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Abstract—The spectral efficiency of wireless networks can be
made nearly infinitely large by deploying many antennas, but
the deployment of very many antennas requires new topolo-
gies beyond the compact and discrete antenna arrays used by
conventional base stations. In this paper, we consider the large
intelligent surface scenario where small antennas are deployed
on a large and dense two-dimensional grid. Building on the
heritage of MIMO, we first analyze the beamwidth and sidelobes
when transmitting from large intelligent surfaces. We compare
different precoding schemes and determine how to optimize the
transmit power with respect to different utility functions.

Index Terms—Large intelligent surface, precoding optimiza-
tion, zero-forcing, asymptotic analysis.

I. INTRODUCTION

A large intelligent surface (LIS) consists of a physically
large and dense antenna array [1]. Ideally, it is a continuous
surface with controllable electromagnetic properties [1], but
we will consider also its discretized approximation. An LIS
can be used for communication, positioning, and sensing
[2]. If an LIS can be made thin, then it can potentially be
integrated into walls. It is well known that the beamwidth of
the signal transmitted from an array is approximately inversely
proportional to the aperture [3], [4], thus there is a risk that
two users have overlapping main beams also when using
dense arrays [5]. In this paper, we investigate the shape of
the sidelobes when transmitting from a continuous surface. In
particular, we will explore if maximum ratio (MR) processing
(as used in [1]) is sufficient when transmitting to multiple users
or if more advanced methods, such as zero-forcing (ZF), is
needed to deal with interference when transmitting from an
LIS. It is known that MR is far from optimal in non-line-of-
sight (NLOS) scenarios [6], but the situation might be different
in line-of-sight (LOS) scenarios and when using dense arrays.

II. TWO USERS AND ONE LIS
To study the basic properties, we consider the scenario in

which two users transmit to the large planar array, shown
in Fig. 1. The array consists of N horizontal rows and M
antennas per row, which are located in the y-z-plane. The
array is dense in the sense that each element is of size d× d,
where d is small, and the spacing is d in the horizontal and
vertical directions.1

If a plane wave with wavelength λ is impinging from
azimuth angle ϕ ∈ [−π2 ,

π
2 ] and elevation angle θ ∈ [−π2 ,

π
2 ],
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1There will likely be mutual coupling between the antennas in a dense
array, but this effect is neglected in this work to study the ideal situation. We
refer to [7] for a study on mutual coupling in LIS.
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Fig. 1. A planar array with N rows and M antennas per row. If
a plane wave is impinging from elevation angle θ and azimuth
angle ϕ, the array response vector is a(ϕ, θ).

we can compute the NM × 1 array response vector using
the methodology in [4, Sec. 7.3.1]. If we order the antennas
row by row, starting with the antenna in the origin, the array
response vector can be expressed as

a(ϕ, θ) =
[
ejα

ϕ,θ
1,1 . . . ejα

ϕ,θ
1,M ejα

ϕ,θ
2,1 . . . ejα

ϕ,θ
N,M

]T
(1)

where j is the imaginary unit and the phase-shift of the antenna
at row n and column m is

αϕ,θn,m =
2πd

λ

(
(m− 1) cos(θ) sin(ϕ) + (n− 1) sin(θ)

)
. (2)

Note that ‖a(ϕ, θ)‖2 = NM . When transmitting from the
array, a(ϕ, θ) is the channel vector to a user located in
the far-field in azimuth angle ϕ and elevation angle θ. The
propagation distance should be larger than the Fraunhofer
distance 2d2 max(M2,N2)

λ to use this far-field model.
We consider two single-antenna users, which are located in

the far-field of the array in the directions (ϕ1, θ1) and (ϕ2, θ2).
We assume the angles are non-identical: either ϕ1 6= ϕ2 and/or
θ1 6= θ2. The transmissions are precoded using the vectors√
ρivi for user i = 1, 2. More precisely, vi ∈ CNM is the

unit-norm precoding vector assigned to user i and ρi is the
normalized transmit power, which represents the signal-to-
noise ratio (SNR). Moreover, let s1, s2 denote the independent
information-bearing signals with E{|s1|2} = E{|s2|2} = 1.



The received signal at user 1 is modeled as

y1 = aH(ϕ1, θ1) (
√
ρ1v1s1 +

√
ρ2v2s2) + n1 (3)

where n1 ∼ NC(0, 1) is the normalized receiver noise. The re-
ceived signal at user 2 is achieved by switching the user indices
and is therefore omitted. By treating interference as noise, the
achievable spectral efficiency (SE) is log2(1 + SINR1), where
the signal-to-interference-and-noise ratio (SINR) is

SINR1 =
ρ1|aH(ϕ1, θ1)v1|2

ρ2|aH(ϕ1, θ1)v2|2 + 1
. (4)

To further analyze this expression, we will now consider two
different precoding schemes: MR and ZF precoding.
A. Maximum Ratio Transmission

The first precoding scheme is MR

vi =
a(ϕi, θi)

‖a(ϕi, θi)‖
=

a(ϕi, θi)√
NM

i = 1, 2 (5)

which is optimal in noise-limited scenarios [8]. When substi-
tuting these precoding vectors into (4), we obtain

SINRMR
1 =

SNR1

SNR2 · I2
12 + 1

(6)

where
I12 =

∣∣∣∣ 1

NM
aH(ϕ1, θ1)a(ϕ2, θ2)

∣∣∣∣ (7)

accounts for the interference generated by user 2 and SNRi =
NM ρi

σ2 for i = 1, 2 represents the received SNR of user i in
the absence of any interference. Observe that

I12 =

∣∣∣∣∣ 1

NM

N∑
n=1

M∑
m=1

ej(α
ϕ2,θ2
n,m −αϕ1,θ1

n,m )

∣∣∣∣∣
=

∣∣∣∣∣ 1

N

N∑
n=1

ej
2πd
λ (n−1)Ω

∣∣∣∣∣
∣∣∣∣∣ 1

M

M∑
m=1

ej
2πd
λ (m−1)Ψ

∣∣∣∣∣ (8)

where
Ω = sin(θ2)− sin(θ1), (9)
Ψ = cos(θ2) sin(ϕ2)− cos(θ1) sin(ϕ1). (10)

Lemma 1. For any integer N ≥ 1 and real-valued A,

N∑
n=1

ej2π(n−1)A =

{
sin(πNA)
sin(πA) ejπ(N−1)A, A 6= 0,

N, A = 0.
(11)

By using the above lemma, we can rewrite (8) as2

I12 =
1

NM

sin(πNdΩ/λ)

sin(πdΩ/λ)

sin(πMdΨ/λ)

sin(πdΨ/λ)
. (12)

B. ZF Precoding

ZF is the optimal precoding scheme in interference-limited
scenarios [8] and there are two equivalent definitions: us-
ing a pseudo-inverse or an orthogonal projection matrix [9,
Sec. 3.4.2]. We consider the latter formulation for which

2For brevity, we use this notation also for Ω = 0 and Ψ = 0, bearing in
mind the alternative expression in (11).

vi =
wi

‖wi‖
for i = 1, 2 with (13)

w1 =

(
INM −

1

NM
a(ϕ2, θ2)aH(ϕ2, θ2)

)
a(ϕ1, θ1) (14)

w2 =

(
INM −

1

NM
a(ϕ1, θ1)aH(ϕ1, θ1)

)
a(ϕ2, θ2). (15)

These vectors satisfy the ZF properties aH(ϕ2, θ2)v1 = 0 and
aH(ϕ1, θ1)v2 = 0. Hence, substituting vi into (4) yields

SINRZF
1 = ρ1

|aH(ϕ1, θ1)w1|2

‖w1‖2
= SNR1(1− I2

12). (16)

Interestingly, (16) contains the same components as (6)
(SNR1, I2

12, and 1), but has a different structure. In (16),
I2
12 should be interpreted as the perfomance loss due to the

cancellation of the interference generated by user 2.

III. SYSTEM ANALYSIS FOR DENSE ARRAYS

We will now analyze the system above in the limit of
infinitesimal antennas for a given array dimension, which
represents an ideal LIS. More precisely, we fix the array’s
horizontal length to L = Md and the vertical height to
H = Nd, and then we will let d → 0. Each antenna has
a physical size of d × d but the effective size shrinks to
d cos(ϕi)× d cos(θi) when observing it from the direction of
user i. The SNR per antenna reduces with the effective antenna
area [10], which in free-space propagation is modeled as

SNRi

NM
=

qi
σ2

d2 cos(ϕi) cos(θi)︸ ︷︷ ︸
Effective area

1

4πr2
i︸ ︷︷ ︸

Free-space propagation

= d2 qi
σ2

cos(ϕi) cos(θi)

4πr2
i︸ ︷︷ ︸

=pi, Independent of the antenna size d

(17)

for i = 1, 2, where qi is the unnormalized transmit power, σ2

is the noise power, ri is the distance to user i. As indicated
in (17), we denote the part that does not depend on d as pi.

A. Limiting SINRs

By using (17), we have that

SNRi = NM
ρ1

σ2
= pid

2NM = piLH for i = 1, 2, (18)

depends on the array area LH but not on the area d2 of each
antenna. However, the interference gain in (12) depends on d:

I2
12 =

1

(NM)2

sin2(πHΩ/λ)

sin2(πdΩ/λ)

sin2(πLΨ/λ)

sin2(πdΨ/λ)
. (19)

By letting d → 0 and utilizing that sin(x) ≈ x is a tight
approximation as x→ 0, the following limit is obtained.

Lemma 2. If d→ 0, then

I2
12,d=0 = lim

d→0
I2
12 = sinc2

(
HΩ

λ

)
sinc2

(
LΨ

λ

)
(20)

where sinc(x) = sin(πx)/(πx) is the sinc-function.



The above limit is in general non-zero, which was expected
since the spatial resolution of an array is known to depend on
the aperture (i.e., length L and height H) and not the antenna
spacing; see for example, [3, Sec. 7.2.4], [4, Sec. 7.4.2],
[5]. The two squared sinc-functions determine how large the
interference is. Since the two users are assumed to have non-
identical angles, we have Ω 6= 0 and/or Ψ 6= 0, which implies
that at least one of the sinc-functions can be small if the array
is physically large. By using Lemma 2, the limiting SINRs
with MR and ZF easily follow.

Lemma 3. The limiting SINRs with MR and ZF are:

SINRMR
1,d=0 = lim

d→0
SINRMR

1

=
p1LH

p2LHsinc2
(
HΩ
λ

)
sinc2

(
LΨ
λ

)
+ 1

(21)

SINRZF
1,d=0 = lim

d→0
SINRZF

1

= p1LH

(
1− sinc2

(
HΩ

λ

)
sinc2

(
LΨ

λ

))
.

(22)

B. Interference Gain: Beamwidth and Sidelobes
We now analyze the interference gain when user 1 has ϕ1 =

θ1 = 0, while the interfering user 2 has θ2 = 0 but a varying
azimuth angle ϕ2 ∈ [−π/2, π/2]. From (9) and (10), we thus
obtain Ω = 0 and Ψ = sin(ϕ2) such that (19) reduces to

I2
12 =

d2

L2

sin2(πLΨ/λ)

sin2(πdΨ/λ)
(23)

which shows that, for any given Ψ and L/λ, the interference
gain depends on d, where a smaller d leads to smaller values.
From Lemma 2, the limit is given by

I2
12,d=0 = sinc2

(
LΨ

λ

)
. (24)

The maximum of both (23) and (24) is achieved for ϕ2 = 0,
which makes Ψ = 0. To find the nulls of the interference gain,
(23) and (24) are set equal to zero, which leads to

ϕ2 = ϕnull
2,n = ± arcsin

(
λ

L
n

)
≈ ±λ

L
n n = 1, 2, . . . (25)

where the approximation holds for L� λn. If we define the
beamwidth as the angular distance between the first two nulls,
it is approximately 2λ/L. In line with classical results on the
resolution of arrays [3, Sec. 7.2.4], the beamwidth is inversely
proportional to the array length L, but independent of d.

The maxima of the sidelobes occur when the numerator of
(23) and (24) attains its maximum; that is, sin(πLΨ/λ) = ±1.
For L� λn, it is approximately given by

ϕ2 = ϕmax
2,n ≈ ±

λ

L

2n+ 1

2
n = 1, 2, . . . . (26)

By using the above approximation in (23) and (24), we obtain

I2
12

∣∣
ϕ2=ϕmax

2,n
≈ d2

L2

sin2(πLϕmax
2,n /λ)

sin2(πdϕmax
2,n /λ)

=
d2

L2

1

sin2
(

2n+1
2 πd/L

)
(27)
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Fig. 2. The interference gain from a user located at θ2 = 0 and
ϕ2 ∈ [−π/2, π/2], while the desired user is at ϕ1 = θ1 = 0.

and

I2
12,d=0

∣∣
ϕ2=ϕmax

2,n

≈
(

2

2n+ 1

1

π

)2

(28)

from which it follows that the maximum of the first sidelobe
(i.e., n = 1) of an ideal LIS is ( 2

3π )2 = −13.46 dB weaker
than the main lobe, irrespective of the surface length L. The
difference between (27) and (28) depends on d/λ and n,
where smaller d/λ and/or n lead to smaller differences. As
a rule-of-thumb, we can approximate (27) with (28) whenever
πdϕmax

2,n /λ ≤ π2/8 since then sin(x) ≈ x with an error below
10%. For ϕmax

2,n ∈ [−π/4, π/4], we obtain d ≤ λ/2.
Fig. 2 shows the interference gain for the antenna sizes

d ∈ {0.25λ, 0.5λ, 0.75λ} and as d → 0. Particularly,
Fig. 2(a) considers a surface with size L = H = 10λ, while
Fig. 2(b) considers L = H = 50λ. As expected, the spatially
undersampled case of d = 0.75λ leads to the largest sidelobes.
Interestingly, there is little difference between d = 0.25λ and
d → 0, which demonstrates that a discretization of the ideal
continuous LIS concept will likely perform very well.

C. MR versus ZF Precoding

We will continue evaluating the SE that is achieved by user
1 with MR and ZF. We use the asymptotic expressions in (21)
and (22) with L = H = 50λ. User 1 is located at the angles
ϕ1 = θ1 = 0, while we vary both angles for user 2. We assume



(a) MR precoding

(b) ZF precoding

Fig. 3. Relative loss in SE due to interference in a setup where
the desired user is at ϕ1 = θ1 = 0 and the interfering user’s
angles are varied.

the users are equipped with lossless omnidirectional antennas
and set the SNRs to ρ1 = ρ2 = 20 dB.

Fig. 3 shows the performance of MR and ZF in terms of the
relative performance loss compared to an ideal interference-
free case with SE log2(1 + SNR1). There are many angles
(ϕ2, θ2) in Fig. 3(a) where substantial interference is caused
by user 2, so that MR suffers from reduced performance. This
is particularly the case when either the azimuth angle or the
elevation angle is similar to that of user 1. In contrast, the
performance loss in Fig. 3(b) when using ZF is almost zero,
except when the two users have identical angles—in that case,
MR loses 95% and ZF% loses 100% of the performance due
to interference. The conclusion is that interference can be
suppressed almost for free when using an LIS, but the ac-
tive interference-suppression of ZF is needed—MR is greatly
suboptimal just as in Massive MIMO with NLOS channels [6].

D. Asymptotic Analysis with L→∞
Although ZF outperforms MR for a finite surface, the

situation might change as the surface grows. We can let the
surface grow large, for example, by letting L→∞. This limit
is not practically achievable using our far-field channel model,
but it is still accurate for very large arrays [11].
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Fig. 4. SE behavior with ZF and MR as L increases.

Since Lsinc2(πLΨ
λ ) ≤ λ2

π2LΨ2 for Ψ 6= 0, where the upper
bound goes to zero, the interference/loss terms containing I2

12

in (21) and (22) go asymptotically to zero and we get:

Lemma 4. In the regime of an asymptotically wide LIS,

lim
L→∞

log2

(
1 + SINRZF

1,d=0

)
− log2

(
1 + SINRMR

1,d=0

)
= 0.

(29)

Hence, the performance difference between ZF and MR
disappears as the LIS size increases. This is different from
the classical i.i.d. Rayleigh fading case where there is always
a performance gap [12]. Fig. 4 shows the SE as a function
of L when using ZF, MR, and when there is no interference.
We assume H = λ, ϕ1 = θ1 = θ2 = 0, ϕ2 = π/12, and a
reference SNR of ρ1 = ρ2 = 20 dB. ZF quickly converges to
the interference-free case, while MR gives oscillations since
the increasing surface moves the locations of the sidelobes.

IV. PRECODING OPTIMIZATION FRAMEWORK

We now consider a more general setup where the LIS serves
K users, where user k has SNR ρk and is located in direction
(ϕk, θk). The users have non-identical angle pairs (i.e., ϕk 6=
ϕi and/or θk 6= θi for k 6= i). The LIS transmits to user i using
the normalized transmit power ρi and unit-norm precoding
vector vi. The received signal at user k is

yk = aH(ϕk, θk)

K∑
i=1

√
ρivisi + nk (30)

where si is the signal to user i with E{|si|2} = 1. The SE at
user k is log2(1 + SINRk), where

SINRk =
ρk|aH(ϕk, θk)vk|2

K∑
i=1,i6=k

ρi|aH(ϕk, θk)vi|2 + 1

. (31)

The purpose of this section is to design the precoding; that
is, {ρi} and {vi}. Based on the insights above, we use ZF
precoding where user k uses vk = wk/||wk|| with

wk =

(
INM −

1

NM
Ak(AH

kAk)−1AH

k

)
a(ϕk, θk) (32)

where the columns of Ak ∈ CMN×K−1 are a(ϕi, θi) for i =
1, . . . , k − 1, k + 1, . . . ,K. The SINR for user k becomes

SINRk = SNRkbk (33)



which depends on SNRk = ρkMN (i.e., the received SNR of
user k without interference) and a constant bk ≥ 0 given by

bk = 1− 1

NM
aH(ϕk, θk)Ak(AH

kAk)−1AH

ka(ϕk, θk). (34)

It remains to jointly optimize the SINRs by selecting the
transmit powers under a total transmit power Q. From (17),
we have that

K∑
i=1

qi =

K∑
i=1

ρi
4πr2

i σ
2

d2 cos(θi) cos(ϕi)︸ ︷︷ ︸
=ci

≤ Q. (35)

To determine what is a good power allocation, we define an
increasing utility function U(x) and consider the following
utility maximization problem:

maximize
ρ1,...,ρK

K∑
i=1

U(ρibi) (36)

subject to

K∑
i=1

ρici ≤ Q. (37)

Lemma 5. If U(x) is differentiable and U ′(x) = d
dxU(x) is

invertible, then the solution to (36) is

ρi =
1

bi

[
U ′−1

(
ci
νbi

)]
+

(38)

where [·]+ replaces negative values with zero, and the param-
eter ν ≥ 0 is selected to achieve equality in (37).

Proof: Follows from adapting [9, Th. 3.5].
If U(x) = log(x), then we are maximizing the product of

the SINRs, which is called proportional fairness [4]. We then
have U ′(x) = 1/x and U ′−1(y) = 1/y, so that (38) becomes

ρi =
1

bi

[
νbi
ci

]
+

=
ν

ci
=

Q

ciK
(39)

since ν = Q/K gives equality in the power constraint. This
leads to an equal power allocation since pi = ρici = Q/K.

If U(x) = log2(1 + x), then we are instead maximizing
the sum SE. It follows that U ′−1(y) = 1

y loge(2) − 1 and (38)
becomes identical to conventional waterfilling [3]:

ρi =

[
ν

loge(2)ci
− 1

bi

]
+

. (40)

If we want to maximize the harmonic mean of the SINRs,
K/(

∑K
i=1

1
ρibi

), we can equivalently set U(x) = −1/x. It
then follows that U ′−1(y) = 1√

y and (38) becomes

ρi =
1

bi

[√
νbi
ci

]
+

=

√
ν

bici
=

Q√
bici

/ K∑
k=1

√
ck
bk
. (41)

To illustrate the impact of the utility optimization, we
consider a surface of size L = H = 10λ and drop K = 5 users
with uniformly distributed azimuth angles ϕi ∈ [−π/2, π/2]
and θi = 0. The reference SNR is 0 dB. Fig. 5 shows
the CDF of the SE achieved by an arbitrary user when
using ZF precoding and the three utilities exemplified above.
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Fig. 5. The SE achieved by an arbitrary user when serving
K = 5 with random azimuth angles using ZF precoding.

Interestingly, the three utilities give similar CDF curves but
there are anyway large variations in SE for different user drops.
The reason is that the interference is low except when two
users happen to get roughly the same angle.

V. CONCLUSION

Spatial interference suppression is important to achieve high
spectral efficiency when using an LIS. ZF precoding outper-
forms MR for practical surface sizes, but we proved that the
difference vanishes asymptotically. When using ZF, the power
allocation can be efficiently optimized for different utility
functions. Although an ideal LIS is a continuous surface,
its beam pattern is closely approximated when using discrete
antennas of size λ/4 × λ/4. While this paper considered the
far-field, the near-field should be analyzed in future work.
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