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This paper investigates the laminar flow inside a T-mixer composed of three pipes

with circular cross-section. The flow enters the mixer symmetrically from the two

aligned pipes and leaves the device from the third pipe. In similar devices, but

involving rectangular channels instead of pipes, an important regime for mixing has

been identified, denoted as engulfment. Despite the symmetries of the flow and of

the geometry, engulfment is an asymmetric steady regime which is observed above a

critical value (Rec) of the flow Reynolds number. Conversely, for Reynolds numbers

lower than Rec the flow regime is steady and symmetric, and it is usually denoted as

vortex regime. In this paper both the vortex and the engulfment regimes are identified

for the considered geometry and they are characterized in detail by dedicated direct

numerical simulations (DNSs). Despite an apparent similitude with the behaviour of

T-mixers employing rectangular channels, which are the most investigated T-mixers

in the literature, substantial differences are observed and highlighted here concerning

both regimes, i.e. the vortex and the engulfment ones, and concerning transition

between the two. Global stability analysis is finally used in synergy with DNS to

investigate the onset of the engulfment regime, which is shown to be related to a

symmetry-breaking bifurcation of the vortex regime.

a)simone.camarri@unipi.it
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I. INTRODUCTION

Micro-mixers are widely used devices and their field of application spreads among several

contexts, particularly in chemical and biomedical applications. The main interest for mixers

is the enhancement and control of mixing level between two or more reactants, and the

objective of their design is to reduce dimensions while keeping high mixing efficiency. This

objective is pursued by manipulating the flow inside the mixers since mixing is substantially

enhanced by controlling convection at the typical operative conditions. Moreover, mixing

is well controllable if the flow remains laminar, and this second characteristic is typical for

mixers working at low values of the flow Reynolds number, usually obtained by a combination

of small characteristic dimensions (micro-mixers) and low velocities. A wide variety of micro-

mixers (or in general mixers working in laminar regime) are described in the literature, and

can be divided into active and passive devices1,2. The first class comprises for instance

pulsating flow at inlets, local flow control by magnetic fields and, more generally, involves

the introduction of energy into the system. Conversely, passive mixers rely on geometry

design in order to achieve a good mixing level, for instance by adopting three-dimensional

arrangements and by varying the cross section shape.

The interest for passive mixers is based on their robustness and low cost, even though

mixing control relies only on fluid dynamic features. Thus, it is important to characterize the

flow regimes for different geometries, as it has been done in the literature (see for instance the

following review papers: Refs. 1, 3–5); among promising recent configurations we mention

passive cross-shaped mixers6–8. A wide class of mixers are T-mixers ; these are characterized

by two inlet channels and an outflow one arranged in a T-shaped configuration and are

among the most studied mixer configurations in the literature (see for instance Refs. 9–

20; see also Ref. 5 for a recent review). Due to their geometrical simplicity, T-mixers are

common devices in complex systems and are also employed as junction elements between

different branches. Moreover, several geometries have been developed based on the T-mixer

shape, as for instance vortex-mixers, which have a gap between the inlet channels21, and

arrow mixers22, whose inlets form angles different from π/2 with the outlet channel, as they

are generally tilted in comparison with the T-mixer configuration.

By varying the flow Reynolds number, different regimes can be identified in T-mixers with

rectangular cross sections. For low Reynolds numbers, the flow is stratified and fluids are seg-
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regated. As the Reynolds number is increased, the recirculation bubbles forming at the con-

fluence region between the two entering flows promote the formation of two counter-rotating

vortices, each one being folded23 so that four vortices arranged symmetrically can be found in

the outflow channel (vortex regime); despite the presence of those vortices the flow remains

symmetric and the mixing is caused only by diffusive mechanisms. Above a critical Reynolds

number, however, despite the symmetry of the geometry and of the entering flow, the flow

changes to an unsymmetrical configuration, where just two co-rotating vortices remain in

the outlet channel; this regime is commonly denoted as engulfment regime14,18–20,23–27. The

resulting loss of symmetry promotes a substantial enhancement of mixing level. Further

increments of the Reynolds number cause the onset of time-periodic regimes (asymmetric28

and symmetric18, respectively) or even chaotic (see also Refs 13, 15–18). These regimes have

been largely characterized in the literature and the related flow scenario can be used as a

reference for highlighting the peculiarities arising in the flow when cross sections different

from the rectangular ones are used.

In order to design a T-mixer which operates in the engulfment regime, it is important

to evaluate the critical flow Reynolds number (Recr) for the onset of this flow regime. The

value of Recr depends on the cross section shape and on the ratio between the areas of

the inlet (Ai) and outlet (Ao) channels, which is directly related to the ratio between the

inflow and outflow bulk velocity (U i and U o, respectively), since Ao U o = 2Ai U i for mass

conservation. As concerns this last aspect, it has been observed in the literature that the

value of Recr varies depending on accelerating (U o > U i or, equivalently, Ao < 2Ai) or

decelerating configurations (U o < U i, i.e. Ao > 2Ai). In particular, the flow acceleration

leads to an increase of Recr if compared to uniform cases (U o = U i, Ao = 2Ai), whereas

deceleration decreases Recr.
26,29.

From what highlighted above, it is important to identify the flow characteristics and the

conditions for the onset of the engulfment regime for different cross sections, once the areas

ratio Ao/Ai is fixed. To this purpose, there are several studies in the literature focusing on

rectangular cross-sections (see for instance Refs 14 and 26). Conversely, despite the fact that

the circular cross-section is a paradigmatic shape, easy to build, edge-free and commonly

used in channels, T-mixers made by circular channels have not been systematically studied

in the literature to the authors’ knowledge. Moreover, in contexts very different from T-

mixers, such as for instance suddenly expanding circular pipes, a high flow stability has been
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observed in comparison with the counterparts employing rectangular cross sections (see for

instance Refs. 30 and 31). This fact suggests that even for T-mixers the use of circular

cross sections may lead to devices with flow characteristics which are very different from the

classical scenario known for rectangular cross sections.

The observations pointed out above justify the need of a detailed investigation of the

flow characteristics in circular T-mixers (i.e. composed by circular pipes) in laminar regime.

Indeed, on one hand the shape is easy to build and, on the other hand, the only results

available in the literature, which moreover do not pertain mixers but simply channels, seem

to indicate that the familiar scenario of flow regimes for rectangular mixers cannot be easily

estrapolated to circular ones. Despite the fundamental interest in the fluid mechanics of the

flow in the considered geometry, a detailed characterization of circular T-mixers can have

important impacts in practice, since it is a necessary step for their proper use as devices

alternative to the more common rectangular T-mixers. For these reasons the present paper

has the objective to explore the flow characteristics in a T-mixer with circular channels,

focusing the attention on the first symmetry-breaking bifurcation occurring as the flow

Reynolds number is increased. In analogy with the scenario for rectangular T-mixers, the

flow after the first symmetry-breaking bifurcation encountered as the flow Reynolds number

is increased will be called here “engulfment” and the one preceding the bifurcation will

be denoted as “vortex regime”. The investigation is mainly carried out numerically by

direct numerical simulations (DNSs) and further refined in the identification of the critical

conditions by stability analysis. Global stability analysis, which is aimed at identifying and

characterizing the instability leading to the engulfment regime, is carried out in analogy

with what has been already done in the literature for rectangular T-mixers22,23,28.

For geometrical reasons, when a circular cross-section is used for the mixer channels, the

most natural configuration is an accelerating one with Ao = Ai, which grants a geometrically

simple matching between the three conduits as they have the same radius, and thus the same

width. Keeping this characteristic geometrical aspect fixed, and considering that the section

is circular, the counterpart mixer which most resembles the one considered here among those

exhaustively investigated in the literature is a T-mixer made by a square cross section with

the same area for all the three channels. This counterpart case, whose characteristics are

already known and representative for generic rectangular cross sections, is considered here

as a reference case, so that the peculiarities of the flow for a circular cross section can be
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FIG. 1. Geometry configuration and reference system; the direction of the entering (Ui) and leaving

Uo flow is indicated using arrows.

highlighted by comparison with this reference case.

As concerns the organization of the paper, sections 2 and 3 present the methodologies used

for characterizing the flow and the numerical setup, while section 4 contains a discussion of

the results obtained by DNS simulations and by linear stability analysis. Finally, concluding

remarks are reported in section 5.

II. FLOW CONFIGURATION AND METHODOLOGY

A. Geometry and flow equations

The configuration considered in the present paper is a T-mixer with a circular cross

section, as shown in Figure 1 together with the frame of reference used here. For the sake

of brevity, this configuration will be indicated by the label CTM (which stands for Circular

T-Mixer). The section diameter D is kept constant along both the inlet and outlet channels,

so that the bulk velocity at the outflow is twice the one at inflows for mass conservation

(Ai = Ao, U o = 2U i). The same fluid at the same thermodynamic conditions enters from

the two inlets, i.e. we consider the case working with only one homogeneous fluid.

All dimensions are normalised using the diameter D of the cross section as the reference

length, while the reference velocity is the bulk velocity at inflow channels U i. The flow

dynamics is described by the incompressible Navier-Stokes equations in non-dimensional
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form:

∇ ·U = 0 ,

∂U

∂t
+ U · ∇U +∇P − 1

Re
∆U = 0 ,

(1)

where U = (U, V,W ) is the velocity field vector and P the non-dimensional pressure.

The Reynolds number Re is defined as

Re =
U iD

ν
, (2)

where U i is the bulk velocity at the inlet (i.e. the average of the inlet velocity profile), D

the diameter of cross section and ν the kinematic viscosity.

In order to understand the effect of having a circular section in comparison with the

scenario which is more familiar from the literature, a T-mixer with a square cross section

(and Ao = Ai) has been considered as a test case for comparison. In the following this mixer

configuration will be indicated by the label STM (standing for Square T-Mixer). In the

STM case we consider as the reference length for normalization the hydraulic diameter Dh

defined as

Dh =
4As

Ps

, (3)

where Ps and As represent the perimeter and area of the cross section, respectively. We

remark that for the square section considered here the hydraulic diameter corresponds to

the lenght L of the section sides (Dh = L).

The flow characteristics in the STM has been investigated in details in Ref. 26. We

remark that in Ref. 26 the selected reference velocity for normalization is the bulk velocity

at the outflow U o, thus the Reynolds number for the STM, Res,o, is defined in Ref. 26 as:

Res,o =
U oDh

ν
. (4)

The critical flow conditions for the onset of the engulfment regime in a square mixer has

been identified in Ref. 26 and the corresponding critical Reynolds number is assessed to be

Res,o ' 270. As a final remark, it has to be taken into account that the Reynolds number

referred to the outflow bulk velocity is twice the one based on bulk velocity (Eq. 5) when

Ai = Ao, as it is the case here, and in the present work we have chosen the inlet bulk velocity

as the reference one. Thus, hereafter the critical Reynolds number for the STM based on the

inlet bulk velocity will be indicated as Res and its critical value for the onset of engulfment
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for a STM is (Res)cr ' 135, in order to preserve the same normalization adopted here for

the CTM, i.e.

Res,o =
U oDh

ν
=

2U iDh

ν
= 2Res . (5)

B. Stability analysis

The onset of the instability leading to the engulfment is also investigated here through lin-

ear stability and normal-mode analysis. In the following, the basic theory is briefly recalled.

The flow U is decomposed in two contributions:

U = Ub + u ,

P = Pb + p .
(6)

The first is the baseflow (Ub, Pb), which is the steady solution of NS equations (Eq.1),

while the second is the perturbation field (u, p). When studying the engulfment instabil-

ity, (Ub, Pb) is the flow solution which respects the same symmetries of the geometry, i.e.

the flow solution in the vortex regime. By substituting the decomposition in Eq. (1) and

neglecting non-linear terms in the perturbation field, the equations governing the linearised

perturbation dynamics are obtained. The perturbation (u, p) is chosen in the modal form

(u, p) = [û(x, y, z), p̂] exp(σt), where σ = λ + i ω is complex-valued, i is the imaginary unit

and both λ and ω are real numbers. According to this notation, the resulting eigenfunction

problem to be solved for inspecting stability of the baseflow is

∇ · û = 0 ,

σû + û · ∇Ub + Ub · ∇û +∇p̂− 1

Re
∆û = 0 .

(7)

Homogeneous Dirichlet boundary conditions are imposed for the velocity perturbation at

inflow boundaries and on solid walls, i.e. û = 0, while a stress-free condition is applied at

the outflow boundary. The baseflow (Ub, Pb) is linearly unstable if there is at least one non-

trivial solution of Eq. (7) for which λ > 0. In the opposite case, a generic small perturbation

of the baseflow asymptotically decays in time and the flow is thus linearly stable. When only

one unstable eigenvalue is identified and the instability is supercritical, as it is the case here,

the associated eigenmode (u, p) is also representative of the path followed by the flow to

depart from the baseflow state in the initial stages of the instability, i.e. when perturbation
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is still small so that non-linearities do not significantly affect its dynamics. Moreover, still

when in slight supercritical conditions, in many cases the shape of the perturbation (u, p)

may be at least representative of that of the fully saturated instability as well. For more

details on the subject we refer for instance to Refs. 32 and 33.

III. NUMERICAL TOOLS

A. Direct Numerical Simulations

DNS simulations have been carried out by using the spectral element code Nek5000 (see

the following url: https://nek5000.mcs.anl.gov for more details). Inlet channels span in

the range x = [−7D,+7D], i.e. each one is 7D long, while the length of the outlet pipe

is equal to 25D. This length has been selected according to the indications provided in

previous works on mixers23,28 and is chosen in order to completely describe the development

of vortical structures along the outlet channel. The Hagen-Poiseuille velocity profile is

imposed at inflow boundaries, no-slip condition at the walls and a stress free condition at

the outflow boundary.

In order to obtain results that are grid-independent, different p-refinement levels have

been tested, not shown here for the sake of brevity. The results reported hereafter are

obtained by using a multiblock structured grid composed by 26640 spectral elements. In

order to avoid spurious pressure modes, the PN/PN−2 approximation has been adopted, with

the degree of base polynomials N equal to N = 6. Simulations have been advanced in time

with a Courant-Friedrichs-Lewy (CFL) number not higher than 0.5, and steady solutions

have been identified by advancing the simulations in time until the L2-norm of velocity

residuals became less than a prescribed value (10−6 in our case).

In order to qualitatively assess the mixing behaviour of the mixer, a passive scalar is

injected from one inlet channel, whose diffusivity coefficient κ has been set to the lowest

allowable value for numerical stability without any artificial stabilization (κ = 3 · 10−4),

thus minimizing diffusive mechanism and trying to mainly highlighting the mixing given by

convective phenomena.
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B. Stability analysis

The stability analysis was carried out by using ad-hoc tools implemented in Nek5000,

already validated in previous works22,23,28,34. The algorithm is based on Arnoldi-Krylov

decomposition along with a Gram-Schmidt orthogonalization and allows the approximation

of the leading eigenvalues of the system. Starting from an initial perturbation generated

randomly, the application of the system matrix is approximated using the Linearized Navier

Stokes (LNS) solver already implemented in Nek5000, in order to obtain a Krylov basisK and

a Hessenberg matrix H. Once H is obtained, its eigenvalues can be evaluated directly using

LAPACK libraries35. The eigenvalues of the original system can be successively computed

as:

σ =
log Σ

∆t
, (8)

where Σ are the eigenvalues of the Hessenberg matrix and ∆t is the sample time. The size

of the Krylov subspace has been chosen heuristically and on the basis of dedicated tests.

The sample time has been fixed so as to have negligible effects on the leading eigenvalue.

An extensive description of the algorithm can be found in Ref. 36.

IV. RESULTS

As for the square T-mixer (STM), the flow in the circular T-mixer (CTM) has the same re-

flectional symmetries of the geometry provided that the flow Reynolds number is sufficiently

low. As Re is increased, the symmetric configuration undergoes an instability leading the

flow to a steady unsymmetric regime. In analogy with the literature on STM, besides the

substantial differences with the CTM that are highlighted in the following, we will denote

here as “vortex” and “engulfment” regimes the symmetric subcritical and the unsymmetric

supercritical flow regimes observed in the CTM. Without entering for the moment into the

details of the characteristics of such flow regimes in the CTM, as they will be discussed later,

we now focus only on the flow conditions (i.e. on the flow Reynolds number, this being the

only free parameter governing the flow) for their onset and for the transition between one

state to the other. This aspect has been investigated here firstly by DNS.

Figure 2 recaps the simulated flows and the corresponding regimes, i.e. the vortex and

the engulfment regimes, found by DNS. As concisely shown in figure 2, the critical Reynolds
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FIG. 2. Simulations carried out by spanning the flow Reynolds number and corresponding flow

regimes identified for the CTM. The square marker denotes the critical Reynolds number for the

STM, as reported in Ref. 26.

number Recr for the transition between the vortex and the engulfment regimes is estimated

to be in the interval 475 ≤ Recr ≤ 490, and this result is confirmed by stability analysis as

shown in the following. Hysteresis in the onset of the engulfment regime has been excluded

by dedicated DNS simulations, which have been carried out by progressively increasing and

decreasing the Reynolds number across Recr, thus confirming the supecritical nature of the

symmetry-breaking bifurcation leading to the engulfment in CTM.

As mentioned in Ref. 26, the flow acceleration in the outlet channel involves higher critical

Reynolds numbers with respect to decelerating T-mixers. However, it has to be noted that

the critical Reynolds number for the CTM is definitely higher (about than 3.5 times larger)

than the one of the STM (Recr,s = 135), showing that the vortex regime in the CTM still

exists but at definitely larger bulk velocities than in the STM when the same working fluid

is employed. This result alone already highlights the surprisingly large difference existing

between the two mixers.

As concerns the flow configuration that is established after the engulfment regime, since

this is not the focus of the present paper, only one simulation was carried out for Re = 800,

at which a periodic flow regime is observed. In particular, at Re = 800 the flow in the CTM

is in an unsymmetrical periodic regime, i.e. a flow which is periodically oscillating around

a configuration which does not respect the symmetries of the geometry, as also observed

in T-mixers with rectangular cross sections27,28. The unsymmetrical periodic regime is not

investigated any further in this paper.

In the next sections, we describe in details the vortex regime at values of Re in the range

150 < Re < 475. Then, the flow is characterised as the Re is either decreased (vortex
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regime at lower Reynolds numbers) or increased (engulfment regime). Lastly, the results of

the linear stability analysis are discussed.

A. Flow in the vortex regime for 150 ≤ Re ≤ 475

The vortex regime is the flow configuration with the same reflectional symmetries of the

geometry itself observed in CTM for Re ≤ 475. In order to discuss the characteristics of the

vortex regime in CTM we focus for the moment on the flow simulated for Re = 450, i.e. in

slightly subcritical conditions for the onset of the engulfment regime. The characteristics of

the vortex regime at lower values of the flow Reynolds number, specifically for Re < 150,

will be illustrated in a successive dedicated subsection.

By definition, the flow field at the considered conditions is invariant for reflections with

respect to both x − z (y = 0) and y − z (x = 0) planes. The flow in the inlet pipes is a

developed Poiseuille flow (unidirectional and parabolic in the radial direction) and maintains

this aspect up to a x-coordinate approximately equal to |x| = 1.0, where the velocity profile

starts to significantly deviate from the Poiseuille one (parabolic in the radial direction) due

to the pressure field induced by the flow at the confluence region of the three pipes. In the

confluence region two opposing flows coming from the inlet pipes meet and enter the outlet

pipe.

The first important aspect is that, as for the STM, a separation region forms on the top

wall, i.e. the portion of wall of the mixer in the confluence region that is opposite to the

outlet pipe. The shape of this separation region is reported in figure 3(b) in perspective view

and in 3(a) and 3(c) for x− y and x− z views. In figure 3 the surface delimiting separation

has been identified based on the sign of the velocity x-component; for this reason a small

portion is not included (see label “E” in figure 3(a)) due to a small secondary recirculation

region denoted as “R2” in figure 3(c). As evident by figure 3(c), the separation region

is elongated towards the inlet pipes and is made by three main vortices, a dominant one

denoted as R1 and two definitely weaker secondary vortices, R2 and R3. All of them are

contained in the separation region, whose boundary with the external unseparated flow is

shown in both figures 3(b) and (c).

As already highlighted, the separation region is made by two main counter-rotating vor-

tices (only one is reported in figure 3, i.e. that in the region x ≥ 0) which are related to
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the strongest recirculation region inside the separation region (R1), and are specular with

respect to the plane x = 0. The so-formed vortices, which collect part of the vorticity gen-

erated at the walls in the incoming flow and whose maximum normalized vorticity is of the

order of 55 at Re = 450, elongate toward the outlet pipe while remaining in a symmetric

arrangement. One of the two is visualized in figure 3 by streamlines of the flow generated

starting from proper points inside the vortex itself. This visualization, which of course has

been verified to agree with the λ2 criterion37, has been chosen here instead of the iso-surface

of the λ2 scalar field as it is clearer and sharper for the case at issue, and moreover allows us

to track different vortices as will be shown later. As shown in figure 3, each vortex formed

in the separation region near the top walls originates two “legs” which are convected by the

flow in the outlet pipe. Figure 3 puts in evidence their shape in the top portion of the mixer

considered in the figure. Even if not shown, the identified vortices are subjected initially,

i.e. when entering the outlet pipe, to a positive stretching due to the accelerating velocity

gradients of the flow. They experience a compression (which is opposite to stretching) only

further downstream in the outlet channel, as discussed later since this aspect plays a role in

their successive development.

At the confluence region, almost aligned with the axis of the inlet pipes, a region of high

pressure forms, with its maximum at x = 0, and pressure quickly drops towards the outlet

pipe in the confluence region, i.e. for z > 0.3. In quantitative terms, at Re = 450 the

normalized pressure drop from z = 0 to z = 1 is equal to ∆ p ' −5.1, which is a large

variation considering that the pressure drop in the outlet channel from z = 1 to z = 10 is

∆ p ' −3.0. As a consequence of the pressure gradient at the entrance of the outlet pipe,

the flow is markedly accelerated towards the outlet pipe. Moreover, due to the geometry of

the device, a curved and sharp edge is present between each inlet pipe and the outlet one.

As the edge is a sharp corner, it induces flow separation at the entrance of the outlet pipe.

This separation region, denoted in the following with the label RL so as to differentiate it

from the separation near the top wall of the mixer (labelled as RH), is visualized in three

dedicated detailed views reported in subfigures 4(b-d), and is plotted together with RH in

figure 4(a). In particular, the surface denoted as RL in figure 4 represents recirculation in

the z-direction, which is the direction of the main stream leaving the confluence region.

At difference with the STM, where the edge between the pipes is sharp but straight, and

does not lead to the formation of vortices, the peculiar circular shape in the CTM promotes
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FIG. 3. Flow field in the vortex regime at Re = 450: separation region on the top wall of the

mixer, visualized by a transparent grey surface darker than the mixer walls, also shown for clarity,

and associated vortex visualized by means of streamlines: (b) perspective view, (a) x− y view and

(c) x−z view; we report also in-plane vectors indicating the velocity direction at sections (a) y = 0

and (c) z = 0; in-plane color contours indicate the in-plane velocity magnitude; only half plots are

presented as the flow has two reflectional symmetries.

the formation of two strong counter-rotating vortices, denoted as L1 and L2 in figure 4,

delimiting the RL region. Concerning intensity, we found that the maximum intensity of

the normalized vorticity in L1 and L2 in figure is approximately equal to 55 at Re = 450.

Their initial formation stage in connection with RL is illustrated in figure 4(b), while their

shape along the outlet channel can be seen in figure 4(a), where they are represented by

darker color so as to differentiate them from the vortices coming from the top, i.e. H1 and H2.
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FIG. 4. Flow field in the vortex regime at Re = 450: separation regions on the top wall of the

mixer (RH) and at the intersection between the inlet and the outlet pipes (RL), visualized by a

transparent grey surface darker than the mixer walls, also shown for clarity; vortices originating

at RL are visualized using streamlines; the vortex legs H1 and H2, in lighter color, originate from

RH while the legs L1 and L2 from RL; R1 and L1 are co-rotating, the same applies for R2 and L2,

while R1 and R2 (or equivalently L1 and L2) are counter-rotating; subfigures (b), (c) and (d) are

three detailed views of RL, (b) in perspective, (c) is a y − z view and (d) a x− z view.

As for H1 and H2, also L1 and L2 have been identified using properly generated streamlines,

and the derived shapes agree with the λ2 criterion (not shown here in order to not further

complicate figure 4). Vortices analogous to L1 and L2 can also be found in the STM, but

they are extremely weak and play unsignificant role in the flow dynamics. Conversely, the

flow dynamics of the CTM is fundamentally governed by the interplay between H1, H2, L1

and L2, all of which are of comparable amplitude, as it will be illustrated in the following.
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A first effect of L1 and L2 is the shape of the RL region. Indeed, due to the sign of

their vorticity and to the direction of the velocity they induce on themselves, L1 and L2

initially travel towards the centerline of the outlet pipe, thus determining the peculiar shape

of RL which is thin and elongated towards the center of the outlet pipe. Considering mass

conservation and the fact that the flow is reversed (with respect to z) inside RL and slow in

its near-wake, it can be deduced that the flow at z-sections in proximity of RL is strongly

accelerated near the centerline of the outlet pipe. Indeed, the z-component of velocity on

the outlet axis passes from a value approximately equal to 2.0 at the entrance of the outlet

pipe to the value 3.2 at z ' 1, i.e. just after RL, where it reaches its maximum value. This

aspect, together with the peculiar distribution of the z-velocity over z-sections, is shown for

section S1 in figure 5(a) (see figure 4(a) for identifying the position of section S1). Figure 5

shows that the recirculating region RL leaves a wake of low velocity in the z-direction which

contains the two vortices L1 and L2 and extends towards the centerline of the outlet pipe.

Consequently, since the region characterized by low z-velocity has an important area in

comparison with the whole section, some areas of section S1 are characterized by values

of z-velocity reaching peaks of 3.2 (we remind that 2.0 is the value which, if uniform on

the section, grants mass conservation in the outlet pipe). Progressing further in the outlet

pipe up to section S2, see figure 5(b), vortices L1 and L2 are closer to the symmetry plane

x = 0 due to their self-induced velocities, while vortices H1 and H2 coming from RH have a

deformed core because they approach a region with a high in-plane velocity shear. In this

region, moreover, H1 and H2 are subjected to an adverse axial velocity gradient, i.e. to

vortex compression. As a result, vortices H1 and H2 disappear further downstream of S2

as the in-plane shear becomes dominant over the rotational part of the velocity field. This

is highlighted by both the λ2 criterion, whose contours identifying vortices are reported in

figure 5 showing that H1 and H2 disappear after section S2 (see subfigures (c) and (d)), and

by the streamlines in figure 4(a) where the distribution of streamlines in H1 and H2 after

section S2 clearly shows a spreading and a sudden disappearance of the core of the vortices.

We underline that a vortex disappears in our viewpoint when it cannot be identified any

more by the vortex identification criterion selected, in this case the λ2 criterion, due to the

prevalence of shear over rotation in the kinematic analysis of the velocity field. However,

vorticity carried out by the identified vortices remains in the flow field, as it is solenoidal,

undergoing convection, diffusion and stretching/tilting. Considering the relative positions
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FIG. 5. Flow field in the vortex regime at Re = 450; flow at sections (a) z=1.0 (S1 in figure 4(a)),

(b) z=1.3 (S2), (c) z=2.0 (S3) and (d) z=3.0 (S4): vectors indicate the in-plane velocity field

(vector lengths are scaled with the local amplitude of the in-plane velocity) and the coloured

contours indicate the z-component of velocity; for labels H1, H2, L1 and L2 please refer to figure 4

.

of vortices and their sign, and considering that at the selected Reynolds number convection

is dominant over diffusion, it is probable that vorticity from H1 (H2) merges with L1 (L2)

once the vortices H1 and H2 have disappeared in the sense specified above. Conversely

to H1 and H2, vortices L1 and L2 persist, as shown both in figure 4(a) and in figures 5

(c-d). Even if not shown, it has been also observed that vortices L1 and L2 are continuously

subjected to a positive stretching, as can be qualitatively deduced in figures 5 by observing

that the z-component of velocity where L1 and L2 are located is progressively increasing

when proceeding downstream in the outlet pipe. These elements make vortices L1 and L2
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stable and dominant, so that at a sufficient distance from the confluence region they are

the only vortices that are present (see for instance figures 5 (c-d)), while the z-component

of velocity is progressively more uniform across the section tending asymptotically to a

parabolic distribution (here the outlet pipe is too short to demonstrate this fact). As a net

result, the secondary flow in the outlet pipe at a sufficient distance from the confluence region

resembles that of the STM and of rectangular T-mixers in general since it is dominated by

four counter-rotating vortices organized symmetrically along the symmetry planes of the

geometry. However, as shown here, the origin of these vortices in the two kinds of mixers is

completely different; indeed in the CTM the vortices originate at the sharp edges between

the three pipes in the confluence region while in the STM they come from the separation

region near the top walls of the mixer.

Despite this substantial difference, the vortex regimes in the CTM and in the STM at

first sight look very similar and in both cases, due to symmetries, the flows coming from

the two inlet pipes are always separated in terms of convection, i.e. the plane x = 0 is

a stream-surface for the flow. Consequently, mixing between the two flows is driven by

diffusion.

B. Flow in the vortex regime at 25 ≤ Re < 150

As discussed above, the vortex regime in CTM at Re = 450 is dominated by the mutual

interaction between two types of vortical structures, i.e. the vortices originating in the RH

region (H1 ad H2 in figure 4) and those forming in RL region (L1 ad L2 in figure 4). The

flow scenario identified at Re = 450 in subsection IV A remains substantially unchanged

when the value of Re is decreased down to Re = 150. When Re is further decreased, the

separation region RL rapidly shrinks, and disappears for Re in the range 50 < Re < 100.

Most importantly, vortices originating in RL also weaken and disappear even before the

RL region; for instance, in our DNSs they are absent already for Re ≤ 125. It is evident

that, as a consequence, a flow scenario is observed for sufficently low Re which differs from

that identified at Re ≥ 150. In particular, the flow at Re < 150 still respects the same

reflectional symmetries of the geometry but the flow dynamics is dominated by different

systems of vortical structures. In the range 50 ≤ Re ≤ 125 the vortices originating in the

RL region are absent while those forming in the RH regions are still present, although they
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are progressively weaker as Re is decreased. At the same time another system of vortices

can be identified, which originates from the secondary flow forming in the inlet channels

near the confluence region between the three pipes. One among the four vortices of this

system, which are symmetrically arranged due to the flow symmetry, is shown in figure 6(a)

at Re = 100 with the label ”SV”. As shown in the figure, vortex SV is initially very weak

but gains intensity due to intense vortex stretching when entering the outlet pipe. As shown

in the figure, also the vortices (only one vortex is shown in the figure) originating in RH

are present but they are weak and placed in a high-shear region in the outlet pipe, so that

they do not play any significant role. Indeed, vortices dominating the secondary flow in the

outflow pipe are those originating from the secondary flow in the inlet pipes, i.e. SV, as

shown in figure 6(a). This is even clearer at Re = 25, as shown in figure 6(b), where the

recirculation region RH disappears together with the associated vortices. This last aspect is

put in evidence in the insert of figure 6(b) proposing a zoomed view of the velocity field near

the surface of the mixer where the RH region is usually positioned. Thus, at Re = 25 only

vortices SV are present and, as for Re = 100, they dominate the secondary flow observed

in the outlet pipe. Note that vortices SV can be found also for Re > 150 but they are

extremely weak in comparison with the other two systems of vortices and thus they do not

play any role in the flow.

Concerning the transition between the two main scenarios outlined here, which happens

approximately in the range 100 < Re < 150, this is smooth as observed by DNS and not

related to an abrupt change which might indicate a bifurcation.

C. Flow in the engulfment regime

When the Reynolds number exceeds the value Recr (we remind that 475 ≤ Recr ≤ 490,

see also figure 2) the flow undergoes a bifurcation and sets itself into a steady asymmetric

regime which is denoted here as engulfment. Despite the two reflectional symmetries of the

geometry are broken in the engulfment regime, nevertheless the flow field is symmetric by a

rotation of an angle equal to π around the symmetry axis of the outlet pipe or, equivalently,

by two subsequent reflections about the y−z and the x−z planes. This aspect is common to

the engulfment observed also in the STM and in rectangular T-mixers in general. Conversely,

one among the peculiarities of the engulfment in the CTM is that the flow remains practically
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FIG. 6. Flow field in the vortex regime at (a) Re = 100 and (b) Re = 25; sections show the in-plane

velocity direction by vectors and magnitude by color contour, while the streamlines identifying

vortices are coloured according to the axial vorticity (for the sign convention see the rotation

direction that can be desumed by the velocity arrows).

symmetric in the inlet pipes and in the confluence region, at least for z ≤ 0.9. At difference,

in the STM the asymmetry is very evident already in the confluence region, where the

vortices forming on the top wall of the mixer tilt and originate two strong and two weak legs

entering the outlet mixer, and the two strong ones, which are also co-rotating, dominate the

flow dynamics in the outlet pipe driving mixing by convection. In the CTM the flow remains

practically symmetric also in the very first part of the outlet pipe until the two couples of

counter-rotating vortices form from the sharp edges in proximity of the RL region. One

couple of counter-rotating vortices, namely L1 and L2, are visualized in figure 7(a) and (b) by

properly generated streamlines in lighter color. Only a couple is reported because the other

couple evolves symmetrically as explained above (rotational symmetry by an angle π around
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FIG. 7. Flow field in the engulfment regime at Re = 550: (a)-(b) perspective views of the vortices

originating from the RH (H1 and H2, darker color) and the RL (L1 and L2, lighter color) regions;

(c)-(l) z-sections of the flow showing the in-plane velocity (vectors) and the z-component of vorticity.

the z-axis). As vortices L1 and L2 travel towards the outlet channel while gaining intensity

due to vortex stretching, the two vortices of each couple start to develop asymmetrically,

and as a first consequence the RL separation regions loose their symmetry with respect

to the x − z plane, as shown in figure 8 where this is represented by a grey surface in

perspective (a), in y − z (b) and in x − z (c) views. Comparing the flow features shown

in figure 8 with the equivalent ones in figure 4 for the vortex regime, it is evident that

the RL region is now asymmetric as the vortices L1 and L2 which are associated with it,

visualized both in figure 7 and in figure 8. Also the four vortices forming in the RH region,
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FIG. 8. Flow field in the engulfment regime at Re = 550: separation region from the sharp edges

in the CTM in the engulfment regime (Re = 550), RL, visualized by a transparent grey surface

darker than the mixer walls, also shown for clarity; associated vortices are visualized by means of

streamlines in (a): (a) perspective view, (b) x− y view and (c) x− z view.

two of which are reported in figure 7(a) by proper streamlines in darker colours (see labels

H1 and H2), start to be asymmetric as a consequence of the interaction with L1 and L2.

This fact can be appreciated in figures 7(c)-(d) where the vortices are reported together

with the in-plane velocity field (vectors) and the z-component of vorticity (color contours)

at selected z-sections. Besides the increasing asymmetry of the configuration, the referenced

figures and especially subfigure 7(d) show that couples (H1,L1) and (H2,L2) interact as in

the vortex regime. However, due to the asymmetry highlighted above, the dynamics of the

two couples is different. This is well highlighted by following sequentially subfigures 7(e)-

(h), which contains the same information of the previously discussed subfigures but refer to

slices taken at increasing values of z. The sequence of subfigures shows that, as concerns

the couple (H1,L1), its development along the outlet pipe is similar to what observed in the

vortex regime. In particular, vortex H1 moves in a region with high in-plane shear which

becomes dominant deforming the vortex core of H1 until the vortex disappears. This is

confirmed by the representative iso-contour of the λ2 criterion also reported in the figures

as a red/black line. Surprisingly, the dynamics of the couple (H2,L2) is different. Indeed in

this case it is vortex L2 to move in a region of high in-plane shear and to disappear in the

sense already specified in the discussion of the vortex regime. As a consequence, for z ≥ 2
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only vortex H2 remains from couple (H2,L2), i.e. a vortex which originates from the RH

region, while only vortex L1 remains of the couple (H1,L1), i.e. a vortex originating from

the RL region. Inspecting subfigure 7(e-g) it is probable that the main part of vorticity

initially carried out by vortices H1 and L2 is collected by vortices L2 and H1, respectively.

Both L1 and H2 have similar amplitude, even if amplitude of L1 is slightly higher, and

L1 and H2 are counter-rotating. We remind that we are discussing the dynamics of the

flow in the outlet pipe for y ≥ 0, as the flow in y ≤ 0 is the same but rotated by an

angle π around the z-axis, as evident from the subfigures 7(c)-(l). Further downstream,

see subfigures 7(i)-(l) for z = 2.5 and z = 3 respectively, the flow field is dominated by

vortices L1, H2 and by their symmetrical ones. Since their intensity is comparable, and

since these 4 vortices are alternately counter-rotating, the flow maintains a configuration

which is not symmetric. Nevertheless, the two flows coming from the two inlet pipes are

definitely less mixed than in rectangular mixers, where only two co-rotating vortices are

present which induce a strong convection between the two inlet fluids. Moreover, in the

first part of the outlet pipe, approximately for z ≤ 1.0, the in-plane velocity field remains

almost symmetric with respect to the plane x = 0, and the flow coming from the the two

inlet pipes remains separated, mixing being caused mainly by diffusion in this part of the

channel. This aspect is well highlighted in figure 9, where the distribution of a passive

scalar is reported at representative sections in the outlet pipe, together with representative

streamlines of the secondary in-plane velocity vector aimed at highlighting convection due

to secondary flow. In simulating the dynamics of the passive scalar, whose value is 0 or 1

depending on which inlet pipe is considered, a diffusion equal to k = 3.0 · 10−4 has been

considered for numerical stability, thus limiting the observability of the separation between

the two flows when we consider a section z which is too far from the confluence region.

Nevertheless, the separation is quite sharp at least up to z = 3, which is the maximum

value considered in figure 9. Subfigures 9, especially if considered sequentially for increasing

values of z, show that convection, and the secondary flow in particular, plays a crucial role

in the redistribution of the passive scalar in the z-sections. However, the mixing between

the two flows coming from the two pipes remains moderate. The streamlines in subfigures 9

further confirm the analysis carried out on the basis of figure 7 on the vortex dynamics

in the engulfment regime, showing that after some distance from the confluence region a

four-vortices configuration is observed, where two vortices come from the RH region and
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FIG. 9. Flow field in the engulfment regime at Re = 550: distribution of a passive scalar, whose

value is 0 in one inlet pipe and 1 in the other, at different z sections in the outlet pipe from (a)

z=0.6 to (i) z=3.0; streamlines of the secondary in-plane velocity vector are also reported.

two from the RL region. On each side, x ≥ 0 and x ≤ 0, two counter-rotating vortices are

present, one coming from the RH and one from the RL region.

D. Stability analysis of the vortex regime

DNS simulations showed that for the CTM the engulfment regime is observed at Re =

490, whereas for Re = 475 the vortex regime is found and hysteresis in Re is absent as verified
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by DNS (not shown here for brevity). The flow at Re = 475 was selected as baseflow for the

stability analysis, in order to be as near as possible to the critical condition but still in the

subcritical range.

As a first step, by using the Arnoldi-Krylov algorithm on the linearized version of the

DNS code, the eigenvalue associated to the least stable mode was found to be slightly stable

(σ = −4.7 · 10−2). The identified value is in agreement with the non-linear simulations

as it indicates that for Re=475 the flow is almost marginally stable. Moreover, since the

investigated instability is a pitchfork one, a real eigenvalue is consistent with the searched

instability.

The critical Reynolds number is estimated by linearly extrapolating the value of Re such

that λ(Re) = 0 considering two slightly subcritical cases at Re = 450 and Re = 475. By

using the least stable eigenvalues found at Re = 450 (σ = −2.45 · 10−2) and at Re = 475

(σ = −4.7 · 10−2), the resulting critical Reynolds number for the circular section Recr is

equal to Recr ' 481. The Recr estimated by linear stability analysis carried out by the

matrix-method, i.e. with a numerical setup which is completely different from the one used

for DNS, is thus in the range [475− 490] estimated with DNS simulations.

A further confirmation that the identified eigenmode is the one related to the instability

leading to the engulfment regime has been obtained by comparing the perturbation field û

evaluated by DNS and the one obtained by linear stability, as depicted in Figure 10. The

velocity components on the left column were evaluated by subtracting the flow in subcritical

condition (Re = 475) from the postcritical one (Re = 490), i.e. solving equation (6) with

respect to u, while the ones on the right column were obtained through linear stability

analysis, properly rescaled in amplitude for simplifying the comparison against DNS. As it

can be seen from the comparison in figure 10, there is a good agreement between the least

stable eigenmode and the perturbation field obtained by DNS, further confirming that the

mode identified by the stability analysis is the one responsible for the onset of the observed

engulfment regime.

V. CONCLUSIONS

The flow occurring in T-mixers made by pipes with circular cross section has been in-

vestigated here. Despite the simplicity of the geometry and the interest of the scientific
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FIG. 10. CTM: comparison between perturbation field û at z=2 obtained by DNS (left) and global

linear stability (right); each row represents one velocity component, from the x-component on top

to the z-component at the bottom.

community for T-mixers operating at low Reynolds numbers, to the authors’ knowledge this

kind of mixers has not been systematically investigated in the literature before. Conversely,

several studies have been dedicated to investigate T-mixers made by channels with rectan-

gular cross sections, and the corresponding flow features have been well characterized in the

literature.

The present investigation is dedicated to study the characteristics of two regimes, i.e. the
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vortex and the engulfment regimes. Both regimes are investigated by numerical simulation.

The engulfment regime is the first one encountered, as Re is increased starting from low

values, in which the flow does not respect the reflectional symmetries of the geometry (al-

though both the geometry and the inflow conditions are symmetric). The vortex regime is

the regime which precedes the engulfment in terms of Re, in which the flow has the same

reflectional symmetries of the geometry. The two regimes and, in particular, the transition

from one to the other, are generally important in T-mixers as engulfment leads to a sub-

stantial increase of mixing. The transition between the two regimes have been investigated

here also by global stability analysis.

Results reported show that both the vortex and the engulfment regimes are substantially

different in comparison to what happens for mixers with rectangular channels. Firstly, the

occurrence of engulfment in circular T-mixers is observed at definitely larger values of Re

(about 3.5 times larger considering the STM). Moreover, it is shown that the vortex regime

in CTM is substantially different in comparison with the equivalent regime in rectangular

mixers because the vortical structures which dominate the flow have different origin in the

two cases. The difference between the two types of mixers is even more evident in the

engulfment regime. In the engulfment regime in circular T-mixers the flow is only mildly

asymmetric in contrast with rectangular ones and this is again caused by differences in the

dominant vortical structures. In particular, it is shown that the flow characteristics in the

circular case are dominated by the vortices forming at the curved edges at the intersection

between the three pipes, and asymmetry of the flow is evident only in the outlet pipe,

while in the inlet pipes and in the intersection region the flow practically maintains the

reflectional symmetries of the geometry. As a result, mixing is not significantly increased in

the engulfment regime in circular T-mixers, conversely to what observed for the rectangular

ones. Finally, global stability analysis, combined with DNS, provides evidence that the

instability leading the flow from the vortex to the engulfment regime is a supercritical

pitchfork bifurcation.
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