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Abstract. We present XSPELLS, a model-agnostic local approach for
explaining the decisions of a black box model for sentiment classification
of short texts. The explanations provided consist of a set of exemplar sen-
tences and a set of counter-exemplar sentences. The former are examples
classified by the black box with the same label as the text to explain. The
latter are examples classified with a different label (a form of counter-
factuals). Both are close in meaning to the text to explain, and both are
meaningful sentences — albeit they are synthetically generated. XSPELLS
generates neighbors of the text to explain in a latent space using Varia-
tional Autoencoders for encoding text and decoding latent instances. A
decision tree is learned from randomly generated neighbors, and used to
drive the selection of the exemplars and counter-exemplars. We report
experiments on two datasets showing that XSPELLS outperforms the well-
known LIME method in terms of quality of explanations, fidelity, and
usefulness, and that is comparable to it in terms of stability.
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1 Introduction

Opinions expressed by people in social media are increasingly being collected for
several purposes [24]. People look at others’ opinions on a product before buying
it, on a restaurant or hotel before making a reservation. Managers take decisions
supported by consumers’ opinions on company brand, products, and services.
Public decision makers care for what the citizens in their community want.
The massive amount of online texts (posts, tweets, reviews, etc.) makes it
necessary to automate the analyses of such data. Sentiment classification is the
task of learning a model that is able to predict the sentiment of a given text from
labeled examples [31]. These machine learning models are exploited in various
applications, e.g., personalization of advertisements, peer suggestion in social
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networks, recommendations of news, movies, etc. The analysis of short texts,
which abound in micro-blogging sites such as Twitter and in online reviews, is
especially challenging, due to their sparsity, non-uniformity, and noisiness. Deep
Neural Networks (DNNs) [23,40] and Random Forests (RFs) [6,39], have been
shown to be effective in terms of predictive accuracy and robustness to noise.
However, the logic learned by a DNN or by a RF to classify a given text remains
obscure to human inspection. These inscrutable “black box” models may hide
biases learned from data, such as prejudice [2] or spurious correlations [33]. Con-
sequently, they may reproduce and amplify such biases in their predictions [10].

Explainability of black box decisions is nowadays a mandatory require-
ment [9,11]. Developers need to understand model’s decisions for debugging
purposes. People subject to black box decisions may inquire to be provided with
“meaningful information of the logic involved” (right to explanation [26] in the
European Union GDPR). For example, if a comment in a social network has
been removed because it has been classified as hate speech, the author has the
right to know why the machine learning system has assigned such a label to her
comment.

In this paper, we investigate the problem of explaining the decisions of a black
box for sentiment classification on a given input (short) text. We design and
experiment with a model-agnostic local approach named XSPELLS (eXplaining
sentiment Prediction generating ExempLars in the Latent Space). XSPELLS’S
explanations for the sentiment y = b(z) assigned by a black box b to a text
x consists of set of exemplar texts E, a set of counter-ezemplar texts C, and
the most frequent words in each of those sets W = Wg U We. Exemplars are
sentences classified by the black box as x and close in meaning to x. They are
intended to provide the user with hints about the kind of texts in the neighbor-
hood of x that the black box classifies in the same way as z. Counter-exemplars
are sentences that the black box classifies differently from gy, but like exemplars,
are also close in meaning to x. They are intended to provide the user with hints
about the kind of texts in the neighborhood of z that the black box classifies
differently from z. The usefulness of counter-factual reasoning has been widely
recognized in the literature on explainable machine learning [4], particularly as
a tool for causal understanding of the behavior of the black box. By contrasting
exemplars and counter-exemplars, the user can gain an understanding of the
factors affecting the classification of . To help such an understanding, XSPELLS
provides also the most frequent words appearing in E and C.

The main novelty of our approach lies in the fact that the exemplars and
counter-exemplars produced by XSPELLS are meaningful texts, albeit syntheti-
cally generated. We map the input text = from a high-dimensional vector space
into a low-dimensional latent space vector z by means of Variational Autoen-
coders [22], which couple encoding and decoding of texts. Then we study the
behavior of the black box b in the neighborhood of z, or, more precisely, the
behavior of b on texts decoded back from the latent space. Finally, we exploit a
decision tree built from latent space neighborhood instances to drive the selec-
tion of exemplars and counter-exemplars. Experiments on two standard datasets
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and two black box classifiers show that XSPELLS overtakes the baseline method
LIME [33] by providing understandable, faithful, useful, and stable explanations.

This paper is organized as follows. Section 2 discusses related work. Section 3
formalizes the problem and recalls key notions for the proposed method, which
is described in Sect.4. Sectionb presents an experimental validation. Finally,
Sect. 6 summarizes our contribution, its limitations, and future work.

2 Related Work

Research on interpretability and explainability in machine learning has bloomed
over the last few years [17,28]. Explanation methods can be categorized as: (i)
model-specific or model-agnostic, depending on whether or not the approach
requires access to the internals of the model; (i) local or global, depending on
whether the approach explains the prediction for a specific instance or the overall
logic of the machine learning model.

XSPELLS, falls into the category of local, model-agnostic methods which origi-
nated with [33] and extended along diverse directions by [12] and by [14,16]. Well
known model-agnostic local explanation methods able to also work on textual
data include LIME, ANCHOR and SHAP. LIME [33] randomly generates synthetic
instances in the neighborhood of the instance to explain. An interpretable lin-
ear model is trained from such instances. Feature weights of the linear model
are used for explaining the feature importance over the instance to explain. In
the case of texts, a feature is associated to each word in a vocabulary. LIME
has two main weaknesses. First, the number of top features/words to be consid-
ered is assumed to be provided in input by the user. Second, the neighborhood
texts are generated by randomly removing words, possibly generating meaning-
less texts [15]. ANCHOR [34] is developed following principles similar to LIME
but it returns decision rules (called anchors) as explanations. It adopts a bandit
algorithm that randomly constructs anchors with predefined minimum preci-
sion. Its weaknesses include the discretization of continuous features, the need
for user-defined precision threshold parameters, and, as for LIME, the usage of
meaningless synthetic instances. SHAP [25] relates game theory with local expla-
nations and overcomes some of the limitations of LIME and ANCHOR. Also SHAP
audits the black box with possibly meaningless synthetic sentences. The method
XSPELLS proposed in this paper recovers from this drawback by generating the
sentences for the neighborhood in a latent space by resorting to Variational
Autoencoders.

LIONETS, DEEPLIFT and NEUROX are model-specific local explanation meth-
ods designed to explain deep neural networks able to work also on textual data.
DEEPLIFT [36] decomposes the prediction of neural networks on a specific input
by back-propagating the contributions of all neurons in the network to the input
features. Then it compares the activation of each neuron to its “reference activa-
tion” and it assigns contribution scores according to the difference. NEUROX [7]
facilitates the analysis of individual neurons in DNNs. In particular, it identi-
fies specific dimensions in the vector representations learned by a neural net-
work model that are responsible for specific properties. Afterwards, it allows
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the ranking of neurons and dimensions based on their overall saliency. Finally,
LIONETS [29] looks at the penultimate layer of a DNN, which models texts in an
alternative representation, randomly permutes the weights of nodes in that layer
to generate new vectors, classifies them, observes the classification outcome and
returns the explanation using a linear regressor like LIME. Differently from these
model-specific methods, XSPELLS is not tied to a specific architecture and it can
be used to explain any black box sentiment classifier.

3 Setting the Stage

We address the black box outcome explanation problem [17] in the domain of
sentiment classification, where machine learning classifiers are trained to predict
the class value (sentiment) of a natural language text (simply, a text). We will
mainly consider short texts such as posts on social networks, brief reviews, or
single sentences, as these are typically the subject of sentiment classification. In
this context, a black box model is a non-interpretable or inaccessible sentiment
classifier b which assigns a sentiment label y to a given text z, i.e., b(z) = y.
Example of black box models include Random Forests (RF) and Deep Neural
Networks (DNN). We assume that the black box b can be queried at will. We
use the notation b(X) as a shorthand for {b(z) | € X}. Formally, we have:

Definition 1. Let b be a black box sentiment classifier, and x a text for which
the decision y = b(x) has to be explained. The black box outcome explanation
problem for sentiment classification consists of providing an explanation £ € =
belonging to a human-interpretable domain =.

We introduce next the key tools that will be used in our approach.

3.1 Factual and Counter-Factuals

A widely adopted human-interpretable domain = consists of if-then rules. They
provide conditions (in the if-part) met by the instance x to be explained, that
determined the answer of the black box (then-part). Rules can also be used
to provide counter-factuals, namely alternative conditions, not met by x, that
would determine a different answer by the black box [4]. In our approach, we
will build on LORE [14], a local explainer for tabular data that learns a decision
tree from a given neighborhood Z of the instance to explain. Such a tree is a
surrogate model of the black box, i.e., it is trained to reproduce the decisions of
the black box. LORE provides in output: (i) a factual rule r, corresponding to the
path in the surrogate tree that explains why an instance x has been labeled as y
by the black box b; and (i) a set of counter-factual rules @, explaining minimal
changes in the features of x that would change the class y assigned by b. In
LORE, the neighborhood Z is synthetically generated using a genetic algorithm
that balances the number of instances similar to x and with its same label y, and
the number of instances similar to = but with a different label 3’ # y assigned
by .
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Algorithm 1: XSPELLS(x, b, ¢, )

Input : z - text to explain, b - black box, ( - encoder, n - decoder

Output: £ - explanation
1 2« ((x), // encode text into the latent space
2 7 — neighgen(z, b, C, 77); // generate latent neighborhood
3 Z «— ’I](Z), // decode neighborhood
4Y «— b(Z), // classify neighborhood
5 [dt «— learnTree(Z, Y); // 1learn latent surrogate decision tree
6 1 <— rule(z, ldt); // extract factual latent rule
7 E, C — ea:plC’expl(r, Z, Z, Y); // select exemplars and counter-exemplars
8 W — mostCommon(E, C), // extract most common words
9 return £ = <E, C, W>; // return explanation

3.2 Variational Autoencoder

Local explanation methods audit the behavior of a black box in the neighbor-
hood of the instance to explain. A non-trivial issue with textual data is how
to generate meaningful synthetic sentences in the neighborhood (w.r.t. seman-
tic similarity) of the instance. We tackle this problem by adopting Variational
Autoencoders (VAEs) [22]. A VAE is trained with the aim of learning a repre-
sentation that reduces the dimensionality from the large m-dimensional space of
words to a small k-dimensional space of numbers (latent space), also capturing
non-linear relationships. An encoder ¢, and a decoder decoder n are simultane-
ously learned with the objective of minimizing the reconstruction loss. Starting
from the reduced encoding z = {(z), the VAE reconstructs a representation as
close as possible to its original input & = n(z) ~ x. After training, the decoder
can be used with generative purposes to reconstruct instances never observed by
generating vectors in the latent space of dimensionality k. The difference with
standard autoencoders [19] is that VAEs are trained by considering an additional
limitation on the loss function such that the latent space is scattered and does
not contain “dead zones”. Indeed, the name variational comes from the fact that
VAEs work by approaching the posterior distribution with a variational distri-
bution. The encoder ( emits the parameters for this variational distribution, in
terms of a multi-factorial Gaussian distribution, and the latent representation
is taken by sampling this distribution. The decoder n takes as input the latent
representation and focuses on reconstructing the original input from it. The
avoidance of dead zones ensures that the instances reconstructed from vectors
in the latent space, e.g., posts or tweets, are semantically meaningful [3].

4 Explaining Sentiment Classifiers

We propose a local model agnostic explainer for sentiment classification of short
texts, called XSPELLS (eXplaining Sentiment Prediction generating ExempLars
in the Latent Space). Given a black box b, a short text x, e.g., a post on a
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Fig. 1. XSPELLS process on a sample input. XSPELLS takes as input the short text = and
the sentiment assigned b(z). The output is a set of exemplars and counter-exemplars,
and the most common discriminative words.

social network, and the sentiment label y = b(z) assigned by the black box,
e.g., hate or neutral, the explanation provided by XSPELLS is composed of: (i)
a set of exemplar texts; (ii) a set of counter-exemplar texts; and, (iii) the
set of most common words in exemplars and counter-exemplars. Exemplar and
counter-exemplar texts respectively illustrate instances classified with the same
and with a different label than z. Such texts are close in meaning to x, and they
offer an understanding of what makes the black box determine the sentiment of
texts in the neighborhood of . Exemplars help in understanding reasons for the
sentiment assigned to z. Counter-exemplars help in understanding reasons that
would reverse the sentiment assigned. The most common words in the exem-
plars and counter-exemplars may allow for highlighting terms (not necessarily
appearing in ) that discriminate between the assigned sentiment and a different
sentiment. These components form the human-interpretable explanation £ € =
for the classification y = b(x) returned by XSPELLS, whose aim is to satisfy the
requirements of counter-factuability, usability, and meaningfulness [4,28,32].

Besides the black box b and the text = to explain, XSPELLS is parametric
in: an encoder ¢ and a decoder n for representing texts in a compact way in
the latent space. Algorithm 1 details XSPELLS, and Fig.1 shows the steps of
the explanation process on a sample input. First, x is transformed into a low-
dimensionality vector z = ((z) in the latent space. XSPELLS then generates a
neighborhood Z of z, which is decoded back to a set of texts Z. The dataset Z
and the decisions of the black box on the decoded text Y = b(Z) are used to
train a surrogate decision tree (in the latent space).

Then, the explCezpl() module selects exemplars E and counter-exemplars C'
from Z by exploiting the knowledge extracted (i.e., the decision tree branches),
and decodes them into texts. Finally, the most common words W = Wg U W¢x
are extracted from E and C' and the overall explanation £ is returned. Details
of each step are presented in the rest of this section.

4.1 Latent Encoding and Neighborhood Generation

The input text z is first passed to a trained VAE ¢ (line 1 of Algorithm 1),
thus obtaining the latent space representation z = {(x). The number of latent
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dimensions k is kept low to avoid dimensionality problems. We capture the
sequential information in texts by adopting VAEs based on long short-term
memory layers (LSTM) [20] for both the encoder ¢ and decoder 5 (lines 1 and
3). In particular, the decoder 7 is trained to predict the next characters of the
text, given the previous characters of the text. In more detail, it is trained to
convert a given text into the same text, but being offset by a time-step in the
future.

XSPELLS generates a set Z of n instances in the latent feature space for a
given z. The neighborhood generation function neighgen (line 2) can be imple-
mented by adopting several different strategies, ranging from a purely random
approach like in LIME [33], to using a given distribution and a genetic algorithm
maximizing a fitness function like in LORE [14]. XSPELLS adopts a random gener-
ation of latent synthetic instances by relying on the fact that the encoder maps
uniformly the data distribution over the latent space. XSPELLS guarantees a min-
imum number n of distinct instances by removing duplicates. Next, XSPELLS uses
the synthetically generated instances Z for querying the black box b (line 4). This
is made possible by turning back the latent representation to text through the
decoder 7 [3] (line 3). We tackle the requirement of generating local instances by
randomly generating N > n latent instances, and then retaining in Z only the
n closest instances to z, i.e., |Z| = n. The distance used in the latent space is
the Euclidean distance. The neighborhood generation neighgen actually returns
aset Z = Z-U Z, with 2’ € Z_- such that b(n(z’)) = b(n(z)), and instances
z' € Zy such that b(n(2")) # b(n(z)). We further consider the problem of imbal-
anced distributions in Z, which may lead to weak decision trees. Class balancing
between the two partitions is achieved by adopting the SMOTE [5] procedure if
the proportion of the minority class is less than a predefined threshold .

4.2 Local Latent Rules and Explanation Extraction

Given Z and Y = b(Z), XSPELLS builds a latent decision tree Idt (line 5) acting
as a local surrogate of the black box, i.e., being able to locally mime the behavior
of b. XSPELLS adopts decision tree because decision rules can be derived from
a root-to-leaf path [14]. Indeed, the premise p of the rule r = p—y is the
conjunction of the split conditions from the root to the leaf of the tree that is
followed by features in z. This approach is a variant of LORE (see Sect. 3.1) but
in a latent feature space. The consequence y of the rule is the class assigned at
that leaf!.

Given a text x, the explanations returned by XSPELLS are of the form £ =
(E,C,W), where: E = {e7,...,e%} is the set of ezemplars (b(e?) = b(z) Vi €
[1,u]); C ={cF,...,ct} is the set of counter-exemplars (b(c¥) # b(x) Vi € [1,v]);
and W = Wg U W is the set of the h most frequent words in exemplars F
and of the h most frequent words in counter-exemplars C. Here, u, v, and h are

! In theory, it might happen that y # b(x), namely the path followed by z predicts a
sentiment different from b(x). In our experiments, this never occurred. In such cases,
XSPELLS restarts by generating a new neighborhood and then a new decision tree.
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parameters that can be set in XSPELLS. Exemplars are chosen starting from the
latent instances in Z which satisfy both the premise p and the consequence y
of the rule r = p — y above, namely the instances 2’ € Z that follow the same
path as z in the decision tree, and such that the b(n(z’')) = y. The u instances
2" closest to z are selected, using Euclidean distance. They are decoded back to
the text space n(z’) and included in E. Counter-exemplars are chosen starting
from the latent instances z’ € Z which do not satisfy the premise p and such
that b(n(z")) # b(x). The v instances closest to z are chosen. They are decoded
back to the text space 7(z’) and included in C.

5 Experiments

In this section, we illustrate qualitative/quantitative experimental analyses of
faithfulness, usefulness, and stability properties of XSPELLS explanations®. The
XSPELLS system has been developed in Python, and it relies on the CART deci-
sion tree algorithm as implemented by the scikit-learn library, and on VAEe
implemented with the keras library>.

5.1 Experimental Settings

We experimented with the proposed approach on two datasets of tweets. The hate
speech dataset (hate) [8] contains tweets labeled as hate, offensive or neutral.
Here, we focus on the 1,430 tweets that belong to the hate class, and on the 4,163
tweets of the neutral class. The polarity dataset (polarity) [30] contains tweets
about movie reviews. Half of these tweets are classified as positive reviews, and
the other half as negative ones. These two datasets are remarkable examples
where a black box approach is likely to be used to remove posts or to ban users,
possibly in automated way. Such extreme actions risk to hurt the free speech
rights of people. Explanations of the black box decision are then of primary
relevance both to account for the action and to test/debug the black box.

For both datasets, we use 75% of the available data for training a black box
machine learning classifier. The remaining 25% of data is used for testing the
black box decisions. More specifically, 75% of that testing data is used for training
the autoencoder, and 25% for explaining black box decisions (ezplanation set).
Datasets details are reported in Table 1 (left).

We trained and explained the following black box classifiers: Random For-
est [38] (RF) as implemented by the scikit-learn library, and Deep Neural
Networks (DNN) implemented with the keras library. For the RF, we trans-
formed texts into their TF-IDF weight vectors [38], after removing stop-words,
including Twitter stop-words such as “rt”, hashtags, URLs and usernames. A
randomized cross-validation search was then performed for parameter tuning.
Parameters for RF models were set as follows: 100 decision trees, Gini split cri-
terion, v/m random features where m is the total number of features; no limit on

2 The source code is available at: https://github.com/orestislampridis/X-SPELLS.
3 https:/ /scikit-learn.org/stable/modules/tree.html, https://keras.io.


https://github.com/orestislampridis/X-SPELLS
https://scikit-learn.org/stable/modules/tree.html
https://keras.io

Explaining Sentiment Classification 365

Table 1. Datasets description, black box models accuracy, and VAE RMSE.

Dataset | No. Avg. no | No. Bb train | VAE Expl. Accuracy VAE
tweets | words classes | size train size | size RF DNN | MRE

hate 5,593 20.82 2 4,195 1,048 350 .9257 | .8485 | 0.26

polarity | 10,660 | 24.87 2 7,995 1,998 666 .6702 | .6302 | 0.59

tree depth. The DNNs adopted have the following architecture. The first layer is
a dense embedding layer. It takes as input a sparse vector representation of each
text (subject to same pre-processing steps as for the RF, without the TF-IDF
representation) obtained by using a Keras tokenizer* to turn the text into an
array of integers and a padder so that each vector has the same length. This
way, we allow the network to learn its own dense embeddings of size 64. The
first embedding layer is followed by a dropout layer at 0.25. Afterwards, the
DNN is composed by three dense layers with sizes 64, 512 and 128. The cen-
tral layer is an LSTM [20] that captures the sequential nature of texts and has
size 100. After that, there are three dense layers with sizes 512, 64 and 32. The
dense layers adopt the ReLu activation function. Finally, the sigmoid activation
function is used for the final classification. We adopted binary cross-entropy as
loss function and the Adam optimizer. We trained the DNN for 100 epochs.
Classification performances are reported in Table1 (center-right).

We designed the VAEs used in experiments with both the encoder ¢ and
the decoder 7n consisting of a single LSTM layer. We fed the text into the
VAE using a one-hot vectorization that takes an input tensors with dimen-
sions 33 - 5368 =177, 144 for the hate dataset, and 48 - 5308 = 254, 784 for the
polarity dataset, after stop-words removal. The numbers above represent the
maximum text length and the number of distinct words considered. In order to
provide to the VAE knowledge also about unseen words with respect to those
in its training set, we extended the vocabulary with the 1000 most common
English words® We considered k = 500 latent features for both datasets®. Table 1
(right) reports the Mean Reconstruction Error (MRE) calculated as the aver-
age cosine similarity distance between the original and reconstructed texts when
converted to TF-IDF vectors. We set the following XSPELLS hyper-parameters.
The neighborhood generation neighgen is run with N =600, n =200, 7= 40%.
For the latent decision tree we used the default parameter of the CART imple-
mentation. Finally, with regards to the explanation hyper-parameters, we set
u=wv=>5 (counter-)exemplars, and h =5 most frequent words for exemplars and
for counter-exemplars.

* https://keras.io/preprocessing/text.

5 https://1000mostcommonwords.com.

6 Experiments (not reported due to lack of space) show that k = 500 is a good compro-
mise between MRE and the reduced dimensionality of the latent space when varying
k € {100, 250, 500, 1000, 2500}.
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In the experiments we compare XSPELLS against LIME [33]. We cannot com-
pare against SHAP [25] and ANCHOR [34] because it is not immediate how to
practically employ them to explain sentiment classifiers. Other approaches such
as IntGrad [37] or LRP [1] could theoretically be used to explain sentiment clas-
sifiers. However, first, they are not agnostic but tied to DNNs, and second, they
are typically used for explaining image classifiers.

5.2 Qualitative Evaluation

In this section, we qualitatively compare XSPELLS explanations with those
returned by LIME. Tables2 and 3 show sample explanations for both experi-
mental datasets, and considering the RF black box sentiment classifier.

The first and second tweet in Table2 belong to the hate dataset and are
classified as hate. Looking at the exemplars returned by XSPELLS, the hate sen-
timent emerges from the presence of the word “hate”, from sexually degrading
references, and from derogatory adjectives. On the other hand counter-exemplars
refer to women and to work with a positive perspective. The second tweet for
the hate dataset follows a similar pattern. The focus this time is on the word
“retard”, used here with negative connotations. Differently from XSPELLS, the
explanations returned by LIME in Table 3 for the same tweets show that the hate
sentiment is mainly due to the words “faggot” and “retards” but there are not
any further details, hence providing to the user a limited understanding.

The usefulness of the exemplars and counter-exemplars of XSPELLS are even
more clear for the polarity dataset, where the RF correctly assigns the senti-
ment negative to the sample tweets in Table 2. For the first tweet, XSPELLS recog-
nizes the negative sentiment captured by the RF and provide exemplars contain-
ing negative words such as “trash”, “imperfect”, and “extremely unfunny” as
negative synonyms of “eccentric”, “forgettable”, and “doldrums”. The counter-
exemplars show the positive connotation and context that words must have to
turn the sentiment into positive. On the contrary, LIME (Table3) is not able
to capture such complex words and it focuses on terms like “off”, “debut”, or
“enough”. For the second tweet, XSPELLS is able to generates exemplar similar in
meaning to the tweet investigated: the tweet starts positive (or appear positive),
but reveals/hides a negative sentiment in the end. In this case the most frequent
words alone are not very useful. Indeed, (the surrogate linear classifier of) LIME
mis-classifies the second tweet as positive giving importance to the word “work”
that, however, is not the focus of the negative sentiment.

Overall, since LIME extracts words from the text under analysis, it can only
provide explanations using such words. On the contrary, the (counter-)exemplars
of XSPELLS consist of texts which are close in meaning, but including different
wordings that help the user better grasp the reasons behind black box decision.

5.3 Fidelity Evaluation

We evaluate the faithfulness [11,17] of the surrogate latent decision tree adopted
by XSPELLS by measuring how well it reproduces the behavior of the black box b
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Table 2. Explanations returned by XSPELLS for texts classified as hate in the hate
dataset, and as negative in the polarity dataset. Three exemplars (E) and two counter-
exemplars (C) for each tweet. Relative word frequencies in parenthesis.

Tweet (Counter- E/ClW= W
)exemplars
Hate I dont have any problems|I hate dumb E |Hate (.22) Work (.06)
with zak, but you seem |bitches
like a faggot I hate fat bitches |E |Bitches (.17) |Love (.06)
wear show
I hate fat bitches |E |Fat (.11) Wearing (.06)
This is why i work|C  |Dumb (.06) Fuzzy (.06)
I really want a girl|C |Wear (.06) Blankets (.06)
hate California’s biggest This girl is E |Retarded (.08) |Im (.14)
retards. Don’t forget retarded
about HOLY who just The fucking royals|E  |Hated (.08) Love (.07)
released an amazing EP |bitch work
Im such a retard |E Bitch (.08) Birds (.07)
sometimes
This is why i love |C |Fucking (.08) |Brownies (.07)
birds
Wait did take my |C Retard (.08) Sorry (.07)
brownies
polarity| Eccentric enough to stave|It has ever under |E |Trash (.05) Fun (.10)
off doldrums, caruso’s trash without to a
self-conscious debut is familiar
also eminently forgettable|This extremely E |Imperfect (.05)|Remarkable (.07)
unfunny movie in
at 80 min
This movie makes |E Unfunny (.05) |Appears (.07)
for one thing
imperfect
A story of musical |[C |Without (.05) |[Want (.04)
and character and
love
It is a movie fun |C |Ever (.05) Love (.04)
for fans who cant
stop
polarity| While some of the camera|In the end i kept |E |Bad (.07) New (.12)
work is interesting, the |this one at two
film’s mid-to-low budget |stars
is betrayed by the Odd poetic road |E |Attempt (.07) |Really (.06)
surprisingly shoddy movie spiked by
makeup work jolts of pop
In attempt to the |E  |End (.07) Safe (.03)
bad sense with
this summer
Does what a fine |C Sense (.04) Fine (.03)
documentary does
best
A film that plays |C |Odd (.04) Safe (.03)

things so nice n
safe
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Table 3. Explanations returned by LIME for tweets classified as hate in the hate
dataset, and as negative in the polarity dataset. LIME word importance in parenthesis.

Tweet Top features Tweet Top features
hate|l dont have any problems |Faggot (—0.62) polarity|Eccentric enough to off (—0.30)
with zak, but you seem |vou (—0.03) stave off doldrums, Debut (0.03)
like a faggot Like (0.01) Caruso"s self-conscious Enough (0.03)
Any (—0.01) dCb.u': is also Also (0.03)
eminently forgettable
Problems (0.01) Self (—0.01)
hate|California’s biggest Retards (—0.24) |polarity| While some of the Work (0.11)
retards. Don’t forget Dont (—0.03) camera work is While (0.04)
about HOLY who just California (—0.01) interesting, the film’s |low (—0.04)
released an amazing EP |Who (—0.01) mid-to-low budget is |Some (—0.04)
Holy (0.01) betrayed by the Interesting (—0.03)
surprisingly shoddy
makeup work

Table 4. Mean and standard deviation of fidelity. The higher the better.

RF DNN

LIME XSPELLS LIME XSPELLS
hate 0.62 = 0.30 1 0.98 £0.01|0.92 £ 0.15|0.98 £ 0.01
polarity | 0.89 £ 0.14 1 0.98 £0.01 | 0.91 = 0.20 | 0.97 £ 0.01

in the neighborhood of the text x to explain — a metric known as fidelity. Let Z
be the neighborhood of x in the latent space generated at line 2 of Algorithm 1
and [dt be the surrogate decision tree computed at line 5. The fidelity metric is
Hy € Z | ldt(y) = b(n(y))}|/|Z|, namely the accuracy of ldt assuming as ground
truth the black box. The fidelity values over all instances in the explanation set
are aggregated by taking their average and standard deviation.

We compare XSPELLS against LIME, which adopts as surrogate model a linear
regression over the feature space of words and generates the neighborhood using
a purely random strategy. Table4 reports the average fidelity and its standard
deviation. On the hate dataset, XSPELLS reaches almost perfect fidelity for both
black boxes. LIME performances are markedly lower for the RF black box. On
the polarity dataset, the difference is less marked, but still in favor of XSPELLS.
A Welch’s t-test shows that the difference of fidelity between XSPELLS and LIME
is statistically significant (p-value < 0.01) in all cases from Table4.
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Fig. 2. Usefuless as 1-NN accuracy varying the number of (counter-)exemplars.

5.4 Usefulness Evaluation

How can we evaluate the usefulness of XSPELLS explanations? The gold stan-
dard would require to run lab experiments involving human evaluators. Inspired
by [21], we provide here an indirect evaluation by means of a k-Nearest Neighbor
(k-NN) classifier [38]. For a text x in the explanation set, first we randomly select
n exemplars and n counter-exemplars from the output of XSPELLS. Then, a 1-NN
classifier” is trained over such (counter-)exemplars. Finally, we test 1-NN over
the text 2 and compare the prediction of 1-NN with the sentiment b(z) predicted
by the black box. In other words, the 1-NN approximates a human in assessing
the (counter-)exemplars usefulness. The accuracy computed over all a’s in the
explanation set is a proxy measure of how good/useful are (counter-)exemplars
at delimiting the decision boundary of the black box. We compare such an app-
roach with a baseline (or null) model consisting of a 1-NN trained on n texts
per sentiment, selected randomly from the training set and not including x.

The accuracy of the two approaches are reported in Fig.2 by varying the
number n of exemplars and counter-exemplars. XSPELLS neatly overcomes the
baseline. The difference is particularly marked for when n is small. Even though
the difference tend to decrease for large n’s, large-sized explanations are less
useful in practice due to cognitive limitations of human evaluators. Moreover,
XSPELLS performances are quite stable w.r.t. n, i.e., even one or two exemplars
and counter-exemplars are sufficient to let the 1-NN classifier distinguish the
sentiment assigned to x in an accurate way.

" Distance function adopted: cosine distance between the TF-IDF representations.
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Table 5. Mean and stdev of the coherence index C.. The closer to 1 the better.

RF DNN

LIME XSPELLS LIME XSPELLS
hate 1.10 + 0.17 | 1.05 4+ 0.25 | 1.06 4+ 0.08 | 1.12 £ 0.39
polarity 1.05 £ 0.15/1.15 +0.20|1.13 £ 0.18 | 1.09 &+ 0.14

5.5 Stability Evaluation

Stability of explanations is a key requirement, which heavily impacts users’ trust
on explainability methods [35]. Several metrics of stability can be devised [18,27].
A possible choice is to use sensitivity analysis with regard to how much an expla-
nation varies on the basis of the randomness in the explanation process. Local
methods relying on random generation of neighborhoods are particularly sensi-
tive to this problem. In addition, our method suffers of the variability introduced
by the encoding-decoding of texts in the latent space. Therefore, we measure here
stability as a relative notion, that we call coherence. For a given text x in the
explanation set, we consider its closest text z¢ and its k-th closest text =/, again
in the explanation set. A form of Lipschitz condition [27] would require that the
distance between the explanations e(x) and e(zf), normalized by the distance
between z and zf, should not be much different than the distance between the
explanations e(z) and e(z¢), again normalized by the distance between x and z°.
Stated in words, normalized distances between explanations should be as similar
as possible. Formally, we introduce the following coherence index:

_ dist. (e(zf), e(x))/dist(x7, x)
T dist.(e(z), e(x))/ dist(x¢, x)

where we adopt as distance function dist the cosine distance between the TF-IDF
representation of the texts, and as distance function dist, the Jaccard distance
between the 10 most frequent words in each explanation (namely, the W set). In
experiments, we set 2/ to be the k = 10-closest text w.r.t. 2. For comparison, the
coherence index is computed also for LIME, with Jaccard similarity calculated
between the sets of 10 words (a.k.a. features) that LIME deems more relevant.

Table 5 reports the average coherence over the explanation set. XSPELLS and
LIME have comparable levels of coherence, and an even number of cases where one
overcomes the other. A Welch’s t-test shows that the difference of the coherence
indexes between XSPELLS and LIME is statistically significant (p-value < 0.01)
in only one case, namely for the polarity dataset and RF black box model.

6 Conclusion

We have presented XSPELLS, a local model-agnostic explanation approach for
black box sentiment classifiers. The key feature of XSPELLS is the adoption of
variational autoencoders for generating meaningful synthetic texts from a latent
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space. Such a space reveals essential also for inducing a decision tree which
helps in characterizing exemplar and counter-factual exemplar texts. The app-
roach advances over baseline explainers, such as LIME, which only highlight the
contribution of words already in the text to explain. Experiments showed that
XSPELLS also exhibits better fidelity and usefulness, and comparable stability.

The proposed approach has some clear limitations. First, performance is
strictly dependent on the VAE adopted: a better autoencoder would lead to more
realistic exemplars and counter-exemplars. The structure of the autoencoder
needs then to be further explored and evaluated beyond the specific one adopted
in this paper. This may also require trading-off quality with computational costs,
which may slow down the response time of XSPELLS. Second, we will consider
extending the explanations returned by XSPELLS with logic rules, which convey
information at a more abstract level than exemplars. Such rules can be extracted
from the decision tree on the latent space, but have to decoded back to rules on
texts — a challenging task. Third, XSPELLS could be extended to account for long
texts, e.g., by adopting word2vec embeddings [13] for modeling the input/output
of the VAE. Fourth, we could rely on linguistic resources, such a thesaurus or
domain ontologies, to empower both synthetic text generation and to enrich the
expressiveness of the (counter-)exemplars. Fifth, a human evaluation of XSPELLS
would be definitively required, e.g., through crowdsourcing experiments.
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