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Abstract. There are many natural phenomena that can best be described

by the use of infinitesimal and infinite numbers (see e.g. [1, 5, 13, 23]. How-

ever, until now, the Non-standard techniques have been applied to theoretical
models. In this paper we investigate the possibility to implement such mod-

els in numerical simulations. First we define the field of Euclidean numbers
which is a particular field of hyperreal numbers. Then, we introduce a set of

families of Euclidean numbers, that we have called altogether algorithmic num-

bers, some of which are inspired by the IEEE 754 standard for floating point
numbers. In particular, we suggest three formats which are relevant from the

hardware implementation point of view: the Polynomial Algorithmic Numbers,

the Bounded Algorithmic Numbers and the Truncated Algorithmic Numbers.
In the second part of the paper, we show a few applications of such numbers.

1. Introduction. There are many natural phenomena that can best be described
by the use of infinitesimal and infinite numbers. We refer to [1, 5, 13, 23] and
to the references contained therein for an analysis of these facts. In this work
we investigate how we can deal with numerical computations. In particular we
describe subsets of a Non-Archimedean field that can be treated numerically with
the use of a suitably programmed computer. What follows is a step towards the
implementation of a Matlab-like environment for performing number crunching with
infinite or infinitesimal numbers.

The theoretical usefulness of infinitesimal numbers in the description of natural
phenomena has been debated for centuries. Russel and Peano have demonstrated
that infinitesimal numbers are not necessary to rigorously formalize Analysis. On
the contrary, their opinion was that: i) infinitesimal numbers, as formalized at
their time, was not rigorous enough; ii) their introduction was useless, since the
central concepts in Analysis can be rigorously formalized without them. Things
have changed since the introduction of Non-Standard Analysis, done by Robinson in
the 60’s. In NSA the concept of infinitesimal number has been rigorously formalized.
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Our approach to Non-Archimedean Mathematics (NAM) presents two main dif-
ferences with the classical NSA: the first one in the methods and the second one in
the aims. As far as the methods are concerned, we introduce a Non-Archimedean
field via the notion of limit, and a large use of the number α [3, 7]. This approach
allows us to avoid the technicalities of formal logic. In particular, the use of limits
allows the reader to recover most of the language, tools and results of standard anal-
ysis in a more straightforward way. Another difference between our approach and
NSA is that we do not assume the existence of two distinct mathematical universes.
Let us examine the difference in the aims. Usually NSA is considered a theory
which makes use of infinitesimals as a device to simplify the proves of theorems;
on the contrary, we think that infinitesimals are mathematical entities which have
the same status of the others and can be used to build models as any other mathe-
matical entity. Actually, in our opinion, the advantages of a theory which includes
infinitesimals rely more on the possibility of making and manipulating new models
of the physical reality rather than in the techniques used to obtain the proofs (for
instance, see [5, 13, 15, 16, 18, 19, 21]).

2. Euclidean numbers. The field of Euclidean numbers is a field which enlarge
the field of real numbers and hence it contains infinite and infinitesimal numbers.
It belongs to the class of hyperreal fields which are the fields used for Nonstandard
Analysis and it satisfies some peculiar properties which characterize it (see section
2.4 and 2.5; for details see [10] and [12]).

We introduce the Euclidean numbers via an algebraic approach as in [4]. An
elementary presentation of (part of) this theory can be found in [6]. In [20] and
[11], the reader can find several other approaches to NSA and an analysis of them.

2.1. Non-Archimedean fields. Here, we recall the basic definitions and facts
regarding Non-Archimedean fields. In the following, K will denote an ordered field;
its elements will be called numbers. We recall that such a field contains (a copy of)
the rational numbers.

Definition 1. Let K be an ordered field. Let ξ ∈ K. We say that:

• ξ is infinitesimal if, for all positive n ∈ N, |ξ| < 1
n ;

• ξ is finite if there exists n ∈ N such that |ξ| < n;
• ξ is infinite if, for all n ∈ N, |ξ| > n (equivalently, if ξ is not finite).

Definition 2. An ordered field K is called Non-Archimedean if it contains an
infinitesimal ξ 6= 0.

It’s easily seen that all infinitesimal are finite, that the inverse of an infinite num-
ber is a nonzero infinitesimal number, and that the inverse of a nonzero infinitesimal
number is infinite.

It is easy to show that any field which enlarge R contains infinitesimal and
infinite numbers. Infinitesimal numbers can be used to formalize a new notion of
“closeness”:

Definition 3. We say that two numbers ξ, ζ ∈ K are infinitely close if ξ − ζ is
infinitesimal. In this case we write ξ ∼ ζ.

Clearly, the relation “∼” of infinite closeness is an equivalence relation.

Theorem 4. If K ⊃ R, every finite number ξ ∈ K is infinitely close to a unique
real number r ∼ ξ, called the the standard part of ξ.
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Given a finite number ξ, we denote it standard part by st(ξ), and we put st(ξ) =
+∞ (st(ξ) = −∞) if ξ ∈ K is a positive (negative) infinite number.

2.2. Definition of the Euclidean numbers. Let Λ be an infinite set containing
R and let L be the family of finite subsets of Λ. A function ϕ : L→ E will be called
net (with values in E). The set of such nets is denoted by F (L,R) . Such a set is a
real algebra equipped with the natural operations

(ϕ+ ψ) (λ) = ϕ(λ) + ψ(λ);

(ϕ · ψ) (λ) = ϕ(λ) · ψ(λ);

and the partial order relation:

ϕ ≥ ψ ⇔ ∀λ ∈ L, ϕ(λ) ≥ ψ(λ).

Definition 5. The set of Euclidean numbers E ⊃ R is a field such that there is a
surjective homomorphism

J : F (L,R)→ E
or, more exactly a map which satisfies the following properties:

• J (ϕ+ ψ) = J (ϕ) + J (ψ) ;
• J (ϕ · ψ) = J (ϕ) · J (ψ) ;
• if ϕ(λ) ≥ r, then J (ϕ) ≥ r.

The proof of the existence a field which satisfy the above definition is an easy
consequence of the Krull-Zorn theorem. It can be found, e.g. in [4, 5, 6, 13].

The number J (ϕ) is called the Λ limit of the net ϕ and will be denoted by

J (ϕ) = lim
λ↑Λ

ϕ(λ)

The reason of this name/notation is that the operation

ϕ 7→ lim
λ↑Λ

ϕ(λ)

satisfies many of the properties of the usual limit, more exactly it satisfies the
following properties:

• (Λ-1) Existence. Every net ϕ : L→ R has a unique limit L ∈ E.
• (Λ-2) Constant. If ϕ(λ) is eventually constant, namely ∃λ0 ∈ L, r ∈ R such

that ∀λ ⊃ λ0, ϕ(λ) = r, then

lim
λ↑Λ

ϕ(λ) = r.

• (Λ-3) Sum and product. For all ϕ,ψ : L→ R:

lim
λ↑Λ

ϕ(λ) + lim
λ↑Λ

ψ(λ) = lim
λ↑Λ

(ϕ(λ) + ψ(λ)) ;

lim
λ↑Λ

ϕ(λ) · lim
λ↑Λ

ψ(λ) = lim
λ↑Λ

(ϕ(λ) · ψ(λ)) .

Now let us see the main differences between the usual limit (which we will call
Cauchy limit) and the Λ-limit. We recall the definition of Cauchy limit (as formal-
ized by Weierstrass):

L = lim
λ→Λ

ϕ(λ)

if and only if, ∀ε ∈ R+, ∃λ0 ∈ L, such that ∀λ ⊃ λ0,

|ϕ(λ)− L| ≤ ε



1676 VIERI BENCI AND MARCO COCOCCIONI

The classical example of Cauchy limit of a net is provided by the definition of the
Cauchy integral:∫ b

a

f(x)dx = lim
λ→Λ

∑
x∈[a,b]∩λ

f(x)(x+ − x); x+ = min {y ∈ R ∩ λ | y > x}

Notice that in order to distinguish the two kind of limits we have used the symbols
“λ ↑ Λ” and “λ → Λ” respectively. Since also the Cauchy limit (when it exists)
satisfies (Λ-2) and (Λ-3) the only difference between the the Cauchy limit and the
Λ-limit is that the latter always exists. This fact implies that E must be larger than
R since otherwise a diverging net cannot have a limit.

In the case in which the Cauchy limit exists the relation between the two limits
is given by the following identity:

lim
λ→Λ

ϕ(λ) = st

(
lim
λ↑Λ

ϕ(λ)

)
(1)

2.3. Numerosities and the number α. In order to give a feeling of the Euclidean
numbers, we will describe a possible interpretation of some of them. If E ⊂ Λ, we
set

n (E) = lim
λ↑Λ
|E ∩ λ| (2)

where |F | denotes the number of elements of the finite set F . Notice that E ∩ λ is
a finite set since λ ∈ L. Then the above limit makes sense since for every λ ∈ L,
|E ∩ λ| ∈ N. If E is a finite set, the sequence is eventually constant, namely,
∀λ ⊃ E, |E ∩ λ| = |E| and hence n (E) = |E|. If E is an infinite set, the above
limit gives an infinite number. Hence n (E) extends the “measure of the size of a
set” to infinite sets. The Euclidean number n (E) is called numerosity of E. For
example, the number α defined by

α := lim
λ↑Λ
|N ∩ λ| (3)

is the numerosity of N and it represents a measure of the size of N = {1, 2, 3, ...}.

Definition 6. The set of numerosities is defined as follows:

Num := {ν ∈ E | ∃A ⊂ Λ, ν = n(A)}

The theory of numerosity can be considered as an extension of the Cantorian
theory of cardinal and ordinal numbers. The reader interested to the details and
the developments of this theory is referred to [2, 7, 9, 10] and the papers quoted
therein.

In all this paper the number α will play a special role, and, in order to simplify
the notation, we will use also a special symbol, namely η, to denote its inverse.

2.4. Basic properties of the Euclidean numbers. The main feature of the
Euclidean numbers is that every real function f : R → R can be extended to a
function f∗ defined on all the field E; in fact given a point ξ ∈ E, such that

ξ = lim
λ↑Λ

xλ

we set
f∗(ξ) = lim

λ↑Λ
f (xλ)

It is possible to prove that the value of f∗(ξ) is independent of the choice of
the approximating net {xλ}. This peculiarity implies that expressions such as
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sin(η), exp(α2), etc. make sense and can be manipulated following the usual rules
of the real numbers. For example if

x = lim
λ↑Λ

xλ and y = lim
λ↑Λ

yλ

are Euclidean numbers, we have that

exp(x+ y) = exp(x) · exp(y).

In fact

exp(x+ y) = exp

(
lim
λ↑Λ

(xλ + yλ)

)
= lim

λ↑Λ
exp (xλ + yλ)

= lim
λ↑Λ

[exp (xλ) · exp (yλ)] = lim
λ↑Λ

[exp (xλ)] · lim
λ↑Λ

[exp (yλ)]

=

[
exp

(
lim
λ↑Λ

xλ

)]
·
[
exp

(
lim
λ↑Λ

yλ

)]
= exp(x) · exp(y).

There are other properties of the Euclidean numbers which depend on the choice
of the set Λ and the homomorphism J. They will not be used in this paper but
we will mention them for completeness, without proofs and details, but with the
appropriate references for the interested reader. If we choose Λ and a suitable
homomorphism J properly, then the following properties hold.

Property 1. If q ∈ Q, then

αq ∈ N∗

where

N∗ =

{
lim
λ↑Λ

xλ | xλ ∈ N
}

is (called) the set of hypernatural numbers.

See [2], [4] or [8]. By this property, it follows that α/2, α/3, ..,
√
α, 3
√
α, .. etc.

are the numerosities of suitable sets; for example α/2 is the numerosity of the even
numbers;

√
α is the numerosity of the set of the square numbers {1, 4, 9, 16, ....} etc.

In order to state another interesting property, we need the following definition:

Definition 7. A set is called ordinary if its cardinality is less than the first
inaccessible cardinal number κ.

Then, E satisfies the following properties:

Property 2. κ-saturation. Given two ordinary subsets, A,B ⊂ E, such that

a ∈ A, b ∈ B ⇒ a < b

then ∃c ∈ E, ∀a ∈ A, ∀b ∈ B,
a < c < b.

Property 3. E is the unique real closed field κ-saturated and any ordered field of
cardinality less or equal to κ is isomorphic to a subfield of E.

Property 4. E is the unique hyperreal field having cardinality κ and it is isomorphic
to the Keisler field.

See [10] for details or [12] for a divulgative exposition.
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2.5. Euclidean numbers versus other classes of numbers. This section is
independent of the rest of the paper. It is dedicated to the reader who wants
to orient himself in the jungle of infinite numbers present in the mathematical
literature.

Probably the best known infinite numbers are the cardinal numbers. Since we do
not want to work with classes which make life hard, we will consider only ordinary
cardinal numbers (namely the numbers smaller than the first inaccessible cardinal
number κ), and we will denote this set by Card. It is well known that any cardinal
number can be identified with the smallest ordinal number of a given cardinality.
Thus we can directly consider the set Ord of ordinal numbers (smaller than the
first inaccessible cardinal).

Now let us compare the set of ordinal numbers with Num, the set of numerosities
(see Def. 6). Then the set of ordinal numbers Ord can be identified with the subset
of Num characterized by the following property:

γ ∈ Ord⇐⇒ γ = n(Sγ)

where

Sγ = {x ∈ Ord | x < γ} .
Clearly Ord 6= ∅ since 0 ∈ Ord. Moreover it is easy to see that the natural
numbers are ordinal numbers since, it is easy to prove by induction that

n = n({0, ..., n− 1})

is an ordinal number. On the other hand there are numerosities which are not
ordinal numbers such as α defined by (3); to see this we argue indirectly; if we
assume that α is an ordinal numbers, we get the following contradiction:

α = n( {x ∈ Ord | x < α}) = n(N0) = n(N ∪ {0}) = n(N) + 1 = α+ 1.

With a similar argument, we can prove that α − 1, α − 2, .., α/2, α/3, ..
√
α are not

ordinal numbers. On the contrary,

α+ 1 = n(N0) = {x ∈ Ord | x < α+ 1}

is an ordinal number; clearly this number is the smallest infinite ordinal number
usually denoted by ω.

In conclusion, we have the following situation:

Card ⊂ Ord ⊂ Num ⊂ N∗0 = N∗ ∪ {0} .

Another theory which uses infinite numbers is the Grossone Methodology of Sergeyev
[25]. Also these numbers can be easily embedded in the set of Euclidean number
identifying the number grossone ¬ with α.

However, when using this identification, we have to be very carefully since the
author uses a rather problematic notation. In fact he uses the symbol N to denote
the set

{x ∈ N∗ | x ≤ ¬}
and he call these numbers natural numbers. So, in his theory, the “finite” natural
numbers are looking for a name having lost the one used for more than 2000 years
and this fact might cause some confusion. Undoubtedly Grossone Methodology has
the merit of having being successfully used to solve several applied problems (see
[25] and references therein).
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A beautiful theory of non-Archimedean numbers is the theory of surreal numbers
created by Conway. The set of surreal numbers1 No is a field having cardinality
κ and hence it is a field isomorphic to E (see property (3)). Moreover there is a
natural identification

Ord ⊂ No.

This implies that it is possible to identify a large class of surreal numbers with
the corresponding Euclidean numbers. However, as far as we know, a satisfactory
isomorphism (or homomorphism) between these two field has not been established
and this seems to be a rather involved problem.

A other important Non-Archimedean field is the Levi-Civita field which will be
discussed in the next section (see section 3 and in particular Remark 10).

3. Algorithmic numbers (ANs). The algorithmic numbers (ANs) form a subset
of the Euclidean numbers which can be easily represented and manipulated with a
computer. As we will see, the full set of these numbers is still too large to allow
efficient numerical computations on personal computer. However, it is useful since
it contains sets of numerically friendly numbers which will be presented below.

Following Levi-Civita [22], we will call monosemium an Euclidean number of the
form

rαp

where r ∈ R and p ∈ Q; p will be called the order of the monosemium.

Definition 8. An Euclidean number ξ is called algorithmic if it can be represented
as a finite sum of monosemia, namely

ξ =
∑̀
k=0

rkα
sk ; rk ∈ R, sk ∈ Q; sk > sk+1. (4)

s0 will be called “order of ξ” and r0α
s0 will be called leading term or lead-

ing monosemium of ξ. We recall that the Levi-Civita field is defined as the set of
numbers obtained by an infinite sum of monosemia; this sum is well defined pro-
vided that the sk’s do not have accumulation points (see Remark 10). Thus the
algorithmic numbers form a subset of the Levi-Civita field.

In some situations, it is useful to reduce an AN “ξ” to its normal form:

Definition 9. The normal form of a AN “ξ” is given by

ξ = αpP
(
η

1
m

)
(5)

where p ∈ Q, m ∈ N and P (x) is a polynomial with real coefficients such that
P (0) = r0 6= 0.

It is easy to see that an AN can be reduced to a normal form; indeed

ξ =
∑̀
k=0

rkα
sk =

∑̀
k=0

rkα
nk
m = α

n0
m

∑̀
k=0

rkα
nk−n0
m

where m is the least common denominator of the sk’s; then

ξ = α
n0
m

∑̀
k=0

rk

(
η

1
m

)n0−nk

1Actually he uses the Gödel-Bernays theory of classes but here, to make life easier, we consider
No to be a set having cardinality κ.
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has the form (5).
Let us show an example. Suppose to have the following AN number:

1.63024α13/2 − 1.03469α11/2 + 0.488894α7/2

its normalized version is:

α13/2

(
1.63024

(
η1/2

)13−13

− 1.03469
(
η1/2

)13−11

+ 0.488894
(
η1/2

)13−7
)

i.e.:

α13/2

(
1.63024− 1.03469

(
η1/2

)2

+ 0.488894
(
η1/2

)6
)

The algorithmic numbers can be represented and manipulated in actual compu-
tations; in fact any algorithmic number can be coded by a triple (n0,m, P ) where
n0 ∈ Z; m ∈ N and P is a polynomial with real coefficients.

In practical applications, however, the ANs present two fundamental problems:

• the inverse of an AN is not an AN; for example (α+ 1)
−1

is not an AN; hence
they form a commutative ring with identity and not a field;

• after few computations they fill the memory (this is due to the fact that
AN numbers have a variable length coding, and this length tends to increase
during the execution of an iterative algorithm).

This fact is not surprising since the same phenomenon occurs when we try to
represent the real numbers in a (finite) decimal notation. The inverse of a num-
ber written in a finite decimal notation cannot be written in the same way: e.g.
3−1 = 0.3333... cannot be written by a finite number of digits; moreover after few
multiplications the computer will go in overflow, since every multiplication increases
the number of decimal digits.

Remark 10. The Levi-Civita field can be defined as the Cantor closure of ANs.
Namely, a number in the Levi-Civita field is an equivalence class of Cauchy se-
quences of algorithmic numbers. It possible to show that such a number can be
univocally represented by an infinite sum

∑∞
k=0 rkα

sk where the sk’s form a se-
quence of decreasing rational numbers without accumulation points (i.e., either
finite or diverging to −∞).

3.1. Approximated inverse of algorithmic numbers. The inverse of algorith-
mic numbers can be performed with the same spirit which we have when we divide
two decimal numbers; since the division, in general, produces infinitely many dec-
imal digits, we have to decide the degree of precision, namely when to stop the
iteration procedure.

For this reason, we need a “truncation” operator. Given a polynomial

Pm(x) = a0 + ..+ anx
n + an+1x

n+1 + ..+ amx
m

we set

trnPm(x) = trn
[
a0 + ..+ anx

n + an+1x
n+1 + ..+ amx

m
]

= a0 + ....+ anx
n

namely trnP (x) is a polynomial of degree ≤ n which, for small x’s, approximates
P (x).

Definition 11. Given an algorithmic number ξ = αpP
(
η

1
m

)
, the n-truncated

inverse is an algorithmic number

ζ = α−pQn

(
η

1
m

)
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such that

trn

[
P
(
η

1
m

)
·Qn

(
η

1
m

)]
= 1

Let us see how the polynomial Qn can be constructed. Given

αpP
(
η

1
m

)
= αp

(
p0 +

∑̀
k=1

pkη
k
m

)
,

we will rewrite it in the following form:

αpP
(
η

1
m

)
= p0α

p (1− ε)

where

ε = −
∑̀
k=1

pk
p0
η
k
m

Now, by observing that the Taylor expansion of (1− ε) is:

(1− ε)−1 = (1 + ε+ ε2 + ε3 + ...)

we set

Qn

(
η

1
m

)
=

1

p0
· trn

[
1 + ε+ ε2 + ...+ εn

]
It is easy to see that α−pQn

(
η

1
m

)
is the n-truncated inverse of αpP

(
η

1
m

)
;

indeed:

trn

[
P
(
η

1
m

)
·Qn

(
η

1
m

)]
= trn

[
(1− ε) ·

(
1 + ε+ ε2 + ...+ εn

)]
= trn

[
1− εn+1

]
= 1

Using the same method we we can compute the n-approximated r-th root of a
AN. We write the number in the form (3.1) and then we apply the Newton formula

(1 + x)r = 1 +

(
r
1

)
x+

(
r
2

)
x2 +

(
r
2

)
x2 + ...+

(
r
n

)
xn +O(xn+1)

where (
r
k

)
=
r(r − 1)(r − 2)...(r − k + 1)

k!

As an example, the approximated square root of the generic AN number

αpP
(
η

1
m

)
= p0α

p (1− ε)

can be computed as:√
αpP

(
η

1
m

)
=
√
p0α

p
2 (1− ε)

1
2 ∼=
√
p0α

p
2 trn

(
1− 1

2
ε− 1

8
ε2 − 1

16
ε3 − 5

128
ε4 + ...

)
.
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3.2. Polynomial algorithmic numbers (PANs). In order to perform compu-
tations with algorithmic numbers, we will adopt the same strategy used with real
numbers: we will use suitable subclasses of approximate ANs and we will perform
approximate operations with them which make such classes closed. Clearly, the
choice of the class depends on the problem and on the degree of precision needed.

The approximate sum and product will be denoted by ⊕ and � and the approx-
imate division by �. The simplest class of algorithmic number is provided by the
following definition:

Definition 12. A polynomial algorithmic number (PAN) of accuracy n is an Eu-
clidean number ξ which can be represented as follows

ξ = S(α)ηn (6)

where S is a polynomial with real coefficients.

Let us discuss some features of this class of numbers. The polynomial algorithmic
numbers are the analogous of the decimal number with a fixed number of decimal
digits (fixed-point representation); indeed such a number can be written as follows

P (10)

(
1

10

)n
where P is a polynomial with coefficients in {0, 1, 2, ..., 9}. Example: the number
527, 36 is represented by the polynomial

S (x) = 5x4 + 2x3 + 7x2 + 3x+ 6

and n = 2. While a real number is approximated up to 10−n, a Euclidean numbers
is approximated up to ηn, namely up to an infinitesimal of order n.

Examples of PANs having accuracy n = 2.

ξ =
(
5α4 + 2α3 + 3α2 + 7α1 + 6

)
η2;

ζ =

(
−1

7
α3 − 5

)
η2.

3.3. Approximated operations on PANs. The approximated operations be-
tween two PAN correspond to the usual operations up to an approximation of
infinitesimals of order n. One of the characteristic of this class of numbers is that
we can operate with them just performing operations with polynomials in α:

sum:

P (α)ηn ⊕Q(α)ηn = [P (α) +Q(α)] ηn;

no error occurs in this case.
In order to define the approximated product and the approximated quotient we

recall the definition of quotient between two polynomials: given two polynomials
A(x) and Q(x) the usual polynomial division gives the following result

A(x)

Q(x)
= C(x) +

R(x)

Q(x)

where C(x) is the quotient polynomial and the remainder term R(x) is a polynomial
of lower degree than Q(x); we will use the following notation:

C(x) = quo

[
A(x)

Q(x)

]
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• approximated product:

P (α) ηn ⊗Q(α)ηn = quo

[
P (α) ·Q(α)

αn

]
ηn

• approximated division:

P (α)ηn �Q(α)ηn = quo

[
αnP (α)

Q(α)

]
ηn

Example. Given ξ =
(
4α2 + 3α

)
η2 and ζ =

(
α3 − 5

)
η2

ξ ⊗ ζ = quo

[(
4α2 + 3α

)
·
(
α3 − 5

)
α2

]
η2 = quo

[
4α5 + 3α4 − 20α2 − 15α

α2

]
η2

= (4α3 + 3α2 − 20)η2

ξ � ζ = quo

[
4α4 + 3α3

α3 − 5

]
η2 = quo

[
4α+ 3 +

20α+ 15

α3 − 5

]
η2

= (4α+ 3) η2.

PANs like numbers have been implicitly used, for instance, in [14, 16], to trans-
form a lexicographic multi-objective optimization problem into a single-objective
one, where the cost function is a vector of PANs. More precisely, to solve an r-
objective optimization problem, PANs of degree r and accuracy r have been used.
As an example, when r + 1 = 5 objectives, the numbers are of the form:

ξ =
(
c0α

4 + c1α
3 + c2α

2 + c3α
1 + c4

)
η4.

3.4. Bounded algorithmic numbers (BANs). The PANs are very simple to
implement in a computer, but they present several problems. First, similarly to
fixed-point real numbers, they are suitable to go in overflow since every multipli-
cation increases the degree of the representative polynomial and in any case they
require a lot of memory. Moreover, if you get a number of accuracy less than n the
computer gives 0 and this fact, in some class of problems, is not acceptable. In the
case of real numbers this problem has been solved using the scientific notation. A
(positive) approximated real number in scientific notation has the following form:

Pn
(
10−1

)
· 10p

where Pn is a polynomial with coefficients in {0, 1, 2, ..., 9}, and p ∈ Z.

Example. the number 0.00271 is represented as follows:

2.71 · 10−3 =
(
2 + 7 · 10−1 + 1 · 10−2

)
· 10−3

Definition 13. A bounded algorithmic number (BAN) of accuracy n is an Eu-
clidean number ξ which can be represented as follows

αpPn (η) (7)

where Pn is a polynomial with real coefficients of degree n such that Pn(0) 6= 0 and
p is an integer number; the set of BANs of accuracy n will be denoted by En.

For each n the set En of the algorithmic numbers of degree n is a set with the four
approximated elementary operations (⊕, � and their inverses) which approximate
the euclidean numbers so that they can be used more efficiently in the numerical
calculations.
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3.5. Approximated operations on BANs. Now we can define “approximate”
field operations in such a way that En is closed:

• approximated sum: reduce the minor number (of order q) to the order of
the major (p) and the resulting polynomials are added:

αpPn (η)⊕αqQn (η) = αpPn (η)⊕αp
[
Qn (η) ηp−q

]
= αp

(
Pn (η) + trn

[
Qn (η) ηp−q

])
• approximated product:

Pn (η)αp �Qn (η)αq = αp+qtrn [Pn (η) ·Qn (η)]

• approximated division: given αpPn (η) and αqQn (η) we rewrite:

αqQn (η) = αq

(
q0 +

n∑
k=1

qkη
k

)
in the following form:

αqQn (η) = q0α
q (1− ε)

where

ε = −
n∑
k=1

qk
q0
ηk;

Now, we pose

Pn (η)αp �Qn (η)αq = αp−qtrn

[
Pn (η)

q0

(
1 + ε+ ε2 + ...+ εn

)]

= αp−q
[
Pn (η)

q0
+ trn

[
ε
Pn (η)

q0

]
+ trn

[
ε2Pn (η)

q0

]
+ ...+ trn

[
εn
Pn (η)

q0

]]
In particular, the approximated inverse of ξ = Qn (η)αq is given by

1�Qn (η)αq =α−q

[
1

q0
− trn

[
1

q0
·
n∑
k=1

qk
q0
ηk

]
+ ...+ (−1)ntrn

[
1

q0
· q

n
1

qn0
ηn
]]

=

=
α−q

q0

[
1− trn

[
n∑
k=1

qk
q0
ηk

]
+ ...+ (−1)ntrn

[
qn1
qn0
ηn
]]

Let us see an example of division:

1

α5 (2 + 3η − 2η2)
=

[
2α5

(
1 +

3

2
η − η2

)]−1

=
1

2
α−5

(
1 +

3

2
η − η2

)−1

∼=
1

2
α−5tr2

[
1−

(
3

2
η − η2

)
+

(
3

2
η − η2

)2
]

=
1

2
α−5

[(
1− 3

2
η + η2

)
+ tr2

[(
3

2
η − η2

)2
]]
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=
1

2
α−5

[
1− 3

2
η + η2 +

(
3

2
η

)2
]

=
1

2
α−5

(
1− 3

2
η +

13

4
η2

)
=

(
1

2
− 3

4
η +

13

8
η2

)
α−5

Let us check if the answer is correct:(
2 + 3η − 2η2

)
α5 ·

(
1

2
− 3

4
η +

13

8
η2

)
α−5

= tr2

[(
2 + 3η − 2η2

)(1

2
− 3

4
η +

13

8
η2

)]
= 1

Let us consider another example in E3:

1�
(
1 + η + η2

) ∼= 1− tr2
(
η + η2

)
+ tr2

(
η + η2

)2
= 1− η − η2 + η2 ∼= 1− η;

in fact (
1 + η + η2

)
� (1− η) = tr2

[(
1 + η + η2

)
(1− η)

]
= tr2

[
1− η3

]
= 1.

3.6. Truncated algorithmic numbers (TANs). BANs are useful in all numer-
ical simulations when the four elementary operations are sufficient; for instance, in
lexicographic multi-objective linear programming [16].

However, when we need non-linear operations the BANs might not be sufficient.
For example, the solutions of the equation

x2 = α

cannot be approximated by BANs, being
√
α greater than any number of order 0

and lower than any number of order 1. In general, the square root, of the BAN
(7), if p is an odd number, cannot be approximated by a BAN. Hence, for certain
problems it is necessary to use the AN and to truncate the polynomial P to a
suitable degree.

Definition 14. A truncated algorithmic number (TAN) of degree n and type m is
an Euclidean number ξ which can be represented as follows

αpPn

(
η

1
m

)
where Pn is a polynomial with real coefficients of degree n, p ∈ Q and m is a
positive integer. The set of TANs of degree n and type m will be denoted by En,m.

The operations with TANs are described in sections 3 and 3.1; of course, if we
want to get a TAN we need to write the result in the normal form and to truncate
the result to the degree n .

Example. Let us study the following equation in E2,2 :

x2 + 2x− 4α = 0
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In this case √
4
4

=
√

1 + 4α = 2α
1
2

√
1 +

1

4
η ∼= 2α

1
2

(
1 +

1

8
η

)
then

x1 = −1 +
√

1 + 4α ∼= 2α
1
2

(
1− 1

2
η

1
2 +

1

8

(
η

1
2

)2
)

x2 = −1−
√

4α+ 1 ∼= −2α
1
2

(
1 +

1

2
η

1
2 +

1

8

(
η

1
2

)2
)

Example. Let us see what happens making an infinitesimal singular perturbation
to a simple linear equation

3x+ 5 = 0

namely, we consider the second order equation

ηx2 + 3x+ 5 = 0.

The exact solutions of this equation are given by

x1 =
−3 +

√
4

2η
; x2 =

−3−
√
4

2η
; 4 = 9− 20η

Then

x1 = −3

2
α+

1

2
α
√

9− 20η; x2 = −3

2
α− 1

2
α
√

9− 20η.

In this case the TANs are not necessary. If fact, we can estimate the solution with
a BAN. Let us work in E2. We need to evaluate

√
9− 20η; since

(1 + x)
1
2 = 1 +

1

2
x− 1

8
x2 +O

(
x3
)

we get √
9− 20η = 3

√
1− 20

9
η ∼= 3

(
1− 10

9
η +

50

81
η2

)
= 3− 10

3
η +

50

27
η2

then

x1 = −3

2
α+

1

2
α
√

9− 20η ∼= −
3

2
α+

1

2
α

(
3− 10

3
η +

50

27
η2

)
= −5

3
+

25

54
η

x2
∼= −3

2
α− 1

2
α

(
3− 10

3
η +

50

27
η2

)
= −3α+

5

3
− 25

27
η = −α

(
3− 5

3
η +

25

27
η2

)
Notice that x1 is an infinitesimal perturbation of the solution of the linear prob-

lem; x2 is a new solution which appears at −∞ (or, to be more precise, close to
−3α).

3.7. Beyond the Levi-Civita field. One of the strong limitations of the Levi-
Civita field is that is not possible to define transcendental functions for all the
numbers, not even by a suitable approximation. This is one of the reasons that
make NSA and the hyperreal fields necessary. For example the number logα, which
in the world of Euclidean numbers is well defined by the formula

logα = lim
λ↑Λ

log (|λ ∩ N|)

cannot be approximated by a Levi-Civita number. In fact it is a “small” infinite
number in the sense that, for every m ∈ N,

logα� α
1
m
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where ξ � ζ means that ξ/ζ is an infinitesimal. So if we want to manipulate also
these kind of numbers we need a more sophisticated strategy.

Definition 15. We say that the set of euclidean numbers

{β−m, .., β−1, β0, β1, ..., βn}
is a transcendent basis if β0 = 1, and

h < k ⇒ ∀r ∈ R, αrβh � αβk

The real vector space V generated by such a basis will be called the order group.
An Euclidean number of the form

rαv, r ∈ R, v ∈ V
will be called V -monosemium. An Euclidean number of the form

ξ =
∑̀
k=0

rkα
vk ; vk > vk+1

is called V -algorithmic number 2.

The V -algorithmic numbers generalize the notion of algorithmic numbers. It is
necessary to say that they are not very suitable for numeric computations since they
do not have a normal form defined by a polynomial such as (5). We introduced them
just for completeness since they might be used in some particular problem. In any
case they form a ring and they have an approximate inverse. It is possible to prove
that there exists an infinite-dimensional real vector pace VE such that any Euclidean
number can be approximated by a transcendental AN with an order group V ⊂ VE.
Example. Take

V = {β0, β1} =

{
1,

α

logα

}
The number e2α+3 + 5α2 can be represented as follows:

e2α+3 + 5α2 = e3e2α + 5α2 = e3α
2α

logα + 5α2 = e3α2β1 + 5α2β0 .

4. Some applications.

4.1. Application to linear dynamic systems. Control Theory of Linear Dy-
namic Systems [24] is a good candidate to show the powerfulness of the proposed
algorithmic numbers. In particular, we will consider the theory of linear systems,
i.e., systems described by ordinary differential equations. Such systems can be
fruitfully analyzed by means of the well-known Laplace transform [24].

4.1.1. A second-order system with one of the two poles at infinity, approximated as
a first-order one. Suppose to have the continuous, time invariant linear dynamic
system described by the following ordinary differential equation:{

3ẏ + 5y = 0

y(0) = 1

The dynamical system above (along with its initial condition) is completely de-
scribed by its Laplace transform [24]:

G(s) =
1

3s+ 5
.

2Actually, Levi-Civita, in his paper [22], considered also fields of this type.
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Being the linear system of the differential equation of the first order, the system
is said to be of the first order as well. A first-order system has only one pole (a
pole is defined as one of the roots of the denominator of the G(s) transform). In
the considered case, the pole p is located in − 5

3 . Any system having all negative
poles is known to be asymptotically stable. The linear system above can be excited
(i.e., forced) using inputs such as the Dirac delta (see below), the Heaviside step
function (see below) and so on. In particular, when the input is the Dirac delta, it
is known that the output y(t) of the linear dynamical system is the inverse Laplace
transform of the G(s). In this case, it is:

y(t) = e−
5
3 t.

We can ask our self what happens if the true system had an infinitesimal com-
ponent of the second order: {

ηÿ + 3ẏ + 5y = 0

y(0) = 1

G(s) =
1

ηs2 + 3s+ 5

The question is: what is the impact of neglecting the second order component? In
general, in system identification it is of paramount importance to correctly identify
the order of a system, or, at least, to use a “valid” (i.e., acceptable) lower-order
approximation.

As we have seen in 3.6, the two poles can be easily found using BAN numbers:

p1
∼= −5

3
+

25

54
η

p2
∼= −α

(
3− 5

3
η +

25

27
η2

)
Again, p1 is an infinitesimal perturbation of the original pole of the first-order

linear system; p2 is a new pole that appears at −∞.
This simple example shows that p1 is the dominant pole and it is correct to

neglect the contribution of the dominated pole as it is usually done.

4.1.2. Marginally stable systems due to the presence of infinitesimal poles. From
the theory of linear systems, it is well-known how the following system:{

ẏ = 0

y(0) = 1

G(s) =
1

s
is marginally stable [24], due to the presence of one pole on the origin. In fact,
when the system is forced with the Dirac impulse (who’s Laplace transform is equal
to 1) the Laplace transform of the output is:

Y (s) = 1 ·G(s)

which has the anti-transform in time equal to:

y(t) = u(t)

where u(t) is the Heaviside step function (a function which is zero for t 6 0 and 1
for t > 0).
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We might ask what happens if the pole is not exactly zero, but negative and
infinitesimally close to zero. As an example, our system could be:

G(s) =
1

s+ η

The associated anti-transform is equal to

y(t) = e−ηtu(t)

The Taylor expansion of the exponential function in zero is:

e−x = 1− x+
1

2!
x2 − 1

3!
x3 +O

(
x4
)

(8)

Thus

y(t) = e−ηtu(t) ∼=
(

1− ηt+
1

2
η2t2

)
u(t).

It it clear that the system is still marginally stable, or Lyapunov stable, since the
output is always bounded (in particular, y(t) is always < 1, being η > 0 and t > 0).

In addition, we can also compute the value after an infinite amount of time, more
precisely, for, instance, when t = α:

y(t = α) ∼=
(

1− 1 +
1

2

)
=

1

2
.

However in this case the approximation above, computed using (8), is too coarse,
since x = ηα = 1 is not infinitesimal. We can still obtain the exact value for y(t = α)
by using the full expansion of the exponential function:

y(t = α) = e−ηα = e−1.

We can now repeat the study in an even more interesting setting, i.e., when the
pole is infinitesimal but positive. We know from the theory that a system with
a pole on the positive half-plane is always unstable, but what happens when it is
infinitesimal?

In this case:

G(s) =
1

s− η

y(t) = eηtu(t) ∼=
(

1 + ηt+
1

2
η2t2

)
u(t).

Thus, after an infinite amount of time t = α, the output is still finite:

y(t = α) = eηα = e.

This is really interesting, because we have found that the system is marginally stable
even when a pole is located on the positive half-plane, provided that it is infinitesimal
in magnitude.

A further interesting observation can be deduced. We can compute an accurate
approximated value of the output after an infinite amount of time τ , provided that
τ is a sufficiently small infinite. For example, when τ is

√
α, by using (8) we obtain:

y
(
t =
√
α
) ∼= (1− η

√
α+

1

2
η2α

)
∼= 1.
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Finally observe how the Dirac function, which is actually a distribution over R,
can be easily defined as an internal function in E:

δ (t) =

{
eα ∀t ∈

[
− e

−α

2 , e−α

2

]
0 otherwise

Using this definition we have that for every continuous function φ:∫
φ(x)δ(x)dx = φ(0) + ε

Here, ε is an infinitesimal of order −∞ and hence, in the world of algorithmic
numbers, ε can be neglected and so we can write:∫

φ(x)δ(x)dx = φ(0)

Before switching to the next application, observe how we have now all the tools
needed to draw the root locus [24] for poles that are finite, infinite or infinitesimal.

4.2. Application to linear programming. Let us consider a linear programming
problem [16, 17], i.e., a problem of the form:

min cTx

s. t. Ax 6 b,
(9)

where c is a column vectors ∈ Rn, x is a column vector ∈ Rn, A is a full-rank
matrix ∈ Rm×n, b is a column vector ∈ Rm.

Most LP solvers require that A is full rank to run. When A has not full rank,
some pre-processing occurs to remove the linear dependent variables (columns),
thus the dimension of the problem decreases. Let us see such an example:

min x2

s. t. x1 6 1,

x1 > −1

(10)

The given problem corresponds to the following one:

A =

[
+1 0
−1 0

]
, b =

[
1
1

]
where rank(A) = 1 ( < 2 ).

However, if we perturb matrix A by infinitesimal normally distributed random
noise we can make it again full rank:

A =

[
1 + 2.78911η −0.77306η
−1 + 0.72757η 0.83663η

]
, b =

[
1
1

]
In particular, it is now possible to compute the inverse of A, which is:

A−1 =

[
13.1608 12.1608

15.7307α− 728.0511 15.7307α− 672.7313

]
This means that now the generalization of the simplex algorithm described in [16]
is able to solve the problem. In addition, having used infinitesimal random noise in
place of finite random noise, we are assured that we have not changed the solution
of the original problem, or, more precisely, its standard, purely finite, part.



ALGORITHMIC NUMBERS FOR NON-ARCHIMEDEAN COMPUTING 1691

To verify that the computed A−1 is the algorithmic inverse of A, let us compute
their product, to verify if it is (numerically close) to the identity matrix:

AA−1 =

[
1 0
0 1− 1.1369η

]
∼= I2

It is worth nothing that the obtained matrix is infinitely close to the 2×2 identity
matrix.

In the previous LP example, there is another way to make the matrix A full
rank, i.e., by adding a bounding box constraint. However, in order to not change
the problem, such box must be infinite in size. More precisely, we can add the
constraint −α 6 xi 6 +α, ∀i = 1...n:

A =


1 0
−1 0
1 0
−1 0
0 1
0 −1

 , b =


1
1
α
α
α
α


Matrix A now has rank 2, a mandatory pre-condition needed by most LP solvers.

We can also draw the feasible region, from which it is clear that polyhedron is
bounded (although at infinity). This helps even in finding a first feasible basic
solution, since now we have four vertex for our feasible region, as shown by Figure 1.

-

6

•
O(0, 0)

≈
≈ ≈

≈

x
2
>
−

1
x

2
6

1

x1 > −α x1 6 α

x1

x2

Figure 1. Feasible region (the vertical line on the left is positioned
at x1 = −α, while the vertical constraint on the right is at x1 = α.
The upper horizontal constraint at x2 = 1 and the lower constraint
at x2 = −1.

Again, the generalized simplex described in [16] is now able to solve the problem,
being the new A full rank.
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