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Abstract

We consider a superrenormalisable gauge theory of topological type, in which the structure group is equal 
to the inhomogeneous group ISU(2). The generating functional of the correlation functions of the gauge 
fields is derived and its connection with the generating functional of the Chern-Simons theory is discussed. 
The complete renormalisation of this model defined in R3 is presented. The structure of the ISU(2) conju-
gacy classes is determined. Gauge invariant observables are defined by means of appropriately normalised
traces of ISU(2) holonomies associated with oriented, framed and coloured knots. The perturbative eval-
uation of the Wilson lines expectation values is investigated and the up-to-third-order contributions to the 
perturbative expansion of the observables, which correspond to knot invariants, are produced. The general 
dependence of the knot observables on the framing is worked out.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Among the quantum field theory models of topological type [1], the so-called BF theory [2–5]
has been proposed in order to describe several different phenomena.

The gauge structure group of the BF theory naturally suggests possible connections with (2+1) 
gravity [6–19], and applications of the BF formalism in the context of loop quantum gravity have 
also been studied [20–26]. Generalisations of the BF models in higher dimensions have been 
considered [27–42]. Quite recently, the use of the BF field theory has been envisaged for the 
description of topological effects in condensed matter [43–51].
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Various BF quantisation procedures have been examined [52–61] and the renormalisability of 
the theory has been proved by power counting and general arguments [62–67]. The BF model is 
actually a superrenormalisable theory; nevertheless, the explicit renormalisation —with specified 
normalisation conditions— has never been produced. One of the purposes of the present article 
is precisely to provide the complete renormalisation of the nonabelian BF theory in R3.

The definition and computation of topological invariants [68–77] are central issues in the 
BF model. The observables that we propose have not been considered in literature. We shall 
demonstrate that the appropriately normalised traces of the expectation values of the holonomies 
—for the inhomogeneous group ISU(2)— associated with oriented framed knots in R3 are well 
defined. The first three orders of the perturbative computation of these observables are presented.

Let us recall that the solution of the abelian BF theory in generic closed oriented 3-manifolds 
has been produced by Mathieu and Thuillier [78–80]. In the present paper we shall concentrate 
on the perturbative approach to the nonabelian BF theory in R3 with structure group ISU(2).

The Lie algebra of the inhomogeneous group ISU(2) can be interpreted as a particular exten-
sion of the SU(2) algebra which, in the quantum mechanics description of one particle moving 
in R3, is obtained by the introduction of the three components P a of the momentum in addition 
to the three components J a of the angular momentum. The corresponding ISU(2) connection 
has then six components Aμ = Aa

μ(x)J a + Ba
μ(x)P a . The most general action in R3 which 

is ISU(2) gauge invariant and metric-independent contains two different terms: the first term ∫
Ba ∧ Fa(A) —where Fa(A) are the angular momentum components of the curvature— gives 

the name to the model and the second term 
∫

Tr(A ∧ dA + i
2
3
A ∧ A ∧ A) coincides with the 

Chern-Simons action for the SU(2) subgroup.
Section 2 contains the fundamentals of the perturbative approach for the computation of the 

BF correlation functions of the connection in the Landau gauge. The general structure of the 
connected Feynman diagrams is worked out. The computation of the generating functional of the 
connected correlation functions to all orders of perturbation theory is presented and its Chern-
Simons relationship is discussed in Section 3. The complete renormalisation of the BF theory 
is given in Section 4. It is shown that the theory is superrenormalisable, and only six one-loop 
diagrams need to be examined. These one-particle-irreducible diagrams concern the two-point 
function and the three-point proper vertex of the connection. It is shown that, as in the case of the 
Chern-Simons theory, the two-point function of the connection does not receive loop corrections 
and therefore the bare propagator coincides with the dressed propagator.

In order to introduce Wilson line observables in the BF model, certain unitary representations 
of ISU(2) are described in Section 5. Since the group ISU(2) is noncompact, these nontrivial 
representations are infinite dimensional. Wilson line operators are defined by means of nor-
malised traces of the ISU(2) holonomies associated with oriented knots. For completeness, the 
classical traces of the ISU(2) conjugacy classes are described in Section 6. The proof that the 
BF expectation values of the Wilson line operators are well defined is contained in Section 7. It is 
shown that, since the correlation functions of the connection are invariant under global ISU(2)

transformations, the expectation value of a knot holonomy is a function of the Casimir operators 
of ISU(2). This implies that the BF mean values of the Wilson line operators are well defined 
and describe topological invariants for oriented and framed knots in R3.

The perturbative computation of the knot observables up to the third order in powers of h̄ is 
described in Section 8. The knot invariants that are found at first and second order correspond to 
the knot invariants that also appear in the Chern-Simons theory. While, at the third order of per-
turbation theory, the BF and Chern-Simons knot invariants differ. A proof that the entire framing 
dependence of the knot observables is completely determined by an overall multiplicative factor 
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is given. This factor is the exponential of the linking number between the knot and its framing 
multiplied by the combination of the quadratic Casimir operators which is determined by the two 
point function of the connection. Section 9 contains the conclusions.

2. Fields, lagrangian and diagrams

The fundamental fields of the so-called BF theory [1–5,9] are given by the components of the 
ISU(2) connection

A = Aμ(x)dxμ = {Aa
μ(x)J a + Ba

μ(x)P a
}
dxμ , (2.1)

where the generators (J a, P a) (with a = 1, 2, 3) of the algebra of ISU(2) satisfy the commuta-
tion relations

[J a, J b] = iεabcJ c , [J a,P b] = iεabcP c , [P a,P b] = 0 . (2.2)

Let us consider the BF model defined in R3. Gauge transformations act as

A −→ A� = �−1A� − i�−1 d� , (2.3)

where � : R3 → ISU(2). When � � 1 + iβaJ a + iηaP a , the infinitesimal gauge transforma-
tions take the form

Aa
μ → Aa

μ + �Aa
μ , �Aa

μ = ∂μβa − εabcAb
μβc

Ba
μ → Ba

μ + �Ba
μ , �Ba

μ = ∂μηa − εabcAb
μηc − εabcBb

μβc . (2.4)

The components of the curvature are given by

Fμν = −i[∂μ + iAμ, ∂ν + iAν]
= Fa

μν(A)J a + (Dμ(A)Bν − Dν(A)Bμ

)a
P a , (2.5)

in which

Fa
μν(A) = ∂μAa

ν − ∂νA
a
μ − εabcAb

μAc
ν , (2.6)

and (
Dμ(A)Bν

)a = ∂μBa
ν − εabcAb

μBc
ν . (2.7)

The action of the BF theory in R3 is the sum of the two metric-independent terms which are 
separately invariant under ISU(2) transformations (2.4)

S =
∫

d3x εμνλ
{

1
2
Ba

μFa
νλ(A) + g

[
1
2
Aa

μ∂νA
a
λ − 1

6
εabc Aa

μAb
νA

c
λ

]}
. (2.8)

Without loss of generality, the overall normalisation of the first term in expression (2.8) can be 
taken to be (1/2), because the ISU(2) generators P a can be rescaled without any modification 
of the Lie algebra commutation relations (and consequently Ba

μ also can be rescaled). The real 
parameter g is a dimensionless coupling constant which multiplies the Chern-Simons lagrangian 
term

SCS[A] =
∫

d3x εμνλ
[

1
2
Aa

μ∂νA
a
λ − 1

6
εabc Aa

μAb
νA

c
λ

]
. (2.9)
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When g = (k/4π) with integer k, one also recovers invariance under large gauge transformations, 
which anyway play no role in the perturbative approach to the theory. Note that, in order to 
discuss the renormalisation of any gauge theory model, all the possible lagrangian terms which 
are gauge invariant must be taken into account. This is why the renormalisation of the BF model 
requires that both lagrangian terms —shown in expression (2.8)— must be included in the action.

2.1. Gauge fixing

The gauge fixing procedure is implemented according to the BRST method [81,82]. The 
BRST transformations [83] are given by

δAa
μ = ∂μca − εabcAb

μcc , δBa
μ = ∂μξa − εabcAb

μξc − εabcBb
μcc ,

δca = 1
2
εabccbcc , δca = Ma , δξa = εabcξbcc , δξ

a = Na , (2.10)

δMa = 0 , δNa = 0 ,

where {ξa, ξ
a
, ca, ca} is the set of anticommuting ghosts and antighosts fields, whereas Ma, Na

represent the commuting auxiliary fields. In the Landau gauge, the gauge-fixing and ghosts action 
terms are given by

Sφπ =
∫

d3x
{
Ma∂μAa

μ + Na∂μBa
μ + ∂μca(∂μca − εabcAb

μcc)

+ ∂μξ
a
(∂μξa − εabcAb

μξc − εabcBb
μcc)

}
, (2.11)

where the flat euclidean metric gμν = δμν of R3 has been introduced in order to contract the 
vector indices. The total action ST OT = S + Sφπ is invariant under BRST transformations.

In order to recognise the structure constants of the ISU(2) Lie algebra in the gauge-fixing 
procedure, it is convenient to introduce the ghost field C = caJ a + ξaP a , the antighost field 
C = ξ

a
J a + caP a and the auxiliary field N = NaJ a + MaP a . The BRST transformations take 

the form

δAμ(x) = [Dμ(A),C] , δC = −i

2
{C,C} , δC = N , δN = 0 ,

and Sφπ can be written as

Sφπ = δ

∫
d3x 〈C ∂μAμ〉JP ,

where the bracket 〈··〉JP denotes the non-degenerate bilinear form [9] on the ISU(2) algebra

〈J aP b〉JP = δab , 〈J aJ b〉JP = 0 = 〈P aP b〉JP .

2.2. Propagators

The Green functions of the differential operators acting on the fields —and entering the 
quadratic parts of ST OT in powers of the fields— determine the form of the fields propaga-
tors. As far as the bosonic fields are concerned, the nonvanishing components of the propagators 
are given by
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Aa
μ(x)Bb

ν(y) = δab

∫
d3k

(2π)3 eik(x−y) εμνλ

kλ

k2 = −iδabεμνλ∂
λ�(x − y) ,

Ba
μ(x)Bb

ν(y) = −g δab

∫
d3k

(2π)3 eik(x−y) εμνλ

kλ

k2 = igδabεμνλ∂
λ�(x − y) , (2.12)

and

Aa
μ(x)Mb(y) = δab

∫
d3k

(2π)3 eik(x−y) kμ

k2 = −iδab∂μ�(x − y) ,

Ba
μ(x)Nb(y) = δab

∫
d3k

(2π)3 eik(x−y) kμ

k2 = −iδab∂μ�(x − y) . (2.13)

For the anticommuting fields one gets

ca(x) cb(y) = ξa(x) ξb(y) = iδab

∫
d3k

(2π)3 eik(x−y) 1

k2 = iδab�(x − y) . (2.14)

2.3. Structure of the diagrams

The Feynman diagrams of the BF theory, which is defined by the action STOT = S + Sφπ

in R3, have quite peculiar properties that we shall now discuss. Let us consider the generating 
functional W [J, K] of the connected correlation functions of the components of the connection

eiW [J,K] = 〈ei
∫

d3x(J a
μAa

μ+Ka
μBa

μ)〉 =
∫

D(fields) eiST OT ei
∫

d3x(J a
μAa

μ+Ka
μBa

μ)∫
D(fields) eiST OT

, (2.15)

where J a
μ(x) and Ka

μ(x) are classical sources. We are interested in W [J, K] because in the 
following sections we shall consider the expectation values of observables which are functions 
of the fields Aa

μ and Ba
μ exclusively. In this section we consider the combinatorial structure 

—which is determined by the Wick contractions— of the Feynman diagrams contributing to 
W [J, K]. The renormalisation will be treated in Section 4. The first issue to be discussed is an 
extension of the Oda and Yahikozawa observation presented in [84].

Proposition 1. The entire generating functional W [J, K] is given by the sum of connected Feyn-
man diagrams with no loops and with one loop only,

W [J,K] = W0[J,K] + W1[J,K] . (2.16)

The contribution W0[J, K] of the tree-level Feynman diagrams can be decomposed into the sum 
of two terms,

W0[J,K] = U [K] +
∫

d3xJ a
μ(x)Ha

μ[K](x) , (2.17)

in which U [K] and Ha
μ[K](x) only depend on Ka

μ. The term U [K] is linear in g whereas 
Ha

μ[K](x) does not depend on g. The contribution W1[J, K] of the one-loop diagrams does 
not depend on g and does not depend on J a

μ ,

W1[J,K] = W1[K] . (2.18)
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Fig. 1. (a) Example of basic diagram. (b) Branch diagram.
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K

K
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K

(b)

Fig. 2. (a) Example of diagram with one BB propagator. (b) Diagram with one AAA vertex.

Proof. Let us first consider the connected tree level diagrams which contribute to W [J, K]. 
Diagrams which do not contain interaction vertices obviously satisfy equation (2.17) because 

AA = 0 and the nonvanishing components of the propagators are shown in equation (2.12). So 
let us now concentrate on diagrams which contain interaction vertices, which are of the type 
BAA or of the type AAA; it is convenient to recover all these diagrams in three steps.

1. The diagrams constructed with BAA interaction vertices and AB propagators exclusively 
are called the basic diagrams; these are the diagrams that remain in the g → 0 limit. They 
contain one power of the field J a

μ and may contain an arbitrary number bigger than unit of 
Ka

μ fields. One example is shown in Fig. 1(a). Indeed, each tree diagram is obtained by com-
bining subdiagrams called “branches”. One branch is a one-dimensional ordered sequence 
of vertices connected by propagators, as shown in Fig. 1(b). Note that the external lines of 
Fig. 1(b) correspond to field components and do not represent propagators; in particular, one 
branch diagram necessarily has external legs corresponding to one Ba

μ field and several Aa
μ

fields.

2. By adding the possibility of using also BB propagators, the new diagrams only contain one 

extra BB propagator —with respect to the basic diagrams of the previous case— and then 
they are of first order in powers of g and do not depend on J a

μ . See for instance Fig. 2(a). 

The BB propagator may correspond to one internal line in the Feynman diagrams, or to an 
external leg of the diagrams.

3. Finally, by incorporating the additional possibility of including also vertices of the AAA

type, the new diagrams only contain one extra AAA vertex with respect to the basic dia-
grams, they are linear in g and do not depend on J a , as shown in the example of Fig. 2(b).
μ



E. Guadagnini, F. Rottoli / Nuclear Physics B 954 (2020) 114987 7
• •

•

K K

K

(a)

B

A B

A
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• •

•

K K

K

(b)

Fig. 3. (a) Diagram with one ghost loop. (b) One-loop diagram without ghost propagators.

As a result, the set of all the connected tree-level diagrams contains diagrams which are linear in 
g and do not depend on J a

μ and diagrams which linearly depend on J a
μ and do not depend on g. 

This concludes the proof of equation (2.17).
Let us now consider the one-loop connected diagrams entering W [J, K]. As shown in the 

example of Fig. 3(a), connected diagrams with one loop of ghosts only depend on the source 
field Ka

μ because of the particular structure of the ghosts couplings (2.11). As far as the diagrams 
without a ghost loop are concerned, by cutting one internal propagator of each one-loop diagram 
one can open the loop and obtain a connected zero-loop diagram. In view of the result (2.17), 
the broken propagator was necessary of the AB type. Consequently, also each one-loop diagram 
with no ghost propagators does not depend on the J a

μ field and does not depend on g, see the 
example of Fig. 3(b). This concludes the proof of equation (2.18).
Finally, there are no connected diagrams with two or more loops contributing to W [J, K] because 

all the one-loop diagrams have external legs corresponding to the A field and the component AA

of the propagator is vanishing. �
As a final remark, consider the contributions to W [J, K] of the diagrams containing ghost 

loops. Since only one-loop diagrams enter W [J, K], all the corresponding possible subdiagrams 
that have external ghost fields are tree-level diagrams (which are well defined and finite). Con-
sequently, in discussing the renormalisation of W [J, K], the diagrams with external ghost fields 
can be ignored.

Let X[A, B] be a function of the field components Aa
μ and Ba

μ. In the perturbative computation 
of the expectation value 〈X[A, B]〉,

〈X[A,B]〉 =
∫

D(fields) eiST OT X[A,B]∫
D(fields) eiST OT

, (2.19)

the ghosts contributions are described by diagrams with ghost loops. As shown in equation (2.14), 

the nonvanishing components of the ghosts propagator are of the type c c or ξ ξ ; therefore the 
lagrangian term εabd∂μξ

a
(x)Bb

μ(x)cd(x) —contained in ST OT = S +Sφπ — does not contribute 
to 〈X[A, B]〉.
3. Generating functionals and Chern-Simons relationship

In order to complete the description of the BF diagrams, in this section we derive the BF 
generating functional of the connected correlation functions and discuss its relationship with the 
generating functional of the Chern-Simons theory.



8 E. Guadagnini, F. Rottoli / Nuclear Physics B 954 (2020) 114987
3.1. Connected diagrams

In the computation of the path integral which appears in the numerator of expression (2.15), 
it is convenient to make the linear change of variables

Aa
μ −→ Aa

μ + Âa
μ , Ba

μ −→ Ba
μ + B̂a

μ , (3.1)

in which Aa
μ and Ba

μ are called the quantum components, whereas the classical components Âa
μ

and B̂a
μ satisfy the equations of motion in the presence of the sources

δS[Â, B̂]
δB̂a

μ(x)
+ Ka

μ(x) = 0 ,
δS[Â, B̂]
δÂa

μ(x)
+ J a

μ(x) = 0 , (3.2)

together with the gauge-fixing constraints

∂μÂa
μ(x) = 0 = ∂μB̂a

μ(x) . (3.3)

Because of equations (3.2), the classical components Âa
μ and B̂a

μ are functions of J a
μ and Ka

μ, 
(and, for localised J a

μ and Ka
μ, both components Âa

μ and B̂a
μ vanish in the |x| → ∞ limit as 

∼ 1/|x|2). One then finds

ST OT [A + Â,B + B̂, ...] +
∫

d3x
[
J a

μ(Aa
μ + Âa

μ) + Ka
μ(Ba

μ + B̂a
μ)
]=

= S[Â, B̂] +
∫

d3x
[
J a

μÂa
μ + Ka

μB̂a
μ

]+ S̃[A,B, ...] , (3.4)

where

S̃[A,B, ...] = ST OT [A,B,M,N, ξ, ξ, c, c]
−
∫

d3x εμνλεabc
[
Ba

μÂb
νA

c
λ + 1

2
B̂a

μAb
νA

c
λ + 1

2
gAa

μÂb
νA

c
λ

]
−
∫

d3x εabc
[
∂μc Âb

μcc + ∂μξ Âb
μξc + ∂μξ

a
B̂b

μcc
]

. (3.5)

Note that S̃[A, B, ...] represents the resulting action for the quantum components Aa
μ and Ba

μ of 
the fields in which

• the linear terms in the quantum fields are missing. Indeed, as a consequence of equations 
(3.2) and (3.3), Âa

μ and B̂a
μ satisfy the classical gauge-fixing constraint and represent a sta-

tionary point of the action in the presence of the source terms;
• the lagrangian vertices for the quantum fields —which are contained in ̃S[A, B, ...]— depend 

on the J a
μ and Ka

μ through the classical components Âa
μ and B̂a

μ.

Therefore the generating functional W [J, K] satisfies

eiW [J,K] = e
iS[Â,B̂]+i

∫
d3x
[
J a
μÂa

μ+Ka
μB̂a

μ

] ∫
D(fields) eiS̃∫

D(fields) eiST OT
. (3.6)

This expression shows that W [J, K] can be written as the sum of two parts, W = W0 + W1, in 
which
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• the connected tree-level Feynman diagrams entering W0 are described by a Legendre trans-
formation of the classical action,

W0[J,K] = S[Â, B̂] +
∫

d3x
[
J a

μÂa
μ + Ka

μB̂a
μ

] ; (3.7)

• the connected diagrams containing loops —described by W1— are obtained by computing 
the vacuum-to-vacuum diagrams of the quantum field components. These diagrams are de-
termined by the lagrangian terms contained in the resulting action S̃, with the normalisation
given by the vacuum-to-vacuum diagrams computed in the absence of sources, i.e., when Âa

μ

and B̂a
μ vanish.

Proposition 2. The function W0[J, K] is given by

W0[J,K] = g SCS[Â ] +
∫

d3x J a
μ(x)Âa

μ(x) , (3.8)

where the Chern-Simons action SCS[A] is shown in equation (2.9); Âa
μ is a classical field which 

only depends on Ka
μ, it satisfies ∂μÂa

μ(x) = 0 and

∂SCS[Â ]
δÂa

μ(x)
= −Ka

μ(x) . (3.9)

Proof. Since the BF action (2.8) can be written as

S[A,B] =
∫

d3x Ba
μ(x)

δSCS[A]
δAa

μ(x)
+ g SCS[A] , (3.10)

the first of equations (3.2) coincides with equation (3.9). This means that Âa
μ(x) only depends 

on Ka
μ and does not depend on J a

μ and g. Finally, the action S[A, B] is a linear function of Ba
μ. 

Therefore, in the Legendre transform (3.7), the two terms which are linear in B̂a
μ cancel, and one 

obtains precisely expression (3.8). �
Equation (3.8) is in agreement with expression (2.17), and shows that when Ka

μ = (1/g)J a
μ , 

the functional W0[J, (1/g)J ] satisfies

W0[J, (1/g)J ] = W0,CS[J ] , (3.11)

where W0,CS[J ] denotes the generating functional of the tree-level connected diagrams of the 
Chern-Simons theory, which is defined by the action gSCS[A],

W0,CS[J ] = g SCS[Â] +
∫

d3x J a
μ(x)Âa

μ(x) , with g
∂SCS[Â ]
δÂa

μ(x)
= −J a

μ(x) . (3.12)

Let us now consider diagrams with loops.

Proposition 3. The whole set of the vacuum-to-vacuum connected diagrams for the quantum field 
components is equal to the set iW1[K] of the one-loop connected diagrams which only depend 
on Ka

μ,

eiW1[K] = 〈e−i
∫

d3xεabc{εμνλBa
μÂb

νAc
λ+∂μca Âb

μcc+∂μξ
a
Âb

μξc}〉 . (3.13)
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Proof. The field propagators that are derived from the ST OT are shown in equations (2.12)

and (2.13); in particular, it turns out that Aa
μ(x)A b

ν(y) = 0 and ξ(x)c(y) = 0 = c(x)ξ (y). Con-
sequently, the only connected source-dependent diagrams containing loops are the one-loop 
connected diagrams entering equation (3.13). �

The result (3.13) is in agreement with the statements of Proposition 1 and shows that, when 
Ka

μ = (1/g)J a
μ , the functional W1[(1/g)J ] verifies

W1[(1/g)J ] = 2W1,CS[J ] , (3.14)

where the factor 2 is due to the combinatorics and the presence of two ghost fields, and W1,CS[J ]
denotes the generating functional of the one-loop connected diagrams in the Chern-Simons the-
ory,

eiW1,CS [J ] = 〈e−i
∫

d3xεabc{(g/2)εμνλAa
μÂb

νAc
λ+∂μc Âb

μcc} 〉
∣∣∣
CS

. (3.15)

3.2. Connected one-loop diagrams

As a consequence of equation (3.13), the functional W1[K] can be written as

W1[K] = W
(v)
1 [K] + W

(g)
1 [K] , (3.16)

where W(v)
1 [K] corresponds to the sum of the connected diagrams with one loop of the vector 

fields, whereas W(g)
1 [K] denotes the sum of the connected diagrams with one loop of the ghost 

fields. In Schwinger notations [85], the AB propagator (2.12) reads

Aa
μ(x)Bb

ν(y) = 〈x ;a,μ| i εμλν∂
λ

∂2 |y ;b, ν〉 , (3.17)

and then

iW
(v)
1 [K] =

∞∑
n=1

in

n

[∑∫
d3x1 . . . d3xn 〈x1|A B Â |x2〉 · · · 〈xn|A B Â |x1〉

]

=
∞∑

n=1

(−1)n

n
Tr

[
1

∂2 M̂

]n

, (3.18)

where(
M̂
)a,c ;ν

μ
= εμτσ ∂τ εabcεσλνÂb

λ , (3.19)

and Tr denotes the trace in the colour indices, vector indices and orbital indices

Tr (Q) =
∑
a,μ

∫
d3x 〈x ;a,μ|Q |x ;a,μ〉 . (3.20)

The connected diagrams with one loop of the ghost fields give the contribution

iW
(g)

1 [K] = −2
∞∑ 1

n
tr

[
1

∂2 N̂

]n

, (3.21)

n=1
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in which(
N̂
)a,c = ∂λ εabcÂb

λ , (3.22)

and

tr (Q) =
∑
a

∫
d3x 〈x ;a|Q |x ;a〉 . (3.23)

Some diagrams contained in W1[K] have values which are not well defined because of possible 
ultraviolet divergences; these diagrams will be renormalised in the Section 4.

4. Renormalisation

Since the observables that we shall consider only depend on Aa
μ and Ba

μ, and since the cor-
responding BF connected diagrams have zero loops or one loop only, in order to discuss the 
relevant aspects of the renormalisation we need to consider the functional

� = ST OT [A,B,M,N, ξ, ξ, c, c] + �1[A,B] , (4.1)

where i�1[A, B] denotes to the sum of the one-particle-irreducible diagrams with one loop, in 
which Aa

μ and Ba
μ represent the external legs [86–88]. In other words, �1[A, B] is the sum of 

the one-loop proper vertices for the field components Aa
μ and Ba

μ. Indeed, as it has been shown 
in Section 2 and in Section 3, in the BF theory the contributions to the proper vertices which 
are described by diagrams with two or more loops are absent. The zero-loop component of the 
proper vertices coincides with the lagrangian and the one-loop component only contains primitive 
divergences. Therefore, in the renormalisation procedure, diagrams with external ghost fields can 
be ignored.

Equations (2.18), (3.18) and (3.21) imply that �1[A, B] nontrivially depends on Aa
μ only,

�1[A,B] = �1[A] . (4.2)

Each term of the expansion of �1[A] in powers of the fields Aa
μ is well defined apart from the 

terms with two and three fields. The corresponding six diagrams are not well defined a priori; 
they possibly have ultraviolet divergences. Since only a finite number of diagrams need to be 
renormalised, the BF model is a superrenormalisable field theory.

4.1. Normalisation conditions

As there are no gauge anomalies in three dimensions, it is possible to define a renormalised �

which is BRST invariant. Let us define

δ2�

δAb
ν(y)δAa

μ(x)

∣∣∣∣∣
A=0,B=0

=
∫

d3k

(2π)3 eik(x−y)�ab
μν(k) , (4.3)

δ2�

δAb
ν(y)δBa

μ(x)

∣∣∣∣∣
A=0,B=0

=
∫

d3k

(2π)3 eik(x−y)�ab
μν(k) . (4.4)

In addition to the BRST invariance of �, the normalisation conditions are taken to be

lim �ab
μν(k) = igδabεμλνkλ , (4.5)
k→0



12 E. Guadagnini, F. Rottoli / Nuclear Physics B 954 (2020) 114987
(a) (b)

Fig. 4. One loop contributions to the two points function.

and

lim
k→0

�ab
μν(k) = iδabεμλνkλ . (4.6)

Equations (4.5) and (4.6) establish the normalisation of the fields and specify the value of the 
coupling constant g. Since the one-loop contributions contained in �1[A] do not depend on 
the field Ba

μ, equation (4.6) —which is valid at the tree-level— remains valid to all orders of 
perturbations theory. Consequently, only equation (4.5) needs to be considered; in renormalised
perturbation theory [87], equation (4.5) controls the one-loop counterterms. Let us consider the 
renormalisation procedure [86,89–93] in the space of the coordinates xμ. Of course, the final 
result coincides with the result obtained by means of the renormalisation procedure in momentum 
space.

4.2. One-loop two points function

�1[A] can be expanded in powers of the fields Aa
μ; the quadratic term is given by the sum of 

the contribution �(v)
1 [A], corresponding to the one-loop diagram of Fig. 4(a), and �(g)

1 [A] which 
is obtained by adding the two equal amplitudes which are described by the diagram of Fig. 4(b) 
containing one loop of the two types of ghosts.
One has

i�
(v)
1 [A] = (−i)2

2!
∫

d3x d3y Aa
μ(x)Ab

ν(y)εcadεebhελμτ εσνα Ad
τ (x)Be

σ (y) Ah
α(y)Bc

λ(x)

= −2
∫

d3x d3y Aa
μ(x)Ab

ν(y) δab ∂μ
x �(x − y) ∂ν

y �(y − x) , (4.7)

and

i�
(g)

1 [A] = −(−i)2
∫

d3x d3y Aa
μ(x)Ab

ν(y)εcadεebh cd(x)∂νce(y) ch(y)∂μcc(x)

= 2
∫

d3x d3y Aa
μ(x)Ab

ν(y) δab ∂μ
x �(x − y) ∂ν

y �(y − x) . (4.8)

Precisely like in the Chern-Simons theory [94,95], the sum of the two contributions �(v)
1 [A] +

�
(g)
1 [A] formally vanishes, indeed

�
(v)
1 [A] + �

(g)

1 [A] = 2i

∫
d3x d3y Aa

μ(x)Ab
ν(y) δab Hμν(x, y) , (4.9)

where
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(a) (b)

Fig. 5. One loop contributions to the three points function.

Hμν(x, y) = ∂μ
x �(x − y) ∂ν

y �(y − x) − ∂μ
x �(x − y) ∂ν

y �(y − x) . (4.10)

The amplitude

∂μ
x �(x − y) ∂ν

y �(y − x) = (x − y)μ(y − x)ν

(4π)2 |x − y|6 , (4.11)

which appears in equation (4.10), is well defined for x 
= y. Consequently “the nonlocal compo-
nent” of �(v)

1 [A] + �
(g)
1 [A] is well defined and vanishes because

Hμν(x, y)

∣∣∣
x 
=y

= 0 . (4.12)

When x = y expression (4.11) is not well defined, so one has to specify the value of Hμν(x, y)

in the case x = y. In facts, since “the nonlocal component” of �(v)
1 [A] + �

(g)
1 [A] vanishes, the 

entire renormalisation of �(v)
1 [A] +�

(g)
1 [A] consists [86] precisely in specifying the value of “the 

local component” of �(v)
1 [A] + �

(g)
1 [A], which is defined by Hμν(x, y) for x = y. This value is 

uniquely determined by the normalisation condition (4.5), which requires(
�

(v)
1 [A] + �

(g)

1 [A]
) ∣∣∣

renormalised
= 0 . (4.13)

It should be noted that the renormalised value (4.13) of �(v)
1 [A] +�

(g)
1 [A] is also in agreement 

with the point-splitting procedure, that we shall use in the definition of the composite Wilson line 
operators. Indeed, the point-splitting definition of Hμν(x, y) for x = y gives

Hμν(x, y)

∣∣∣
x=y

≡ lim
x→y

Hμν(x, y)

∣∣∣
x 
=y

= 0 , (4.14)

which implies precisely equation (4.13).
From equation (4.13) it follows that the BF vacuum polarisation vanishes and the Feynman 

propagators (2.12) coincide with the dressed propagators.

4.3. One-loop three points function

The term of �1[A] which contains three powers of the field Aa
μ is the sum of ̃�(v)

1 [A], which is 

described by the Feynman diagram of Fig. 5(a), and ̃�(g)

1 [A] which is specified by the one-loop 
contributions of Fig. 5(b) induced by the two kinds of ghosts.
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One finds

i�̃
(v)
1 [A] = 2(−i)3

3!
∫

d3x d3y d3zAb
ν(x)Ae

ρ(y)Ah
τ (z) εabcεdef εghi

εμνλεσργ εατβ Ac
λ(x)Bd

σ (y) Af
γ (y)Bg

α(z) Ai
β(z)Ba

μ(x)

= 1

3

∫
d3x d3y d3z εabc Aa

μ(x)Ab
ν(y)Ac

λ(z)T μνλ
τρσ

∂τ
x �(x − y) ∂ρ

y �(y − z) ∂σ
z �(z − x) , (4.15)

where

T μνλ
τρσ = δμ

τ δν
σ δλ

ρ + δμ
σ δν

ρδλ
τ + δμ

ρ δν
τ δλ

σ − δμ
ρ δν

σ δλ
τ . (4.16)

Moreover

i�̃
(g)
1 [A] = −4

(−i)3

3!
∫

d3x d3y d3zAb
μ(x)Ae

ν(y)Ah
λ(z) εabcεdef εghi

cc(x)∂νcd(y) cf (y)∂λcg(z) ci(z)∂μca(x)

= −1

3

∫
d3x d3y d3z εabc Aa

μ(x)Ab
ν(y)Ac

λ(z)(δ
μ
σ δν

τ δλ
ρ + δμ

τ δν
ρδλ

σ )

∂τ
x �(x − y) ∂ρ

y �(y − z) ∂σ
z �(z − x) . (4.17)

Therefore

i�̃
(v)
1 [A] + i�̃

(g)

1 [A] = 1

3

∫
d3x d3y d3z εabc Aa

μ(x)Ab
ν(y)Ac

λ(z)V μνλ(x, y, z) , (4.18)

in which

V μνλ(x, y, z) = εμνλ
τρσ ∂τ

x �(x − y) ∂ρ
y �(y − z) ∂σ

z �(z − x) , (4.19)

and

εμνλ
τρσ = δμ

τ δν
σ δλ

ρ + δμ
σ δν

ρδλ
τ + δμ

ρ δν
τ δλ

σ − δμ
ρ δν

σ δλ
τ − δμ

σ δν
τ δλ

ρ − δμ
τ δν

ρδλ
σ . (4.20)

When x 
= y, x 
= z and y 
= z, the amplitude

∂τ
x �(x − y) ∂ρ

y �(y − z) ∂σ
z �(z − x) = (x − y)τ (y − z)ρ(x − z)σ

(4π)3 |x − y|3|y − z|3|z − x|3 (4.21)

is well defined and, when it is multiplied by the completely antisymmetric tensor εμνλ
τρσ , it van-

ishes,

V μνλ(x, y, z)

∣∣∣
x 
=y 
=z

= 0 . (4.22)

Therefore, as in the case of the two points functions, “the nonlocal component” of �̃(v)
1 [A] +

�̃
(g)

1 [A] is vanishing. In order to specify the renormalised value of ̃�(v)
1 [A] + �̃

(g)

1 [A] we need to 
define [89–93] the value of the “diagonal local component” of V μνλ(x, y, z), corresponding to 
the case in which the external fields are defined at coincident points x = y = z. This is in agree-
ment with the general fact that, in one-loop diagrams, the possibly divergent (not well defined) 
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contribution is local or, to be more precise, the introduction of appropriate local counterterms 
makes the diagrams well defined.

The renormalised value of �̃(v)
1 [A] + �̃

(g)

1 [A] is determined by the normalisation conditions 
and by symmetry arguments. Indeed the BRS invariance of � requires that the value of the local 
component of the one-loop contribution to the 3-point proper vertex must be (1/6) the value of 
the one-loop contribution to the dressed propagator, which vanishes. Therefore relation (4.13)
and BRST invariance imply(

�̃
(v)
1 [A] + �̃

(g)

1 [A]
) ∣∣∣

renormalised
= 0 . (4.23)

The result (4.23) can also be obtained by means of the point-splitting procedure, according to 
which

V μνλ(x, y, z)

∣∣∣
x=y=z

= lim
x→y

lim
y→z

V μνλ(x, y, z)

∣∣∣
x 
=y 
=z

= 0 . (4.24)

The point-splitting procedure also shows that each “partially local component”, say x = y 
= z, 
is vanishing because

V μνλ(x, y, z)

∣∣∣
x=y 
=z

= lim
x→y

V μνλ(x, y, z)

∣∣∣
x 
=y 
=z

= 0 .

In renormalisable field theories, the “partially local components” of the diagrams are possibly 
related with the (overlapping) sub-divergences. In the connected diagrams of the BF theory, there 
are no subdivergences to deal with because the connected diagrams have at most one loop.

Since all the remaining diagrams contributing to � are finite, this concludes the renormalisa-
tion of the BF theory in R3. This means that, by taking into account equations (4.13) and (4.23), 
the expectation values

〈Aa1
μ1

(x1)A
a2
μ2

(x2) · · ·Aan
μn

(xn)B
c1
ν1

(y1)B
c2
ν2

(y2) · · ·Bcm
νm

(ym)〉 , (4.25)

when the fields are defined at not coincident points, are well defined. In the computation of the 
BF observables, we shall need to remove certain ambiguities of the expectation values which 
appear in a specific limit in which two fields are defined in the same point. This issue, which is 
related to the introduction of a framing for the knots, will be discussed in Section 7.

5. Wilson line observables

Similarly to the case of the Chern-Simons gauge field theory, the gauge invariant observables 
that we shall consider correspond to appropriately normalised traces of the expectation values of 
the gauge holonomies which are associated with oriented framed knots in R3 in a given repre-
sentation of ISU(2).

5.1. Representations of ISU(2)

We shall consider linear unitary representations of ISU(2) in which {P a} are nontrivially 
represented and which are specified by the values of the two quadratic Casimir operators P aP a

and J aP a . More precisely, if |ϕ〉 denotes a vector transforming according to the irreducible 
(�, r) representation, it must satisfy

P aP a|ϕ〉 = �2|ϕ〉 , (5.1)
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and

J aP a|ϕ〉 = r�|ϕ〉 , (5.2)

with fixed positive � and fixed semi-integer r (i.e., 2r ∈ Z). In this article we shall concentrate 
on the “scalar” (�, 0) representation and the “fundamental” (�, 1/2) representation.

In order to describe these representations, let us first consider the quantum mechanics states 
space of a spinless particle moving in three dimensional euclidean space. Let P a represent the 
cartesian components of the momentum operator and let La denote the components of the orbital 
angular momentum of the particle,

La = εabcQbP c , (5.3)

in which [Qa, P b] = iδab . The operators {J a = La, P a} satisfy the commutation relations (2.2).

5.1.1. Scalar representation
The plane wave

ψk(r) = eikr (5.4)

verifies

P a ψk(r) = ka ψk(r) . (5.5)

When the value of the first Casimir operator P aP a of ISU(2) is chosen to be �2, one needs to 
consider the linear space H(�,0) which is generated by all the vectors

{ψk(r)} with kk = �2 . (5.6)

In this case, the possible eigenvalues k of the momentum belong to a spherical surface in R3

of radius equal to �. The set of all the plane waves {ψk(r)} with kk = �2 is left invariant by 
the action of the SU(2) group which is generated by the orbital angular momentum compo-
nents (5.3). Therefore the linear space H(�,0) is invariant under the transformations generated 
by {J a = La, P a}. Since LaP a = 0, the ISU(2) action on H(�,0) which is implemented by the 
transformations exp {iβaJ a + iηaP a} defines the scalar (�, 0) representation of ISU(2).

The commutation relations of the operators {J a = La, Qa} also coincide with the commuta-
tion relations of the ISU(2) algebra. Thus an alternative interpretation of this ISU(2) represen-
tation can be obtained by considering the quantum mechanics states of one particle moving on 
the surface of a 2-sphere in R3. For the purposes of the present article, we don’t need to discuss 
the rigged Hilbert space structure [96] associated with H(�,0).

5.1.2. Fundamental representation
Let us now examine the fundamental (�, 1/2) representation of ISU(2). Let Hspin denote 

the two dimensional space of the spin states of a spin (1/2) nonrelativistic particle, and let Sa

represent the components of the spin operator,

Sa = 1
2
σa , (5.7)

where σa denote the Pauli sigma matrices. The operators Sa act on the vectors which belong to 
Hspin. In the tensor product H(�,0) ⊗Hspin, one can put

J a = La + Sa . (5.8)
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In addition to the constraint kk = �2, the specification of the value (1/2)� of the second Casimir 
operator J aP a selects the states in H(�,0) ⊗ Hspin of positive helicity. Let π+ denote the pro-
jector on the positive helicity states,

π+ = 1
2

(
1 + Pσ

�

)
. (5.9)

Let H(�,1/2) be the linear space which is generated by the vectors

{
π+ |χ〉} in which |χ〉 ∈H(�,0) ⊗Hspin . (5.10)

The ISU(2) action on H(�,1/2), which is carried out by the transformations generated by {J a =
La + Sa, P a}, defines the (�, 1/2) representation. One can easily verify that the projector π+
commutes with the generators of ISU(2).

A generic (�, r) representation could be constructed by means of a procedure which is sim-
ilar to the procedure that has been illustrated in the case of the (�, 1/2) representation. Each 
representation (�, r), with r = 0 or r = 1/2, is irreducible and infinite dimensional.

5.2. Holonomies

Let us consider a classical gauge configuration which is described by the components Aa
μ(x)

and Ba
μ(x). Given an oriented path γ in R3, which connects the starting point x1 to the final point 

x2, the corresponding ISU(2) holonomy hγ ∈ ISU(2) is defined by

hγ = Pe
i
∫
γ dxμ(Aa

μ(x)J a+Ba
μ(x)P a)

, (5.11)

where the symbol P denotes the path-ordering of the {J a, P b} operators along the direction 
specified by the orientation of γ . Under a gauge transformation (2.3), hγ transforms as

hγ → �−1(x1)hγ �(x2) . (5.12)

Thus for each non intersecting closed path C —that is, for each oriented knot C ⊂ R3— with a 
given starting and final point x0, the associated holonomy hC transforms covariantly under gauge 
transformations,

hC → �−1(x0)hC �(x0) . (5.13)

Therefore any function, which is defined on the ISU(2) conjugacy classes, determines a clas-
sical gauge invariant observable. We shall describe the conjugacy classes of the group ISU(2)

in Section 6. For the moment, let us recall the normal construction of classical gauge invari-
ant observables for finite dimensional representations of the structure group. Let [hC]ρ be the 
representative of the element hC ∈ ISU(2) in the representation ρ of the gauge group. If the 
representation ρ is finite dimensional, the cyclic property of the trace implies that Tr[hC]ρ is 
gauge invariant. Really, in the BF theory we are interested in the ISU(2) representations (�, r), 
with r = 0 or r = 1/2, which are not finite dimensional. In this case, the ordinary traces of the 
holonomies in the representation spaces H(�,0) and H(�,1/2) need to be improved in order to 
specify a well defined observable.
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5.3. Trace of holonomies

Let us consider the standard method which is used in physics —for instance in particle physics 
and in statistical mechanics— to describe the sum over the one-particle quantum states. One can 
introduce appropriately normalised plane waves

|k) = 1√
V

eikr , (5.14)

where V = L3 is the volume of a cubic box in which the particle can propagate; then one must 
consider the V → ∞ limit. From the definition (5.14) it follows

(k|k′) = (2π)3

V
δ3(k − k′) , (5.15)

and

(k|k) = 1 . (5.16)

With periodic boundary conditions, for instance, the possible values of the momenta are given by 
k = (2π/L)n, with nj ∈ Z. Therefore, in the large L limit, the sum over the eigenstates of the 
momentum is given by the integral [L3/(2π)3] ∫ d3k, which also coincides with the counting of 
the number of quantum states in the semiclassical limit by means of the integral 

∫
d3p d3q/(2π)3

in classical phase space. With this notation, the trace of a given operator Op in the linear space 
of the one-particle orbital states takes the form

Tr(Op) =
∫

V d3k

(2π)3 (k|Op |k) , (5.17)

which can easily be controlled in the V → ∞ limit because of the presence of the overall multi-
plicative V factor.

The states of the (�, 0) representation are characterised by values of the momentum which 
belong to the 2-dimensional surface k2 = �2 in momentum space. In order to make contact with 
the 
∫

d3p d3q/(2π)3 expression for the counting of states in H(�,0), one can introduce a small 
thickness �P to the k2 = �2 surface. If, for instance, the relation L�P /(2π) = 1 is satisfied, 
then the �P → 0 limit is recovered in the L → ∞ limit. According to this prescription, the trace 
of a given operator Op in the space H(�,0) of the (�, 0) representation of ISU(2) reads

Tr
(
Op

) ∣∣∣∣
(�,0)

= L3

(2π)3

∫ [
d3k
]
k2→�2

(k|Op |k)

= L2�2

(2π)2

∫
dω (k|Op |k) ,

(
with kk = �2

)
, (5.18)

where dω = sin θ dθ dφ refers to the solid angle which is defined by the direction of the vector 
k,

k = �(sin θ cosφ, sin θ sinφ, cos θ) . (5.19)

Note that the presence of the product L2�2 in equation (5.18) is required by dimensional rea-
sons. Whereas different prescriptions for the �P → 0 limit may lead to the presence of different 
adimensional multiplicative factors. These factors play no role because the Wilson line operators 
will correspond to appropriately normalised traces.
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In the definition of the normalised trace of the holonomy hC , the multiplicative factor L2�2/π

in front of expression (5.18) can be removed. So (in the L → ∞ limit) we define the Wilson line 
operator WC in the (�, 0) representation by means of the normalised trace

WC

∣∣∣∣
(�,0)

=
∫

dω

4π
(k|hC |k) ,

(
with kk = �2

)
. (5.20)

Let us denote the quantum state vectors of a nonrelativistic spin 1/2 particle moving inside a 
box by |k)|s) = |k, s), where s = ±1/2 refers to the value of one component of the spin. The 
normalised trace of the holonomy hC in the (�, 1/2) representation is defined by

WC

∣∣∣∣
(�,1/2)

=
∑

s

∫
dω

4π
(k, s|hC π+ |k, s) ,

(
with kk = �2

)
. (5.21)

The proof that the BF expectation values of expressions (5.20) and (5.21) are well defined is 
reported in Section 7.

6. ISU(2) conjugacy classes

The set of the conjugacy classes of the inhomogeneous group ISU(2) has rather peculiar 
properties that show up also in the values of the corresponding classical characters.

6.1. Classes of conjugated elements

A generic element G ∈ ISU(2) can be written as

G = exp
[
i
(
�aJa + XaP a

)]= exp [i (�J + XP )] , (6.1)

with real parameters � and X, in which 0 ≤ |�| < 2π whereas there are no restrictions on the 
value of X. Under conjugation with an element of the subgroup SU(2) of ISU(2), the commu-
tation relations (2.2) give

G −→ e−iβaJ a G eiβaJ a = exp
[
i
(
�′J + X′P

)]
, (6.2)

where �′ and X′ denote the rotated vectors(
�′)a = Rab(β)�b ,

(
X′)a = Rab(β)Xb , (6.3)

which are obtained according to the adjoint representation of SU(2), i.e. Rab(β) ∈ SO(3). 
Therefore, the conjugacy class of G is possibly labelled by the rotation invariants |�|, |X| and 
�X = �aXa . On the other hand, under conjugation with a translation element of ISU(2)

G −→ e−iηaP a G eiηaP a = exp
[
i
(
�̃J + X̃P

)]
, (6.4)

one finds

�̃a = �a , X̃a = Xa + εabcηb�c . (6.5)

Equation (6.5) shows that the parameter � is not modified and

• when � = 0, X is not modified;
• when � 
= 0, the component of X which is orthogonal to � can be arbitrarily modified. 

While the component of X along the direction of � is not modified.
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Consequently, equations (6.3) and (6.5) show that the conjugacy classes of ISU(2) can be la-
belled by two real numbers (r1, r2) with r1 = |�| and

• r2 = |X|, when r1 = 0;
• r2 = �X, when r1 
= 0.

The set of variables {(r1, r2)} does not parametrise a two dimensional manifold because of the 
singularity at r1 = 0.

6.2. Classical traces

Let Tr (G)
∣∣
(�,r)

be the trace of G ∈ ISU(2) in the (�, r) representation of ISU(2) (with 
r = 0, 1/2),

Tr (G)

∣∣∣∣
(�,r)

=

⎧⎪⎨
⎪⎩

L3

(2π)3

∫ [
d3k
]
k2→�2 (k|G |k) when r = 0 ;

L3

(2π)3

∑
s

∫ [
d3k
]
k2→�2 (k, s|G π+ |k, s) when r = 1/2 .

(6.6)

By means of equations (5.15), (5.16) and (5.18) one finds

(1) When � = 0 and X = 0,

Tr (G)

∣∣∣∣
(�,r)

= L2

(2π)2 4π�2 . (6.7)

(2) When � = 0 and X 
= 0,

Tr (G)

∣∣∣∣
(�,r)

= L2

(2π)2 4π�2 sin(�|X|)
�|X| . (6.8)

(3) When � 
= 0 and X = 0, let |k′) = ei�aJ a |k). One has

(k| ei�aJ a |k) = (2π)3

V
δ
(
k − k′) . (6.9)

Since (k|k′) = (k| ei�aJ a |k) is vanishing unless the vector k is directed as ±�, with 
� = (�1, �2, �3), one obtains

Tr (G)

∣∣∣∣
(�,0)

= 2 , (6.10)

which is in agreement with the Frobenius fixed point theorem [97] since any nontrivial 
rotation of a spherical surface in R3 has just two fixed points. In the case of the (�, 1/2)

representation, one finds

Tr (G)

∣∣∣∣
(�,1/2)

= 2 cos (|�|/2) . (6.11)

(4) When � 
= 0 and X 
= 0,

Tr (G)

∣∣∣∣ = 2 cos
(
�X�̂ + r|�|) , (6.12)
(�,r)
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where the unit vector ̂� is defined by ̂� = �/|�|.

The observed discontinuity of the classical trace of G at � = 0 matches the structure of the set 
of ISU(2) conjugacy classes discussed in Section 6.1.

7. Expectation values

Let us concentrate on the BF topological invariants which are associated with oriented framed 
coloured knots in R3. A knot C in R3, with a specified irreducible ISU(2) representation, is 
called a coloured knot. The invariant 〈WC〉 which is associated with the knot C is defined by the 
BF expectation value of the Wilson line operator

〈WC〉 =
∫

D(fields) eiST OT WC∫
D(fields) eiST OT

, (7.1)

where WC corresponds to the normalised trace of the holonomy hC shown in equations (5.20)
and (5.21). In perturbation theory, the determination of 〈WC〉 is obtained by means of the fol-
lowing steps: (1) expansion of the holonomy hC in powers of the gauge fields, (2) computation 
of the vacuum expectation values of the products of the gauge fields, and (3) evaluation of the 
normalised trace of the ISU(2) generators.

In the quantum BF field theory, the holonomy hC is a composite operator and its expansion 
in powers of the connection A contains product of fields at coincident points. As in the case of 
the quantum Chern-Simons field theory, the ambiguities of the mean value (7.1), which are due 
to the presence of fields at coincident points, are removed by means of the point-splitting limit 
procedure [98,99] which is based on the introduction of a framing of the knot C. So, the invariant 
(7.1) is really defined for framed knots.

The perturbative computation of 〈WC〉 is based on the expansion of hC in powers of the fields

hC = 1 + i

∫
C

Aμ(x)dxμ + i2
∫
C

dxμ

x∫
x0

dyν Aν(y)Aμ(x)

+i3
∫
C

dxμ

x∫
x0

dyν

y∫
x0

dzλ Aλ(z)Aν(y)Aμ(x) + · · · (7.2)

where Aμ(x) = Aa
μ(x)J a + Ba

μ(x)P a and x0 denotes a given base point on the oriented knot C. 
In expression (7.2), it is understood that the generators {J a, P b} are multiplied according to the 
order shown in the formula. More precisely, if {J a, P b} are collectively denoted by {T α}, one 
has Aμ(x) = Aα

μ(x)T α and in equation (7.2) the products of connections mean, for instance,[
Aν(y)Aμ(x)

]
ij

= Aβ
ν (y)Aα

μ(x)T
β
ikT

α
kj ,[

Aλ(z)Aν(y)Aμ(x)
]
ij

= Aγ
λ (z)Aβ

ν (y)Aα
μ(x)T

γ

i�T
β
�kT

α
kj .

When the ISU(2) generators are not multiplied, they can be understood as elements of a tensor 
product in colour space; so, it is convenient to introduce the notation

Aμ(x) ⊗Aν(y) = Aα
μ(x)Aβ

ν (y)T α
ij T

β
k�

Aμ(x) ⊗Aν(y) ⊗Aλ(z) = Aα
μ(x)Aβ

ν (y)Aγ
(z)T αT

β
T

γ
mn , ... etc. (7.3)
λ ij k�
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According to equation (7.2), for each ISU(2) representation (�, r) with r = 0 or r = 1/2, 
the normalised trace of hC in the colour space takes the form of a sum of normalised traces of 
product of generators J a and P b. It should be noted that, since the representations (�, r) are 
infinite dimensional, the cyclic property of the trace is no more valid; consequently, the classical 
gauge invariance of the trace of hC is not guaranteed. What saves the day is that the field theory 
expectation values of connection’s products are invariant under global ISU(2) transformations.

Proposition 4. The BF expectation values computed by means of the total action STOT = S +
Sφπ satisfy

〈Aμ(x1) ⊗Aν(x2) ⊗ · · · ⊗Aλ(xn)〉 =
= 〈
(
G−1Aμ(x1)G

)
⊗
(
G−1Aν(x2)G

)
⊗ · · · ⊗

(
G−1Aλ(xn)G

)
〉 , (7.4)

for any G ∈ ISU(2).

Proof. The proof is made of two parts. First it shown that equation (7.4) is satisfied in the case 
in which G = eiβaJ a

, and then it is demonstrated that equality (7.4) is satisfied for G = eiηaP a
.

When G = eiβaJ a
, one has

G−1Aμ(x)G = A′a
μ (x)J a + B ′a

μ (x)P a , (7.5)

where

A′a
μ (x) = Rab(β)Ab

μ(x) , B ′a
μ (x) = Rab(β)Bb

μ(x) , (7.6)

with Rab(β) ∈ SO(3). Under the change of variables Aa
μ(x) → A′a

μ (x), Ba
μ(x) → B ′a

μ (x) and

Ma(x) → Rab(β)Mb(x) , Na(x) → Rab(β)Nb(x) ,

ca(x) → Rab(β)cb(x) , c a(x) → Rab(β)c b(x) ,

ξa(x) → Rab(β)ξb(x) , ξ
a
(x) → Rab(β)ξ

b
(x) , (7.7)

the total action ST OT = S + Sφπ is invariant. Therefore equation (7.4) is fulfilled when G =
eiβaJ a

.
In the case G = eiηaP a

, one gets

G−1Aμ(x)G = Ãa
μ(x)J a + B̃a

μ(x)P a , (7.8)

where

Ãa
μ(x) = Aa

μ(x) , B̃a
μ(x) = Ba

μ(x) + εabcηbAa
μ(x) . (7.9)

Under the change of variables Aa
μ(x) → Ãa

μ(x), Ba
μ(x) → B̃a

μ(x) and

Ma(x) → Ma(x) − εabcNbηc , Na(x) → Na(x) ,

ca(x) → ca(x) , c a(x) → c a(x) − εabcξ
b
ηc ,

ξa(x) → ξa(x) − εabccbηc , ξ
a
(x) → ξ

a
(x) , (7.10)

the total action ST OT = S + Sφπ is invariant as a consequence of the Jacobi identity. Thus equa-
tion (7.4) is satisfied for G = eiηaP a

.
To sum up, equation (7.4) is satisfied when G = eiβaJ a

with arbitrary βa and also when G =
eiηaP a

with arbitrary ηa . Therefore equality (7.4) holds for any G ∈ ISU(2). �
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A first consequence of equation (7.4) is that the two-points function 〈Aa
μ(x)Ab

ν(y)〉 must van-
ish because there is not an ISU(2) invariant which is quadratic in J a .

In the expansion (7.2) of hC in powers of the fields, the generators of ISU(2) are multiplied; 
hence equation (7.4) implies

〈hC〉 = G−1〈hC〉G , ∀G ∈ ISU(2) . (7.11)

Thus, as in the case of the Chern-Simons theory, the expectation value of the holonomy associ-
ated with a knot C —with colour given by an irreducible representation of the gauge group— 
is proportional to the identity in colour space or, more precisely, it is a function of the Casimir 
operators of the structure group. This means that 〈WC〉, which is the normalised trace of 〈hC〉 in 
the ISU(2) representations (�, 0) and (�, 1/2), is well defined, it is gauge invariant and it does 
not depend on the choice of the base point on C.

Finally, since the holonomy hC does not depend on the metric of R3 and the only dependence 
of the total action on the metric is contained in the gauge fixing terms, the expectation value (7.1)
corresponds to a topological invariant of oriented framed coloured knots in R3.

8. Perturbative expansion of the observables

The value of the observable 〈WC〉, which is given by the normalised trace of the expectation 
value of the holonomy associated with the knot C ⊂ R3,

〈WC〉
∣∣∣∣
(�,0)

=
∫

dω

4π
(k| 〈hC〉 |k) ,

(
with kk = �2

)
, (8.1)

〈WC〉
∣∣∣∣
(�,1/2)

=
∑

s

∫
dω

4π
(k, s| 〈hC〉π+ |k, s) ,

(
with kk = �2

)
, (8.2)

can be obtained by computing the expectation value 〈hC〉 by means of an expansion of hC in 
powers of the fields. It is important to note that, in the evaluation of 〈hC〉, the presence of a base 
point x0 in the knot C must be taken into account. Thus, 〈WC〉 takes the form of a sum of an 
infinite number of perturbative contributions.

The invariant 〈WC〉 can be approximated by considering only a finite number of terms, but 
the truncation of the perturbative series cannot be introduced arbitrarily. In order to obtain topo-
logical invariants, one needs to sum all the diagrams which are necessary to ensure the gauge 
invariance of the result. This can be achieved by summing all the diagrams which are of the same 
order in powers of the parameters which multiply the gauge invariant lagrangian terms. The BF 
action is the sum of two terms which are separately invariant under gauge transformations; so, 
two independent parameters are required. One parameter can be chosen to be h̄, and the second 
parameter can be taken to be the coupling constant g.

In the previous sections, the convention h̄ = 1 has been used. In this section, the dependence 
of the Feynman diagrams on h̄ is made explicit. Let us recall that a given Feynman diagram with 
P propagators and V interaction vertices is of order h̄P−V . The dependence of a diagram on the 
coupling constant g can easily be determined because g multiplies the BB component of the 
propagator, equation (2.12), and the AAA interaction lagrangian term.

Note that the possible values of the group generators J a and P b represent “colour quantum 
numbers” that have vanishing field theory dimensions. If one wishes to give a physical interpre-
tation to the vectors of the ISU(2) representations as particle state vectors, one can imagine that 
the eigenvalues of “momentum” P a refer to a given momentum scale, so that � is dimensionless.
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x0

C

Fig. 6. First order contribution to 〈WC 〉.

In what follows, the perturbative contributions to 〈WC〉 of order h̄n with n = 0, 1, 2, 3 are in 
order. The contribution of order h̄n is indicated by 〈WC〉(n) and contains all the nonvanishing 
components which are labelled by powers of g. The colour of the knot is specified by the (�, r)
representation of ISU(2) with r = 0, 1/2.

8.1. Lowest order

With the chosen normalisation of the traces shown in equations (8.1) and (8.2), the component 
of 〈WC〉 of order h̄0 is just the unit

〈WC〉(0) = 1 . (8.3)

8.2. First order

The contributions of order h̄ are given by the integration of the two components of the field 
propagator along the knot C, as sketched in Fig. 6. The double line of Fig. 6 generically indicates 
a framed knot C with its base point x0 pointed out. The embedding of C in R3 is not shown. A 
simple line represents a gauge field propagator (2.12).
In this case, the point-splitting procedure, which is defined by means of the framing Cf of the 
knot C, is used. Since the AB component of the propagator is of order h̄ and the BB component 
of the propagator is of order h̄g, one finds

〈WC〉(1) = −i

(
h̄

2

)
�k(C,Cf )

(
2�r − g�2

)
, (8.4)

where �k(C, Cf ) denotes the linking number of C and its framing Cf . Indeed, the linking num-
ber of two oriented knots C1 and C2 can be expressed [100] by means of the Gauss integral

�k(C1,C2) = 1

4π

∮
C1

dxν

∮
C2

dyσ ενσλ

(x − y)λ

|x − y|3 . (8.5)

8.3. Second order

The nonvanishing contributions of order h̄2 to 〈WC〉 are related with diagrams with two field 
propagators, shown in Fig. 7, and diagrams with one vertex and three field propagators shown in 
Fig. 8. As shown in Section 4, diagrams with one loop give vanishing results of order h̄2.
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x0 x0 x0

Fig. 7. Second order contribution to 〈WC 〉 with two field propagators.

x0

Fig. 8. Second order contribution to 〈WC 〉 with one vertex.

In the computation of 〈hC〉, diagrams with two field propagators give contributions which 
are proportional to the combinations of Casimir operators: (JP )2 = (J aP a)2, (JP )(P 2) =
(J aP a)(P bP b) and (P 2)2 = (P aP a)2. Moreover, from the diagrams of the type shown in the 
second picture of Fig. 7, one gets an additional contribution which is proportional to the Casimir 
operator P aP a . This is a consequence of the identity

P aJ bJ aP b = (J aP a)2 − 2(P aP a) , (8.6)

which follows from the structure of the ISU(2) algebra.
The contributions to 〈hC〉 coming from the diagrams of Fig. 7 are

− h̄2

2

⎛
⎜⎝∮

C

dxν

∮
Cf

dyσ ενσλ

(x − y)λ

4π |x − y|3

⎞
⎟⎠

2 [
(JP )2 − g(JP )P 2 + g2

4
(P 2)2

]
+

+ 2P 2h̄2
∮
C

dxμ

x∫
x0

dyν

y∫
x0

dzλ

z∫
x0

dwσ ενστ ελμρ(y − w)τ (z − x)ρ

16π2|y − w|3|z − x|3 . (8.7)

The nonvanishing contribution to 〈hC〉 coming from the diagram of Fig. 8 is proportional to the 
Casimir operator P 2, as a consequence of the identity

εabc P bJ aP c = −2iP aP a , (8.8)

and takes the form

2P 2h̄2
∫

d3x

∮
dzσ

z∫
duτ

u∫
dvρ εμνλεμτξ ενρβελσα

(x − u)ξ (x − v)β(x − z)α

64π3|x − u|3|x − v|3|x − z|3 . (8.9)
C x0 x0
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+ permutations

x0

Fig. 9. Third order diagrams with two vertices.

The sum of all the terms of order h̄2 is given by

〈WC〉(2) = −1

2

(
h̄

2

)2 [
�k(C,Cf )

]2 (
2�r − g�2

)2 + h̄2�2ρ(C) , (8.10)

where ρ(C) is the knot invariant that has been found [98] in the study of the knot polynomials 
which are derived from the Chern-Simons field theory,

ρ(C) =
∮
C

dxμ

x∫
x0

dyν

y∫
x0

dzλ

z∫
x0

dwσ ενστ ελμρ(y − w)τ (z − x)ρ

8π2|y − w|3|z − x|3

+
∮
C

dzσ

z∫
x0

duτ

u∫
x0

dvρ εμνλεμτξ ενρβελσα ∂ξ
u ∂β

v Iα , (8.11)

where

Iα = |v − u| + |z − u| − |v − z|
16π2 (|v − u| |z − u| + (v − u)(z − u))

[
(v − u)α

|v − u| + (z − u)α

|z − u|
]

. (8.12)

The ρ(C) knot invariant [98] gives the analytic expression of the second coefficient of the 
Alexander-Conway polynomial [100–102].

8.4. Third order

The value of 〈WC〉(3) is given by the sum of the amplitudes which are associated with dia-
grams containing 3, 4 and 5 field propagators (2.12). In the computation of 〈hC〉 at order h̄3, 
diagrams with one loop produce vanishing results. The contributions corresponding to the di-
agrams with 5 propagators and two lagrangian vertices, shown in Fig. 9, are vanishing as a 
consequence of the algebra structure (2.2) of the ISU(2) generators.
Diagrams with 4 propagators contain one vertex and are of the type shown in Fig. 10. The corre-
sponding amplitudes contain the combinations (JP )P 2 and (P 2)2 of the Casimir operators. The 
sum of these contributions to 〈hC〉 is given by

P 2h̄3
∫

d3w

∮
C

dzσ

z∫
x0

duτ

u∫
x0

dvρ εμνλεμτξ ενρβελσα

(w − u)ξ (w − v)β(w − z)α

|w − u|3|w − v|3|w − z|3 ×

× −i

128π4

[
(JP ) − g

2
P 2
]∮

C

dxμ

∮
C

dyνεμνλ

(x − y)λ

|x − y|3 . (8.13)
f
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+ permutations

x0

Fig. 10. Third order diagrams with four propagators.

+ permutations

x0

Fig. 11. Third order diagrams with three propagators.

Diagrams with 3 propagators are sketched in Fig. 11. The combinations of Casimir operators 
that one finds in this case are (JP )3, (JP )2P 2, (JP )(P 2)2, (P 2)3, (JP )P 2 and (P 2)2. The 
resulting 〈hC〉 amplitude which is associated with the diagrams of Fig. 11 is given by

ih̄3

6

[
(JP ) − g

2
P 2
]3

⎛
⎜⎝∮

C

dxν

∮
Cf

dyσ ενσλ

(x − y)λ

4π |x − y|3

⎞
⎟⎠

3

+

+
∫

d3x

∮
C

dzσ

z∫
x0

duτ

u∫
x0

dvρ εμνλεμτξ ενρβελσα

(x − u)ξ (x − v)β(x − z)α

64π3|x − u|3|x − v|3|x − z|3 ×

×
(
−i2h̄3

)[
(JP ) − g

2
P 2
]
P 2

⎛
⎜⎝∮

C

dxν

∮
Cf

dyσ ενσλ

(x − y)λ

4π |x − y|3

⎞
⎟⎠ . (8.14)

Finally, the sum of all the contributions of order h̄3 takes the form

〈WC〉(3) = i

6

(
h̄

2

)3 (
2�r − g�2

)3 [
�k(C,Cf )

]3 +

−i
h̄3 (

2�r − g�2
)

�2 [�k(C,Cf )
]

ρ(C) . (8.15)

2
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8.5. Chern-Simons comparison

The knot invariants contained in 〈WC〉(1) and 〈WC〉(2) are precisely the invariants that one also 
finds in the Chern-Simons field theory (multiplying different Casimir operators, of course). At 
the third order, the knot invariants of the BF and of the Chern-Simos theory differ significantly. 
Indeed, the third order term 〈WC〉(3) in the Chern-Simons theory —which has been computed 
correctly by Hirshfeld and Sassenberg [103]— contains a new knot invariant ρIII that does not 
appear in the BF theory. This seems to be caused by the special structure of the commutation 
algebra of the ISU(2) generators.

8.6. Framing dependence

Up to terms of order h̄3, the normalised trace of the expectation value of the knot holonomy 
in the BF theory is given by the sum 

∑3
n=0〈WC〉(n) and can be written as

〈WC〉 = e−ih̄�k(C,Cf )[�r−(g/2)�2] [1 + h̄2�2ρC

]
+O(h̄4) . (8.16)

Expression (8.16) is in agreement with the general structure of the BF knot invariant, in which the 
whole dependence of 〈WC〉 on the framing Cf of the knot C is given by the overall multiplicative 
factor

BF framing factor = e−ih̄�k(C,Cf )[�r−(g/2)�2] . (8.17)

Let us recall that, in the Chern-Simons theory, the framing factor [98,99] of the knot invariants 
is given by

CS framing factor = e
−i h̄

2g
�k(C,Cf )C2(R)

, (8.18)

where C2(R) denotes the value of the quadratic Casimir operator in the R representation —of the 
structure group— which is associated with the knot, and g = (k/4π) is the CS coupling constant 
[95] which multiplies the Chern-Simons action.

The framing dependence of the knot observables has a common origin in both the BF and the 
CS theories.

Proposition 5. The BF knot invariant 〈WC〉 of the framed knot C has the form

〈WC〉 = e−ih̄�k(C,Cf )[�r−(g/2)�2]QC , (8.19)

where QC does not depend on the framing Cf of the knot C.

Proof. Let us recall that the framing of the knot C can be defined by means of a knot Cf which 
belongs to the boundary of a tubular neighbourhood of C. If C is oriented, the orientation of Cf

is chosen to agree with the orientation of C.
It should be noted that the choice of a framing of a knot C ⊂ R3 is equivalent to the specifi-

cation of a trivialisation [100] of a tubular neighbourhood N of C. The space N ⊂ R3 is a solid 
torus, in which C is the core of N and Cf ⊂ ∂N . Let us define the standard solid torus V as the 
product V = S1 × D2, where the two-dimensional disc D2 is represented by the unit disc in the 
complex plane with coordinates {reiθ } in which 0 ≤ r ≤ 1 and 0 < θ ≤ 2π . Let {eiφ, reiθ } be 
coordinates of V ; the standard longitude λ of V is the curve on the boundary ∂V of coordinates 
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α β

Fig. 12. Part of a diagram with one propagator associated with two consecutive generators.

{eiφ, 1} with 0 < φ ≤ 2π . A framing for C is a homeomorphism f : V → N , and the image of λ
is precisely the knot Cf .

Up to ambient isotopy, the homeomorphism f : V → N is uniquely specified by the linking 
number of C and Cf . This means that, in the quantum field theory context of the BF or CS 
theories, the whole dependence of 〈WC〉 on the framing is given precisely by the sum of all the 
perturbative contributions which are proportional to the linking number �k(C, Cf ).

The linking number �k(C, Cf ) is given the integral along C and Cf of the corresponding 
Gauss density which appears in the expression (2.12) of the components of the propagator for 
the connection. The propagator corresponds to the two-point function of the connection fields

〈Aa
μ(x)Bb

ν (y)〉 = iδab

4π
εμνλ

(x − y)λ

|x − y|3 , 〈Ba
μ(x)Bb

ν (y)〉 = −igδab

4π
εμνλ

(x − y)λ

|x − y|3 ,

(8.20)

that, in the BF and CS theories, receives no loop corrections (see Section 4 and [98,95]). When 
the components of the connection are coupled with classical sources J a

μ(x) and Ka
μ(x), the set 

of the corresponding Feynman diagrams is described by the generating functional

〈ei
∫

d3x(J a
μAa

μ+Ka
μBa

μ)〉
and, since the two-point function is connected, the sum of all the contributions containing the 
linking number �k(C, Cf ) is precisely the exponential of the two-point function [87,88,104]. 
This means that, by neglecting the commutators between the generators J a and P a , the entire 
framing dependence of 〈WC〉 is given by the overall multiplicative factor which is just the ex-
ponential of �k(C, Cf ) multiplied by the quadratic Casimir operator which is defined by the 
two-point function of the connection

framing factor = e−ih̄�k(C,Cf )[PJ−(g/2)P 2] . (8.21)

Let us now take into account the fact that the generators {J a, P b} do not generally commute. 
The holonomy hC is defined by means of the path-ordered exponential and, in the perturbative 
expansion (7.2) of hC in powers of the fields, the path-ordering determines the precise position of 
the J a and P b operators in the product of the group generators along the knot C. Let us consider 
the Feynman diagrams —contributing to 〈WC〉— in which a AA propagator connects two points 
of the knot C. There are only two possibilities: (a) the associated group generators are placed in 
consecutive positions in the path-ordering, or (b) the associated generators are nonconsecutive.
In the case (a), sketched in Fig. 12, the two-point function is proportional to the contraction 

T αTβ which is equal to the Casimir operators JP or P 2, which commute with all the remaining 
generators and therefore behave as classical numbers (or classical sources).

In case (b), depicted in Fig. 13, the generators T α and T β which are associated with the 
propagator are nonconsecutive, and one has, for instance, the sequence T αT σ T γ T β ; this product 
can be written as
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α β

σ γ

Fig. 13. Part of a diagram with one propagator associated with nonconsecutive generators.

T αT σ T γ T β = T σ T γ T αT β + [T α,T σ T γ
]
T β . (8.22)

The first term on the r.h.s. of expression (8.22) contains the quadratic Casimir operator entering 

T αTβ (which is equal to JP or PP ) and, when one combines all the terms of this type with the 
terms coming from case (a), one gets precisely the exponentiation shown in equation (8.21).

Since the set of all the perturbative contributions to 〈WC〉 takes the form of a sum of knot 
invariants, if one extract the knot invariant �k(C, Cf ) the remaining terms necessarily represent 
knot invariants. Thus the remaining contributions, which contain the commutator appearing in 
expression (8.22), combine to produce knot invariants, which necessarily are not proportional to 
the linking number �k(C, Cf ) because they do not contain the complete line integral along C
and Cf of the Gauss density.
Therefore the framing dependence of 〈WC〉 is given by an overall factor which is precisely the 
exponential of �k(C, Cf ) multiplied by the quadratic Casimir operator which is defined by the 
two-point function of the connection. In the CS theory, the quadratic Casimir operator is ex-
actly T bT b = c2(R), whereas in the BF theory the two points function gives the combination 
[PJ − (g/2)PP ] of Casimir operators. �
9. Conclusions

The gauge theory of topological type which is usually called the BF theory is a superrenor-
malisable quantum field theory in R3. We have described the structure of the Feynman diagrams 
which enter the perturbative expansion of the correlation functions of the connection, the corre-
sponding generating functional has been computed and the relationship with the Chern-Simons 
theory has been produced. We have presented the complete renormalisation of the BF theory, 
which involves the two-points function and three-points function of the connection. By means of 
the renormalisation procedure in the space of coordinates —which is in complete agreement with 
the renormalisation procedure in momentum space— one finds that, as in the case of the Chern-
Simons theory, the two-points function of the connection does not receive loop corrections and 
therefore the bare propagator coincides with the dressed propagator.

We have defined gauge invariant observables by means of appropriately normalised traces of 
the holonomies which are associated with oriented, framed and coloured knots in R3. The colour 
of a knot is specified by a given unitary irreducible representation of the structure group ISU(2). 
We have described the unitary ISU(2) representations with Casimir operators P 2 = �2 and 
JP = r� —with r = 0, 1/2— and the ISU(2) conjugacy classes have been determined. It has 
been shown that the expectation value of a knot holonomy is a function of the Casimir operators 
of the gauge group, so the expectation value of the normalised trace of knot holonomies are well 
defined and are gauge invariant.

The perturbative computation of the observables has been successfully achieved up to the third 
order in powers of h̄. The knot invariants that we have found at first and second order correspond 
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to the knot invariants that also appear in the Chern-Simons theory. Whereas the BF and CS knot 
invariants differ at the third order of perturbation theory. We have shown that the entire framing 
dependence of the knot observables is completely determined by an overall multiplicative factor 
which is the exponential of the linking number between the knot and its framing multiplied by the 
combination of the quadratic Casimir operators which is determined by the two point function of 
the connection.

In the present article, we have described the fundamentals of the perturbative approach to the 
BF theory in the case of structure group ISU(2). The extensions to more complicated groups 
appear to be quite natural. In particular, our results admit rather simple generalisations to the 
case of gauge group ISO(2, 1), which is related to a gravitational model in (2 + 1) dimensions.
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