
Blockchain-based Access Control Management for
Decentralized Online Social Networks

Mohsin Ur Rahmana, Barbara Guidia, Fabrizio Baiardib

aDepartment of Computer Science, University of Pisa
bDepartment of Philology, Literature, and Linguistics, University of Pisa

Abstract

Online Social Networks (OSNs) represent today a big communication channel
where users spend a lot of time to share personal data. Unfortunately, the big
popularity of OSNs can be compared with their big privacy issues. Indeed, sev-
eral recent scandals have demonstrated their vulnerability. Decentralized Online
Social Networks (DOSNs) have been proposed as an alternative solution to the
current centralized OSNs. DOSNs do not have a service provider that acts as
central authority and users have more control over their information. Several
DOSNs have been proposed during the last years. However, the decentraliza-
tion of the social services requires efficient distributed solutions for protecting
the privacy of users. During the last years the blockchain technology has been
applied to Social Networks in order to overcome the privacy issues and to offer a
real solution to the privacy issues in a decentralized system. However, in these
platforms the blockchain is usually used as a storage, and content are public. In
this paper, we propose a manageable and auditable access control framework for
DOSNs using blockchain technology for the definition of privacy policies. The
resource owner uses the public key of the subject to define auditable access con-
trol policies using Access Control List (ACL), while the private key associated
with the subject’s Ethereum account is used to decrypt the private data once
access permission is validated on the blockchain. We provide an evaluation of
our approach by exploiting the Rinkeby Ethereum testnet to deploy the smart
contracts. Experimental results clearly show that our proposed ACL-based ac-
cess control outperforms the Attribute-based access control (ABAC) in terms
of gas cost. Indeed, a simple ABAC evaluation function requires 280,000 gas,
instead our scheme requires 61,648 gas to evaluate ACL rules.
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1. Introduction

Today, millions of users are actively using Social Media, such as Facebook,
Instagram, Twitter, etc. In particular, Online Social Networks (OSNs), such as
Facebook, are used by 700 million users, and it attracts nearly 31% of global
Internet users on a daily basis. People are attracted to social networks because
they are free, fun, and offer useful social services, such as easy communication,
marketing, games, etc. Usually, users trust the services of the service providers
to manage their data and mine it only for specific purposes (i.e., targeted adver-
tising). Furthermore, they also trust the providers for enforcing access control
policies in order to protect their personal sensitive information such as profiles,
pictures, videos, and other posted items. However, OSNs have not consistently
achieved these objectives.

Due to the uncertain privacy guarantees of today’s OSNs, online users are
seeking for alternative data sharing techniques that offer them the possibility
to gain control of their own data (i.e., to enable them to manage their data on
their own), and to limit the support of the large service providers in controlling
their own personal information. To meet these requirements, Decentralized
Online Social Networks (DOSNs) have been proposed, ranging from Peer-to-
Peer (P2P) decentralized solutions to hybrid solutions integrating private and
external resources for storing users’ data [1, 2].

A DOSN is a decentralized social platform that facilitates social networking
services in distributed environments [1]. It is worthy to note that the dynamic
P2P nature of DOSNs necessitates distributed and lightweight access control
techniques [3, 4]. Due to the highly dynamic environment of DOSNs, guaran-
teeing data availability, defining lightweight and privacy-preserving access con-
trol algorithms, suitable algorithms for information diffusion in a distributed
environment, are the current open problems in this area [1].

Several architectures for DOSNs have been proposed. Most of them use en-
cryption in order to guarantee privacy [5, 6, 7], and only a minor part is based
on the trust concept in order to guarantee privacy [8, 9, 10]. To guarantee
privacy preserving in DOSNs, several techniques have been proposed. In par-
ticular, techniques, such as the Attribute-based Access Control (ABAC) [11],
role-based access control (RBAC) [12], and rule-based access control, are pro-
posed in order to increase the level of privacy and to guarantee more control
over data [13, 14, 15, 16]. Consider the current usage of social media, these tech-
niques are not able to provide a scalable, manageable and efficient mechanism
to meet the security requirements of DOSNs. The main issues in a DOSN are
the distributed nature of the network, the need to manage private data of users
which can not be stored everywhere in the network, and the data availability.
Access control techniques in current DOSNs require online nodes to evaluate
the access. A new generation of DOSNs takes into account the blockchain tech-
nology, as explained in [17]. However, current Blockchain-based Online Social
Networks are proposed principally to provide a way to manage the fake news
issue, and to reward users for valuable content. Usually, personal information
is stored in the blockchain and they are visible to everyone by excluding the
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privacy options. A critical question arises: how can we design an auditable and
trustworthy access control system for DOSNs by exploiting the properties of
the blockchain technology? Indeed, the emerging blockchain technology and the
popular Ethereum platform (i.e., smart contracts) [18] can be used to address
this challenging issue. In this paper we propose a blockchain-based decentral-
ized social networks where blockchain is used as a tool for privacy preserving,
and where context information is used to define privacy policies. The novelty
of the proposed system is the application of the blockchain as a support for
access control in a DOSN scenario, by exploiting an ACL model. For the sake
of readiness, the proposed system takes into account the main characteristics
of DOSNs by exploiting access control methods, in particular privacy policies
with the support of the blockchain, which is used as a tool, instead of content
storage, by providing a trustworthy access control system.

We test different implementations of our smart contracts and our experimen-
tal evaluation shows that the Resource Owner (RO) can create a single policy
for a maximum of 14 subjects. Moreover, we tested different implementations of
the reputation contract with different number of subjects and the results show
that it can simultaneously evaluate the reputation for 66 subjects. Finally, the
inspector contract simultaneously evaluates the punishment for 75 subjects in
the DOSN network. These experiments aim to evaluate the effects of code com-
plexity on gas consumption in the Ethereum network. Our approach requires
61,648 gas to evaluate ACL rules and it clearly outperforms a simple ABAC
evaluation which requires 280,000 gas. We clearly observe that contract stor-
age and contract operations have a direct impact on gas consumption in the
Ethereum network.

The main contributions of this article are summarized as follows:

• the design of a new ACL-based access control model for DOSNs, by using
the Ethereum blockchain which provides a unique address for each regis-
tered account, which is used as the identity for each user in this framework.

• the implementation of smart contracts over the Ethereum blockchain: the
Access Control Contract able to control access to resources in the network,
the Reputation Contract to provide a trustworthy system, the Inspector
Contract able to inspect the behaviour of users, and the Registrar Con-
tract (RegC) able to find the identifying information of the access control
contracts and the corresponding access control functions.

• the usage of the challenge-response authentication protocol to verify users’
identities.

• the dynamic validation of the behavior of subjects in case of access re-
quests.

• the design of a model which takes into account context information, such
as time and location of access to define fine-grained access control policies.
In particular, time and location are important information used to define
a context in new generation of DOSNs, as described in [2]
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• the evaluation of the proposed system on the Ethereum network in order
to evaluate the model and the gas consumption.

The rest of the paper is structured as follows. Section 2 presents the related
work concerning the major concepts considered in this paper. Section 3 discusses
the access control requirements for DOSNs. Section 4 presents the architecture
of our proposed framework. Section 5 introduces the set of smart contracts used
in our proposed framework. Section 6 describes the Access Control Process.
Section 7 reports the evaluation of the proposed approach. Finally, section 8
concludes the paper with a summary of achievements and directions for future
research.

2. Background and Related Work

In this Section, we provide an overview of both the current DOSNs and
blockchain-based solutions in order to explain the scenario in which our pro-
posal is located. Furthermore, we provide the state of art concerning the access
control, and a summary concerning the proposed scenario in order to explain
the contribution of our paper.

2.1. Decentralized Online Social Networks

The main difference among the current DOSN proposals concerns the tech-
nologies and techniques used to store and manage data. A possible classification
considering this difference has been proposed in [1]. One of the first decentralized
solutions, which has today more than 600,000 users, is Diaspora1, a federated
DOSN, where users provide servers that are administered by themselves and
that allow Diaspora users’ profiles to be hosted on their servers. If Diaspora
can be considered the distributed version of Facebook, Mastodon [19] represents
the decentralized version of Twitter. Mastodon is a decentralized microblogging
network based on open protocols and free, open-source software. During the last
two years, Mastodon was increasing the number of users (about 2M of users),
surpassing Diaspora. Mastodon is formed by a set of servers, known as instances,
and each user is a member of a specific Mastodon instance, but can connect and
communicate with users on other instances. Like Twitter, Mastodon supports
direct, private messages between users, but unlike Twitter, Mastodon’s mes-
sages can be either private to the user, private to the user’s followers, public on
a specific instance, or public across a network of instances. Mastodon is part
of the Fediverse, an interconnected and decentralized network of independently
operated servers, which includes platforms such as Diaspora, Friendica, GNU
Social, PeerTube, etc. Fediverse is a common name for the union of various
federated social networks which use a set of standard protocols: OStatus, Ac-
tivityPub, DFRN, Diaspora Network, and Zot. Diaspora, Mastodon, and all
the other systems in the FeDiverse project are not completely decentralized.

1https://joindiaspora.com
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Indeed, they are federated and there are servers which communicate between
them. As concerns fully-decentralized DOSNs, as the scenario proposed in this
paper, several research applications have been proposed.
Safebook [20] is a three-tier architecture with the main focus on privacy, in-
tegrity and availability. Each user has a set of logical concentric structures
called Matryoshkas. Matryoshkas are concentric rings of nodes built around
each peer and provide a trusted data storage and communication obfuscation
through indirection.
PeerSon [21] is a two-tier architecture in which one tier is implemented by a
Distributed Hash Table (DHT) and it serves as a look-up service. The second
tier consists of peers and contains the user data, such as user profiles.
My3 [9] is a privacy-friendly DOSN which exploits well-known interesting prop-
erties of Online Social Networks, for instance the locality of users and the trust
among them. Users’ profiles are hosted only on a set of self-chosen trusted
nodes, called Trusted Proxy Set (TPS). Exploiting availability and performance
goals, as its geographical location and the online time period of the user, pop-
ulates the TPS of a user.
DiDuSoNet [8] is a two-tier system, where the lower level is implemented by
a DHT, and the upper level is implemented by exploiting a social overlay[1].
In the social overlay, nodes are connected to other nodes with whom the tie
strength computed on the interaction between them is higher. Social data are
stored only on trusted nodes, and each node can choose two replicas to have a
high level of availability.
Several DOSNs integrate the P2P layer with external resources, such as cloud
storage services, to increase the quality of service. External resources are used to
cope with the situations in which the users cannot deliver the service by them-
selves. Vis-à-Vis [22], Vegas [23], and SuperNova [24] are only three examples
of approaches in which cloud services are used.

2.2. Blockchain-based Online Social Networks

During the last years, several Blockchain-based Online Social Networks (BOSNs)
[17] have been proposed. These platforms give more importance to the content
by providing rewarding systems and they aim to address the problems of privacy
and fake news using the blockchain technology.
Steemit2 is a social media platform where everyone can receive a reward for
creating and curating content, in the form of STEEM, which is the unit that is
bought and sold for actual money on the open markets. It has more than one
million users and it represents the most well-known BOSN. An important char-
acteristic of Steemit is that it is fast, free, and scalable. Steemit operates based
on one-STEEM one-vote, instead of one-user one-vote, as in other platforms.
Within this model, individuals who have contributed the most to the platform
have the most influence over how contributions are scored.

2https://steemit.com/
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SocialX3, as all the previous platforms, is decentralized and allows users to
give content feedback and reward tokens. All media files (photos and videos)
and data (messages, posts etc) are decentralised. The platform wants to face the
problem of fake accounts, fake followers, and fake votes (likes, etc.). Indeed, the
decision power is given to communities, which can decide the valuable content.

Sapien4 is a decentralized social networking platform that is designed by
using the Ethereum Blockchain. Interesting features of the platform include
support for customization and rewarding contents creators without the need
of central authorities. Furthermore, its cryptocurrency is called SPN, which is
ERC20 complaint. The SPN is based on proof of value consensus mechanism in
order to differentiate high-quality contents in the network.

2.3. Access Control Models

The Role-Based Access Control (RBAC) [25] model enables access to re-
sources based on roles, and supports principles such as separation of duties, least
privilege and partition of administrative functions. However, the basic RBAC
model is vulnerable to the role-explosion problem, thereby making it unsuitable
for the implementation of access control policies that involves complex DOSN
scenarios. One of the main problems when implementing RBAC in distributed
networks is the role-explosion problem. Solutions, such as self-management, can
be used to solve the role-explosion problem in such an environment.

To address the limitations of the RBAC model in distributed network set-
tings, a new Attribute-based Access Control (ABAC) model [11] was introduced
to define fine-grained access control policies and to solve the role-explosion prob-
lem (i.e., to decrease the number of rules associated with the RBAC model).
This model considers various attributes such as subject attributes and envi-
ronmental attributes to define access control policies. Consequently, an AC
authority can grant access rights by considering users’ attribute certificates.

Authorization and access control to personal data are important properties
in both OSNs and DOSNs systems. OSNs define access policies based on trust
or the tie strength of users. In DOSNs, access control components need to be
reactive to the dynamic of the network. Considering the proposed access control
models, RBAC are not suitable for DOSNs due to the need of specific informa-
tion that can not be provided in this model [16]. The same problem with a
rule-based access control, such as the one proposed in [26], where authors in-
troduce a model for the users in OSNs, where the policies are based on social
type information, such as relationship type and trust, stored in a server. This
specific solution can not be applied in a decentralized scenario due to the single
point of failure of a server. On the contrary, Access control list (ACL) provides
a popular technique to implement access control policies because it is suitable
for situations in which the resource owners set permissions for their resources.

3https://socialx.network/
4https://beta.sapien.network/
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ACL is suitable for DOSNs because it provides a fine-grained mechanism allow-
ing users to restrict their sensitive content to a select subset of their friends [27].
The ACL includes a list of one or more subjects and a set of rules. Each of the
subjects is associated with a set of operations that the subject can perform on
the resource. The set of rules specify conditions at which a different set of oper-
ations is to be associated with one or more of the subjects in the list of subjects.
With ACL, the resource owner matches subjects to resources on a one-to-one ba-
sis. A subject performs an operation on a resource if that subject or a group to
which that subject belongs is specified in the ACL associated with the resource
[28]. Moreover, ACL provides information about the mode of access that sub-
jects are authorized to perform on resources. Access to a resource can be easily
revoked by deleting the associated row containing an existing ACL-based policy.

2.4. Summary of the state of the art

The current status of DOSNs systems is evolving by exploiting new tech-
nologies, such as the blockchain. Current blockchain-based social media mainly
exploit the blockchain to resolve the problem of fake news and to reward users
for valuable contents, as described in [17]. Furthermore, these systems use the
blockchain to store social data of users, which is not in line with the privacy
issue. Privacy has been one of the most important point of DOSNs. Current
P2P DOSNs provide methods for access control policies without the usage of the
blockchain, such as [16, 29]. These methods are affected by the dynamic of peers
and they require online peers to validate privacy policies. For this reason, there
is the need to manage the access control systems with a more stable solution
which can address the problem of node churn. Our proposed system takes into
account the main characteristics of DOSNs by exploiting privacy policies with
the support of the blockchain, because the main characteristics of the blockchain
technology can help to efficiently manage privacy issues5. The blockchain is a
tool to guarantee a trustworthy access control system for DOSNs. The system
is based on blockchain technology whereas the policies are enforced by it. As
concerns the Access Control Requirements for DOSNs, in [16], authors propose
a list of requirements. In particular the attention is posed to the resources
without any central authority or trusted third parties, and to the definition of
specific operation types on a resource.
The choice to combine ACL with the blockchain technology to implement our
access control model has been done because in social relationships there is the
need to provide access privileges which are mostly dependent on the social be-
haviour of users, such as the same job. Indeed, the trust is a good way to
specify the access privileges, and we want to provide a model to guarantee this
by exploiting two important information concerning contexts: time and location.

5https://helios-social.com/project/
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The introduction of a blockchain-based access control for DOSNs can help
to overcome the privacy preserving issues of these systems by exploiting the
characteristics of the blockchain technology. In [30], a similar work has been
proposed, however authors use the blockchain as a trusted server to provide
central control services, such as user identity, newsfeed notification, and friend
recommendation.

3. Requirements Overview

Compared to OSNs which allow the service provider to manage the access
control problem, DOSNs demand new requirements for access control due to the
decentralization of the infrastructure for social networking services. In partic-
ular, special attention is needed for access control because DOSNs do not rely
on a central authority. Furthermore, we need to think of a fine-grained access
control model that fulfills the access control requirements. The following access
control properties are essential to successfully tackle the access control problem
in DOSNs:

• The provision of a user-driven and trustworthy access control for DOSNs
in a distributed setting is still a challenging research problem [31] [1].

• A fine-grained access control must address both users’ resources (i.e., pic-
tures, videos, files, etc.) and context information.

• Resources need to be protected in a user-driven manner without the sup-
port of a central authority or trusted third parties [1].

• The access control mechanism must be flexible that would allow users to
define different permissions for different operations such as view, down-
load, read and write etc. [16].

• The access control must be manageable that would allow users to easily
modify the existing policies stored in the blockchain.

• The resource owner should be able to revoke a policy that he/she has
already created. To perform this operation, he/she simply needs to make
a new transaction specifying the policy that needs to be revoked [32].

• Users in the DOSN network should be able to create a policy for a single
user or group of users as well as for a single resource or multiple resources.
In other words, a user would be able to add a group of users to perform
an operation on a single or multiple resources.

• The access control must be restrictive in the sense that a user would be
able to perform policy-related actions (i.e., policy creation, update and
revocation) and cannot perform these actions on behalf of other users in
the DOSN network.
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Our access control requirements for DOSNs are based on the needs and di-
versity of subscribers. We decide to use the access control lists (ACLs) [28] due
to its flexibility to support distributed operation. Furthermore, ACL provides
support for important elements such as groups/teams and context information.
It is notable that, in our scheme, the access right validation is conducted by mul-
tiple entities (i.e., trusted nodes), thereby mitigating the single point of failure
issue associated with a centralized entity. Moreover, context information, such
as time and location of access, play an important role in designing a fine-grained
access control solution [33]. Thus, our proposal allows users to create security
policies based on these features while taking into account the features discussed
in the requirements list. Context-aware access control is a security technique
which considers different types of context information to control access to re-
sources. In the last few years, several context-aware access control techniques
have been proposed such as spatial information, temporal information, and both
location and time [34]. However, collecting and sharing context information in
DOSNs may lead to privacy problems because context data contains personal
data. Consequently, a context-aware access control system requires sound pri-
vacy measures to ensure that the users’ personal information are not linked to
their real identities. It is worth noticing that our blockchain-based solution ex-
ploits pseudonymity to provide anonymity protection, which ensures that each
registered user is associated with an anonymous ID that shows no information
about the real identity of that user.

4. Access Control Framework

In this paper, we address how blockchain can support DOSNs in order to
provide a distributed, auditable, user-driven, and scalable access control system
using smart contracts. This paper proposes a novel context-aware access con-
trol system using ACLs implemented using smart contracts. The emergence of
blockchain has eliminated the need for a central agency, by allowing applica-
tions and services to operate in a decentralized fashion, without the support of
a central authority.
Our framework proposes a set of smart contracts: the Access Control Contract
(ACC) able to control accesses to resources in the network, the Reputation Con-
tract (RC) to provide a trustworthy system, and finally the Inspector Contract
(IC) able to inspect the behaviour of users.
The main actors of our framework include the Resource Owner (RO), who is
the owner of a specific resource, nodes trusted from the RO, and subjects who
are interested to perform different operations on the resources of the RO. Our
proposal allows the RO to define access rights for his/her resource using ACLs,
thereby preventing trusted nodes from fraudulently denying the access rights
granted by ACLs. The RO uses the IDs of subjects to create fine-grained and
auditable access control policies using its personal ACC. Furthermore, the ap-
proach allows users to check the blockchain at any time to determine the status
of access rights. It is worth noticing that a subject interested in performing an
operation on a resource of the RO must assert that it possesses a unique ID
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Figure 1: Illustration of the policy creation, authentication and authorization process

that was used by the RO to create a policy in the blockchain.
As illustrated in Figure 1, a RO in a DOSN can send transactions to its personal
Access Control Contract (ACC) in order to define access rights for a resource.
Furthermore, the ACC consists of necessary functions to perform the task of
access right validation based on the policy list published on the blockchain.

The RO has a set of trusted nodes where data are stored, as described in
[13], in order to guarantee the data availability even when the user is offline.
The choice of trusted replica nodes is outside the scope of this article. A generic
request is sent to the RO when it is online, otherwise it is sent to one of the
trusted nodes chosen at random. Each RO has a unique personal ACC deployed
on the blockchain to control access to resources. Trusted nodes get information
about the RO’s ACC from the registrar (RegC) contract. These nodes then use
the RO’s ACC to check access permission for the requested operation. Based on
the evaluation of access control policies, the subject is either allowed or denied to
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Figure 2: Blockchain-based architecture for Decentralized Online Social Networks

perform the requested operation on the resource of the RO. It is worth noticing
that trusted nodes only check the status of access permission in the blockchain
and all the policy ownership operations such as policy creation, update and
revocation are performed by the RO. Figure 2 shows the architecture of our
access control framework.

Figure 3 describes the smart contract system included in our proposal. As
shown, the smart contract system consists of three different smart contracts:
the Access Control Contract, the Inspect Contract, and finally the Reputation
Contract. Each of these has a specific role in our proposal. Indeed, the RO
can use its personal ACC to control access to resources in the network; the
Inspect Contract inspects the access requests sent to the ACC and punishes the
subjects if they do not follow the rules of the ACC; the Reputation Contract
(RepC) computes the reputation score of users in the network; and the Registrar
Contract (RegC) which enables trusted nodes to find the identifying information
of the access control contracts and the corresponding access control functions.
In OSNs, the access to resources are managed by server in a centralized way.
In a DOSNs, there is the need to prevent privacy issues, and in our specific
scenario we need to check the behaviour of users in a decentralized way. This
important service is a challenge in a decentralized system due to the dynamic of
the network and the lack of a central server which can check all the users. For
this reason, we decide to introduce in our framework, a reputation score which
highlights the behaviour of a user, and thanks to the Reputation Contract, each
reputation score is stored in the blockchain and public available. This provides
a trustworthy access control system.
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Figure 3: Illustration of the smart contract system

It is worthy to note that the reputation record is visible on the blockchain,
thereby enabling the resource owner (RO) to exclude users from the policy list
if they have negative reputation in the network.

A subject will be classified as dishonest for different reasons which are defined
and given as an input of our system. For example, a user can be considered
dishonest if it sends too frequent access requests to access the resources of the
RO. In that specific case, the access frequency is a parameter, and it should
take into account real social information, such as the behaviour of bots, which
are able to access to resource several times per seconds.

5. The System of Smart Contracts

In this section, we provide a detailed overview of our proposed smart contract
system shown in Figure 3.

5.1. Access Control Contract (ACC)

The ACC is the contract used to control access to resources. Each RO has a
unique ACC deployed on the Ethereum blockchain to control access to resources
in the DOSN. The RO can create or update an access control policy by sending
transactions to its personal ACC that contains information about the policy.
Moreover, each ACC is associated with a policy list that contains information
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Resource Subject Location Time Range Action Permission LRT
File A user 2 Location A 10:00 - 15:00 download deny 2019-06-05 12:20
File B user 9 Location B 20:00 - 22:00 write deny 2019-06-06 20:15
obj 2 user 6 Location C 14:00 - 15:00 view allow 2019-06-07 14:11
obj 1 user 6 Location D 10:00 - 12:00 view allow 2019-05-20 11:11
File D user 7 Location E 08:00 - 11:00 write allow 2019-05-20 11:11

Table 1: Illustration of the RO’s policy list

about access control policies. An example of the policy list is provided in Table
1. Each field of the policy list is discussed below:

• Subject: This field indicates the unique id (i.e., Ethereum address) of the
subject in the DOSN network

• Resource: This field indicates the name of the resource that needs to be
included in the access control process.

• Action: It specifies the action that can be performed on the given resource
such as view, download, read, write, etc.

• Location: This field holds information about the access location of the
subject.

• Time Range: This field can be used by the RO to specify a time range in
order to restrict the access time to access resources.

• Permission: This field is used to describe the permission on a certain
(resource, subject) pair such as allow or deny.

• Last Request Time (LRT): This field records the time of the last access
request from the subject.

For the sake of simplicity, we suppose that each row of the policy list contains
a single subject ID only. However, our proposed solution is flexible because the
ACL rules can be configured to include multiple subjects as well. Indeed, the
RO can create an ACL-based policy for multiple subjects in a single transaction.
Moreover, the RO can easily revoke an existing policy by sending a policy re-
vocation transaction specifying the identification information of the policy that
needs to be revoked. It is worth noticing that only the RO is eligible to invoke
the main functions of the ACC. Indeed, this mechanism enhances the security
of our access control system because we want the system to be restrictive as
already discussed in the requirements section.

The Action field indicates the type of operation that the listed subject is
allowed to perform on a certain resource. The RO specifies different operations
such as read, write, download, view, etc. The download action rises a question
about the content download policy. For instance, if subject A downloads content
X, modifies it slightly and it becomes its owner. It is worth noticing that the RO
is primarily responsible to manage content download policy. Indeed, the RO will
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specify a download action in the policy if he/she trusts a subject to perform
this operation. As it is common in real-life environments, only trusted users
share contents with each other. Our solution also assumes that the RO trusts
the subject who downloads the content when downloadable policies are created
in the blockchain. Moreover, we assume that owners who offer downloadable
content to subjects draft and publish simple privacy policies. Further details on
how to enforce such privacy policies are outside the scope of this article.

The permission field is used to ensure the validation of access control poli-
cies, whereas the Last Request Time (LRT) field is used to ensure the dynamic
validation of the subjects. The LRT field is essential to inspect the behavior of
the subject. For instance, if a subject sends too frequent requests then the ACC
is programmed to report such information to the inspector contract, which in-
spects the behavior and decides an appropriate punishment. It is worth noticing
that only the subjects specified by the RO are allowed to send access requests,
and it is expected that they will behave honestly by following the rules of the
ACC. Therefore, we configured the ACC to keep track of misbehaving subjects
who send too frequent access requests to perform operations on resources. Each
ACC maintains a table to record the id of the subject, the type of misbehavior,
the time of occurrence, and the type of punishment.

Table 2 shows an example of record to store subjects’ misbehavior. To ex-
plain a possible scenario, we consider the case listed in Table 2 concerning User
2 who is sending recurrent access requests to the ACC of the RO, and for this
reason it has been included in the Table. A possible suitable punishment to
handle this situation is to timeout the involved subject. Another example con-
cerns user 6, which is not trusted because the reputation contract has calculated
a negative reputation for it during a previous access request. A possible pun-
ishment to tackle this situation is to block such as subject. Furthermore, the
access requests from user 5 and user 1 are detected as incorrect because they
are not included in the policy list of the RO. As a result, an access denied pun-
ishment is necessary to tackle such a situation. In addition, user 3 is sending
access request from a location that is not specified in the RO’s policy list and
an access denied decision is returned. Finally, user 7 is sending access request at
a time that does not lie within the time range field of the policy and an access
denied decision is used to handle this situation.

Ethereum smart contracts provide Application Binary Interfaces (ABIs) or
functions, which can be executed by sending transactions to perform policy-
related operations [35]. Therefore, our proposed ACC supports various transac-
tions that are necessary to execute these ABIs. A brief discussion of the different
functions of our proposed ACC is given below:

• policyAdd(): This function is used by the ACC to create a new policy
on a certain resource, subject pair. When this function is executed, the
resulting policy is added to the existing policy list stored in the blockchain.

• policyUpdate(): This function is used to update an existing policy defined
on a specific resource, subject pair. Please note that a policy can be up-
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Subject Misbehavior Time Punishment
user 2 Recurrent access requests 2019-06-05 12:20 Timeout
user 6 Not from a trusted address 2019-06-07 14:11 Timeout
user 5 incorrect access request 2019-07-05 22:20 Access denied
user 1 incorrect access request 2019-07-05 21:30 Access denied
user 3 Location does not match 2019-04-04 11:30 Access denied
user 7 Time does not match 2019-05-20 11:11 Access denied
.... .... .... ....
.... .... .... ....

Table 2: Illustration of the misbehavior list for the smart contract

dated at anytime by changing the subject ID, context information, action,
the access permission or a combination of these elements.

• locationUpdate(): This function can be used by the RO to update the
access location specified in the ACL-based policy. It requires the identi-
fication information of the policy that requires changes in location. Fur-
thermore, the RO needs to specify the new access location and make a
transaction to execute the locationUpdate() function of the ACC smart
contract.

• timerangeUpdate(): This function can be used by the RO to update the
existing time range field specified in the policy. It also requires the identi-
fication information of the policy and a new value of time range to update
the existing value in the policy.

• policyDelete(): This function of the ACC can be used to delete an existing
policy stored in the blockchain. To accomplish this goal, the RO needs
to provide the identification information of the policy that needs to be
deleted.

• accessControl(): The RO or trusted nodes use this function to validate
access control policies on the blockchain. Please note that only trusted
nodes specified by the RO in the ACC are capable to send transactions in
order to validate access permission in the blockchain. Furthermore, this
function requires identification information of the policy (i.e., subject ID
and name of the resource), context information and the current access time
in order to determine the permission associated with the policy. Moreover,
this function not only performs static validation of access control policies,
but it also checks the behavior of the subjects by considering context
information and the number of recurrent requests in a short span of time.
Finally, an access request is authorized if it passes both the static and
dynamic validation criteria.

• deactivate(): This function can be used to disable the ACC deployed on
the blockchain. We use the selfdestruct function [36] to completely free
the storage occupied by the code of this smart contract.
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5.2. Inspector Contract (IC)

The Inspector contract inspects the behavior of subjects and evaluates their
interactions when access requests are sent to the ACCs. We assume that honest
subjects will follow the rules of the ACCs when sending requests to perform
operations on resources. On the other hand, dishonest subjects behave abnor-
mally by violating the rules of the ACCs. The Inspector contract implements a
misbehavior detection mechanism, which inspects the subject’s misbehavior and
evaluates a punishment according to the type of misbehavior. Once a subject
is detected as suspicious by the ACC, a report is forwarded to the IC contract,
which evaluates the type of misbehavior and determines a suitable punishment,
and returns this information back to the ACC contract. Finally, the ACC en-
forces the punishment on the involved subject.

The IC contains a special ABI or function that is used to evaluate the be-
havior of subjects. This function obtains data from the ACC, evaluates it, and
decides an appropriate punishment. A discussion of the different functions of
this contract is given below:

• inspectBehavior(): This function is used to inspect the behavior infor-
mation received from the ACC in order to decide a suitable penalty. It
evaluates the behavior and returns information about the punishment to
the ACC. Finally, the ACC enforces the decision on the involved subject
in the DOSN network.

• deactivate(): This ABI can be used to disable the inspector contract de-
ployed on the blockchain.

5.3. Reputation Contract (RepC)

Trust management systems allow nodes to decide weather a subject is trust-
worthy or not, and consequently enables the ROs to reward or punish the sub-
ject. Trust and reputation techniques are mainly exploited for large open sys-
tem. Reputation is usually a global value which indicates the character (such
as honest, dishonest, reliable) of an entity, which can be an agent, or a person.
On the contrary, trust indicates a personalized reflecting of a user’s judgement.
For sake of the readiness, a trust value is referred to a specific couple of users.
Indeed, trust can be obtained from a user’s own experience with another user.
Literature review reveals that existing reputation management systems can be
categorized into two types, i.e., centralized and decentralized [37]. Centralized
systems usually consider a central server to store and process the reputation
score, e.g., cloud server. On the other hand, decentralized trust management
systems consider nodes in the network to calculate and store the reputation
record [38].

The Reputation Contract receives information about the behavior of subjects
from the ACC and uses it to compute reputation score. Depending upon the
access control behavior (i.e., whenever a subject/peer sends access requests to
the ACC of the RO), dishonest peers will get negative reputation (i.e., -1) while
honest peers will obtain positive reputation (i.e., +1). Moreover, due to the
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auditability property of blockchain, the reputation record of peers is publicly
visible on the blockchain, consequently any user can know at any time the
reputation value assigned to another user. This solution achieves transparency,
thereby enforcing users to behave honestly in the network. Furthermore, the
classification of honest and dishonest peers is necessary to make the system
robust and to allow fair access to resources. The main ABIs of this smart
contract are briefly discussed below;

• computeReputation(): This ABI receives information about the subjects
from the ACC, and use it to calculate the reputation score. After that,
the reputation contract then publishes the result of the evaluation on the
blockchain.

• getLatestReputation(): This ABI can be called offline without sending
transaction to obtain the reputation score of a subject. This function
requires the unique ID of the subject to retrieve reputation information
from the blockchain.

• deactivate(): This ABI can be used to disable the reputation contract
deployed on the blockchain. We use the selfdestruct function to completely
free the storage occupied by the code of this smart contract

The reputation contract maintains a record that contains a list of peers who
are identified by their reputation values. For instance, peers who behave hon-
estly in the network have a positive reputation score and vice versa. In this case,
the reputation contract maintains a table to record the type of subjects/peers
according to their behavior, the corresponding reputation score and the time of
computation as shown in Table 3.

Subject Reputation Score Time
User 2 -1 2019-06-05 12:20
User 7 +1 2019-06-02 22:20
User 4 +1 2019-07-03 20:50
User 6 -1 2019-02-08 13:50
.... .... ....
.... .... ....

Table 3: Illustration of the reputation record maintained by the RepC contract

5.4. Registrar Contract (RegC)

The Registrar Contract is used to enable trusted nodes to find the identifying
information of the ACCs and the corresponding access control functions. As
illustrated in Table 4, this contract maintains a record, which is used to achieve
the distributed access control functionality in the network, thereby offering a
platform that can be used by trusted nodes to look and obtain the necessary
information for access control. Indeed, a trusted node can send transaction
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RO ID Access Control Contract (ACC) ID Access Control ABI

User 3 0x109CabceC02C6C3C08b8F06ad72ca47240c0aB23 accessControl( )
User 2 0xEd8863e30c22C0A03dD34617daE413aE92D089f4 accessControl( )
User 6 0x109CabceC02C6C3C08b8F06ad72ca47240c0aB22 accessControl( )
User 8 0x109CabceC02C6C3C08b8F06ad72ca47240c0aA33 accessControl( )
.... .... ....
.... .... ....

Table 4: Illustration of the record maintained by the registrar contract

to check access permission in the blockchain once it has obtained the necessary
information such as ID of the desired ACC and the corresponding access control
function as illustrated in Table 4.

When the RO is offline or down in the network, a subject can send access
request to an online trusted node chosen at random. When sending an access
request to a trusted node, a subject S must specify that it is willing to access a
resource of the RO, where S and RO indicate the identifiers of the subject and
RO, respectively. Once this information is declared in the access request, the
trusted node uses the identifier of the RO to obtain the ID of the ACC and the
associated access control function defined by the RO as illustrated in the Table
4.

With the help of the subject ID, ACC ID and the corresponding access
control ABI, the trusted node sends transactions to the required ACC to check
access rights in the blockchain. The policy list of the RO will either contain
an allow or deny decision for the requesting subject ID. A brief overview of the
main fields of this record is given below.

• RO ID: This field shows information about the ID of the owner of the
ACC

• ACC ID: This field reveals information about the id of the ACC smart
contract deployed on the blockchain

• Access Control ABI: This field shows information about the access control
ABI used by the ACC contract

The RO can register the necessary information such as ID of the ACC and the
corresponding functions by sending transaction to the RegC contract deployed
on the blockchain. Indeed, this mechanism is useful to keep the information
in the lookup table consistent. This contract provides the following essential
functions to keep the necessary information up to date:

• register(): This function can be used by the RO to register information
about the methods of the ACC into the lookup table. It requires the name
of the method, and ID of the ACC as parameters.

• update(): This function can be used by the RO to update the ID of the
ACC or to update information about an existing access control method in
the ACC.
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• remove(): This function can be used by the RO to delete information
from the lookup table maintained by the RegC contract. This is helpful
in situations when the RO is not interested in the distributed access control
mechanism, and wants to allow direct access to resources without relying
on trusted nodes. Furthermore, it is also necessary when the data of the
RO is not replicated at a set of trusted nodes in the network.

• getACCID(): This function can be called offline to retrieve information
about the ID of an ACC and it requires the ID of the RO

Please note that only the RO can send transactions to invoke the register,
update and remove functions of the RegC contract. This essentially means that
the RegC contract verifies information on the blockchain before making any
changes to the lookup table. Once it is determined that the RO has a unique
ACC deployed on the blockchain, the RegC contract will make changes to the
lookup table. Indeed, the verification process is intended to prevent the insertion
of false information into the lookup table.

6. The Access Control Process

The access control policies defined by ACLs are published on the blockchain,
thereby allowing the RO as well as trusted nodes to check access rights when
an access request is sent by the subject. An overview of the main functions of
our proposed system is given below.

• Policy Creation: The RO can create a policy for any subject, which
defines the access rights on a certain resource. Consequently, the RO
needs to provide the ID of the subject, name of the resource that needs
to included in the policy, context information, and an access permission
in order to create a fine-grained smart policy that considers a wide range
of elements.

• Policy Update: The RO can update any policy at any time by sending
a policy update transaction to the ACC smart contract. Furthermore, the
RO needs to provide the identification information of a policy that needs
to be updated.

• Policy Revocation: The RO can easily revoke a policy from the policy
list by sending a policy revocation transaction to the ACC smart contract.
This transaction requires the identification information of the policy that
needs to be revoked.

• Access Control: The ACC contract also provides the functionality to
check access permission in the blockchain when an access request is sent
by the subject. This function allows the RO or trusted nodes to check
access permission in the blockchain.
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• ACC Deletion: The resource owner can also disable the ACC smart
contract by making a contract deactivation transaction in order to free
the storage occupied by the code of the ACC.

Our proposed framework is privacy preserving because the real identities of
DOSN users are not disclosed to other users in the network. The main rationale
behind our approach is motivated from the fact that Ethereum uses a single ID
(i.e., Ethereum address) for each account holder. It is worth noticing that the
auditability property of blockchains may lead to privacy issues. For instance,
the access control policies and the access requests are transparently stored on
the blockchain. Moreover, a public blockchain is designed in such a way that
all the connected users and even miners can read the data when executing
the code of a smart contract. However, current blockchain platforms exploit
pseudonymity to provide privacy protection, which ensures that each registered
user is associated with an anonymous ID that does not disclose information
about his/her real identity. Indeed, our framework exploits the pseudonymity
feature to ensure that subjects’ anonymous IDs are not not directly linked with
their real identities.

A trusted node can obtain the ID of the ACC smart contract either from
the RO or from the lookup table associated with the RegC smart contract. Our
proposed system requires the following essential steps to successfully complete
the access control process:

• The RO sends a policy validation transaction to the blockchain which con-
tains the necessary information for access control. Furthermore, the RO
will get the results of execution (i.e., allow or deny) once the block contain-
ing this transaction is mined by some miner in the Ethereum blockchain
network.

• If the RO is offline, a trusted node acts as agent to check access rights
on its behalf. Thus, a trusted node sends a transaction to the blockchain
containing the required information for access control such as subject ID
and name of the requested resource. Consequently, a trusted node will
get the results of execution once the block containing this transaction is
mined in the network.

• The ACC contract forwards behavior information to the Inspector contract
and to the Reputation contract deployed on the blockchain. Furthermore,
the reputation smart contract examines the report to calculate a positive
or negative score indicating honest and dishonest subject, respectively.

• Finally, the ACC returns the access decision (i.e., to allow the operation
or to deny it).

Our proposed solution is user-centric because each user can use its own
personal ACC smart contract to control access to resources in the network.

The access control algorithm of our proposed system is shown in Algorithm
1. A smart policy is uniquely identified by a resource, subject pair. Subjects
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Algorithm 1 Access Control Algorithm
Input: Resource, Action, Subject, Location, Time
Output: result, punishment
Require: BlockUntil, policyCheck ← false, RepC instance reputation, IC instance inspector,

policy list policies

1: p← policies[resource][subject]
2: if BlockUntil ≤ time then
3: if BlockUntil > 0 then
4: p.NoRR← 0, p.LRT ← 0, BlockUntil← 0
5: end if
6: if p.policy = “allow” then
7: policyCheck ← true
8: else
9: policyCheck ← false

10: end if
11: if p.Location 6= Location then
12: punishment← inspector.inspectBehavior(subject, lmsb)
13: reputation← reputation.computeReputation(subject, lmsb)
14: Push lmsb into the misbehavior list of subject
15: else if Time /∈ [ti, tj ] then
16: punishment← inspector.inspectBehavior(subject, tmsb)
17: reputation← reputation.computeReputation(subject, tmsb)
18: Push tmsb into the misbehavior list of subject
19: else if time− p.LRT ≤ p.minInterval then
20: p.NoRR← p.NoRR + 1
21: if p.NoRR ≥ p.threshold then
22: punishment← inspector.inspectBehavior(subject, famsb)
23: reputation← reputation.computeReputation(subject, famsb)
24: BlockUntil← time + punishment
25: Push famsb into the misbehavior list of subject
26: end if
27: else
28: p.NoRR← 0
29: reputation← reputation.computeReputation(subject)
30: end if
31: end if
32: p.LRT ← time
33: result← policyCheck
34: Trigger event returnResult(result, punishment)

21



who do not follow the rules of the ACC and behave dishonestly are blocked for a
specific amount of time. To achieve this goal, we use a variable called BlockUntil
that indicates the time instance until which the requesting subject is blocked.
By default, this field contains a value of 0. Furthermore, a two-dimensional
mapping is used to uniquely identity a policy when an access request is sent by
the subject. The resource field is used as a primary key, while the subject field
is used a secondary key to this struct to generate the policy list.

The following fields are added to the previous privacy policies:

• minInterval: It stores the minimum acceptable time interval between two
recurrent requests. Consequently, a request will be treated as recurrent if
the difference between the current request time and the last request time is
less than or equal to minInterval. It is worth noticing that we add a policy
to the ACC with minInterval set to 60 seconds by default. However, the
parameter can be decided during the setting phase.

• NoRR: the number of recurrent requests in a short time period.

• threshold: the threshold on the NoRR. The smart contract judges a mis-
behavior if the NoRR field is equal to or larger than this threshold. We
add a policy to the ACC with threshold set to 3. However, the threshold
can be changed depending on system requirements.

Two important information which permit us to implement a context-aware
access control system are location and time. Considering the location informa-
tion, if the location of the subject does not match with the location specified in
the policy list, the inspector contract is called to deal with this misbehavior as
shown from line 11 to line 14. Furthermore, the reputation contract is called to
calculate the reputation of the subject because he/she is behaving dishonestly.
Indeed, the reputation contract computes and assigns a negative reputation due
to location misbehavior. It is worth noticing that we define location misbehav-
ior as a situation in which the subject sends access request from a location that
does not match with the location specified by the RO in the policy list.

Furthermore, the access can be performed during a time specified in the
time-range field of the policy. If the subject is sending access requests at a time
that does not lie within the time-range field in the policy, the inspector contract
is called to deal with this problematic. Here, the valid current time means that
the condition, Time ∈ [ti, tj ], must be satisfied at the access request. Please
note that ti, respectively tj , indicate the initial, respectively, the final time in the
time-range field. Furthermore, the reputation of the subject is also affected due
to time misbehavior. Line 15 to line 18 shows details about this misbehavior.

Line 19 to line 25 shows a misbehavior when the subject is sending recurrent
access requests. Line 19 checks if the difference between the current request
time and the last request time (LRT) is less than or equal to minInterval.
Consequently, the NoRR field is incremented as shown in line 20. Furthermore,
Line 21 checks if the NoRR is greater or equal to the predefined threshold.
Consequently, the functions of the inspector and reputation contracts are called
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to deal with this misbehavior. The punishment variable can hold a value in
minutes or seconds to block the requesting subject. Furthermore, the value of
this variable is added with the current time to calculate the blocking time and
the result is stored in the BlockUntil variable as shown in line 24. For instance,
if a subject is sending recurrent access requests at 10:00 PM and the punishment
is set to 30 minutes then the subject will be blocked until 10:30 PM. Finally,
line 28 to line 29 shows that the subject is behaving honestly. Consequently, the
number of recurrent request (NoRR) field is set to 0. Moreover, the reputation
contract is called to compute a positive reputation for the subject due to honest
behavior in the network.

The output of our proposed algorithm is in the form of result and punish-
ment. The former variable holds the access decision (i.e., true or false indicating
allow or deny, respectively). The later variable stores information about pun-
ishment (i.e., blocking time or an access denied decision) which is evaluated on
the type of misbehavior.

6.1. System Configuration

We need to make the following basic configurations to apply the Ethereum
platform [39] in our proposed access control system.

• Each user must be associated with an Ethereum account to uniquely rep-
resent itself in the network. Consequently, this account allows each peer
to claim the deployment of a smart contract and to send transactions to
create, update or revoke policies. Furthermore, it can also be used by a
subject to identify itself during the access control process.

• All users can configure and run the Ethereum client on their devices.
DOSN users can use their Ethereum clients to directly interact with the
blockchain. Indeed, they can also send transactions to execute the func-
tions of their personal smart contracts.

• An oracle [40] operated by a location server or mobile network operator
provides network based positing information to the ACC. We rely on a
reliable infrastructure to provide location information instead of the users
in the DOSN network.

• Trusted nodes act as agents to store the data of the resource owner and
conduct access control for the resources when the resource owner is offline
or down in the network. To achieve this goal, the subject sends access
request to an online trusted node, which uses the accounts of the subject
and resource owner to check access permission in the blockchain. We
assume that trusted nodes are benign and selected by the resource owner
in the network

6.2. Challenge-Response Authentication

The Challenge-Response protocol is executed when a subject sends an access
request to the RO or to a trusted node when the former is offline. The basic
steps of this protocol are discussed as follows;
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• Declaration: When sending an access request, the subject must declare
its unique ID (i.e., Ethereum account), type of operation (i.e., read, write,
download, etc.) that the subject is willing to perform on a resource of the
RO.

• Information Verification: Given the assertion of the subject, the RO
sends a transaction to the accessControl() function of its personal ACC in
order to determine weather the subject is eligible to perform the requested
operation on the resource R. Hence, the access control algorithm checks
the data on the blockchain to validate access permission. Furthermore, if
the RO has specified location information in the policy, the algorithm will
interact with an oracle to verify the access location of the subject. Simi-
larly, the algorithm determines the validity of the current access request
time. Consequently, the subject is allowed to perform the requested action
on the resource R if the permission in the policy is allow; otherwise the
operation is denied. Please note that an online trusted node performs the
verification process if the RO is offline or down in the network. Finally,
the node receiving the request challenges the subject in order to verify the
authenticity of the Ethereum account.

• Challenge: The RO or a trusted node selects a random message m, and
asks the subject to sign it.

• Response: Response from the subject determines the real owner of the
Ethereum account because the private key of the subject is required to
sign the message. Therefore, the creation of a correct signature is only
possible if the subject possesses a valid private key. To accomplish this
goal, we use the following function:

S = Sign(pk; ID;m) (1)

where pk represents the private key of the subject, ID represents the ad-
dress of the Ethereum account and m represents the random message sent
to sign. Thus, a correct signature is only possible if the subject possesses
the corresponding private key which is uniquely defined for each Ethereum
account, and it is also unique for each DOSN user. The subject then sends
S back to the RO or to the trusted node, depending upon the access re-
quest scenario.

• Response Confirmation: The RO or trusted nodes will allow the sub-
ject to perform the requested operation on a resource R if a correct sig-
nature is generated by the subject. To accomplish this goal, the RO or
trusted node uses the following verification function:

confirmResponse(ID;m;S). (2)

Finally, the RO or trusted node will allow access to the resource if and only
if the verification process is successful. Please note that the authentication
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protocol can be executed offline, and the Solidity sha3 [41] function can be used
to securely generate the signature. This technique can be used to generate a
message signature without disclosing the private key.

7. Performance Evaluation

Every transaction that is used to invoke the function of a smart contract
requires the payment of a fee in order to compensate the mining node for the
execution of transaction and saving it on the blockchain. Ethereum uses gas
to express this fee. Users can purchase gas from the mining nodes by paying
Ether. Please note that Gas and Ether are two distinct terms because gas
indicates a constant cost of performing an operation on a Blockchain network,
whereas Ether is a volatile virtual currency, which is used to pay for the network
resources.

7.1. Experiment Setting

We use the solidity [41] programming language to develop prototypes of our
proposed smart contracts, and deployed them on the Rinkeby Ethereum testnet.
The experiments were conducted in the month of September 2019 during which
we observed that 1 Ether ≈ 189 USD and an average gas value of ≈ 0.000000021
ETH. Experimental results show that the ACC contract requires 3180418 gas
for deployment. Costs of the remaining contracts are discussed in the following
section.

7.2. Results

Table 5 shows the one-time constant costs of the different functions of the
ACC smart contract.

Rahman et al. [12] proposed the Role-based access control for social net-
work using Ethereum smart contract. Their experimental results show that
creating a simple RBAC policy that compares the subject’s asserted role with
the role specified in the RBAC policy in the Ethereum blockchain requires 27864
gas. Moreover, they also implemented a policy evaluation (i.e., access control)
function that compares the subject’s role with the policy in the blockchain and
returns allow or deny. This evaluation function requires 22808 gas consumption
on the Rinkeby testnet.

Table 6 shows the one-time constant costs of the different functions of the
Inspector smart contract. The Inspector contract receives misbehavior infor-
mation about the subject together with the time of misbehavior to determine
an appropriate punishment. Table 7 shows the one-time constant costs of the
different functions of the reputation smart contract. This contract requires a
one-time deployment cost of 0.000741 ether. The computeReputation() is the
main function that is used to evaluate the reputation score of users in the DOSN
network. Finally, table 8 shows the one-time constant costs of the different func-
tions of the Registrar smart contract deployed on the Ethereum blockchain.
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Table 5: Costs of the different functions of the ACC smart contract
ACC Function Gas Used Cost(ether) USD($)
policyAdd() 145625 0.000146 0.0275
policyUpdate() 84336 0.000084 0.0158
policyDelete() 84462 0.000084 0.0158
thresholdUpdate() 32382 0.000032 0.0060
locationUpdate() 32500 0.000032 0.0060
timerangeUpdate() 32500 0.000032 0.0060
accessControl() 61648 0.000062 0.0117
deactivate() 13455 0.000027 0.0051

Table 6: Costs of the different functions of the Inspector smart contract

Inspector Function Gas Used Cost(ether) USD($)
Contract Deployment 1310013 0.00131 0.2475
inspectBehavior() 220350 0.00022 0.0415
deactivate() 13455 0.000027 0.0051

We performed an experiment to evaluate the effects of the number of subjects
in the ACL-based policy on Gas consumption in the Rinkeby testnet as shown in
Figure 4. Results of our experiment reveal that both the function evaluation and
ACC contract deployment cost increases linearly as we increase the number of
subjects in the policyAdd() function. However, as the number of subjects exceeds
14, the BlockGasLimit is reached. The gas limit is the maximum amount of gas
that a transaction is allowed to consume, if a transaction exceeds this amount,
the gas is spent but the execution effects on the contract’s state are discarded.
Indeed, this mechanism is intended to prevent long computations that would
stall the EVM. Furthermore, each block has an associated block gas limit that
limits the number of computations that can be executed by all transactions in
that block. The value of this limit on the Rinkeby testnet is 4700000. In short,
the given results reveal that the RO can create a single policy for a maximum of
14 subjects in the network. It is worth noticing that the transaction fee depends
on the complexity of transaction sender wants to make. Consequently, the more
complex a transaction, the more Gas we need to pay for its execution on the
blockchain. Moreover, operations performed by the smart contract code and
storing information in the smart contract are the two complexity factors that
determine the amount of gas that a transaction will consume.

The computeReputation() function of the reputation contract is flexible be-
cause it can be easily configured to evaluate the reputation score for multiple
subjects in the DOSN network. Indeed, multiple subjects can be provided as
arguments together with the type of misbehavior in order to evaluate and si-
multaneously assign the same value to each subject. We evaluated the gas
consumption costs by varying the number of subjects in this function as shown
in Figure 5. Results of the experiment show that both the contract deployment
and function evaluation costs increase linearly as we increase the number of sub-
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Table 7: Costs of the different functions of the Reputation smart contract

Reputation Function Gas Used Cost(ether) USD($)
Contract Deployment 741141 0.000741 0.1400
computeReputation() 112407 0.000112 0.0211
deactivate() 13455 0.000027 0.0051

Table 8: Costs of the different functions of the Registrar contract

Registrar Function Gas Used Cost(ether) USD($)
Contract Deployment 1310013 0.0085 1.6065
register() 29848 0.00003 0.0056
update() 44640 0.000045 0.0085
remove() 54613 0.000055 0.0103
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Figure 4: Number of Subjects in the policyAdd() function vs. Gas cost

jects. However, when the number of subjects exceeds 66, the BlockGasLimit
is encountered. This essentially means that the proposed reputation contract
can simultaneously evaluate the reputation for 66 subjects in the network. Al-
though, the current solution evaluates the reputation for a single subject, more
complex scenarios may require the consideration of multiple subjects.

The inspectBehavior() function of the Inspector contract currently requires
the ID of a single subject and the type of misbehavior to evaluate a possible
penalty. However, we also evaluated this function by passing multiple subjects
and the type of misbehavior as arguments. Results of the evaluation show that
this function can simultaneoulsy evaluate the punishment for upto 75 subjects
in the network. However, as the number of subjects exceeds this limit, the
Ethereum BlockGasLimit is encountered, thereby discarding transactions con-
taining more than 75 subjects.
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Figure 5: Number of Subjects in the computeReputation() function vs. Gas cost
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Figure 6: Number of Subjects in the inspectBehavior() function vs. Gas cost

8. Conclusions

In this research, we proposed an auditable and trustworthy access control
system for DOSNs using access control list (ACL). The resource owner has a
unique personal ACC deployed on the blockchain, which is used to control access
to resources in the network. The proposed solution consists of different smart
contracts, which are designed to meet the trust and security requirements of
DOSN. The proposed solution achieves the auditability property successfully
because all functions that are invoked on the smart contracts are reflected on
the Ethereum blockchain. Consequently, all the actions performed by a user are
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publicly visible on the blockchain. Indeed, a user will not be able to perform a
secret action without the knowledge of other users. Furthermore, resources are
available to authorized users even when the resource owner (RO) is not available
or disconnected. We proposed a smart contract system which achieves the
verification property because the challenge-response protocol is used to perform
a secure verification of the user’s identity and to verify the status of access
permission in the blockchain.

Finally, we implemented and evaluated the approach by exploiting the Rinkeby
Ethereum testnet to deploy the smart contracts, and the experimental results
show the feasibility of our proposed scheme. Indeed, our scheme requires 61,648
gas to evaluate ACL rules. As future work, we plan to evaluate our framework in
a real DOSN scenario, and we plan to investigate more in depth the problem of
Access Control by comparing our approach with other different models in order
to highlight the benefits in a DOSN. In particular, we plan to investigate the
cross-context misbehaviour of subjects, as well as the changing of behavioural
patterns within a specific context or in a cross-context scenario.
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