(ε, c 1 , c 2 , c 3 ) = 6 c 3 ε
9 + 54 c 3 ε

8 + (180 c 3 + 4 c 2 ) ε
7 + (270 c 3

+ 28 c 2 ) ε
6 + (162 c 3 + 72 c 2 + 2 c 1 ) ε

5 + (84 c 2 + 10 c 1 ) ε
4 + (36 c 2 + 

20 c 1 ) ε
3 + 18 c 1 ε

2 + 6 c 1 ε. 

Similarly, the tangent modulus ( E t = d σ/d ε) was written as: 

E t (ε, c 1 , c 2 , c 3 ) = 

G (ε, c 1 , c 2 , c 3 ) 

ε4 + 4 ε3 + 6 ε2 + 4 ε + 1 

(5)

where G (ε, c 1 , c 2 , c 3 ) = 36 c 3 ε
9 + 324 c 3 ε

8 + (1152 c 3 + 16 c 2 ) ε
7 +

(2070 c 3 + 112 c 2 ) ε
6 + (1944 c 3 + 312 c 2 + 4 c 1 ) ε

5 + (810 c 3 + 4 4 4 c 2 + 

20 c 1 ) ε
4 + (336 c 2 + 40 c 1 ) ε

3 + (108 c 2 + 42 c 1 ) ε
2 + 24 c 1 ε + 6 c 1 , 

while the rate of change of the tangent modulus with strain

( E 
′ 
t = d E t /d ε) was expressed as: 

E ′ t ( ε, c 1 , c 2 , c 3 ) = 

M 1 ( ε, c 1 , c 2 , c 3 ) 

ε4 + 4 ε3 + 6 ε2 + 4 ε + 1 

− M 2 ( ε, c 1 , c 2 , c 3 ) (
ε4 + 4 ε3 + 6 ε2 + 4 ε + 1 

)2 
(6)
here M 1 (ε, c 1 , c 2 , c 3 ) = 324 c 3 ε
8 + 2592 c 3 ε

7 + 7(1152 c 3 + 16 c 2 ) ε
6

 6(2070 c 3 + 112 c 2 ) ε
5 + 5(1944 c 3 + 312 c 2 + 4 c 1 ) ε

4 + 4(810 c 3 + 

 4 4 c 2 + 20 c 1 ) ε
3 + 3(336 c 2 + 40 c 1 ) ε

2 + 2(108 c 2 + 42 c 1 ) ε + 24 c 1 , 

nd M 2 (ε, c 1 , c 2 , c 3 ) = (4 ε3 + 12 ε2 + 12 ε + 4)[36 c 3 ε
9 + 324 c 3 ε

8 +
(1152 c 3 + 16 c 2 ) ε

7 + (2070 c 3 + 112 c 2 ) ε
6 + (1944 c 3 + 312 c 2 + 

 c 1 ) ε
5 + (810 c 3 + 4 4 4 c 2 + 20 c 1 ) ε

4 + (336 c 2 + 40 c 1 ) ε
3 + (108 c 2 + 

2 c 1 ) ε
2 + 24 c 1 ε + 6 c 1 ] . 

.3. Identification of parameters 

The optimum values for numerical coefficients in Eq. (3) were

ound through a non-linear procedure (quasi-Newton algorithm,

cilab © Scilab Enterprises S.A.S 2015), allowing the R 2 statistic to

e maximized. More specifically, guess values of [ c 1 , c 2 ] were cho-

en, while c 3 was varied within a suitable range. Therefore, once

omputed the optimum value of c 3 , the best guess of c 2 was found.

inally, once fixed the optimum values of c 2 and c 3 , the best guess

f c 1 was found. Furthermore, to investigate the sensitiveness of

he best fitting curve to each coefficient, a quantitative index was

efined as follows: 

(�C i ) = 

∫ λmax 

1 | σ (λ, C i ∗ ) − σ (λ, C i ∗ + �C i ) | dλ

�C i 
(7)

here C i ∗ were related to the best fitting curve, �C i were the dif-

erences between the actual value of c i and the target values C i ∗ ,
hile λmax was the maximum stretch. In particular, coefficients c i 
ere varied to investigate the influence of these changes on the

lobal output. 

. Results 

Theoretical predictions were compared to experiments in order

o assess the suitability of the provided framework in reproducing

he mean Cauchy stress for an axially stretched tibial nerve. Both

xperimental data (squares) and theoretical predictions (solid line)

volved in a non linear way, as shown in ( Fig. 1 (a)). More specif-

cally, residuals between experimental and predicted stress were

ithin −0 . 1 kPa up to λ = 1 . 05 , while oscillation between 0.25 kPa

nd −0 . 3 kPa were found for 1.05 < λ < 1.08. Numerical param-

ters, which allowed Eq. (3) to closely reproduce experiments

 R 2 � 0.992), were c 1 = 0 . 024 kPa, c 2 = 0 . 579 kPa, c 3 = 7 . 730 MPa,

s shown in Figure 1 (c) (logarithmic scale). 

Similarly, theoretical predictions were compared to experiments

lso for a sciatic nerve ( Fig. 2 (a)). In this case, residual differ-

nces were within 0.1 kPa up to λ = 1 . 06 , while they oscillated

etween −0 . 2 kPa and 0.2 kPa for 1.06 < λ < 1.08. In addition,

q. (3) was able to closely reproduce experiments ( R 2 = 0 . 996 )

or c 1 = 3 . 0 0 0 kPa, c 2 = 3 . 118 kPa, c 3 = 3 . 775 MPa, as shown in

igure 2 (c) (logarithmic scale). 

A further investigation was performed to explore the effect of

he variation of parameters c 1 , c 2 , c 3 had on the evolution of

q. (3) for the tibial nerve specimen. In particular, the slope

f the stress curve varied proportionally to the variation of the

 1 parameter (i.e., �C 1 = 0 . 1 , 0 . 5 , 1 , 10 , 100 , 10 0 0 ). Similarly, the

ffects on the theoretical stress predictions due to the varia-

ion of c 2 (i.e., �C 2 = 0 . 1 , 0 . 5 , 1 , 10 , 100 , 10 0 0 ) and c 3 (i.e., �C 3 =
 . 1 , 0 . 5 , 1 , 10 , 100 , 10 0 0 ) parameters were described respectively in

igure 3 (b) and (c). In both cases, the stress curve evolved in a non

inear way, even if the effects of �C 2 overcame the influence of

C 3 . Finally, the sensitiveness index (SI) was calculated for each

oefficient, and resulted in SI c 1 = 1 . 921 · 10 −2 , SI c 2 = 3 . 544 · 10 −4 ,

I c 3 = 6 . 500 · 10 −6 , as shown in Figure 3 (d). 

Furthermore, the effects the variation of parameters c 1 , c 2 , c 3 
ad on the evolution of Eq. (3) for the sciatic nerve specimen

ere investigated. More specifically, the more the c 1 parameter in-

reased (i.e., �C = 0 . 1 , 0 . 5 , 1 , 10 , 100 , 10 0 0 ), the more the shape
1 
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Fig. 1. (a) Comparison between experimental data (squares) and theoretical predic- 

tions (solid line) for a tibial nerve specimen. (b) Residual difference between theo- 

retical predictions and experimental data. (c) Values of numerical parameters c 1 , c 2 , 

c 3 (logarithmic scale). 
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Fig. 2. (a) Comparison between experimental data (squares) and theoretical pre- 

dictions for a sciatic nerve specimen (solid line). (b) Residual difference between 

theoretical predictions and experimental data. (c) Values of numerical parameters 

c 1 , c 2 , c 3 (logarithmic scale). 
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f the stress curve approached a straight line. In the same way, the

ariation of parameters c 2 (i.e., �C 2 = 0 . 1 , 0 . 5 , 1 , 10 , 100 , 10 0 0 ), c 3
 �C 3 = 0 . 1 , 0 . 5 , 1 , 10 , 100 , 10 0 0 ) resulted in changes of the stress

urve shape, as shown in Fig. 4 (b) and (c). Finally, the sensitiveness

ndex was computed (see Fig. 4 (d)) for all coefficients c 1 , c 2 , c 3 , re-

ulting in SI c 1 = 1 . 921 · 10 −2 , SI c 2 = 3 . 544 · 10 −4 , SI c 3 = 6 . 500 · 10 −6 .

The evolution of the stress-strain curve was then studied for

oth tibial and sciatic nerve specimens ( Fig. 5 ). The increase of

he mean Cauchy stress in the sciatic nerve (dashed line) exceeded

hat in the tibial nerve (solid line) for 0 ≤ ε ≤ 0.07. On the con-

rary, the stress within the tibial nerve exceeded that in the sci-

tic nerve for 0.07 ≤ ε ≤ 0.08 ( Fig. 5 (a)). In addition, the mean

tress values were the same for both specimens at ε = 0 and at

= 0 . 075 . As a consequence, the difference between these stress

unctions had a stationary point at ε = 0 . 0499 , which was a point

f minimum ( Fig. 5 (b)). Finally, the ratio between stress in tibial

nd sciatic nerves was found to range between 0.008 and 1.750,

espectively at ε � 0 and at ε = 0 . 08 , as shown in Figure 5 (c). 

To investigate how numerical constants in Eq. (3) varied be-

ween each other, their differences were computed for both nerves.

ore specifically, they resulted in | c 1 − c 2 | = 0 . 555 kPa, | c 1 − c 3 | =
 . 730 MPa, | c − c | = 7 . 729 MPa, and | c − c | = 0 . 118 kPa, | c −
2 3 1 2 1 
 3 | = 3 . 741 MPa, | c 2 − c 3 | = 3 . 741 MPa, respectively for the tib-

al and sciatic nerves ( Fig. 6 (a) in logarithmic scale). In addition,

he intra specimens variability of each constant resulted in �c 1 =
 . 975 kPa, �c 2 = 2 . 539 kPa, �c 3 = 3 . 985 MPa ( Fig. 6 (b) in loga-

ithmic scale). Finally, the amount of work (for a unit of volume)

eeded to stretch the specimens up to ε = 0 . 08 resulted in 0.051 J

nd 0.083 J, for the tibial and sciatic nerve specimens, respectively

 Fig. 6 (c)). 

The evolution of the tangent modulus was therefore studied for

oth specimens ( Fig. 7 ). In particular, the tangent modulus of the

ibial nerve ranged between 0.145 kPa and 228.454 kPa (solid line),

hile the tangent modulus of the sciatic nerve ranged between

8.0 0 0 kPa 130.536 kPa (dashed line). In addition, from a side, the

angent modulus of the sciatic nerve exceeded that in the tibial

erve for small strain. From the other side, the tangent modulus of

he tibial nerve exceeded that in the sciatic nerve for large strain.

s a consequence, both moduli had the same value at ε = 0 . 0499

 Fig. 7 (b)), while, for 0 ≤ ε ≤ 0.08, their difference ranged be-

ween −17 . 861 kPa and 97.917 kPa. Finally, the ratio between these

oduli was explored. This ratio ranged between 0.008 and 1.750

 Fig. 7 (c)), increased in a slow way for 0 < ε ≤ 0.015, while its
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slope was almost constant for 0.03 < ε < 0.06. On the contrary, it

slowly decreased for 0.07 < ε ≤ 0.08. 

Similarly, the rate of change of the tangent modulus ( E ′ t ) was

investigated. E ′ t ranged between 0 kPa and 11096.398 kPa for the

tibial nerve specimen (solid line), while it varied between 0 kPa

and 5422.2339 kPa (dashed line) for the sciatic nerve specimen

( Fig. 8 (a)). In addition, the difference between these two rates

ranged from 0 to 5674.1631 kPa ( Fig. 8 (b)). Finally, the ratio be-

tween rates ranged from 0.177 to 2.046 kPa, showing a fast in-

crease for 0 < ε ≤ 0.02, while for 0.04 ≤ ε ≤ 0.08 the slope of

this curve was small ( Fig. 8 (c)). 

4. Discussion 

Peripheral nerves are stiff enough to withstand longitudinal

solicitations and stretchable enough to follow the movements of

joints [9,10] . Several studies have attempted to assess their limit

stretch, resulting in irreversible histologic and functional changes.

However, quite different results were found in experiments involv-

ing different animal models. Indeed, Highet and Sanders [20] re-

ported that the popliteal nerve of dog was undamaged when its
Fig. 3. Tibial nerve. (a) Effect of c 1 variation on the evolution of the theoretical stress c

the theoretical stress curve ( �C 2 = 0 . 1 , 0 . 5 , 1 , 10 , 100 , 10 0 0 ). (c) Effect of c 3 variation on

Sensitiveness of the predicted stress with respect to the variation of c 1 , c 2 , c 3 . The values

are shown in logarithmic scale. 
tructure was elongated of 6%, while for an elongation of 11% the

tructural damages were globally severe. On the contrary, Denny-

rown et al. [8] described that peroneal nerves were function-

lly undamaged for elongations of about 100%. Again, Vogl et al.

49] discovered that in rorqual whales, tongue and ventral grooved

lubber nerves were able to withstand extreme elongations within

heir physiological range. As a consequence, for our animal model

pig), no evident structural damages were expected because of the

mall and physiological strain range used in experiments (see also

13] for a similar strain range, and Bora et al. [3] and Grewal et al.

17] for experiments involving larger extensions). Nevertheless, in

ther cases, the maximum strain limit should be carefully con-

idered in order to avoid internal damages. Indeed, Highet and

olmes [19] assessed that the maximum safe stretch for human

eings to close gap and to suture a severed nerve without grafting

as 9 cm (whose 25% was believed to be the true elongation and

5% was caused by the mobile nerve straightening), while Terzis

t al. [47] assessed that the maximum safe axial extension of a su-

ured nerve was 4 times of its diameter. 

Although it is well known that “the mechanical properties of

he nerve maintain the integrity and function of its components”
urve ( �C 1 = 0 . 1 , 0 . 5 , 1 , 10 , 100 , 10 0 0 ). (b) Effect of c 2 variation on the evolution of 

 the evolution of the theoretical stress curve ( �C 3 = 0 . 1 , 0 . 5 , 1 , 10 , 100 , 10 0 0) . (d) 

 of the sensitiveness index SI c 1 = 1 . 921 · 10 −2 , SI c 2 = 3 . 544 · 10 −4 , SI c 3 = 6 . 500 · 10 −6 
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6

17] , healthy nerves can, furthermore, progressively increase their

nstantaneous stiffness. In other words, they show a strain stiffen-

ng behaviour, probably to better preserve the integrity of internal

xonal fibers. More specifically, even if the non linear evolution of

tress as a function of strain (or stretch) is a quite well described

henomenon [31,48] , the evolution of the tangent modulus, which

s more related to the dynamic change of stiffness, is less stud-

ed. Indeed, up to now, a reliable qualitative-quantitative distinc-

ion between healthy and pathological response of nerves is lack-

ng. In addition, it is not currently clear whether, when different

erves are stretched, the mean Cauchy stress in their cross section

ay evolve in a different way. 

.1. Stress-strain evolution 

The proposed framework was able to quantitatively reproduce

he response of both nerves. Indeed, the mechanical response of

pecimens was very similar for small strain, as well as at the end

f the stretching interval (i.e., ε = 0 . 08 ). In particular, the mean

auchy stress in the sciatic nerve exceeded that in the tibial nerve

p to ε = 0 . 065 , while for further strain it was the opposite. These

iscrepancies were likely due to the different anatomical location

f the two nerves [23] , and they were probably related to the mini-

t  

ig. 4. Sciatic nerve. (a) Effect of c 1 variation on the evolution of the theoretical stress

f the theoretical stress curve ( �C 2 = 0 . 1 , 0 . 5 , 1 , 10 , 100 , 10 0 0 ). (c) Effect of c 3 variation

d) Sensitiveness of the predicted stress with respect to the variation of c 1 , c 2 , c 3 . The 

 . 500 · 10 −6 are shown in logarithmic scale. 
ization of internal stress during physiological strains (e.g., for leg

xtensions). In addition, the work (for unit of volume) to stretch

he tibial nerve specimen up to ε = 0 . 08 was lower than the work

equired to strain the sciatic nerve specimen. As a consequence,

he energetic cost to elongate the tibial nerve was lower for cyclic

xtension and retraction due to movements. On the contrary, there

as a fast increase of stiffness to counteract supra-physiological

train compromising electrical and mechanical functionalities. 

.2. Sensitiveness to parameters 

Numerical parameters c 1 , c 2 , c 3 affected the predicted stress re-

ponse in a different way. In particular, the influence of the c 1 pa-

ameter was about four orders of magnitude greater than the in-

uence of c 3 . Similarly, the influence of c 2 was two orders of mag-

itude greater than the influence of c 3 . As a consequence, small

hanges in c 1 and c 2 affected the final shape of the curve much

ore than changes in c 3 coefficient. More specifically, c 1 and c 2 
ere related to the first linear and the following not linear re-

ponse of nerve, respectively. Thus, changes in c 1 affected the ini-

ial ”linear elastic” behaviour of the nerve [12] , while the following

on linear evolution was mainly ruled by the value of c 2 . Finally,

he value of c 3 affected the non linear evolution of the curve in the
 curve ( �C 1 = 0 . 1 , 0 . 5 , 1 , 10 , 100 , 10 0 0 ). (b) Effect of c 2 variation on the evolution 

 on the evolution of the theoretical stress curve ( �C 3 = 0 . 1 , 0 . 5 , 1 , 10 , 100 , 10 0 0) . 

values of the sensitiveness index (SI) SI c 1 = 1 . 921 · 10 −2 , SI c 2 = 3 . 544 · 10 −4 , SI c 3 = 
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Fig. 5. (a) Evolution of theoretical stress in tibial (solid line) and sciatic nerves 

(dashed line) (0 ≤ ε ≤ 0.08): initially, the mean Cauchy stress in the tibial nerve 

specimen was lower than the mean Cauchy stress in the sciatic nerve specimen 

(0 ≤ ε ≤ 0.07). (b) Evolution of the difference of stress between tibial and sciatic 

nerves. The maximum difference was close to ε = 0 . 05 . (c) Evolution of the ratio 

between stress in tibial and sciatic nerves. The stress in tibial nerve specimen was 

initially very low ( ε � 0), while it exceeded 1.1 times the stress in the sciatic nerve 

specimen at ε = 0 . 08 . 

Fig. 6. (a) Difference between coefficients c 1 , c 2 , c 3 for sciatic and tibial nerve spec- 

imens. (b) Difference between values of c 1 , c 2 , c 3 coefficients in sciatic and tibial 

nerves. (c) Work for unit of volume to stretch nerves up to ε = 0 . 08 . 
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ange 0.06 ≤ ε ≤ 0.08, so the sensitiveness of the global curve with

espect to this coefficient was low. All these considerations were

esumed within the sensitiveness index (SI), since SI c 1 > SI c 2 > SI c 3 .

his index was also stable with respect to numerical oscillations

nd, therefore, it was suitable to assess data coming from different

pecimens. 

.3. Strain stiffening of peripheral nerves: Evolution and variation of 

angent modulus 

The tangent modulus was used to quantify the nerve ability

f changing the instantaneous stiffness. More specifically, the tib-

al nerve was able to increase its instantaneous stiffness 1571.351

imes, while the sciatic nerve was able to harden 7.252 times in

he range 0 ≤ ε ≤ 0.08. 

Furthermore, the sciatic nerve was instantaneously stiffer than

he tibial one for 0 ≤ ε < 0.05 (i.e., about 123 times for very small
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Fig. 7. (a) Evolution of the tangent modulus for tibial (solid line) and sciatic 

(dashed line) nerve specimens. (b) Evolution of the difference between tangent 

moduli of tibial and sciatic nerves. (c) Evolution of the ratio between tangent mod- 

uli of tibial and sciatic nerves. 

s  

i  

ε  

s

 

f  

Fig. 8. (a) Evolution of the rate of change of the tangent modulus for tibial (solid 

line) and sciatic (dashed line) nerve specimens. (b) Difference between the rate of 

change of the tangent modulus between tibial and sciatic nerve specimens. (c) Ratio 

between the rate of change of the tangent modulus between tibial and sciatic nerve 

specimens. 
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trains), while the change of stiffness was always faster for the tib-

al nerve in the range 0.05 < ε ≤ 0.08 (i.e., about 1.75 times at

= 0 . 08 ). Curiously, both nerves had the same stiffness for mild

train (exactly at ε = 0 . 04 9897664 80442918 ). 

Similarly, the rate of change of the tangent modulus increased

rom 0 to about 11 MPa [stress/strain 

2 ] and from 0 to about
.4 MPa [stress/strain 

2 ] for the tibial and the sciatic nerve speci-

en, respectively. The rate of change of stiffness was always faster

or the tibial nerve specimen (i.e.,0 < ε ≤ 0.08), while the value

f the ratio between these rates changed along the strain range. In

articular, it firstly increased (i.e., 0 < ε ≤ 0.02), then it deflected

i.e., 0.02 ≤ ε ≤ 0.03) and finally it stabilized (i.e.,0.04 ≤ ε ≤ 0.08).
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In other words, at low strain, the rate of change of the tibial nerve

stiffness was lower than the rate of change of the sciatic nerve

stiffness. 

On the contrary, for mild strain, the ratio increased and became

constant close to ε = 0 . 08 . As a consequence, the response of two

specimens was progressively similar, even if scaled of a factor � 2.

In particular, the tibial nerve was more compliant for low strain,

while it was able to stiffen more efficiently than the sciatic nerve

for high strain (about two times faster). 

5. Conclusions 

Simple elastic materials keep their stiffness constant with strain

before the yielding or rupture point. On the contrary, peripheral

nerves under stretch behave in a more complex way, varying

their instantaneous stiffness. Therefore, in this work, the evolu-

tion of the rate of change of the tangent modulus of peripheral

nerves were reproduced through a computational framework able

to quantitatively detect changes between different nerves. The

analysis was performed over results obtained from two different

specimens deriving from and adult pig. As a consequence, more

studies are needed to better understand whether, in general, tibial

and sciatic nerve behave in a different way when stretched. Nev-

ertheless, the suggested framework was general enough to closely

reproduce all experimental data. Indeed, it was able to provide

reliable predictions for both specimens, even if stress in tibial and

sciatic nerves evolved in a different way. This knowledge could be

exploited to provide an early detection of effects due to patholog-

ical states related to the nerve stiffness (i.e., neuromalacia) [34] ,

as well as strategic to mimic the behaviour of nerves [31,48] for

established medical procedures, as suturing nerve gaps [19,20,47] ,

and for high technological applications. Indeed, novel technological

horizons have been opened through the use of neural interfaces

[1,15,18,22,24,33,35,44] stretchable electronics [25] , as well as

through the direct connection between engineered biomaterials

and neural cells [5,36,38,41–43] or peripheral nerves [27] . In addi-

tion, the last in vivo frontier is related to the challenging control of

the immune response of the nerve tissue [2,30,32] . It is currently

known that this adverse response is related to the stiffness mis-

match between nerve tissue and biomaterials [25] . Nevertheless,

this mismatch is likely due not only to a “static” difference (i.e.,

the actual difference of stiffness at a given strain), but also to

the dynamic evolution of stiffness with strain. As a consequence,

to design better stretchable electronic devices, both “static” and

“dynamic” responses of nerves should be closely approximated to

mimic their natural behaviour and to minimize the production of

scar tissue. Therefore, the study of the variation and change of

the tangent modulus with strain could help in evaluating novel

materials [7,46,50,51] to mimic this complex response. 
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