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We continue the study of model-independent constraints on the unitary conformal field theories (CFTs)
in four dimensions, initiated in [R. Rattazzi, V. S. Rychkov, E. Tonni, and A. Vichi, J. High Energy Phys.
12 (2008) 031]. Our main result is an improved upper bound on the dimension A of the leading scalar
operator appearing in the operator product expansion (OPE) of two identical scalars of dimension d:
by X ps=1+0,+.... In the interval 1 <d < 1.7 this universal bound takes the form
A=2407(d—1)Y2+2.1(d — 1) + 0.43(d — 1)*2. The proof is based on prime principles of CFT:
unitarity, crossing symmetry, OPE, and conformal block decomposition. We also discuss possible

applications to particle phenomenology and, via a 2D analogue, to string theory.
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I. INTRODUCTION AND FORMULATION
OF THE PROBLEM

Our knowledge about nonsupersymmetric conformal
field theories (CFTs) in four dimensions is still quite
incomplete. Suffice it to say that not a single nontrivial
example is known which would be solvable to the same
extent as, say, the 2D Ising model. However, we do not
doubt that CFTs must be ubiquitous. For example, non-
supersymmetric gauge theories with N, colors and Ny
flavors are widely believed to have “‘conformal windows”
in which the theory has a conformal fixed point in the IR,
with evidence from large N, analysis [1], supersymmetric
analogues [2], and lattice simulations [3]. Since these fixed
points are typically strongly coupled, we do not have much
control over them. In this situation particularly important
are general, model-independent properties.

One example of such a property is the famous unitarity
bound [4] on the dimension A of a spin / conformal
primary operator O, L

A=1 (I=0), A=I1+2 (=1). (L)

These bounds are derived by imposing that the two-point
functions (O 0) have a positive spectral density.

As is well known, three-point functions in CFT are fixed
by conformal symmetry up to a few arbitrary constants
[operator product expansion (OPE) coefficients]. The next
nontrivial constraint thus appears at the four-point function
level, and is known as the conformal bootstrap equation. It
says that OPE applied in the direct and crossed channel
should give the same result (see Fig. 1).

The bootstrap equation goes back to the early days of
CFT [5]. However, until recently, not much useful general
information has been extracted from it.?> All spins and

"Here we quote only the case of symmetric traceless tensor
operators.

2Except in 2D, in theories with finitely many primary fields,
and in the Liouville theory [6]. We will comment on the 2D case
in Secs. IVA and V below.
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dimensions can a priori enter the bootstrap on equal foot-
ing, and this seems to lead to unsurmountable difficulties.

Recently, however, tangible progress in the analysis of
bootstrap equations was achieved in [7]. Namely, it was
found that, in unitary theories, the functions entering the
bootstrap equations (conformal blocks) satisfy certain pos-
itivity properties which lead to general necessary condi-
tions for the existence of solutions.

The concrete problem considered in [7], and which we
will continue to discuss here, was as follows. In an arbi-
trary unitary CFT a Hermitian scalar primary ¢, of dimen-
sion d was singled out. The conformal bootstrap equation
for its four-point function {¢ ;¢ b ;¢ ;) was studied under
the sole assumption that all scalars in the OPE ¢, X ¢,
have dimension above a certain number, call it A ;,:

¢4 X ¢y = 1(Scalars of dimensions = A ;)

+ (Higher spins). (1.2)
It was shown that the conformal bootstrap does not allow
for a solution unless

Amin = f(d)’ (]3)
where f(d) is a certain continuous function, computed
numerically. We stress that this conclusion was reached
without making any assumptions about dimensions or
spins of other operators appearing in the OPE, beyond
those implied by the unitarity bounds. Nor any assump-

(X

FIG. 1 (color online). The conformal bootstrap equation. The
red (dark gray) line denotes a conformal block, summing up
exchanges of a primary operator O and all its descendants.

© 2009 The American Physical Society


http://dx.doi.org/10.1103/PhysRevD.80.045006

VYACHESLAV S. RYCHKOV AND ALESSANDRO VICHI

tions about the OPE coefficients were made (apart from
their reality, which is again implied by unitarity).

In other words, in any unitary 4D CFT, the OPE of any
scalar primary ¢, must contain at least one scalar field
O with dimension not larger than f(d).

Incidentally, the function f(d) was found to satisfy
f(1) = 2, which is quite natural since d = 1 corresponds
to the free field whose OPE contains the operator :¢2: of
dimension 2.

What makes the result like (1.3) possible? The basic
reason is that, in any theory, the crossing symmetry relation
of Fig. 1 cannot be satisfied term by term, but only by
cancellations among various terms. The guaranteed pres-
ence of the unit operator in the OPE (1.2) creates a certain
“crossing symmetry deficit,” which has to be balanced by
other fields. The idea is to show that this cannot happen
unless at least one scalar of sufficiently low dimension is
present.

Technically, the method of [7] consists of 3 steps (see
Sec. III for a detailed review):

(1) We Taylor-expand the conformal bootstrap equation
near the ‘‘self-dual point” configuration having
equal conformal cross-ratios # = v. The expansion
is truncated to a certain finite order N.

(2) We systematically search for positivity properties
satisfied by linear combinations of Taylor coeffi-
cients of the conformal blocks, for fields appearing
in the right-hand side (RHS) of the OPE (1.2). A
found positivity property implies that the “‘crossing
symmetry deficit” cannot be balanced and rules out
a CFT with a given d and A ;.

(3) For fixed d, the bound f(d) is then computed as the
point separating those A, for which a positivity
property exists, from those ones for which it does
not (Fig. 2).

The nature of the method is such that increasing N can
make the bound only stronger. The optimal bound should
in principle be recoverable in the limit N — oo. In practice
the value of N is determined by the available computer
resources and algorithmic efficiency. The best bound found
in [7], plotted in Fig. 3, corresponds to N = 6.

The purpose of this paper is to present an improvement
of the bound (1.3) obtained by using the method of [7] with
larger values of N, up to N = 18. The new results are
interesting in two ways. First, pure numerical improvement
turns out to be significant. Second, N = 18 happens to be
large enough so that we start observing saturation of the

allowed
(no positivity property)

excluded
(positivity property exists)
]

! -
f (d) Amin

FIG. 2 (color online). The bound f(d) is the smallest A, for
which a positivity property exists.
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FIG. 3 (color online). The bound f4(d) =2 + 1.79/d — 1 +
2.9(d — 1), 1 = d = 1.35, corresponding to N = 6, reproduced
from [7].

bound. So we believe our current results are close to the
optimal ones achievable with this method.

The paper is organized as follows. In Sec. II we review
the conformal bootstrap equations. In Sec. III we review
the connection of the bound (1.3) with positivity properties
satisfied by the conformal block expansion coefficients. In
Sec. IV we present and discuss our results. We also men-
tion accompanying results which we obtain for an analo-
gous problem in 2D. In Sec. V we propose several future
applications and extensions of our method, with emphasis
on connections to phenomenology and string theory. In
Sec. VI we summarize and conclude. In Appendix A we
collect some details about our numerical algorithms. In
Appendix B we include the tables on which plots in Sec. IV
are based.

II. REVIEW OF CONFORMAL BOOTSTRAP

We will review the conformal bootstrap equation in its
simplest form—as applied to the four-point function of
identical scalars (p P pp). We largely follow [7], where
a more detailed discussion and references can be found.

A. Conformal block decomposition

Let ¢ = ¢, be a Hermitian scalar primary’ operator.
The OPE ¢ X ¢ contains, in general, infinitely many
primary fields of arbitrary high spins and dimensions®:

$080)~ Tl 3 eyl 2K09- 05,00+ 1)
1=2n
K;(x) =% .1

Here
(i) [ = 2n by Bose symmetry;

The field is called primary if it transforms homogeneously
under the 4D conformal group.

*If there are several primaries with the same A, /, they all have
to be included in this sum with independent coefficients.
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(i) A=1(A=1[+2)forl=0(l=2)by the unitar-
ity bounds (1.1);

(ii1) The ... stands for contributions of descendants of
the primary O, (i.e. its derivatives). These con-
tributions are fixed by conformal symmetry;

(iv) The OPE coefficients c, ; are real (see Appendix A
of [7D.

We assume that the OPE converges in the following

weak sense: it gives a convergent power series expansion
for any (2 + n)-point function

(pX)P0)A;(y1) ... A,(v,)

provided that |x| < |y;|, i.e. ¢(x) is closer to the origin than
any other local field insertion (see Fig. 4). This assumption
can be justified by using radial quantization ([8], Sect. 2.9),
and checked explicitly in free field theory. For rigorous
mathematical results about OPE convergence, see [9].
The OPE (2.1) can be used to obtain conformal block
decomposition of the four-point function (¢} P p ¢h):

g(u, v)

2d2d
X12X34

(p(x1)P(x2) P (x3)P(x4)) = (2.2)

g(u’ U) =1+ ZPA,lgA,I(u’ U), pA,l = CZA’] = 0’

(2.3)

where u = x3,x3,/(x};3x3,), v = x},x3;/(x33x3,) are the

conformal cross-ratios. This representation is obtained by

using the OPE in the 12 and 34 channels. The conformal

blocks g ;(u, v) sum up the contributions of the primary

O, and all its descendants. Their explicit expressions

were found by Dolan and Osborn [10]:

(=) zz _ _

Y T[kAH(Z)kA—l—Z(Z) —(z<2)]
28 z—2Z

k,B(x) = xﬁ/22F1 (ﬁ/z! B/z) IB;X)’

v=(1-2)(1-2).

gA,l(M: v) =

2.4)
u=zz

Notice the judicious introduction of the auxiliary varia-
bles z and Z. When the theory is formulated in the
Euclidean space, these variables are complex conjugates
of each other. To understand their meaning, it is convenient
to use the conformal group freedom to send x, — o0 and to
put the other three points in a plane, as in Fig. 5. Then it’s

I,/, ) \\ : A2
I/ \‘\
i \
. :‘ . '|
AN 9O 6
\ /
/
ANy - . Ay

FIG. 4. The operator product expansion of ¢(x)¢(0) con-
verges for this configuration.
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FIG. 5 (color online). The auxiliary z coordinate. The confor-
mal blocks are regular outside the cut denoted by the zigzag line.

easy to show that

z=%+X+iY, 7=17" (2.5)
where (X, Y) are the coordinates of x, in the plane, chosen
so that X = Y = 0 corresponds to x, halfway between x,;
and x3. This “‘self-dual” configuration, for which u = v,
will play an important role below. We can see that the z
variable is a natural extension of the usual complex coor-
dinate of the 2D CFT to the 4D case.

According to the above discussion, the OPE is expected
to converge for |z| < 1. Conformal block decomposition is
a partial resummation of the OPE and thus also converges
at least in this range. In fact, below we will only use
convergence around the self-dual point z = 1/2.
However, conformal blocks, as given by (2.4), are regular
(real-analytic) in a larger region, namely, in the z plane
with the (1, +o0) cut along the real axis (see Fig. 5). The
conformal block decomposition is thus expected to con-
verge in this larger region. One can check that this indeed
happens in the free scalar theory.

One can intuitively understand the reason for this ex-
tended region of regularity. The condition for the OPE
convergence, as stated above, does not treat the points x
and 0 symmetrically. On the other hand, the conformal
blocks are completely symmetric in x; < x, and so must
be the condition for their regularity. The appropriate con-
dition is as follows: the conformal block decomposition in
the 12-34 channel is regular and convergent if there is a
sphere separating the points x, , from the points x3 4. For
the configuration of Fig. 5, such a sphere exists as long as
X, 1s away from the cut.

B. Conformal bootstrap and the sum rule

The four-point function in (2.2) must be symmetric
under the interchange of any two x;, and its conformal
block decomposition (2.3) has to respect this symmetry.
The symmetry with respect to x; <> x, or x3 <> x4 is al-
ready built in, since only even spins are exchanged [10].
On the contrary, the symmetry with respect to x; < x3

gives a condition
vig(u, v) = ulg(v, u), (2.6)

which is not automatically satisfied for g(u, v) given by
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(2.3). This nontrivial constraint on dimensions, spins, and
OPE coefficients of all operators appearing in the OPE
¢ X ¢ is known as the conformal bootstrap equation.
Physically it means that OPE applied in 12-34 and
14-23 channels should give the same result (Fig. 1).

In the z plane of Sec. IT A, the left-hand side (LHS) of
(2.6) has a cut along (1, +o0), while the RHS has a cut
along (—o0, 0). Thus, if (2.6) is satisfied, the cuts have to
cancel, and the resulting g(u, v) is real analytic everywhere
except for z =0, 1.

In [7], we found it useful to rewrite (2.6) by separating
the unit operator contribution, which gives

ul — v =" pplvign(u,v) = ulgy,(v, )l (2.7)

The LHS of this equation is the ‘“‘crossing symmetry
deficit” created by the presence of the unit operator in
the OPE. This deficit has to be balanced by contributions of
the other fields in the RHS.

In practice it is convenient to normalize (2.7) by dividing
both sides by u? — v¥. The resulting sum rule takes the
form:

1= paiFaniXY),
(2.8)

UdgA,z(M, v) — udgM(v, u)

ud_vd

Fyn (X, Y) =

The “F functions™ F,, are real and regular in the full
z-plane cut along (—o0, 0) U (1, +0). In particular, the 0/0
behavior at the self-dual point z = 1/2 is regular.

All F functions vanish near the points z = O and z = 1.
Thus the sum rule can never be satisfied near these points if
only finitely many terms are present in the RHS. The OPEs
containing finitely many primaries are ruled out.

III. POSITIVITY ARGUMENT

The main idea of [7] was very simple, and can be
described as follows. Suppose that for a given spectrum
of operator dimensions and spins {A, [} the sum rule (2.8),
viewed as an equation for the coefficients p, ; = 0, has no
solution. Then of course such a spectrum would be ruled
out.

Any concrete realization of this idea needs a practical
criterium to show that there is no solution. For a proto-
typical example of such a criterium, imagine that a certain
derivative, e.g. dy [see (2.5)], when applied to every F ;4
and evaluated at a certain point, is strictly positive (““pos-
itivity property”’). Since the same derivative applied to the
LHS of (2.8) gives identically zero, a solution where all
coefficients p, ; are non-negative would clearly be impos-
sible. We refer to this simple reasoning as the ““positivity
argument.”

One can imagine more general criteria using different
differential operators, and applying them at different

PHYSICAL REVIEW D 80, 045006 (2009)

points. In [7], we found it convenient to apply differential
operators precisely at the self-dual point z = 1/2,
X =Y = 0. One can show that the F functions are even
with respect to this point both in the X and Y directions:

F(X,Y)=F(X, —-Y)=F(—=X,Y).

Thus, all odd-order derivatives vanish, and a sufficiently
general differential operator (“‘linear functional”) takes the
form:

A[F] = Z )‘m,na;(na'll/Fl)(:Y:OJ

m,n even
2=m+n=N

(3.1

where N is some fixed finite number, and A,,, ,, are fixed real
coefficients.” Notice the exclusion of the constant term
m = n = 0, in order to have A[1] = 0.

Assume that for certain fixed d and A ;,, we manage to
find a linear functional of this form such that (“positivity

property”)
A[F 0, 1=0 forall A=A (l=0)

(3.2)
and forall A =[+2(1=2,4,6...).

Moreover, assume that all but a finite number of these
inequalities are actually strict: A[F]> 0. Then the sum
rule cannot be satisfied, and such a spectrum, correspond-
ing to a putative OPE (1.2), is ruled out.

The proof uses the above “positivity argument.” Since
A[1] = 0, the positivity property implies that only those
primaries for which A[F] = 0 would be allowed to appear
in the RHS of the sum rule with nonzero coefficients. By
assumption, there are at most a finite number of such
primaries. However, as noted in Sec. II B, finitely many
terms can never satisfy the sum rule globally, because of
the behavior near z = 0, 1. Q.E.D.

While the above formal reasoning is quite sufficient to
understand our results, in [7] the sum rule was also given an
alternative interpretation in terms of convex geometry. In
this more visual picture, linear combinations of F functions
with arbitrary positive coefficients form a convex cone in
the space of two-variable functions. One can consider the
full function space or its finite-dimensional subspace cor-
responding to Taylor-expanding up to order N. Positivity
property (3.2) means that there is a hyperplane separating
the function 1 from the convex cone. Thus it implies that
the sum rule cannot be satisfied. The converse is “‘almost
true,” modulo questions of convergence.

Clearly, the language of linear functionals provides an
equivalent, dual formulation of the problem. This formu-

*In [7], we analytically continued to the Minkowski space by
Wick-rotating ¥ — iT. In this picture z and Z are both real and
independent, and conformal blocks are real regular functions in
the region 0 <z, z<1. For our purposes Minkowski and
Euclidean pictures are exactly equivalent. In particular, deriva-
tives of F functions in Y and T are trivially proportional to each
other.
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lation is also especially convenient from the point of view
of checking our results independently. It’s not so important
how we find the functionals. As long as we publish the
functional coefficients A, ,, anyone can verify that the
inequalities (3.2) are satisfied.

IV. RESULTS, DISCUSSION, AND 2D ANALOGUE

As discussed in Sec. I, we are interested in computing an
upper bound (1.3) for the dimension A, of the leading
scalar in the OPE ¢, X ¢,, universal for all unitary 4D
CFTs. In [7], we have computed such a bound in the
interval 1 = d = 1.3, using the sum rule of Sec. II B trun-
cated to the N = 6 derivative order. That bound is repro-
duced in Fig. 3.

We now present the results of our latest study, obtained
for larger values of N. These results® are plotted in Fig. 6 as
a collection of curves fy(d), N = 6...18, where the index
N denotes the number of derivatives used to obtain the
bound. The bound naturally gets stronger as N increases
(see below), and thus the lowest curve fg(d) is the stron-
gest bound to date. In the considered interval 1 = d = 1.7
this bound is well approximated (within 0.5%) by
Fra(d) =2+ 0.7yY2 + 2.1y + 0.43y3/2, y=d- 1.

4.1)

To obtain the bounds of Fig. 6, we used the positivity
argument from [7], as reviewed in Sec. III. Namely, for
points lying on the curves A i, = fy(d) we are able to find
a linear functional of the form (3.1) satisfying the positivity
property (3.2).” The numerical procedure that we use to
find these ““positive functionals™ is described in some de-
tail in Appendix A.

Several comments are in order here.

(1) We have actually computed the bound only for a

discrete number of d values, shown as points in
Fig. 6. The tables of these computed values are given
in Appendix B. Behavior for d — 1 can be better
appreciated from the logarithmic-scale plot in Fig. 7.
We do not see any significant indication which could
suggest that the curves fy(d) do not interpolate
smoothly in between the computed points. Small
irregularities in the slope are however visible at
several points in Figs. 6 and 7. These irregularities
are understood; they originate from the necessity to
discretize the infinite system of inequalities (3.2):
see Appendix A for a discussion. In our computa-
tions the discretization step was chosen so that
these irregularities are typically much smaller
than the improvement of the bound that one gets
for N— N + 2.

“See Appendix B for the same results in tabular form.
"Thus actually the bound is strict: A, < fy(d), except
atd = 1.
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Amin

FIG. 6 (color online). Our main results. The solid curves are
the bounds fy(d), N =6...18. The bounds get stronger as N
increases, thus N = 6 is the weakest bound (highest curve), and
N = 18 is the current best bound (lowest curve). The shaded
region is thus excluded. The dashed curve f.,(d) is an approxi-
mation to the best-possible bound, obtained by extrapolating
N — . The dotted line A;, = 2d is realized in a family of
“generalized free scalar” CFTs, and is compatible with our
bounds.

(2) For each N the bound fy(d) is near optimal, in the
sense that no positive functional involving deriva-
tives up to order N exists for

Amin —-2< (] - 8)[fN(d) - 2]

We estimate € = 1% from the analysis of residuals
in the fit of fy(d) by a smooth curve like in (4.1).
On the other hand, by increasing N we are allowing
more general functionals, and thus the bound fy(d)
can and does get stronger. This is intuitively clear
since for larger N the Taylor-expanded sum rule
includes more and more constraints.

20+ fn(d)-2, N=6...18

1.0} N=6 :
N
lCl
Z o5t :
0.2} ]
0.1t .
00 002 005 010 020 050
d-1

FIG. 7 (color online). Same as Fig. 6 but with anomalous
dimensions d — 1, A —2 in logarithmic scale. The shaded
region is excluded.
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Compared to the results of [7], the bound on the
anomalous dimension A,;, —2 is improved by
~30 +50% in the range 1 =d = 1.7 that we
explored.

(3) We have pushed our analysis to such large values of
N in the hope of seeing that the bound saturates as
N — oo. Indeed, we do observe signs of conver-
gence in Figs. 6 and 7, especially at d = 1.1. In
fact, we have observed that the bounds fy(d) start-
ing from N = 8 follow rather closely the asymptotic
behavior

c(d)

N (1=d=1.7).

Iald) = fo(d) +
An approximation to the optimal bound f(d) can
thus be found by performing for each d a fit to this
formula. This approximation is shown by a dashed
line in Fig. 6. From this rough analysis we conclude
that the optimal bound on the anomalous dimension
Ain — 2 is probably within ~10% from our current
bound.

(4) We have fy(d) — 2 continuously as d — 1. The
pointd = 1, A, = 2 corresponds to the free scalar
theory.

We do not know of any unitary CFTs that saturate our
bound at d > 1; see the discussion in Sec. 6 of [7]. We
know however a family of unitary 4D CFTs in which
A, = 2d and which are consistent with our bound (the
red dotted line in Fig. 6). This “generalized free scalar”
theory is defined for a fixed d by specifying the two-point
function

((x)$(0)) = |x[7>,

and defining all other correlators of ¢ via Wick’s theorem.
This simple procedure gives a well-defined CFT, unitary as
long as d = 1, which can be described by a nonlocal action

S o f dx(92)d b,

The full operator content of this theory can be recovered by
studying the OPE ¢ X ¢. In particular, the leading scalar
in this OPE has dimension 2d.*

A. 2D analogue

Although our main interest is in the 4D CFTs, our
methods allow a parallel treatment of the 2D case. The
main characteristics of the 2D situation were described in
Sec. 6.1 of [7], here will briefly review them.

8This theory can also be realized holographically by consid-
ering a free scalar field of a particular d-dependent mass in the
AdS geometry and taking the limit in which 5D gravity is
decoupled. We are grateful to Kyriakos Papadodimas for dis-
cussions about the generalized free scalar CFT.

PHYSICAL REVIEW D 80, 045006 (2009)

(1) At present we can only take advantage of the finite-
dimensional SL(2, C) symmetry and not of the full
Virasoro algebra of the 2D CFTs. In particular, our
results are independent of the 2D central charge c.

(2) The unitarity bounds for SL(2, C) primaries’ in 2D
have the form

A= [=012...,

where [ is the Lorentz spin.
(3) The SL(2, C) conformal blocks in 2D are known
explicitly [10]:

)\
g = Ua0r @+~ 21
4.2)

Using the unitarity bounds, the known conformal blocks,
and the sum rule (2.8), valid in any dimension, we can try
to answer the same question as in 4D. Namely, for a
SL(2, C) scalar primary ¢ of dimension d, what is an upper
bound on the dimension A,,;, of the first scalar operator
appearing in the OPE ¢ X ¢? L.e. we want a 2D analogue
of the bound (1.3). Since the free scalar is dimensionless in
2D, the region of interest is d > 0.

Figure 8 summarizes our current knowledge of this
bound'’:

(i) The dotted line is the old N = 2 bound presented in
[7]. The solid line is the N = 12 improved bound
obtained by us."' A numerical fit to this bound is
given by

£D) () = {4.301 +8d? —87d* +23004%, d=0.122,
12 0.64 +2.87d, d=0.122.
Clearly, the improvement compared to [7] is
significant.
It is interesting to note that in 2D we have observed a
much faster convergence for increasing N than in
4D. In fact, already with N = 6 it is possible to
obtain a bound rather close to the one shown in
Fig. 8, although with a slightly rounded ‘‘knee.”
We have also computed several points for N = 16
and have not seen much improvement.

(i) The dashed line and scattered crosses correspond to
various OPEs realized in explicit examples of ex-
actly solvable unitary 2D CFTs (minimal models
and the free scalar theory); see [7]. They all respect
our bound.

It is instructive to compare this plot with its 4D counter-

part, Fig. 6. While we do not know of any CFTs

“Known as quasiprimaries in 2D CFT literature.

'9See Appendix B for the results in tabular form.

""We are grateful to Erik Tonni for providing us with the large
A, [ asymptotics of the 2D conformal block expansion coeffi-
cients, necessary to obtain this bound.
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FIG. 8 (color online). See the text for an explanation. The +
cross denotes the position of the Ising model, the X crosses
marked ¢, > correspond to the OPEs realized in the higher
minimal models, as in Fig. 15 of [7]. The shaded region is
excluded.

saturating the 4D bound, the 2D unitary minimal models
M(m, m + 1), m = 3,4, ..., contain the OPEs
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which come quite close to saturating the 2D bound.

More precisely, our 2D bound starts at (0, 0) tangentially
to the line A = 4d realized in the free scalar theory, then
grows monotonically and passes remarkably closely above
the Ising model point (A, A,) = (1/8,1). After a knee
at the Ising point, the bound continues to grow linearly,
passing in the vicinity of the higher minimal model
points (4.3).

It is curious to note that if we did not know beforehand
about the Ising model, we could have conjectured its field
dimensions and the basic OPE o X o = 1 + ¢ based on
the singular behavior of the 2D bound at d = 1/8.

On the other hand, nothing special happens with the 2D
bound at the higher minimal model points, it just interpo-
lates linearly in between.'? Most likely, this does not mean
that there exist other unitary CFTs with intermediate op-
erator dimensions. Rather, this behavior suggests that the
single conformal bootstrap equation used to derive the
bound is not powerful enough to fully constrain a CFT.

In comparison, it is a bit unfortunate that the 4D bound
does not exhibit any singular points which would immedi-
ately stand out as CFT candidates. Nevertheless, if we

'2The straight line fitting the bound would cross the dashed
Free theory line just above d = 0.5, which is the accumulation
point of the minimal models M (m, m + 1). For larger values of
d we expect that the bound modifies its slope and eventually
asymptotes to the Free line.
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assume that the shape of the 4D bound is a result of an
interpolation between existing CFTs (as it is the case in
2D), we may conjecture that the upward convex behavior
of the functions fy(d) in Fig. 6 is due to the presence of a
family of points satisfying the sum rule that can correspond
to exact CFTs. This observation, though speculative, shows
how the presented method can provide a guideline in the
study of 4D CFTs.

V. FUTURE RESEARCH DIRECTIONS

The results of this paper and of [7] open up many
interesting research directions, which we would like to
list here.

First, there are several important problems in 4D con-
formal field theory which can be analyzed by our method
and its simple modifications. For example:

(1) One should be able to derive a generalization of our
bounds in the situation when the CFT has a global
symmetry, and we are interested in the lowest di-
mension singlet appearing in the OPE. This is going
to have phenomenological implications by con-
straining the so-called conformal technicolor sce-
narios of electro-weak symmetry breaking [11].
This connection was extensively discussed in [7].

(2) One should be able to derive model-independent
bounds on the size of OPE coefficients. This is going
to be relevant for discussions of ‘“‘unparticle self-
interactions’ [12], in the context of unparticle phys-
ics scenarios [13].

Second, the method can also be used in 2D conformal
field theory, as was already demonstrated in Sec. [IVA. The
main interest here lies in potential applications to string
theory. We will now briefly describe two such applications.

Physical states of (super)string theory are in 1-1 corre-
spondence with Virasoro primary operators of a 2D CFT
living on the string world sheet. The mass of a string state
(in string units) is related to the corresponding primary
operator dimension A via

mr=A—2.

We are considering closed string theory for concreteness.
When strings propagate in flat space, the CFT is solvable
and the full spectrum of operator dimensions is known.
Realistic string constructions require compactifications of
extra dimensions. In some examples, such as toroidal
compactifications, the CFT is still solvable. In others,
such as superstring compactifications on a generic
Calabi-Yau three-fold, the CFT cannot be solved exactly.
All what is generally known is the spectrum of the massless
states, which can be obtained in the supergravity approxi-
mation. Of course we expect the massive string states to be
always present, but just how heavy can they be? We know
from the experience with toroidal compactifications that it
is impossible to completely decouple the massive states: as
the compactification radius R — 0, the Kaluza-Klein states
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become more massive, but the winding modes come down.
Clearly, massive string states are crucial for the consistency
of the theory. What exactly are they doing? A partial
answer may be that without their presence, four-point
functions of the massless state vertex operators would not
be crossing-symmetric. If this intuition is right, it could be
used to obtain model-independent bounds on the lightest
massive states in string compactifications, generalizing the
well-known bounds valid for toroidal compactifications. A
similar in spirit general prediction of string gravity,
although in a different context and by using different
methods, was obtained recently in [14].

When working towards results of this kind, it may be
necessary to generalize our methods so that the informa-
tion about the 2D CFT central charge, which is fixed in
string theor