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We continue the study of model-independent constraints on the unitary conformal field theories (CFTs)

in four dimensions, initiated in [R. Rattazzi, V. S. Rychkov, E. Tonni, and A. Vichi, J. High Energy Phys.

12 (2008) 031]. Our main result is an improved upper bound on the dimension � of the leading scalar

operator appearing in the operator product expansion (OPE) of two identical scalars of dimension d:

�d ��d ¼ 1þO� þ . . . . In the interval 1< d< 1:7 this universal bound takes the form

� � 2þ 0:7ðd� 1Þ1=2 þ 2:1ðd� 1Þ þ 0:43ðd� 1Þ3=2. The proof is based on prime principles of CFT:

unitarity, crossing symmetry, OPE, and conformal block decomposition. We also discuss possible

applications to particle phenomenology and, via a 2D analogue, to string theory.
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I. INTRODUCTION AND FORMULATION
OF THE PROBLEM

Our knowledge about nonsupersymmetric conformal
field theories (CFTs) in four dimensions is still quite
incomplete. Suffice it to say that not a single nontrivial
example is known which would be solvable to the same
extent as, say, the 2D Ising model. However, we do not
doubt that CFTs must be ubiquitous. For example, non-
supersymmetric gauge theories with Nc colors and Nf

flavors are widely believed to have ‘‘conformal windows’’
in which the theory has a conformal fixed point in the IR,
with evidence from large Nc analysis [1], supersymmetric
analogues [2], and lattice simulations [3]. Since these fixed
points are typically strongly coupled, we do not have much
control over them. In this situation particularly important
are general, model-independent properties.

One example of such a property is the famous unitarity
bound [4] on the dimension � of a spin l conformal
primary operator O�;l

1:

� � 1 ðl ¼ 0Þ; � � lþ 2 ðl � 1Þ: (1.1)

These bounds are derived by imposing that the two-point
functions hOOi have a positive spectral density.

As is well known, three-point functions in CFT are fixed
by conformal symmetry up to a few arbitrary constants
[operator product expansion (OPE) coefficients]. The next
nontrivial constraint thus appears at the four-point function
level, and is known as the conformal bootstrap equation. It
says that OPE applied in the direct and crossed channel
should give the same result (see Fig. 1).

The bootstrap equation goes back to the early days of
CFT [5]. However, until recently, not much useful general
information has been extracted from it.2 All spins and

dimensions can a priori enter the bootstrap on equal foot-
ing, and this seems to lead to unsurmountable difficulties.
Recently, however, tangible progress in the analysis of

bootstrap equations was achieved in [7]. Namely, it was
found that, in unitary theories, the functions entering the
bootstrap equations (conformal blocks) satisfy certain pos-
itivity properties which lead to general necessary condi-
tions for the existence of solutions.
The concrete problem considered in [7], and which we

will continue to discuss here, was as follows. In an arbi-
trary unitary CFTa Hermitian scalar primary�d of dimen-
sion d was singled out. The conformal bootstrap equation
for its four-point function h�d�d�d�di was studied under
the sole assumption that all scalars in the OPE �d ��d

have dimension above a certain number, call it �min:

�d ��d ¼ 1ðScalars of dimensions � �minÞ
þ ðHigher spinsÞ: (1.2)

It was shown that the conformal bootstrap does not allow
for a solution unless

�min � fðdÞ; (1.3)

where fðdÞ is a certain continuous function, computed
numerically. We stress that this conclusion was reached
without making any assumptions about dimensions or
spins of other operators appearing in the OPE, beyond
those implied by the unitarity bounds. Nor any assump-
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O

FIG. 1 (color online). The conformal bootstrap equation. The
red (dark gray) line denotes a conformal block, summing up
exchanges of a primary operator O and all its descendants.

1Here we quote only the case of symmetric traceless tensor
operators.

2Except in 2D, in theories with finitely many primary fields,
and in the Liouville theory [6]. We will comment on the 2D case
in Secs. IVA and V below.
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tions about the OPE coefficients were made (apart from
their reality, which is again implied by unitarity).

In other words, in any unitary 4D CFT, the OPE of any
scalar primary �d must contain at least one scalar field
O� with dimension not larger than fðdÞ.

Incidentally, the function fðdÞ was found to satisfy
fð1Þ ¼ 2, which is quite natural since d ¼ 1 corresponds
to the free field whose OPE contains the operator :�2: of
dimension 2.

What makes the result like (1.3) possible? The basic
reason is that, in any theory, the crossing symmetry relation
of Fig. 1 cannot be satisfied term by term, but only by
cancellations among various terms. The guaranteed pres-
ence of the unit operator in the OPE (1.2) creates a certain
‘‘crossing symmetry deficit,’’ which has to be balanced by
other fields. The idea is to show that this cannot happen
unless at least one scalar of sufficiently low dimension is
present.

Technically, the method of [7] consists of 3 steps (see
Sec. III for a detailed review):

(1) We Taylor-expand the conformal bootstrap equation
near the ‘‘self-dual point’’ configuration having
equal conformal cross-ratios u ¼ v. The expansion
is truncated to a certain finite order N.

(2) We systematically search for positivity properties
satisfied by linear combinations of Taylor coeffi-
cients of the conformal blocks, for fields appearing
in the right-hand side (RHS) of the OPE (1.2). A
found positivity property implies that the ‘‘crossing
symmetry deficit’’ cannot be balanced and rules out
a CFT with a given d and �min.

(3) For fixed d, the bound fðdÞ is then computed as the
point separating those �min for which a positivity
property exists, from those ones for which it does
not (Fig. 2).

The nature of the method is such that increasing N can
make the bound only stronger. The optimal bound should
in principle be recoverable in the limit N ! 1. In practice
the value of N is determined by the available computer
resources and algorithmic efficiency. The best bound found
in [7], plotted in Fig. 3, corresponds to N ¼ 6:

The purpose of this paper is to present an improvement
of the bound (1.3) obtained by using the method of [7] with
larger values of N, up to N ¼ 18. The new results are
interesting in two ways. First, pure numerical improvement
turns out to be significant. Second, N ¼ 18 happens to be
large enough so that we start observing saturation of the

bound. So we believe our current results are close to the
optimal ones achievable with this method.
The paper is organized as follows. In Sec. II we review

the conformal bootstrap equations. In Sec. III we review
the connection of the bound (1.3) with positivity properties
satisfied by the conformal block expansion coefficients. In
Sec. IV we present and discuss our results. We also men-
tion accompanying results which we obtain for an analo-
gous problem in 2D. In Sec. V we propose several future
applications and extensions of our method, with emphasis
on connections to phenomenology and string theory. In
Sec. VI we summarize and conclude. In Appendix A we
collect some details about our numerical algorithms. In
Appendix B we include the tables on which plots in Sec. IV
are based.

II. REVIEW OF CONFORMAL BOOTSTRAP

We will review the conformal bootstrap equation in its
simplest form—as applied to the four-point function of
identical scalars h����i. We largely follow [7], where
a more detailed discussion and references can be found.

A. Conformal block decomposition

Let � � �d be a Hermitian scalar primary3 operator.
The OPE ��� contains, in general, infinitely many
primary fields of arbitrary high spins and dimensions4:

�ðxÞ�ð0Þ� 1

jxj2d
�
1þ X

l¼2n

c�;l½jxj��KlðxÞ �O�;lð0Þþ ����
�
;

KlðxÞ ¼ x�1 � � �x�l

jxjl : (2.1)

Here
(i) l ¼ 2n by Bose symmetry;

minf d

 excluded
(positivity property exists)

 allowed
(no positivity property)

FIG. 2 (color online). The bound fðdÞ is the smallest �min for
which a positivity property exists.
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FIG. 3 (color online). The bound f6ðdÞ ’ 2þ 1:79
ffiffiffiffiffiffiffiffiffiffiffiffi
d� 1

p þ
2:9ðd� 1Þ, 1 � d � 1:35, corresponding to N ¼ 6, reproduced
from [7].

3The field is called primary if it transforms homogeneously
under the 4D conformal group.

4If there are several primaries with the same �, l, they all have
to be included in this sum with independent coefficients.
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(ii) � � 1 (� � lþ 2) for l ¼ 0 (l � 2) by the unitar-
ity bounds (1.1);

(iii) The . . . stands for contributions of descendants of
the primary O�;l (i.e. its derivatives). These con-

tributions are fixed by conformal symmetry;
(iv) The OPE coefficients c�;l are real (see Appendix A

of [7]).
We assume that the OPE converges in the following

weak sense: it gives a convergent power series expansion
for any (2þ n)-point function

h�ðxÞ�ð0ÞA1ðy1Þ . . .AnðynÞi
provided that jxj< jyij, i.e.�ðxÞ is closer to the origin than
any other local field insertion (see Fig. 4). This assumption
can be justified by using radial quantization ([8], Sect. 2.9),
and checked explicitly in free field theory. For rigorous
mathematical results about OPE convergence, see [9].

The OPE (2.1) can be used to obtain conformal block
decomposition of the four-point function h����i:

h�ðx1Þ�ðx2Þ�ðx3Þ�ðx4Þi ¼ gðu; vÞ
x2d12x

2d
34

; (2.2)

gðu; vÞ ¼ 1þX
p�;lg�;lðu; vÞ; p�;l � c2�;l � 0;

(2.3)

where u ¼ x212x
2
34=ðx213x224Þ, v ¼ x214x

2
23=ðx213x224Þ are the

conformal cross-ratios. This representation is obtained by
using the OPE in the 12 and 34 channels. The conformal
blocks g�;lðu; vÞ sum up the contributions of the primary

O�;l and all its descendants. Their explicit expressions

were found by Dolan and Osborn [10]:

g�;lðu; vÞ ¼ ð�Þl
2l

z�z

z� �z
½k�þlðzÞk��l�2ð�zÞ � ðz $ �zÞ�;

k�ðxÞ � x�=22F1ð�=2; �=2; �; xÞ;
u ¼ z�z; v ¼ ð1� zÞð1� �zÞ:

(2.4)

Notice the judicious introduction of the auxiliary varia-
bles z and �z. When the theory is formulated in the
Euclidean space, these variables are complex conjugates
of each other. To understand their meaning, it is convenient
to use the conformal group freedom to send x4 ! 1 and to
put the other three points in a plane, as in Fig. 5. Then it’s

easy to show that

z ¼ 1

2
þ X þ iY; �z ¼ z	; (2.5)

where ðX; YÞ are the coordinates of x2 in the plane, chosen
so that X ¼ Y ¼ 0 corresponds to x2 halfway between x1
and x3. This ‘‘self-dual’’ configuration, for which u ¼ v,
will play an important role below. We can see that the z
variable is a natural extension of the usual complex coor-
dinate of the 2D CFT to the 4D case.
According to the above discussion, the OPE is expected

to converge for jzj< 1. Conformal block decomposition is
a partial resummation of the OPE and thus also converges
at least in this range. In fact, below we will only use
convergence around the self-dual point z ¼ 1=2.
However, conformal blocks, as given by (2.4), are regular
(real-analytic) in a larger region, namely, in the z plane
with the ð1;þ1Þ cut along the real axis (see Fig. 5). The
conformal block decomposition is thus expected to con-
verge in this larger region. One can check that this indeed
happens in the free scalar theory.
One can intuitively understand the reason for this ex-

tended region of regularity. The condition for the OPE
convergence, as stated above, does not treat the points x
and 0 symmetrically. On the other hand, the conformal
blocks are completely symmetric in x1 $ x2 and so must
be the condition for their regularity. The appropriate con-
dition is as follows: the conformal block decomposition in
the 12–34 channel is regular and convergent if there is a
sphere separating the points x1;2 from the points x3;4. For
the configuration of Fig. 5, such a sphere exists as long as
x2 is away from the cut.

B. Conformal bootstrap and the sum rule

The four-point function in (2.2) must be symmetric
under the interchange of any two xi, and its conformal
block decomposition (2.3) has to respect this symmetry.
The symmetry with respect to x1 $ x2 or x3 $ x4 is al-
ready built in, since only even spins are exchanged [10].
On the contrary, the symmetry with respect to x1 $ x3
gives a condition

vdgðu; vÞ ¼ udgðv; uÞ; (2.6)

which is not automatically satisfied for gðu; vÞ given by

A1

A2

A3

0 x

FIG. 4. The operator product expansion of �ðxÞ�ð0Þ con-
verges for this configuration.

X

Y

x1

x4

0.50.5

x2

x3

FIG. 5 (color online). The auxiliary z coordinate. The confor-
mal blocks are regular outside the cut denoted by the zigzag line.

UNIVERSAL CONSTRAINTS ON CONFORMAL OPERATOR . . . PHYSICAL REVIEW D 80, 045006 (2009)

045006-3



(2.3). This nontrivial constraint on dimensions, spins, and
OPE coefficients of all operators appearing in the OPE
��� is known as the conformal bootstrap equation.
Physically it means that OPE applied in 12–34 and
14–23 channels should give the same result (Fig. 1).

In the z plane of Sec. II A, the left-hand side (LHS) of
(2.6) has a cut along ð1;þ1Þ, while the RHS has a cut
along ð�1; 0Þ: Thus, if (2.6) is satisfied, the cuts have to
cancel, and the resulting gðu; vÞ is real analytic everywhere
except for z ¼ 0, 1.

In [7], we found it useful to rewrite (2.6) by separating
the unit operator contribution, which gives

ud � vd ¼ X
p�;l½vdg�;lðu; vÞ � udg�;lðv; uÞ�: (2.7)

The LHS of this equation is the ‘‘crossing symmetry
deficit’’ created by the presence of the unit operator in
the OPE. This deficit has to be balanced by contributions of
the other fields in the RHS.

In practice it is convenient to normalize (2.7) by dividing
both sides by ud � vd. The resulting sum rule takes the
form:

1 ¼ X
p�;lFd;�;lðX; YÞ;

Fd;�;lðX; YÞ � vdg�;lðu; vÞ � udg�;lðv; uÞ
ud � vd

:

(2.8)

The ‘‘F functions’’ Fd;�;l are real and regular in the full

z-plane cut along ð�1; 0Þ [ ð1;þ1Þ: In particular, the 0=0
behavior at the self-dual point z ¼ 1=2 is regular.

All F functions vanish near the points z ¼ 0 and z ¼ 1:
Thus the sum rule can never be satisfied near these points if
only finitely many terms are present in the RHS. The OPEs
containing finitely many primaries are ruled out.

III. POSITIVITYARGUMENT

The main idea of [7] was very simple, and can be
described as follows. Suppose that for a given spectrum
of operator dimensions and spins f�; lg the sum rule (2.8),
viewed as an equation for the coefficients p�;l � 0, has no
solution. Then of course such a spectrum would be ruled
out.

Any concrete realization of this idea needs a practical
criterium to show that there is no solution. For a proto-
typical example of such a criterium, imagine that a certain
derivative, e.g. @X [see (2.5)], when applied to every Fd;�;l

and evaluated at a certain point, is strictly positive (‘‘pos-
itivity property’’). Since the same derivative applied to the
LHS of (2.8) gives identically zero, a solution where all
coefficients p�;l are non-negative would clearly be impos-

sible. We refer to this simple reasoning as the ‘‘positivity
argument.’’

One can imagine more general criteria using different
differential operators, and applying them at different

points. In [7], we found it convenient to apply differential
operators precisely at the self-dual point z ¼ 1=2,
X ¼ Y ¼ 0. One can show that the F functions are even
with respect to this point both in the X and Y directions:

FðX; YÞ ¼ FðX;�YÞ ¼ Fð�X; YÞ:
Thus, all odd-order derivatives vanish, and a sufficiently
general differential operator (‘‘linear functional’’) takes the
form:

�½F� ¼ X
m;n even

2�mþn�N

�m;n@
m
X@

n
YFjX¼Y¼0; (3.1)

whereN is some fixed finite number, and �m;n are fixed real

coefficients.5 Notice the exclusion of the constant term
m ¼ n ¼ 0, in order to have �½1� ¼ 0.
Assume that for certain fixed d and �min, we manage to

find a linear functional of this form such that (‘‘positivity
property’’)

�½Fd;�;l� � 0 for all � � �minðl ¼ 0Þ
and for all � � lþ 2ðl ¼ 2; 4; 6 . . .Þ: (3.2)

Moreover, assume that all but a finite number of these
inequalities are actually strict: �½F�> 0. Then the sum
rule cannot be satisfied, and such a spectrum, correspond-
ing to a putative OPE (1.2), is ruled out.
The proof uses the above ‘‘positivity argument.’’ Since

�½1� ¼ 0, the positivity property implies that only those
primaries for which �½F� ¼ 0 would be allowed to appear
in the RHS of the sum rule with nonzero coefficients. By
assumption, there are at most a finite number of such
primaries. However, as noted in Sec. II B, finitely many
terms can never satisfy the sum rule globally, because of
the behavior near z ¼ 0, 1. Q.E.D.
While the above formal reasoning is quite sufficient to

understand our results, in [7] the sum rule was also given an
alternative interpretation in terms of convex geometry. In
this more visual picture, linear combinations of F functions
with arbitrary positive coefficients form a convex cone in
the space of two-variable functions. One can consider the
full function space or its finite-dimensional subspace cor-
responding to Taylor-expanding up to order N. Positivity
property (3.2) means that there is a hyperplane separating
the function 1 from the convex cone. Thus it implies that
the sum rule cannot be satisfied. The converse is ‘‘almost
true,’’ modulo questions of convergence.
Clearly, the language of linear functionals provides an

equivalent, dual formulation of the problem. This formu-

5In [7], we analytically continued to the Minkowski space by
Wick-rotating Y ! iT. In this picture z and �z are both real and
independent, and conformal blocks are real regular functions in
the region 0< z, �z < 1. For our purposes Minkowski and
Euclidean pictures are exactly equivalent. In particular, deriva-
tives of F functions in Y and T are trivially proportional to each
other.
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lation is also especially convenient from the point of view
of checking our results independently. It’s not so important
how we find the functionals. As long as we publish the
functional coefficients �m;n, anyone can verify that the

inequalities (3.2) are satisfied.

IV. RESULTS, DISCUSSION, AND 2D ANALOGUE

As discussed in Sec. I, we are interested in computing an
upper bound (1.3) for the dimension �min of the leading
scalar in the OPE �d ��d, universal for all unitary 4D
CFTs. In [7], we have computed such a bound in the
interval 1 � d � 1:3, using the sum rule of Sec. II B trun-
cated to the N ¼ 6 derivative order. That bound is repro-
duced in Fig. 3.

We now present the results of our latest study, obtained
for larger values ofN. These results6 are plotted in Fig. 6 as
a collection of curves fNðdÞ, N ¼ 6 . . . 18, where the index
N denotes the number of derivatives used to obtain the
bound. The bound naturally gets stronger as N increases
(see below), and thus the lowest curve f18ðdÞ is the stron-
gest bound to date. In the considered interval 1 � d � 1:7
this bound is well approximated (within 0.5%) by

f18ðdÞ ’ 2þ 0:7�1=2 þ 2:1�þ 0:43�3=2; � ¼ d� 1:

(4.1)

To obtain the bounds of Fig. 6, we used the positivity
argument from [7], as reviewed in Sec. III. Namely, for
points lying on the curves�min ¼ fNðdÞwe are able to find
a linear functional of the form (3.1) satisfying the positivity
property (3.2).7 The numerical procedure that we use to
find these ‘‘positive functionals’’ is described in some de-
tail in Appendix A.

Several comments are in order here.
(1) We have actually computed the bound only for a

discrete number of d values, shown as points in
Fig. 6. The tables of these computed values are given
in Appendix B. Behavior for d ! 1 can be better
appreciated from the logarithmic-scale plot in Fig. 7.
We do not see any significant indication which could
suggest that the curves fNðdÞ do not interpolate
smoothly in between the computed points. Small
irregularities in the slope are however visible at
several points in Figs. 6 and 7. These irregularities
are understood; they originate from the necessity to
discretize the infinite system of inequalities (3.2):
see Appendix A for a discussion. In our computa-
tions the discretization step was chosen so that
these irregularities are typically much smaller
than the improvement of the bound that one gets
for N ! N þ 2.

(2) For each N the bound fNðdÞ is near optimal, in the
sense that no positive functional involving deriva-
tives up to order N exists for

�min � 2< ð1� "Þ½fNðdÞ � 2�:
We estimate " ’ 1% from the analysis of residuals
in the fit of fNðdÞ by a smooth curve like in (4.1).
On the other hand, by increasing N we are allowing
more general functionals, and thus the bound fNðdÞ
can and does get stronger. This is intuitively clear
since for larger N the Taylor-expanded sum rule
includes more and more constraints.

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7
2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

d

m
in fN

d , N
6...1

8

f d ?

min
2d

FIG. 6 (color online). Our main results. The solid curves are
the bounds fNðdÞ, N ¼ 6 . . . 18. The bounds get stronger as N
increases, thus N ¼ 6 is the weakest bound (highest curve), and
N ¼ 18 is the current best bound (lowest curve). The shaded
region is thus excluded. The dashed curve f1ðdÞ is an approxi-
mation to the best-possible bound, obtained by extrapolating
N ! 1. The dotted line �min ¼ 2d is realized in a family of
‘‘generalized free scalar’’ CFTs, and is compatible with our
bounds.

0.500.200.100.050.020.01

1.0

0.5

2.0

0.2

0.1

d 1

m
in

2

fN d 2, N 6...18

N 6

N 18

FIG. 7 (color online). Same as Fig. 6 but with anomalous
dimensions d� 1, �� 2 in logarithmic scale. The shaded
region is excluded.

6See Appendix B for the same results in tabular form.
7Thus actually the bound is strict: �min < fNðdÞ, except

at d ¼ 1.
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Compared to the results of [7], the bound on the
anomalous dimension �min � 2 is improved by
�30
 50% in the range 1 � d � 1:7 that we
explored.

(3) We have pushed our analysis to such large values of
N in the hope of seeing that the bound saturates as
N ! 1. Indeed, we do observe signs of conver-
gence in Figs. 6 and 7, especially at d * 1:1. In
fact, we have observed that the bounds fNðdÞ start-
ing from N ¼ 8 follow rather closely the asymptotic
behavior

fNðdÞ ’ f1ðdÞ þ cðdÞ
N2

; ð1 � d � 1:7Þ:

An approximation to the optimal bound f1ðdÞ can
thus be found by performing for each d a fit to this
formula. This approximation is shown by a dashed
line in Fig. 6. From this rough analysis we conclude
that the optimal bound on the anomalous dimension
�min � 2 is probably within�10% from our current
bound.

(4) We have fNðdÞ ! 2 continuously as d ! 1. The
point d ¼ 1,�min ¼ 2 corresponds to the free scalar
theory.

We do not know of any unitary CFTs that saturate our
bound at d > 1; see the discussion in Sec. 6 of [7]. We
know however a family of unitary 4D CFTs in which
�min ¼ 2d and which are consistent with our bound (the
red dotted line in Fig. 6). This ‘‘generalized free scalar’’
theory is defined for a fixed d by specifying the two-point
function

h�ðxÞ�ð0Þi ¼ jxj�2d;

and defining all other correlators of � via Wick’s theorem.
This simple procedure gives a well-defined CFT, unitary as
long as d � 1, which can be described by a nonlocal action

S /
Z

d4x�ð@2Þd�:

The full operator content of this theory can be recovered by
studying the OPE ���. In particular, the leading scalar
in this OPE has dimension 2d.8

A. 2D analogue

Although our main interest is in the 4D CFTs, our
methods allow a parallel treatment of the 2D case. The
main characteristics of the 2D situation were described in
Sec. 6.1 of [7], here will briefly review them.

(1) At present we can only take advantage of the finite-
dimensional SLð2;CÞ symmetry and not of the full
Virasoro algebra of the 2D CFTs. In particular, our
results are independent of the 2D central charge c.

(2) The unitarity bounds for SLð2;CÞ primaries9 in 2D
have the form

� � l; l ¼ 0; 1; 2 . . . ;

where l is the Lorentz spin.
(3) The SLð2;CÞ conformal blocks in 2D are known

explicitly [10]:

g�;lðu; vÞ ¼ ð�Þl
2l

½f�þlðzÞf��lð�zÞ þ ðz $ �zÞ�:
(4.2)

Using the unitarity bounds, the known conformal blocks,
and the sum rule (2.8), valid in any dimension, we can try
to answer the same question as in 4D. Namely, for a
SLð2;CÞ scalar primary� of dimension d, what is an upper
bound on the dimension �min of the first scalar operator
appearing in the OPE ���? I.e. we want a 2D analogue
of the bound (1.3). Since the free scalar is dimensionless in
2D, the region of interest is d > 0.
Figure 8 summarizes our current knowledge of this

bound10:
(i) The dotted line is the old N ¼ 2 bound presented in

[7]. The solid line is the N ¼ 12 improved bound
obtained by us.11 A numerical fit to this bound is
given by

fð2DÞ
12 ðdÞ ’

�
4:3dþ8d2�87d3þ2300d4; d& 0:122;
0:64þ2:87d; d* 0:122:

Clearly, the improvement compared to [7] is
significant.
It is interesting to note that in 2D we have observed a
much faster convergence for increasing N than in
4D. In fact, already with N ¼ 6 it is possible to
obtain a bound rather close to the one shown in
Fig. 8, although with a slightly rounded ‘‘knee.’’
We have also computed several points for N ¼ 16
and have not seen much improvement.

(ii) The dashed line and scattered crosses correspond to
various OPEs realized in explicit examples of ex-
actly solvable unitary 2D CFTs (minimal models
and the free scalar theory); see [7]. They all respect
our bound.

It is instructive to compare this plot with its 4D counter-
part, Fig. 6. While we do not know of any CFTs

8This theory can also be realized holographically by consid-
ering a free scalar field of a particular d-dependent mass in the
AdS geometry and taking the limit in which 5D gravity is
decoupled. We are grateful to Kyriakos Papadodimas for dis-
cussions about the generalized free scalar CFT.

9Known as quasiprimaries in 2D CFT literature.
10See Appendix B for the results in tabular form.
11We are grateful to Erik Tonni for providing us with the large
�, l asymptotics of the 2D conformal block expansion coeffi-
cients, necessary to obtain this bound.
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saturating the 4D bound, the 2D unitary minimal models
Mðm;mþ 1Þ, m ¼ 3; 4; . . . , contain the OPEs

c � c ¼ 1þ c 2 þ . . . ; �c ¼ 1

2
� 3

2ðmþ 1Þ ;

�c 2 ¼ 2� 4

mþ 1
; (4.3)

which come quite close to saturating the 2D bound.
More precisely, our 2D bound starts at ð0; 0Þ tangentially

to the line � ¼ 4d realized in the free scalar theory, then
grows monotonically and passes remarkably closely above
the Ising model point ð��;�"Þ ¼ ð1=8; 1Þ. After a knee
at the Ising point, the bound continues to grow linearly,
passing in the vicinity of the higher minimal model
points (4.3).

It is curious to note that if we did not know beforehand
about the Ising model, we could have conjectured its field
dimensions and the basic OPE �� � ¼ 1þ " based on
the singular behavior of the 2D bound at d ¼ 1=8:

On the other hand, nothing special happens with the 2D
bound at the higher minimal model points, it just interpo-
lates linearly in between.12 Most likely, this does not mean
that there exist other unitary CFTs with intermediate op-
erator dimensions. Rather, this behavior suggests that the
single conformal bootstrap equation used to derive the
bound is not powerful enough to fully constrain a CFT.

In comparison, it is a bit unfortunate that the 4D bound
does not exhibit any singular points which would immedi-
ately stand out as CFT candidates. Nevertheless, if we

assume that the shape of the 4D bound is a result of an
interpolation between existing CFTs (as it is the case in
2D), we may conjecture that the upward convex behavior
of the functions fNðdÞ in Fig. 6 is due to the presence of a
family of points satisfying the sum rule that can correspond
to exact CFTs. This observation, though speculative, shows
how the presented method can provide a guideline in the
study of 4D CFTs.

V. FUTURE RESEARCH DIRECTIONS

The results of this paper and of [7] open up many
interesting research directions, which we would like to
list here.
First, there are several important problems in 4D con-

formal field theory which can be analyzed by our method
and its simple modifications. For example:
(1) One should be able to derive a generalization of our

bounds in the situation when the CFT has a global
symmetry, and we are interested in the lowest di-
mension singlet appearing in the OPE. This is going
to have phenomenological implications by con-
straining the so-called conformal technicolor sce-
narios of electro-weak symmetry breaking [11].
This connection was extensively discussed in [7].

(2) One should be able to derive model-independent
bounds on the size of OPE coefficients. This is going
to be relevant for discussions of ‘‘unparticle self-
interactions’’ [12], in the context of unparticle phys-
ics scenarios [13].

Second, the method can also be used in 2D conformal
field theory, as was already demonstrated in Sec. IVA. The
main interest here lies in potential applications to string
theory. We will now briefly describe two such applications.
Physical states of (super)string theory are in 1-1 corre-

spondence with Virasoro primary operators of a 2D CFT
living on the string world sheet. The mass of a string state
(in string units) is related to the corresponding primary
operator dimension � via

m2 ¼ �� 2:

We are considering closed string theory for concreteness.
When strings propagate in flat space, the CFT is solvable
and the full spectrum of operator dimensions is known.
Realistic string constructions require compactifications of
extra dimensions. In some examples, such as toroidal
compactifications, the CFT is still solvable. In others,
such as superstring compactifications on a generic
Calabi-Yau three-fold, the CFT cannot be solved exactly.
All what is generally known is the spectrum of the massless
states, which can be obtained in the supergravity approxi-
mation. Of course we expect the massive string states to be
always present, but just how heavy can they be? We know
from the experience with toroidal compactifications that it
is impossible to completely decouple the massive states: as
the compactification radius R ! 0, the Kaluza-Klein states

FIG. 8 (color online). See the text for an explanation. The þ
cross denotes the position of the Ising model, the � crosses
marked c , c 2 correspond to the OPEs realized in the higher
minimal models, as in Fig. 15 of [7]. The shaded region is
excluded.

12The straight line fitting the bound would cross the dashed
Free theory line just above d ¼ 0:5, which is the accumulation
point of the minimal models Mðm;mþ 1Þ. For larger values of
d we expect that the bound modifies its slope and eventually
asymptotes to the Free line.
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become more massive, but the winding modes come down.
Clearly, massive string states are crucial for the consistency
of the theory. What exactly are they doing? A partial
answer may be that without their presence, four-point
functions of the massless state vertex operators would not
be crossing-symmetric. If this intuition is right, it could be
used to obtain model-independent bounds on the lightest
massive states in string compactifications, generalizing the
well-known bounds valid for toroidal compactifications. A
similar in spirit general prediction of string gravity,
although in a different context and by using different
methods, was obtained recently in [14].

When working towards results of this kind, it may be
necessary to generalize our methods so that the informa-
tion about the 2D CFT central charge, which is fixed in
string theory, can be taken into account. In practice, one
needs an efficient method to evaluate the full Virasoro
conformal blocks. While no closed-form expression as
simple as Eq. (4.2) is known, Zamolodchikov’s expansion
(see [6]) can probably be applied.

Finally, as mentioned above in the 4D context, it should
be possible to derive model-independent bounds on the
OPE coefficients. Such results must be accessible via a
simple modification of our method, in particular, the full
Virasoro conformal blocks are not needed here. One can
then apply such bounds to the dimension 2 operators
corresponding to the massless string states (in an arbitrary
compactification). Via the usual dictionary, this would then
translate into general bounds on the tree-level coupling
constants in the low-energy string effective actions.

VI. SUMMARY

Prime principles of conformal field theory, such as uni-
tarity, OPE, and conformal block decomposition, imply the
existence of an upper bound fðdÞ on the dimension �min of
the leading scalar operator in the OPE ���, which
depends only on �’s dimension d.

Moreover, there is an efficient method which allows
numerical determination of fðdÞ with arbitrary desired
accuracy. The method is based on the sum rule, a
function-space identity satisfied by the conformal block
decomposition of the four-point function h����i, which
follows from the crossing symmetry constraints. In prac-
tical application of the method the sum rule is Taylor-
expanded: replaced by finitely many equations for the
derivatives up to a certain order N. The bound fðdÞ im-
proves monotonically as more and more derivatives are
included. In [7], where the above paradigm was first de-
veloped, we numerically computed the bound for N ¼ 6.

The present paper extended the study of [7] to higher N:
The goals were to improve the bound, and perhaps to
approach the best-possible bound in case a convergence
of the bound is observed.

Our analysis went up toN ¼ 18 (see Fig. 6) and we have
achieved both goals. First, in the range 1 � d � 1:7 that

we explored, the bound on the anomalous dimension
�min � 2 is improved by 30
 50% compared to the results
of [7]. Second, we do observe signs of convergence of the
bound. We believe that our current results are close (within
�10%) to the best ones achievable with this method.
The results of this paper and of [7] suggest several

interesting research directions, connected with phenome-
nology and, via the 2D analogue of our method, with string
theory (see Section V).
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APPENDIX A: DETAILS ABOUT NUMERICAL
ALGORITHMS

We now discuss in more detail the issues introduced in
Sec. III, namely, how we can find in practice a linear
functional �½F� of the form (3.1) satisfying the positivity
property (3.2). We will first describe the general procedure
and how it can implemented in a computer code, and then
mention possible algorithmic improvements and shortcuts
that we found useful in our analysis.
Given the complexity of the functions Fd;�;l, the search

for a positive functional is too hard a task to be attacked
analytically. As already mentioned, we reduce the com-
plexity of the problem by looking for a functional which is
a linear combination of derivatives up to a given order N.
The derivative are taken with respect to (w.r.t.) the self-
dual point X ¼ Y ¼ 0, since the sum rule is expected to
converge fastest around this point and, in addition, the
functions Fd;�;lðX; YÞ are even in both arguments. The

choice of the functional (3.1) simplifies our task enor-
mously since we can now work in a finite-dimensional
space, and the only information concerning Fd;�;l that we

need are their derivatives up to a certain order. Put another
way, the F functions are now considered as elements not of
a function space but of a finite-dimensional vector space
Rs, s ¼ NðN þ 6Þ=8.
The sum rule (2.8) in this picture represents a constraint

on these vectors that, in any CFT, must sum to zero. This
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interpretation is discussed in detail in [7]. Here we adopt an
equivalent point of view in terms of the dual space of linear
functionals defined on Rs since we find this prospective
closer to the method used to obtain numerically �½F�.

Let us fix the notation. We define the s-dimensional
vector of Taylor coefficients:

F 0½d; �; l� �
�

1

m!n!
Fðm;nÞ
d;�;l jm; n even; 2 � mþ n � N

�
;

Fðm;nÞ
d;�;l � @mX@

n
YFd;�;ljX¼Y¼0; � � �� l� 2;

(A1)

and the same vector normalized to the unit length:

F ½d; �; l� � F 0

kF 0k ; (A2)

where the norm kF 0k is the usual Euclidean length of the
vector F 0.

We form the vector F 0 out of the Taylor coefficients of
the function Fd;�;;l rather then of its derivatives, because

this way all elements turn out to have approximately the
same order of magnitude, which is preferable in the sub-
sequent numerical computation. The definition of the nor-
malized vector F serves the same purpose. Indeed, as
explained in the following, our numerical analysis consist
in finding a solution of a system of linear inequalities
where the coefficient are given by the elements of
F ½d; �; l�. The solution is more accurate and easier to
extract if all the coefficient are of the same order of
magnitude. Since the existence of the functional � is not
affected by these rescalings, we opted for the definition
(A1) and (A2).

According to the positivity property we look for a func-
tional which is strictly positive on all but finitely many
vectors F ½d; �; l�. Let us fix the dimension d of the scalar
�d. Then each pair�, l identifies the semispace of ðRsÞ	 of
the functionals positive definite on the vectors F ½d; �; l�;
let us call this open sets Ud;�;l. With this notation the

positivity property (3.2) can be restated in the following
way: If for fixed d and �min\

���min ;l¼0
��lþ2;l¼2;4;...

Ud;�;l � ;; (A3)

then the sum rule cannot be satisfied. The issue is thus to be
able to check whether the intersection (A3) is nonempty,
and to compute the smallest�min for which this is the case.

Clearly it is neither possible nor needed to check all the
values of � as required by the condition (A3). We can
indeed consider only a finite number of them and check if
they admit the existence of a functional or not. This can be
achieved with a double simplification. First, we consider
values of � and l only up to a given maximum value
(‘‘truncation’’), and second, we discretize the kept range
of � (‘‘discretization’’). The truncation does not produce a
loss of information since we take into account the large �

and l contributions using the asymptotic expressions com-
puted in Appendix D of [7]. The discretization step re-
quires special care; see below.
We used MATHEMATICA 7 to perform the computations.

The algorithm to extract the smallest value of �min pro-
ceeds in several steps:
(1) Setting up an efficient procedure to compute vectors

F ½d; �; l�:
(2) Selection of the l’s and �’s to be used in checking

the positivity property (A3). For concreteness we
report here the range of l, � that we were includ-
ing13:

2 � l � lmax ¼ 50: 0 � � � 200;

l ¼ 0: �min � �min � 2 � � � 200:
(A4)

For each l the range of � was discretized, and a
discrete set of points was chosen, called �l below.
The derivatives of the F functions approach zero as
� ! 1 and reach the asymptotic behavior for suffi-
ciently large values. We take a finer discretization
where the function are significantly varying while
we can allow to increase the step in the asymptotic
region. More details are given below.

(3) Reduction to a Linear Programming problem. With
only a finite number of equations to check,
the determination of the intersection of the
Ud;�;l becomes a standard problem of Linear

Programming which can be solved in finite amount
of time. Hence we look for a solution of the linear
system of inequalities

�½F ½d; �; l�� � X
~�m;nF m;n � 0;

� 2 �l; l ¼ 0 . . . lmax:
(A5)

Clearly, the coefficients ~�m;n are related to those

appearing in (3.1) by a trivial rescaling depending
on m, n:

~�m;n ¼ m!n!�m;n

Further, the asymptotic behavior of the F functions
(see below) tells us that for large � the inequality is
dominated by the ðN; 0Þ derivative

�½Fd;�;l� ! ~�N;0F
ðN;0Þ
d;�;l ð� � l � 1Þ; (A6)

hence ~�N;0 needs to be positive. By an overall

rescaling of � we can always achieve

~�N;0 ¼ 1; (A7)

which we choose as a normalization condition.

13In some cases 2< l < 200 was needed to obtain a functional
which would later pass the positivity check on the nonincluded
values of l; see below.
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(4) Extraction of the smallest �min for which a positive
functional exists. We begin by selecting two points
�min ¼ �1 and �min ¼ �2 > �1 [see (A4)] such that
we know a priori that in the first case a positive
functional does not exists, while in the second case it
does.14 Starting from these values we apply the
bisection method to determine the critical �min up
to the desired precision: we test if a functional exists
for �min ¼ ð�2 þ �1Þ=2 and we increase or decrease
the extremes of the interval ½�1; �2� depending on
the outcome. The procedure we follow is such that
in the end the critical �min is contained in an interval
of relative width 10�3, i.e. we terminate if
�2 � �1 � 10�3�1. The plots and the tables pre-
sented in this work correspond to the upper end �2

of the final interval, i.e. to the end for which we have
found a functional.

Let us now come back to the point 1. Although compu-
tation of the derivatives can be carried on by brute force
Taylor-expanding the F functions, we can save time de-
composing the computation in various blocks. From
Eq. (2.8) we see the rather simple dependence on the
parameter d, which translates in a polynomial dependence
once the function is Taylor-expanded in X and Y. We
therefore separately computed the dependence on d once
and for all as a matrix MðdÞmnjij. To compute Taylor

coefficients of F functions, this matrix is contracted with
two vectors containing one-dimensional Taylor coeffi-
cients of the function k�ðxÞ; see (2.4). The latter derivatives
are precomputed for several values of � with a fine step
and stored. For definiteness we report the interval we used

0 � � � 102; step: 10�3: (A8)

For larger � we made use of the analytic expression of the
asymptotics instead of computing the derivatives numeri-
cally (see below).

Finally let us discuss the choice of the discretization and
the truncation in � and l. This step is of fundamental
importance in order to reduce the time needed to perform
the computation.

In Appendix D of [7] it is shown that for large values of
� and l the functions Fd;�;l approach an asymptotic behav-

ior. We have checked that outside the range of values (A4)
we can safely use the approximate expression

Fðm;nÞ
d;�;l � constð2 ffiffiffi

2
p Þmþnþ2 ðlþ �Þmþ1lnþ1

ðmþ 1Þðnþ 1Þ :

For large l, � the vector F ½d; �; l� is dominated by the
components where mþ n assumes the highest allowed
value N. Hence we can take into account this large l, �

behavior imposing additional constraints:

�½F �� � 0;

F � ¼
� ðcos�þsin�Þmþ1 cos�nþ1

ðmþ1Þðnþ1Þ if mþ n ¼ N

0 otherwise
;

tan� � �

l
;

where we have dropped irrelevant positive constants not
depending on m, n.
Now comes the discretization: in the range of values

(A4), as well as in the interval � 2 ½0; 	=2�, we can allow
to take only a discrete, finite number of points. For � we
take a fixed small step. However, for � we try to concen-
trate the points in the region where the unit vector
F ½d; �; l� is significantly varying. A measure of this is
given by the norm of its derivative w.r.t. �15:

N ¼
����� @

@�
F ½d; �; l�

�����:

We discretize by taking the spacing between two consecu-
tive values of � equal c=N , where c is a small fixed
number (c ¼ 0:02
 0:05 was typically taken in our
work). Clearly when the unit vector is slowly varying the
discretization step is large, while it is refined where it is
changing rapidly, and where presumably more information
is encoded. Typically we get about a hundred � values for
each l, but only a few dozen of those above � > 50.
The sets �l, one for each l, of values of � obtained in this

way are the ones referred to at point 2 above. In construct-
ing the linear system that we use at point 3 we consider
additional intermediate points between two subsequent
�’s. In order to understand why we do this, let us assume
that we have found a functional � which is positive for all
the values of � contained in �l. Since we considered a
discrete set of values, it may and actually does happen that
for intermediate values of � (which were not included in
�l) the functional becomes slightly negative. In [7] this
issue was solved looking for solution of the form
�½Fd;�;l�> ", so that for intermediate values this condition

could be violated but the positivity was safe. In the current
work we found it more convenient to build the linear
system in the following way:
(i) for each � 2 �l ¼ f�1; . . . :; �i; �iþ1; . . . :g we evalu-

ate the vector F ½d; �; l�.
(ii) for any two consecutive points �i; �iþ1, we consider

the first-order Taylor expansion of the vector
F ½d; �; l� around � ¼ �i and evaluate it at half-
spacing between �i and �iþ1 (footnote 15):

14We can choose these points blindly as �1 ¼ 0, �2 � 1,
however prior experience can suggest a choice closer to the final
�min

15In practice the derivative @=@� is evaluated by using the
finite-difference approximation.
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F 1=2½d; �i; l� � F ½d; �i; l� þ
�
�iþ1 � �i

2

�

� @

@�
F ½d; �i; l� (A9)

and we add the constraints �½F 1=2� � 0 to the

linear system (A5).
These additional constraints become important to keep

the functional positive near the �’s for which the inequal-
ities �½F � � 0 are close to saturation, while they are
redundant away from those points. Indeed, assume that
for some �i and �iþ1 the functional is exactly vanishing.
Then at the intermediate point the functional would be
strictly negative, which is not allowed. However, in the
presence of the additional constraint �½F 1=2� � 0 this

cannot happen, since �½F � is generically a convex func-
tion of � near the minimum. See Fig. 9 for an illustration.
Thus we can be certain that the found functional will be
positive also for those �’s which were not included into �l.

This certainty has a price. Namely, the opposite side of
the coin is that the added F 1=2 constraints are somewhat

stronger than needed, and the bigger the discretization
parameter c, the bigger the difference. As a result, the
found critical value of �min will be somewhat above the
optimal critical value, corresponding to c ! 0. This obser-
vation explains why the curves in Figs. 6 and 7 have small
irregularities in the slope. These irregularities could be
decreased by decreasing the value of c.

Several comments concerning the numerical accuracy
are in order. The components of the vector F ½d; �; l� have
been computed using standard double-precision arithmetic
(16 digits). As a consequence all the numerical results must
be rounded to this precision. In particular, quantities
smaller that 10�16 are considered zero.

In addition, the built-in MATHEMATICA 7 function
LinearProgramming, which we used, has an undocu-
mented Tolerance parameter. Most of the computations
were done with Tolerance equal 10�6 (default value).
However for N ¼ 16 and N ¼ 18, and for d < 1:1, we
found that LinearProgramming terminates prema-
turely, concluding that no positive linear functional exists,

even for some values of �min for which a positive func-
tional for smaller N was in fact found. The problem dis-
appeared once we set Tolerance to a lower value
(10�12). In our opinion, Tolerance is probably the so-
called pivot tolerance, the minimal absolute value of a
number in the pivot column of the simplex method to be
considered nonzero. Recall that a nonzero (actually nega-
tive) pivot element is necessary in each step of the simplex
method [15]. This interpretation explains why the above
problem could occur, and why it could be overcome by
lowering Tolerance.
As described above, our numerical procedure has been

designed to be robust with respect to the effects of trunca-
tion and discretization. In addition, for each d, we have
tested the last found functional (i.e. for �min at the upper
end �2 of the final interval ½�1; �2�) on the much bigger set
of �, l:

2 � l � 500; 0 � � � 500; step ¼ 0:1;

l ¼ 0; �min � � � 500; step ¼ 0:1;
(A10)

and found that indeed �½F � � 0, within the declared
10�16 accuracy.
Finally, we have checked that in all cases the found

functionals � are such that the inequality �½F � � 0 is in
fact strict: �½F �> 0, for all but finitely many values of �
and l: Thus they satisfy the requirements stated in Sec. III.

APPENDIX B: TABLES

Table I contains the sequence of 4D bounds fNðdÞ,
N ¼ 6 . . . 18, for a discrete set of points in the interval

1< d � 1:7. Table II contains the 2D bound fð2DÞ
12 ðdÞ for a

discrete set of points in the interval 0< d � 0:35.
Figures 6–8 are based on these tables.
A text file with the unrounded versions of Tables I and II

and the functionals used to derive these bounds can be
downloaded [16]. The MATHEMATICA codes can be ob-
tained from the authors upon request.

FIG. 9 (color online). Imposing the positivity of the functional on a discrete set of points, it could happen that the intermediate points
do not satisfy �½F ½d; �; l�� � 0 (on the left). However adding the constraint �½F 1=2½d; �i; l�� � 0 [see (A9)], we can be sure that the

functional is positive on all the neglected points (on the right).

UNIVERSAL CONSTRAINTS ON CONFORMAL OPERATOR . . . PHYSICAL REVIEW D 80, 045006 (2009)

045006-11



[1] A. A. Belavin and A.A. Migdal, JETP Lett. 19, 181 (1974)
[Pis’ma Zh. Eksp. Teor. Fiz. 19, 317 (1974)]; T. Banks and
A. Zaks, Nucl. Phys. B196, 189 (1982).

[2] N. Seiberg, Nucl. Phys. B435, 129 (1995).
[3] Y. Iwasaki, K. Kanaya, S. Kaya, S. Sakai, and T. Yoshie,

Phys. Rev. D 69, 014507 (2004); T. Appelquist, G. T.
Fleming, and E. T. Neil, Phys. Rev. Lett. 100, 171607
(2008); arXiv:0901.3766; A. Deuzeman, M. P.
Lombardo, and E. Pallante, Phys. Lett. B 670, 41
(2008); arXiv:0904.4662.

[4] G. Mack, Commun. Math. Phys. 55, 1 (1977).
[5] A.M. Polyakov, Zh. Eksp. Teor. Fiz. 66, 23 (1974); A.A.

Belavin, A.M. Polyakov, and A. B. Zamolodchikov, Nucl.
Phys. B241, 333 (1984).

[6] A. B. Zamolodchikov and A. B. Zamolodchikov, Report
No. ITEP-90-31; Nucl. Phys. B477, 577 (1996).

[7] R. Rattazzi, V. S. Rychkov, E. Tonni, and A. Vichi, J. High
Energy Phys. 12 (2008) 031.

[8] J. Polchinski, String Theory: An Introduction to the
Bosonic String (Cambridge University Press, Cambridge,
UK, 1998), Vol. 1, p. 402.

[9] G. Mack, Commun. Math. Phys. 53, 155 (1977).
[10] F. A. Dolan and H. Osborn, Nucl. Phys. B599, 459 (2001);

Nucl. Phys. B678, 491 (2004).
[11] M.A. Luty and T. Okui, J. High Energy Phys. 09 (2006)

070; M.A. Luty, arXiv:0806.1235.
[12] J. L. Feng, A. Rajaraman, and H. Tu, Phys. Rev. D 77,

075007 (2008); H. Georgi and Y. Kats, arXiv:0904.1962.
[13] H. Georgi, Phys. Rev. Lett. 98, 221601 (2007).
[14] S. Hellerman, arXiv:0902.2790.
[15] W.H. Press, S. A. Teukolsky, W. T. Vetterling, B. P.

Flannery, Numerical Recipes. The Art of Scientific
Computing (Cambridge University Press, Cambridge,
UK, 2007), 3rd ed.

[16] http://www.arxiv.org/e-print/0905.2211.

TABLE I. 4D results. The table contains anomalous dimensions, i.e. d� 1 and fNðdÞ � 2 are
given. A zero entry means that the bound for this d and N has not been computed.

fNðdÞ � 2

d� 1 N ¼ 6 N ¼ 8 N ¼ 10 N ¼ 12 N ¼ 14 N ¼ 16 N ¼ 18

0.01 0.2045 0.2025 0.1385 0.1356 0.1006 0.089 55 0

0.02 0.3055 0.2956 0.2086 0.1965 0.1636 0.1485 0.1425

0.03 0.3895 0.3676 0.2636 0.2496 0.2126 0.1956 0.1916

0.04 0.4646 0.4315 0.3165 0.3006 0.2506 0.2366 0.2286

0.05 0.5358 0.4878 0.3665 0.3467 0.2896 0.2786 0.2596

0.07 0.6688 0.598 0.4576 0.4296 0.3927 0.3627 0.3397

0.1 0.848 0.7348 0.5847 0.5486 0.5026 0.4705 0.4448

0.15 1.106 0.957 0.7789 0 0.6807 0 0

0.2 1.354 1.163 0.9635 0.9118 0.8396 0.8098 0.7757

0.25 1.597 1.362 1.142 0 1.002 0 0

0.3 1.841 1.56 1.319 1.249 1.163 1.127 1.085

0.35 2.085 1.759 1.494 0 1.317 0 0

0.4 2.329 1.957 1.669 1.578 1.473 1.436 1.389

0.45 2.561 2.159 1.843 0 1.63 0 0

0.5 2.785 2.365 2.046 1.907 1.786 1.745 1.693

0.55 2.994 2.571 2.198 0 1.942 0 0

0.6 3.213 2.78 2.381 2.238 2.1 2.054 1.995

0.65 3.441 2.995 2.561 0 2.258 0 0

0.7 3.638 3.21 2.744 2.574 0 2.366 2.297

TABLE II. 2D results.

d fð2DÞ
12 ðdÞ

0.01 0.042 54

0.02 0.087 52

0.03 0.1356

0.04 0.1865

0.05 0.2406

0.06 0.2998

0.07 0.3676

0.08 0.4455

0.075 0.4055

0.08 0.4456

0.085 0.4907

0.09 0.5408

0.095 0.5947

0.1 0.6577

0.105 0.73

0.11 0.8037

0.115 0.8716

0.12 0.9418

0.123 0.9803

0.125 1.001

0.127 1.008

0.13 1.017

0.15 1.073

0.2 1.214

0.25 1.357

0.35 1.647
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