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We consider the three dimensional SU(2) Yang-Mills theory with adjoint static color sources,
studying by lattice simulations how the shape of the flux tube changes when increasing the distance
between them. The disappearance of the flux tube at string breaking is quite abrupt, but precursors
of this phenomenon are present already when the separation between the sources is smaller than its
critical value, a fact that influences also some details of the static potential.

I. INTRODUCTION

Color confinement is one of the main nonperturbative
features of nonabelian gauge theories. A first principle
proof of this phenomenon is still lacking and constitutes
part of the first Millennium Problem of the Clay Math-
ematical Institute ﬂ] However a huge amount of in-
formation about color confinement, both qualitative and
quantitative, has been obtained by numerical simulations
of lattice discretized gauge theories.

Starting from the seminal work in Ref. [2], the study of
flux tubes between static color charges gained a promi-
nent role in the investigation of color confinement Bﬁ]
The flux tube between two sources has been investigated,
for example, to test the predictions of effective string the-
ory B—IE] and the dual superconductor picture of color
confinement ﬂﬂ@], but also the case of more than two
charges has been studied [20-123].

So far the vast majority of flux tube investigations con-
centrated on the Yang-Mills pure glue case, with sources
transforming in the fundamental representation of the
gauge group. In this setup a nonvanishing asymptotic
string tension is presemﬂ and the static potential rises
indefinitely with the distance between the sources; this
signal that the flux tube always connects them, indepen-
dently of their distance.

Only recently investigations carried out in full QCD
with physical quark masses appeared , ], however
the computational burden of simulations with dynami-
cal light flavours makes impossible to obtain in this case
results as accurate as those achieved for Yang-Mills the-
ories. In particular, the QCD results obtained so far do
not indicate any significant qualitative difference with re-
spect to the pure glue case.

Such a qualitative difference is however to be expected,
since the asymptotic string tension vanishes in theories
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1 This is what happens for most of the gauge groups used in the
literature and, in particular, for the SU(N) gauge groups. How-
ever gauge groups exist for which gluons do screen fundamental
charges, and when this happens the asymptotic string tension
vanishes, see e.g. ] for the case of Ga.

with dynamical matter fields in the fundamental repre-
sentation of the gauge group. A striking consequence
of this fact is the peculiar behavior of the static poten-
tial: for small distances between the sources the poten-
tial looks like the one of the pure glue case, but when
the separation increases beyond a critical value R, (the
string breaking length) the potential flattens, and does
not grow anymore linearly with the distance between the

charges [24, [27-139).

It is natural to expect the flux tube to disappear, or
at least to be strongly suppressed, when the distance be-
tween the sources approaches R., but there are several
ways in which this could happen: the flux tube could for
example behave as in the pure glue case for small dis-
tances and then disappear abruptly at R., or it could
start to delocalize already when the sources are close to
each other. Which of these possibilities is the correct one
can only be established by numerical simulations, how-
ever to perform such a study in QCD would be very de-
manding from the computational point of view. We can
nevertheless hope to gain at least some insight on what
happens in QCD by studying simplified models display-
ing string breaking.

In this work we use for this purpose the three dimen-
sional SU(2) Yang-Mills theory with static sources trans-
forming in the adjoint representation. It is indeed simple
to show that an adjoint charge can be screened by gluons,
and this model has been already used in the past to nu-
merically investigate string breaking and string decay in
the static potential [33-36] (see also [37] for the four di-
mensional case and e.g. [38] for a non-lattice approach).
Our principal aim is the study of the flux tube behavior
as a function of the distance between the adjoint sources,
and in particular for distances close to the critical value
R.. However, to better appreciate the similarities and
differences with respect to the case without string break-
ing, we will also perform a precision study of the static
potential in the unbroken string phase.

The paper is organized as follows: in Sec. [Il we sum-
marize the numerical setup adopted and we describe the
observables used to study the flux tube. Numerical re-
sults are reported in Sec. [I[Al and for the flux tube
and the static potential respectively. Finally in Sec. [V
we summarize the results obtained and we draw our con-
clusions.
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II. NUMERICAL SETUP

As anticipated in the introduction, in this work
we use the three-dimensional SU(2) Yang-Mills theory
with static sources in the adjoint representation as a
testbed to investigate the behavior of flux tubes close
to string breaking. The usual Wilson discretization @]
is adopted, which for the case of the gauge group SU(2)
can be written in the form

s= % ﬂ(l—%ﬂuu(w)) - (1)

@, p>v

In this expression & is a point of a three dimen-
sional isotropic lattice with periodic boundary condi-
tions, u, v € {0,1,2} denote two lattice directions, and

()

is the trace of the product of the link variables around
the plaquette in position « laying in the plane (1, The
update is performed by using standard heatbath Nﬁ
and microcanonical [42] moves, in the ratio of 1 to 5.

On the contrary of what happens in four-dimensional
gauge theories, the gauge coupling is not dimensionless
in three space-time dimensions, and the bare continuum
coupling g is related to the 3 value entering Eq. () by the
relation a3 = 4/g?, where a denotes the lattice spacing.
As a consequence there is no dimensional transmutation
in the three-dimensional case, and dimensionless physical
observables can be expanded in inverse powers of 3 in the
weak coupling limit. In particular we will sometimes use
the following approximate expression for the square root
of the string tension [43]

=Tr [Up(x)U, (x + @)U} (x + 2)U (x)]  (2)

1.324(12) = 1.20(11)
p B?

which is valid for 8 > 4.5.

The free energy (or the potential energy, in the zero
temperature limit) of two static adjoint color sources sep-
arated by a distance d can be computed by using

av/ = L0, B)

F(d)

a

- _LNIOngadj(O)TfPadj (di)) . (4)

where N; is the temporal extent of the lattice, lattice
translation and rotation invariances have been used and
P2di(x) denotes the adjoint Polyakov loop in position .
The trace of P2%(x) can be immediately related to the
trace of the Polyakov loop in the fundamental represen-
tation

N¢—1

=[] Uo(z + k0) (5)

k=0

Piund

(where periodic boundary conditions are implied and 0
denotes the temporal direction) by the relation

TrP*Y(x) = |[TrPd ()2 — 1 . (6)

To investigate the flux tube between two static adjoint
charges separated by a distance d along 1 (this choice of
the direction is purely conventional and irrelevant for the
final result) we use the observable

(TrP2di(0)Tr P2 (di)HW>

d - H v/ 7

pyu( It) <’I‘1"Pad]( ) Pad]( )> < 1% > ( )
where II,,, stands for

I, (d1/2 + 2,2) , (8)

i.e. for the plaquette oriented in the (u,v) plane, posi-
tioned midway between the static sources at a transverse
distance x;. On the lattice the d/2 entering Eq. (8) has
obviously to be interpreted as the integer division |d/2].
This “midpoint” flux tube is the one that has been most
investigated in the literature, mainly because in this way
we minimize the effect of the static charges. Of course
it would be interesting to extend the study to have a
complete picture of the whole flux tube also closer to the
static sources, but this would require a decomposition of
p“dJ in near and far-field components (see [18]).

FadJ(d) and padJ(d x¢) are the natural generalizations
to the adjoint case of the usual expressions for funda-
mental static sources, and it is simple to show that in
the naive continuum limit pi?,j reduces to the variation
of (F7?,) (no sum intended) induced by the presence of

the adjoint static sources. Moreover p“dJ is multiplica-
tively renomalizable, and its renormahzamon constant is
the same of II,,,, Wthh also coincides with that of pt““d.
In order to avoid computing this renormalization con-

stant we will use in the following the ratio

ngj (d7 .’L't)
RMV(d xt) pﬁ%“d(d, 0) ) (9)
which has a well defined continuum limit if numerator an

denominator are computed at the same lattice spacing.
To obtain accurate estimates of F2%4(d) and p33 (d, x;)
we use both multihit [44] and multilevel [45] noise reduc-
tion algorithms. The application of these algorithms is
straightforward, once the components of Pd(x) are ex-
plicitly written in term of P4 (z) by using the relation

Pil(@) = L Tr(oa P @)y [P @)y, (10)
where o, denotes a Pauli matrix. The optimal values
for the number of levels, the size of the slices and the
number of updates to be used in the multilevel algorithm
has been determined by minimizing the fluctuations of
Tr P24i(0)Tr P24 (d1) at fixed simulation time.

The optimal number of hits to be used in the multi-
hit turned out to be quite insensitive to the distance d
between the sources, while the optimal setup for the mul-
tilevel algorithm typically consisted of a single level for
small distances between the sources, and of two levels for
larger values of d. Let us consider for example the case



0.015

T P T T T ")
8/ ‘O‘ELD;‘ T T ‘72><104 ( )
5 TaAL© @0 %pqo’ o L=16, (1,0) |
© ST T34 b o o L=16, (2,0)
~ ool el T T 1° % ¢ Y o L=32, (L0) |
ol =T Ja0® % L=32,(2,0)
g EQ:‘- | | I | 2x10*
B 0 2 7 6
© o X/ a
g 3 0005 i
Q
™ o
®
0 = H 2 ® @ ®
S 1-,
X/ a

FIG. 1. Comparison of the estimates obtained for the quantity
pid(d = 4a,x:) at B = 6.0 by using different lattice sizes
(L =16 and L = 32). Results refer to the longitudinal (1,0)
and to the transverse (2,0) components of the chromoelectric

field.

of the lattice 642 at 3 = 11.3138: the setup adopted for
d = 4a consisted of a single level algorithm with slices of
thickness 4a and 600 updates for slice, while for d = 15a
we used two slices of thickness 4a and 8a, with 10000 and
10 updates for slice respectively.

In all the cases data corresponding to different values
of d and/or x; came from different simulations, and they
are thus statistically independent of each other. Statis-
tical errors have been estimated by means of standard
blocking, jackknife and bootstrap procedures.

III. NUMERICAL RESULTS

A. Flux tube

In this section we report our results concerning the be-
havior of the flux tube close to string breaking, obtained
by studying the dependence of p'z‘})(d, x¢) (as a function
of the transverse distance z;) on the separation d be-
tween the adjoint static charges. The majority of our
simulations have been performed on a 323 lattice, but we
resorted also to different lattice sizes to investigate finite
volume and finite lattice spacing effects.

We mainly focus on the longitudinal component of the
chromoelectric field (corresponding to p"fg‘] with the con-
ventions of the previous section), which turns out to be
the dominant component of the flux tube also in the ad-
joint case. However the study of the two other com-
ponents of the field strength is important to identify the
disappearance of the flux tube: since string breaking hap-
pens when the two charges are at a finite distance from
each other, we cannot expect the longitudinal chromo-
electric field to vanish at string breaking, because the
near-field of the charges is always present (see HE]) The
natural expectation is that the longitudinal component
of the chromoelectric field became of the same size as the
other components at string breaking.

As a first step we investigate which lattice sizes are

needed in order not to have significant finite volume ef-
fects. For this purpose we estimated pz,‘ij (d, x¢) for d = 4a
at coupling 8 = 6.0, using two different lattice sizes, i.e.
L =16 and L = 32. As can be seen from the numeri-
cal results reported in Fig. [Il finite size effects are well
under control in this setup, and the longitudinal compo-
nent of the chromoelectric field is indeed the dominant
component of the flux tube.

To study the dependence of the adjoint flux tube on the
distance d between the static sources, we thus start by
using a fixed scale approach on a 323 lattice at 3 = 6.0.

For this value of the coupling the string breaking distance
is approximately R, ~ 10a (see [35] and Sec. [I[B), and

results for pz,‘ij (d, z;) obtained in this setup are shown in

Fig. B, both for the longitudinal component p"fgj and for
adj adj

the transverse ones pyy° and pjy’.

From data in Fig. 2l we can already draw several inter-
esting observations: first of all it is evident that the lon-
gitudinal component of the adjoint flux tube decreases
by increasing the distance between the sources. While
the huge decrease from d = 4a to d = 8a can be ascribed
to the closeness of the sources (and thus to the presence
of the Coulomb component at d = 4a), the differences
between d = 8a and d = 9a can not be interpreted in
this way. Indeed the transverse components of the field
strength do not change significantly, and the same hap-

0o012[g ‘ ‘ ‘ ‘ ‘ ‘ N
o d=4a
o d=8a
0.009 © d=%a 7
. * d=10a
X
= 0008/~ ° R
F0 B
LS A 8
0.003 8 il
° @
B 3
0 : ' ! H M k
5 1 ‘ I 5 6 7
X/ a
0.0020 ‘ ‘
I o d=8a, (2,0)
0.0015 g o d=9a (20)
= d=8a, (1,2
—~ t ¢ d=93, (1,2
3
-5 0.0010 % il
T 2
T&O_:L g
0.0005 é% il
0.0000 | | | | | § é g
0 1 2 3 4 5 6 7
X/ a

FIG. 2. Results for pJ(d, z¢) obtained on a 32° lattice at cou-
pling 8 = 6.0. In the upper panel the longitudinal component
is reported, while in the lower panel the transverse directions
are shown (data have been slightly shifted to improve the
readability). Notice the different scales on the vertical axis of

the two panels.
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FIG. 3. Numerical results for the ratio Ru.(d = 9a,z:) de-
fined in Eq. (@) obtained using a 32% lattice.

pens for the flux tube in the fundamental representation:
for comparison pf%d(d, z; = 0) changes by less than 4%
when going from d = 8a to d = 9a, to be compared with
the 21% change of p3) (d, x; = 0).

Another important thing to notice is that the longi-
tudinal component of the adjoint flux tube is about a
factor three larger than the transverse components at
d = 8a and 9a, however at string breaking (i.e. d = 10a)
pig"(d, x¢) suddenly drops and become compatible with
the transverse components. As previously discussed this
is the smoking gun signal of the flux tube disappearance,
since for finite R, we can not expect the longitudinal (or
any other) component to vanish. A hint that at d = 10a
the physics of the system is changing comes also from the
scaling of error-bars: from Fig. 2 we see that p"fg"(d, xt)
data at d = 10a have errors which are approximately
three times those at d = 9a, despite the fact that the
statistics accumulated for d = 10a is about six times
larger than the one used for the other distances. A pos-
sible interpretation of this fact is that for d < 10a the flux
tube is present and the main sources of statistical error
in p"fg‘] are the fluctuations of Polyakov loops, which are
however kept well under control by using the multilevel
algorithm. For d = 10a the string is broken and fluctua-
tions in the plane containing the plaquette increase (the
“broken ends” of the string moves freely), thus reducing
the effectiveness of the error reduction of our implemen-
tation of the multilevel algorithm.

To have a finer control of the separation between the
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FIG. 4. Dependence of the width of the flux tube (as defined
in Eq. (I2)) on the distance between the adjoint charges.

sources and better resolve the distances close to string
breaking, we now abandon the fixed scale approach and
change the distance between the sources by varying the
lattice spacing. More in detail we keep d = 9a on a 323
lattice, and we increase the lattice spacing by decreas-
ing the value of the coupling constant 5 in the range
[5.5,6.0]. For 8 = 6.0 and 5.5 we explicitly computed the
string tension, obtaining the values reported in Tab. [}
these values are consistent with those obtained by apply-
ing Eq. @), however their errors are significantly smaller
than the ones we get from Eq. ([B]); the values of a\/c ()
needed for 5.5 < 8 < 6.0 are computed by using a linear
interpolation of data in Tab.[ll

To compare results obtained at different values of the
lattice spacing we can not use p'z‘}), due to the presence
of the lattice dependent renormalization, so we use the
ratio R, defined in Eq. (@). In Fig. B we present our
results for the longitudinal component Rio(d = 9a,x)
at four different values of the coupling 8 in the range
[5.5,6.0]; some data for the transverse component (2,0)
are also shown.

As for the case of the fixed scale approach, we see from
Fig. B that the longitudinal component Rig is steeply
decreasing when increasing the distance between the
adjoint Polyakov loops. In particular, its peak value
at xy = 0 reduces approximately by a factor of three
when increasing the separation between the sources from
~ 1.02fm (at 8 = 6.0) to = 1.13fm (at 5 = 5.5). The
transverse component Ryg also decreases when increasing
the lattice spacing, but in a less dramatic way than the
longitudinal component.

From Fig. Blit is not completely clear if the longitudi-

8| avo a
5.5]0.2790(4)]0.12555(18) fm
6.0{0.2524(4)]0.11358(18) fm

TABLE I. String tension determined from the correlators of
(fundamental) Polyakov loops on a 32° lattice. Conversion to
physical units is performed by using 1//c = 0.45 fm.
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FIG. 5. Continuum scaling of Rio(d,z:) for d ~ 0.91 fm.

nal flux tube just gets rescaled when approaching string
breaking, or it is also slightly distorted (i.e. the rescaling
factor is different for different values of x;). To better
investigate this point we tried computing the flux tube
width defined by

J2 220t (d, ) dae

J52 P30 (d, @) day

w?(d) (11)

This quantity does not need any renormalization and it
was computed by using a spline interpolation of the data
for p1o(d, fft)-

Numerical results for w?(d) are shown in Fig. @ and a
slight increase of the flux tube width with the distance
between the sources seems to be present. While there is
no reason for Effective String Theory (EST) to provide
robust results for theories with string breaking, it is nev-
ertheless interesting to compare the observed behavior
with the one predicted by EST. In particular in Fig. @
we also report the result of a best fit of the form

2row?(d) = ky, log(d/dp) , (12)

which for k,, = 1 is the form expected on the basis of EST
(see e.g. [8]). The functional form in Eq. [I2) well de-
scribes numerical data for w?(d) but with k,, = 0.37(7),
however the dependence of w?(d) on the distance d is
mild enough that also a lineal function correctly repro-
duces data. From this fact we can conclude that the flux
tube is not simply rescaled as d approaches R, it gets
slightly broader but the numerical accuracy is not enough
to reliably fix the functional form of w?(d).

To close this section we verify that lattice discretiza-
tion artifacts do not significantly affect the results pre-
sented so far. For this purpose we compare data obtained
by using two different lattice spacings, which have been
determined by using Eq. [B) to keep the value of d con-
stant in physical units. We used a 323 lattice at coupling
B = 6.0 and a 483 lattice with # = 8.6392, in such a way
that

8a(B = 6) ~ 0.91 fm ~ 12a(8 = 8.6392) . (13)
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FIG. 6. Values of the coefficient k defined in Eq. ({IH) ob-
tained by fitting on the interval [rmin, 15a] data for yadi (cor-
responding to integer values of Tmin/a) or its first derivative
(corresponding to half-integer values of rmin/a). Data have
been estimated by using a 64° lattice at 4 = 11.3138.

The results obtained with this setup for Ryo(d,x¢) are
presented in Fig. Bl and it is clear that lattice artifacts
are well under control, being at most of the same size of
statistical errors.

B. Static potential

In this section we describe the results of our study of
the static potential between adjoint color charges, per-
formed for distances between the sources small enough to
be in the unbroken string regime. The aim of this study
is to understand if the breaking of the string, associated
to the dependence of the flux tube on d discussed in the
previous section, has some precursor in the behavior of
the static potential.

One of the most typical properties of the static poten-
tial between fundamental charges is the presence of the
so called Luscher term ] This is just the first term
of the EST expansion of the static potential in powers of
# (see e.g. M] for a recent review), and it is character-
ized by the fact of having an universal coefficient, which
depends only on the space-time dimensionality but not
on the gauge group nor on other high-energy properties
of the theory (as far as an asymptotic string tension ex-
ists). In our three-dimensional setup the large distance
behavior of the fundamental static potential is thus

Vird(d) = od + S+ O(d?) . (14)
24d

Does something analogous to the Luscher term ex-
ist also for the static potential V3di(d) between adjoint
sources? While V24 has been previously investigated
several times @@], to the best of our knowledge an ac-
curate investigation of the presence of the Luscher term
in Va4 has not been carried out so fail. We thus try to

2 This issue was mentioned in @] but the Authors report that no
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FIG. 7. Continuum scaling of the adjoint static potential:
data have been obtained on lattices with L = 32 (8 = 6.0),
L = 48 (8 = 8.34688) and L = 64 (8 = 11.3138). The
potential between two fundamental charges for f = 6.0 is
also reported for comparison.

fit data for V24 according to the ansatz

i(d) = od + k=—— 1
VRU(d) = od + (15)

where k is a free parameter. Such an ansatz is reasonable
only for d < R, however, just like in standard EST, values
of d which are too small have to be excluded from the fit,
since they are contaminated by the Coulomb interaction
between the sources (that in our case is logarithmic).

In Fig.[Blwe show our estimates for the parameter k en-
tering Eq. (), obtained by fitting data for V34 (d) com-
puted on a 642 lattice at coupling 8 = 11.3138. Accord-
ing to Eq. @) the lattice spacing corresponding to this
value of the coupling is about half the one at 8 = 6.0, so
we expect R, ~ 20a, and indeed up to d = 18a we found
no signal of string breaking. In Fig. [dl we also report esti-
mates obtained by fitting the two-point finite difference
approximation of the derivative of V24

dvadi Vadi(p 4+ q) — Vadi(y

——(r+a/2) = (r+ 3 T (1e)
instead of the static potential itself, which give consis-
tent results. From Fig. [6l we see that k is definitely not
consistent with 1, and this fact can be interpreted as a
signal for d < R, that the string will break by increasing
the distance between the sources.

Finally, in Fig.[Mwe show the continuum scaling of V24
for three different values of the lattice spacing (which
goes from a =~ 0.11fm at 5 = 6.0 to a ~ 0.057fm at § =
11.3138), with the static potential between fundamental

stable fit parameter was found.

charges being also shown for comparison. Additive con-

stants have been fixed by imposing V24(2/\/7) = 7./0,

and an almost perfect scaling is observed, which implies

also in this case the absence of significant cut-off effects.
IV. CONCLUSIONS

In this paper we have studied color flux tubes in a
theory which displays string breaking, and in particular
their behavior when the separation between the static
sources approaches the string breaking distance R.. For
this purpose we used as testbed the three-dimensional
SU(2) Yang-Mills theory with charges transforming in
the adjoint representation of the gauge group.

We have shown that the adjoint flux tube, like the
fundamental one, consists mainly of the longitudinal
chromoelectric field for distances d between the sources
that are smaller than R.. As the critical distance R,
is approached, the longitudinal chromoelectric field gets
strongly suppressed, becoming of the same size of the
transverse fields at R.. The disappearance of the flux
tube is quite abrupt, and the value of Rio(d,z; = 0)
(which is related to square of longitudinal chromoelec-
tric field inside the flux tube) decreases approximately
by a factor of 3 when the relative difference between d
and R, reduces below 10%.

This rapid disappearance is the one that could have
been naively guessed from the behavior of the adjoint
static potential V24 (d), which suddenly switches from
an approximately linear grow to a constant plateau at
d ~ R.. We have however seen that precursors of string
breaking are present for d smaller than R, which are ba-
sically related to the failure of standard effective string
theory. The scaling of the square width w?(d) of the
flux tube with the distance d follows (at least within the
present accuracy) the expected logarithmic behaviour,
but the value of the coefficient differs from the universal
effective string prediction. Similarly, an analogous of the
Luscher term is present also in V2% (d), but again numer-
ical data are not compatible with the expected universal
coefficient.

Future studies should be aimed at extending this anal-
ysis to other models, to understand to which amount
the phenomenology at string breaking observed in the
three-dimensional SU(2) Yang-Mills case is generic and,
in particular, is relevant for QCD. For the same reason
it would be very interesting to investigate if there is a
relation between the values of the coefficients k,, and &
in Eqs. (I2),@5) (or better, their deviations from the
EST predictions) and some nonuniversal property of the
theory, like its spectrum.
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