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ABSTRACT 
The article illustrates the invited lecture given by the author at International Symposium on 

Pump and Fan Technology, September 26-28, 2018, ShenYang, China, on the development and 
experimental validation of a reduced order model for preliminary design and noncavitating 
performance prediction of mixed-flow tapered-hub inducers for space propulsion applications. 
The model expresses the 3D incompressible, inviscid, irrotational flow in the blade channels by 
superposing a 2D axial vorticity correction to a fully-guided axisymmetric flow with radially 
uniform axial velocity. Suitable redefinition of the diffusion factor for bladings with non-
negligible radial flow simultaneously allows for the control of the blade loading and the estimate 
of the boundary layer blockage and viscous blade losses at the specified design flow coefficient, 
providing a simple criterion for matching the hub profile to the axial variation of the blade pitch 
angle. Carter’s rule is employed to account for flow deviation at the inducer trailing edge. Mass 
continuity, angular momentum conservation and the Euler equation are used to derive a simple 
2nd order boundary value problem whose numerical solution defines the far-field axisymmetric 
flow velocity at the inducer discharge. The noncavitating pumping characteristic is then 
obtained using suitably adapted semi-empirical corrections for incidence, casing and tip 
clearance losses. The model has been verified to closely approximate the geometry and 
noncavitating head characteristics of two space inducers tested in the Cavitating Pump 
Rotordynamic Test Facility, as well as those of a number of tapered-hub inducers documented in 
the literature. 

KEYWORDS 
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NOMENCLATURE 

Latin Symbols 
a  distance of the leading edge from the maximum camber point 
B  flow blockage 
c  blade chord 
ca  full-blade axial length 
c%  tip clearance/mean blade height ratio c% = δ hm  
D  diameter, diffusion factor 
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Dch  hydraulic diameter of blade channels 
eϑ  unit vector in azimuthal direction  
f  friction coefficient 
h  specific enthalpy 
hm  mean blade height 
L  axial length 
Lch  effective length of blade channels 
Leq  equivalent duct length 
MC  Carter's rule coefficient 
!m  mass flow rate 
N  number of blades 
p, pt  static and total pressures 
P  (local) blade pitch 
Q  volumetric flow rate 
r  position vector 
r  radial coordinate 
Re  Reynolds number Re = 2ΩrT

2 ν  
Re  tip clearance Reynolds number Reδ = 2Ωδ rT ν  
rH  inducer hub radius 
rM  inducer mean radius 
rT  inducer tip radius 
s  azimuthal blade spacing 
T  flow temperature 
u  flow velocity 
u  radial fto\v velocity 
U  freestream boundary layer velocity 
v  azimuthal flow velocity 
V  absolute value of the flow velocity 
w  axial flow velocity 
z  axial coordinate 
Greek Symbols 
βb  blade angle evaluated w.r.t. the azimuthal direction 
′β2  relative discharge flow angle without deviation 

γ  blade angle from axial direction 
δ  boundary layer thickness, blade tip clearance 
δ *  boundary layer displacement thickness 
δ °  discharge flow deviation angle 
ϑ  azimuthal coordinate 
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θ *  boundary layer momentum thickuess 
ρ  flow density 
ν  kinematic viscosity 
σ  blade solidity, cavitation no. Φ = p1 − pV( ) 1

2 ρΩ
2rT
3  

Φ  flow coefficient, Φ =Q πΩrT
3  

ψ  slip velocity stream function 
Ψ  static head coefficients Ψ = p2 − p1( ) 1

2 ρΩ
2rT
2  

Ψ t  total head coefficients Ψ t = pt2 − pt1( ) 1
2 ρΩ

2rT
2  

Ω  inducer rotational speed 
Ω  inducer rotational speed (vector) 
Special Notations 
′q  value of  q  in the rotating frame 
q  mean value of q  
û  fully-guided flow velocity 
!u  slip flow velocity 

Subscripts 
D  design conditions 
T  tip radius 
h  high clearance 
H  hub radius 
l  low clearance 
le  leading edge 
te  trailing edge 
δ °  flow deviation angle 
1  upstream station 
2  downstream station 
Acronyms 
BVP  Boundary Value Problem  
CPRTF Cavitating Pump Rotordynamic Test Facility 
ODE  Ordinary Differential Equation 
2D  two-dimensional 
3D  three-dimensional 

INTRODUCTION 
Current rocket propellant feed turbopumps often employ an inducer upstream of the 

centrifugal stage in order to avoid unacceptable cavitation, improve the suction performance and 
reduce the propellant tank pressure and weight. The main purpose of inducers consists in 
sufficiently pressurizing the flow for the main pump to operate satisfactorily. Compared to 
centrifugal pump impellers, typical inducers have fewer blades (usually 3 or 4), lower flow 
coefficients (from 0.05 to 0.1), larger stagger angles (70° to 85°) and significantly higher blade 
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solidities (between 1.5 and 2.5). Long blades with small angles of attack provide ample time and 
room for the collapse of the cavitation bubbles and for the gradual exchange of energy with the 
flow. The resulting configuration, even though beneficial from the standpoint of cavitation 
performance, results in relatively low values of the inducer efficiency due to the highly viscous, 
turbulent and dissipative flow inside the blade passages.  

The development of three-dimensional (3D) theoretical models capable of rapidly predicting 
the performance of axial inducers in order to provide indications for the preliminary design of 
the machine is of particular interest to rocket engineers. However, not many such models have 
been proposed so far, probably due to the difficulty of adequately describing the 3D flow field 
inside the inducer blades. Therefore, designers often refer to simple “rules of thumb” or to the 
general indications of design manuals such as the one published NASA (Jakobsen, 1971). In the 
past decades, numerical simulation of the complex 3D features of inducer flows has emerged as 
a promising tool for design validation and refinement (see, for example, Ashihara et al., 2002; 
Kang et al., 2007), but its use in the stages of design still remains impractical.  

A number of two-dimensional models for the prediction of the noncavitating flow in 
turbopump inducers have been illustrated by Brennen, 1994, 1995. These models are based on 
linear and radial cascade analyses with semi-empirical inclusion of flow deviation and viscous 
effects. Three-dimensional corrections for inlet flow prerotation, leakage, and discharge flow are 
also indicated. More recently Lakshminarayana, 1982, addressed the problem of performance 
prediction of noncavitating inducers by the combined use of a simplified radial equilibrium and 
the Euler equation. Viscous effects are taken into account through an empirical loss coefficient 
deduced from the reported performance of inducers documented in the literature. Indications on 
the effects of solidity and number of blades are also provided. 

A second class of models has been aimed at the prediction of the effects of cavitation on 
inducer performance (Stripling and Acosta, 1962; Cooper, 1967; Brennen and Acosta, 1973; 
Brennen, 1978). Also these models are essentially two dimensional, where cavitation is 
assimilated to a vapor layer on the blade or a mixture of bubbles and liquid. Early studies 
opened the way to a number of more recent analyses capable of better understanding and 
predicting the major flow instabilities affecting cavitating inducers (see, for instance, Tsujimoto 
et al., 1993, 1998; Watanabe et al., 1999; Semenov et al., 2004; Pasini et al., 2011).  

In 2007, Bramanti et al., 2007, developed a simplified model based on the traditional 
throughflow theory approximations with empirical corrections for incidence, friction, and 
deviation losses of the flow through the inducer blades. The model proved to be in good 
agreement with the reported performance of several inducers tested in different facilities 
worldwide.  

Expanding on this exploratory work, d’Agostino et al., 2008a, 2008b, 2008c, developed and 
successfully tested a quasi-3D reduced-order model for the preliminary geometric definition and 
noncavitating performance prediction of tapered axial inducers, whose results have been later 
extended by means of the similarity experiments by Torre et al., 2009, to account for tip leakage 
effects. The present invited lecture illustrates and summarizes the main features and results of 
these investigations. Later analyses by Cervone et al., 2012, also investigated the effects of the 
leading edge shape on the performance of helical inducers. Extension of the present model to the 
simultaneous geometry definition and performance prediction of centrifugal turbopumps has 
recently been carried out and validated by d’Agostino et al., 2012, 2017a, 2017b. 

Under the assumptions of incompressible, inviscid and irrotational flow, the 3D velocity 
field inside the blade channels has been approximated as the superposition of a 2D cross-
sectional vorticity correction on a fully-guided axisymmetric flow with radially uniform axial 
velocity. Suitable redefinition of the diffusion factor to bladings with non-negligible radial flow 
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allowed for integral control of the blade loading and for the estimate of the boundary layer 
blockage at the specified design flow coefficient, providing a simple way to better match the hub 
profile with the axial variation of the blade angle in variable-pitch tapered inducers. Carter’s rule 
has been used to account for flow deviation at the inducer trailing edge. Mass continuity, 
angular momentum conservation and the Euler equation have been used to propagate the 
solution downstream and derive a simple 2nd order boundary value problem (BVP), whose 
numerical solution determined the steady, axisymmetric, axial flow at the inducer discharge. 
Finally, the non-cavitating pumping performance has been obtained by correcting the Euler head 
by means of suitable correlations for turbulence losses, flow incidence and deviation. The model 
has been validated by comparing its results with the experimental data obtained in the Cavitating 
Pump Rotordynamic Test Facility (CPRTF) for some space rocket inducers of European design 
and with the reported performance of a number of inducers tested in Japanese laboratories 
(Cervone et al., 2005, 2006, 2007). Head correction for tip leakage effects has been carried out 
based on the results of the similarity experiments by Torre et al., 2009, on a three-bladed inducer 
designed according to the indications of the present model. Comparison of the pumping 
performance and geometry a number of high-head inducers documented in the literature 
confirmed the validity and accuracy of the proposed midel. 

INDUCER FLOW AND GEOMETRY 
Flow Velocity 

The incompressible, inviscid, irrotational flow through a helical inducer with N  radial 
blades, rotational speed Ω , constant tip radius rT , tapered-hub radius rH , variable axial pitch 
P , and blade angle γ  (as schematically shown in Fig. 1) is held by the equations: 

∇⋅u = 0  

∇×u = 0  

 
Figure 1. Inducer schematic and nomenclature. 

The relatively large value of the blade solidity typical of inducers designed for controlling 
cavitation in highly loaded turbopumps suggests that near design conditions (Φ ≅ΦD ), the 3D 
velocity u  the blade channels can be approximated by the superposition of a guided 
axisymmetric flow a with radially uniform axial velocity component ŵ  and a 2D cross-sectional 
slip velocity correction (Fig. 2): 

u = û + !u  
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Figure 2. Schematic of the 2D cross-sectional slip velocity correction in the inducer blade channels. 

With reference to the velocity triangles of Fig. 3, for radial helical blades: 

tanγ = 2πr
P

⇒
v̂ =Ωr − ŵ tanγ =Ωr − 2πr ŵ

P

ŵ =
!m

ρπ rT
2 − rH

2( )B =
ΦΩRT

3

rT
2 − rH

2( )B

⎧

⎨
⎪
⎪

⎩
⎪
⎪

 

where 0 ≤ B ≤1  is the average cross-sectional blockage due to the boundary layer displacement 
effects and, if significant, to blade thickness. The 2D slip velocity components are most 
synthetically expressed and solved for in terms of a scalar stream function ψ ′r , ′ϑ( )  in the 
rotating cylindrical coordinates ′r = r , ′ϑ =ϑ −Ωt , and ′z = z : 

!u = 1
′r
∂ψ
∂ ′ϑ

      and      !v = − ∂ψ
∂ ′r

 

 
Figure 3. Velocity triangles. 

Inducer Tip and Hub Radii  
Substitution of the assumed velocity field in the expressions of the incompressibility and 

irrotationality conditions in cylindrical coordinates r , ϑ , z  yields: 

∂ rû( )
∂r

= −r dŵ
dz

 

d
dz

ŵ
P

⎛
⎝⎜

⎞
⎠⎟
= 0
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d 2ŵ
dz2

= 0
 

1
r
∂
∂r

r ∂ψ
∂r

⎛
⎝⎜

⎞
⎠⎟
+ 1

′r 2
∂ 2ψ
∂ ′ϑ 2 = 2Ω − 4π ŵ

P  
Integration of d 2ŵ dz2 = 0  with the boundary conditions ŵ 0( ) = ŵle  and ŵ ca( ) = ŵte  at the 

axial locations bounding the full-height portion of the blades (indices le and te) yields: 

dŵ
dz

=
ŵte − ŵle
ca

≡ const  

and the following expression for the axial velocity:  

ŵ = ŵle ŵte − ŵle( ) zca
 

Similarly, integrating the continuity equation with the impermeability condition û rT( ) = 0  at 
the tip radius, the following expression for the radial velocity is obtained: 

û = 1
2
dŵ
dz

rt
2

r
− r

⎛

⎝⎜
⎞

⎠⎟
 

Finally, evaluating ŵ  at design conditions (index D) by means of the continuity equation 
and integrating d ŵ P( ) dz = 0  with P ŵleD( ) = PTle  at z = 0 , the following expressions for 
matching the axial changes of the hub radius rH  and blade pitch P  are obtained: 

1
rT
2 − rH

2( )B = 1
rT
2 − rH

2( )Ble
+ 1

rT
2 − rHte

2( )Bte
− 1
rT
2 − rHle

2( )Ble
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
z
ca

 

P = PTle
ŵD
ŵleD

= PTle + ′P z
 

where: 

′P = Ble + Bte − Ble( ) zca
 

and a linear axial variation of the blockage can be approximately assumed inside the blade 
passages from the leading edge station (le), where B = Ble ≅1, to the trailing edge (te) where 
B = Bte . The assumption of no leading edge blockage implies zero blade thickness, no leading 
edge separation, and zero initial boundary thickness. Given the relative magnitudes of blade and 
boundary layer thicknesses and the level of accuracy of the present model, these effects can be 
considered of second order and therefore have not been taken into account.  

       
Figure 4. Nomenclature for blade boundary layer (left) and linear cascade (right). 
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Slip Flow  
Finally, on each channel cross section, Poisson's equation for the stream function can be 

conformally mapped in a rectangular domain and integrated standard methods (Hildebrand, 
1976) with the condition ψ = 0  on the boundary to: 

ψ = − − Cm,n sin mπ
ln r rH( )
ln rT rH( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
sin

2n −1( )N ′ϑ
2n=1

+∞

∑
m=1

+∞

∑  

where: 

Cm,n =
Am,n

m2π 2 ln2 rT rH( )+ n − 1
2( )2 N 2

 

Am,n = KrH
2 m n − 1

2( )ln2 rT rH( )
1+m2π 2 4ln2 rT rH( ) −1− −1( ) rH

2

rT
2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥  

and; 

K = 2Ω − 4π ŵ
P
= 2Ω 1−

2πΦrT
3

P rT
2 − rH

2( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

from which the radial and tangential slip velocity components !u  and !v  are readily computed. 

Blade Loading and Boundary Layer Blockage  
With reference to Fig. 4, suitable redefinition of the diffusion factor for axial bladings 

(Lieblein et al., 1953): 

D =
′V1 − ′V2
′V1

+
v2 − v1( )
2σ ′V1

≅
p2 − p1

1
2 ρ ′V1 ′V1 + ′V2( ) +

pt2 − pt1
σρΩ r1 + r2( ) ′V1

 

to the case of tapered inducers with non-negligible radial flow allows for the control of the blade 
loading (a crucial design aspect under cavitating conditions) and the estimate of the boundary 
blockage at nominal flow conditions.  

By evaluating: 

p2 − p1 =
1
2

′V1
2 − ′V2

2( )− 12 ρΩ
2 r1

2 − r2
2( )  

pt2 − pt1 = ρΩ r2v2 − r1v1( )  
with Bernoulli's and Euler's equations for mixed-flow bladings and substituting in the above 
expression for D  obtain: 

D ≅
′V1 − ′V2
′V1

−
Ω 2 r1

2 − r2
2( )

′V1 ′V1 + ′V2( ) +
r2v2 − r1v1

σ r1 + r2( ) ′V1
 

Here all relevant properties including the solidity σ = c s  are evaluated on the mean 
streamline:  

r = rM =
rT
2 + rH

2

2
 

and, for flow with no inlet prerotation and fully guided at the inducer outlet ( v1 ≅ 0  and 
′v2 ≅ wte tanγ te ) the relative velocities are expressed by: 
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′v1 = w1
2 + ′V1

2 =
ΦΩrT

3

rT
2 − rHle

2

⎛

⎝⎜
⎞

⎠⎟

2

+Ω 2r2  

′v2 = w2
2 + ′V2

2 ≅
ΦDΩrT

3

rT
2 − rH 2

2( )cosγ te  
As illustrated in Fig. 5, in turbulent boundary over blade cascades) the diffusion factor is 

correlated with the momentum thickness θ *  (Lieblein, 1965; Brennen, 1994): 

θ *

c
= f D( )  

 
Figure 5. Ratio of the momentum thickness ϑ ∗  of the blade boundary layer to the chord c  as a function of 
the diffusion factor D , for axial cascades with three different profiles (adapted from Brennen (1994)). 

Furthermore, by using the Prandtl equations for the turbulent boundary velocity profile on a 
fiat plate (Prandtl and Tietjens, 1934; White, 1974), it is possible to show that the displacement 
thickness is δ * ≅1.3θ * . With these results, the blade boundary layer blockage at the inducer 
edge is computed as: 

Bte =1−
2δ *

ste cosψ te

 

(Fig. 4) where the blade spacing ste = 2πrte N  is evaluated at the mean radius. 

Mean Radius, Chord, and Solidity  
On a relative streamline of the guided flow: 

dr
ˆ′u

= r d ′ϑ
ˆ′v

= dz
ˆ ′w

 

where from earlier results: 

ˆ′u = û = 1
2

′P
ŵle
PTle

rT
2

r
− r

⎛

⎝⎜
⎞

⎠⎟
 

ˆ′v =Ωr − v̂ = 2πr
ŵle
PTle  

ˆ ′w = ŵ =
ŵle
PTle

PTle + ′P z( )
 

Hence, integrating with initial conditions rMle , ′ϑMle , zMle , the equations of the mean streamline 
are: 
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rM = rT
2 − rT

2 − rle
2( ) PTle + ′P zMle
PTle + ′P zM

 

′ϑM = ′ϑMle +
2π
′P
ln
PTle + ′P zM
PTle + ′P zMle  

The mean values of the blade chord and are then evaluated as: 

c = dzM
∂rM
∂ zM

⎛

⎝⎜
⎞

⎠⎟

2

+ rM
∂ ′ϑM

∂ zM

⎛

⎝⎜
⎞

⎠⎟

2

+1
zMle

zMle+ca∫  

σ = dc
sMzMle

zMle+ca∫ =
dzM

2πrM N
∂rM
∂ zM

⎛

⎝⎜
⎞

⎠⎟

2

+ rM
∂ ′ϑM

∂ zM

⎛

⎝⎜
⎞

⎠⎟

2

+1
zMle

zMle+ca∫
 

Flow Pressure in the Blade Channels  
The pressure of the (absolutely) irrotational flow in the blade channels can readily be 

obtained by straightforward integration of steady Bernoulli's equation in the reference frame r , 
′ϑ , z  rotating with the inducer: 

∇ p
ρ
+ 1
2

′u ⋅ ′u − 1
2
Ω 2r ⋅ r

⎛
⎝⎜

⎞
⎠⎟
= ′u × ∇×u( ) = 0  

where the same integration constant: 

C = p1 +
1
2
ρw1

2  

applies over the entire flow field, and the velocity ′u  is expressed by: 

′u = u −Ω × r = u −Ωreϑ  
Therefore, with earlier notations: 

′u ⋅ ′u = û + !u( )2 + v̂ + !v −Ωr( )2 + ŵ2  
and, solving for the flow pressure 2.t the generic location in the blade channels: 

p1 +
1
2
ρ w1

2 − û + !u( )2 − v̂ + !v( )2 + 2 v̂ + !v( )Ωr − ŵ2⎡
⎣⎢

⎤
⎦⎥

 

INDUCER PERFORMANCE 

Discharge Flow  
No inlet flow prerotation is assumed, thus implicitly referring for the application of Euler to 

a control volume extending· in the upstream direction down to the region of unswirled flow in 
the inducer suction line. This approach neglects the torque of shear forces on the inner surfaces 
of the inlet line and therefore in the present inviscid flow approximation correctly estimates the 
power exerted by the inducer on the flow. 

In the assumption of uniform inlet flow to the inducer with no prerotation ( v1 = 0 ) radial 
differentiation of the incompressible isentropic Euler equation: 

p2
ρ

+ 1
2
v2
2 +w2

2( )− p1ρ − 1
2
v1
2 +w1

2( ) =Ω r2v2 − r1v1( )  
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for the axisymmetric flow at sections (1) and (2) of Fig. 1 and elimination of the pressure by 
means of the radial equilibrium condition: 

v2

r
= 1
ρ
∂ p
∂r

 

yields the following ODE for the axial and tangential velocity profiles w2 r2( )  and v2 r2( )  at the 
inducer discharge section: 

1
2
d 2w2

2

dr2
+
v2
r2
−Ω

⎛

⎝⎜
⎞

⎠⎟
d r2v2( )
dr2

= 0  

In order to solve the above equation for the axial velocity profile it is necessary to establish a 
correlation between w2  and the azimuthal velocity v2 . To this purpose the fully-guided flow 
with uniform axial velocity and slip vorticity correction at the inducer trailing edge (station te): 

ute = !ute  

vte =Ωrte −wte
rte
rT
tanγ Yle + !vte

 

wte =
ΦΩrT

2

rT
2 − rHle

2

 
is assumed to mix into an axisymmetric swirled axial flow with velocities v2  and w2  at the 
discharge section (station 2), while satisfying mass continuity and, in the absence of wall 
friction, conserving the axial component of angular momentum: 

2πv2r2dr2 = 2πvtertedrte  

2πw2v2r2
2dr2 = 2πwterte

2drte vte d ′ϑ
0

2π

∫  
Integration of the second equation with earlier expressions of vte  and !vte  yields: 

v2 =
rte
r2

Ωrte −wte
rte
rT
tanγ Tte + !vs rte( )⎡

⎣
⎢

⎤

⎦
⎥  

where: 

!vs rte( ) = 1rte
mCm,n

n − 1
2( )ln rT rH( )n=1

+∞

∑ cos mπ
ln rte rHte( )
ln rT rH( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥m=1

+∞

∑  

Finally, substitution in the ODE for the axial velocity profile where, from the mass balance: 

d
dr2

=
drte
dr2

d
drte

=
w2r2
wterte

d
drte

      and      
drtre

2

dr2
2 =

w2
wte

 

results in the following BVP (boundary value problem) for w2  and rte  as functions of r2
2 : 

dw2
dr2

2 = 1
2wte

Ω − Ω −
wte
rT
tanγ Tte +

!vs rte( )
rte

⎛

⎝
⎜

⎞

⎠
⎟
rte
2

r2
2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
×  

× 2Ω − 2
wte
rT
tanγ Tte +

1
rte

d
drte

rte !vs rte( )⎡⎣ ⎤⎦
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪  
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drtre
2

dr2
2 =

w2
wte  

The above problem can then be solved by numerical shooting from rH 2
2  to rT

2  with initial 
conditions: 

w2 rH 2
2( ) = wH 2       and      rte

2 rH 2
2( ) = rHte2  

iterating on the assumed value of wH 2  until the final boundary condition rte
2 rT

2( ) = rT2  is satisfied. 
A closed form approximation of the axial velocity profile w2 r2( )  can also be obtained by 
assuming rte ≅ r2  in the expression of v2  and neglecting !vs  in: 

v2
r2
−Ω = −

w2
rT
tanγ T 2 +

!vs
r2

≅ −
w2
rT
tanγ T 2  

Then the ODE for the axial velocity profile becomes: 

dw2
dr2

− 1
rT
tanγ T 2

d r2v2( )
dr2

= 0  

whose solution is: 

w2 r2( ) = Ωr2 + !vs r2( )⎡⎣ ⎤⎦ r2 rT( ) tanγ T 2 + c
1+ r2

2 rT
2( ) tanγ T 2

 

with the integration constant c  determined by the mass balance between the inlet and discharge 
cross-sections: 

w22πr2 dr2rH 2

rT∫ = w12πr1 dr1rH 1

rT∫  

Flow Losses 
The assumptions of inviscid and fully-guided flow at the inducer trailing edge are not 

accurately satisfied in practice. In order to better approximate the actual pumping characteristic 
of noncavitating inducers the main sources of performance degradation (flow incidence, friction 
and deviation) have to be accounted for.  

Friction losses in the blade channels are evaluated by means of standard correlations for 
turbulent duct flows 

Δpfriction = f
Lch
Dch

1
2
ρ ′V1

2  

where the friction factor f  depends on the Reynolds number based on the hydraulic diameter 
Dch  of the blade channels, Lch  is the effective channel length evaluated along the 
meanstreamline, and ′V1  is the relative flow velocity at the mean inlet radius.  

Incidence losses due to the sudden change of the flow direction at the leading edge of the 
inducer blades are expressed in terms of a nondimensional equivalent length Leq Dch , function 
of the incidence angle evaluated on the mean streamline. Hence, the overall pressure losses can 
be written as follows: 

Δploss = f
Lch
Dch

+
Leq
Dch

⎛

⎝
⎜

⎞

⎠
⎟
1
2
ρ ′V1

2  

Finally, the mean value of the exit flow deviation is evaluated at the mean radius using 
Carter’s correlation: 
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δ ° =
mc
σ

γ le −γ te( )  

and applied to correct the discharge flow direction at all radii in the inducer annulus. In order to 
better match the experimental data, the standard correlation for the coefficient mc  has been 
slightly modified according to the equation: 

mc =1.22 0.23
2a
c

⎛
⎝⎜

⎞
⎠⎟

2

+ 0.1
γ te
50°

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

where a ≅ c 2  is the relative position of the maximum camber point from the blade leading 
edge. Hence, the azimuthal flow velocity at the inducer discharge section (2) with flow deviation 
corrections becomes: 

v2δ ° =Ωr −w2 tan ′β2 +δ °( )  
where: 

′β2 = tan
−1 Ωr − v2

w2

⎛

⎝⎜
⎞

⎠⎟
 

Pumping Performance 
With the above results, the baseline pumping performance in the absence of tip clearance 

losses is readily evaluated from the Euler equation: 
pt2 − pt1

ρ
=
p2 − p1
ρ

+
v2δ °
2 +w2

2 −w1
2

2
=Ωr2v2δ ° −

Δploss
ρ

 

Hence, by mass averaging the pressure changes, the total and static head coefficients are 
expressed by: 

Ψ t =
1

Ω 2rT
2 !m

pt2 − pt1( )w22πr2 dr2rH 2

rT∫  

Ψ = 1
Ω 2rT

2 !m
p2 − p1( )w22πr2 dr2rH 2

rT∫
 

Tip Clearance Losses.  
The effects of blade tip clearance and Reynolds scaling on the pumping performance of 

high-head helical inducers has been characterized in a test campaign conducted in the CPRTF on 
a three-bladed, tapered-hub, variable-pitch inducer (see Figure 6) named DAPAMITO3. The test 
inducer, whose main geometrical and operational parameters are reported in Table 1, is made in 
7075-T6 aluminum alloy and has been designed in accordance with the indications of the 
present model.  
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Figure 6. The DAPAMITO3 inducer without the Plexiglas inlet pipe. 

The overall dimensions of this inducer have been chosen for easy installation and testing in 
the current CPRTF configuration. A moderate value of the blade loading (with a diffusion factor 
D = 0.39 ) and a high solidity (σT = 2.03 ) have been chosen for reducing the leading-edge 
cavity and improving the suction performance. The value of the tip incidence-to-blade angle 
ratio α βb < 0.5  has been selected with the aim of controlling the danger of surge instabilities at 
design flow under cavitating conditions.  

Table 1. Geometrical and operational parameters of the DAPAMITO3 inducer. 

 

The tests on the DAPAMITO3 inducer reported in the present paper have been carried out in 
the Cavitating Pump Rotordynamic Test Facility (CPRTF), specifically designed for 
characterizing the performance of cavitating/non-cavitating turbopumps in a wide variety of 
alternative configurations (axial, radial or mixed flow, with or without an inducer; Rapposelli et 
al., 2002a, 2002b; Pace et al., 2012). The facility operates in water at temperatures up to 90 °C 
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and is intended as a flexible apparatus readily adaptable to conduct experimental investigations 
on virtually any kind of fluid dynamic phenomena relevant to high performance turbopumps. 
The test section can be equipped with a rotating dynamometer, for the measurement of the 
forces and moments acting on the impeller, and with a mechanism for adjusting and rotating the 
eccentricity of the impeller axis in the range 0÷2 mm and ±3000 rpm. The inlet section, made in 
Plexiglas, is transparent in order to allow for the optical visualization of the cavitation on the test 
inducer. It can be easily replaced, allowing for testing inducers with different tip diameters and 
clearances.   

For the present experimental work the facility has been assembled in a simplified 
configuration without the rotating dynamometer. The inlet pressure and the pressure rise, 
necessary for the characterization of the pump performance, have been measured by means of an 
absolute pressure transducer (Druck, model PMP 1400, 0÷1.5 bar, 0.25% precision), installed 
about one inducer diameter upstream of the leading edge cross-section, and a differential 
pressure transducer (Kulite, model BMD 1P 1500 100, range 0-6.9 bard, 0.1% precision), 
installed between the inlet and the outlet sections of the test pump (with the low pressure tap at 
the same location as the absolute pressure tap and the high pressure tap one inducer diameter 
downstream of the trailing edge cross-section). Two electromagnetic flowmeters (mod. 8732C 
by Fisher-Rosemount, range 0-100 l/s, 0.5% precision), mounted on the suction and discharge 
lines, measure the pump’s inlet/outlet flow rates and a resistance thermometer measures the 
working fluid temperature with ±0.5 K precision.  

The DAPAMITO3 inducer has been mounted in the CPRTF using a Plexiglas casing 
designed for providing the same clearance/mean blade height ratio ( c% = 2.7% ) of the reference 
configuration used for setting the model. Each experimental point has been obtained averaging 
the differential pressure and flow rate signals acquired for 5 s at 200 sps. The rotational speed 
and the water temperature have been kept constant at 2500 rpm (±3 rpm) and 19.2 °C (±1 °C) 
respectively, in order to attain fully-developed turbulent operation (Re = 2ΩrT

2 ν = 3.32 ⋅106 ).  

 
Figure 7. Comparison between the experimental and analytically predicted non-cavitating performance of 
the DAPAMIT0 3 inducer (Ω = 2500 rpm , Re = 3.32 ⋅106 ). 

Figure 7 reports the experimental pumping performance (red stars) compared to the results 
obtained from the analytical model (blue circles). The close agreement of the two data sets 
confirms both the predictive capability of the reduced order model and the high-bead nature 
(Ψ > 0.15 ), as reported in Jakobsen, 1971) of the DAP AMITO3 inducer. Efforts have been 
directed to generalizing the predictions of the analytical model in order to account for clearance 
variations. As reported in the literature (Brennen, 1994), the performance of non-cavitating 
inducers is relatively insensitive to the clearance for c% < 2%  and declines rapidly for larger 
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values of c% . Clearance changes affect both the inducer bead and the flow coefficient, which are 
modified by the backflow. The relationship between the variations of the bead and flow 
coefficients can be obtained by assuming that the hydrodynamic nature of the test rig losses is 
not influenced by changes of the inducer tip clearance, all other operational conditions being the 
same (see the schematic representation in Figure 8).  

 
Figure 8. Schematic representation of two non-cavitating performance curves obtained with different tip 
clearance values (subscripts h and l refer to high and low clearances). 

Under this assumption, the relation between the bead and the flow coefficients at different 
clearances becomes: 

Φ l =Φh

Ψ l

Ψ h

 

where the subscripts l and h refer to different clearances, one lower (l) than the other (h).  This 
equation allows for the noncavitating inducer performance to be scaled for different tip 
clearances once the associated head change is known. On the basis of this simple correlation, the 
model has been modified to take in to account the actual clearance/mean blade height ratio.  

 
Figure 9. The effect of tip clearance on the non-cavitating performance (adapted from Brennen, 1995). 

Figure 9 reports the effect of tip clearance on the noncavitating performance of an inducer 
adapted from Brennen, 1995: the head coefficient bas been made non-dimensional using the 
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head coefficient (Ψ 0 ) corresponding to a clearance/blade height ratio of 1.12%, where the 
clearance effect seems to invert its trend. The empirical correlation reported in Figure 9 can be 
used for estimating the ratio Ψ l Ψ h  and the previous equation gives the corresponding 
correction in terms of flow coefficients ratio.  

Another series of cold water tests has been carried out on the DAPAMITO3 inducer aimed 
at experimentally validating the results of the proposed scaling for tip clearance effects. The 
inducer has been assembled in the CPRTF using a Plexiglas casing designed for providing a 
blade clearance-to-mean height ratio equal to 6.8%, a disproportionately large value sometimes 
used in the characterization of rotordynamic whirl forces to avoid rotor/stator contact. The non-
cavitating performance curves have been obtained with the previous experimental procedure at 
constant water temperature (19.2 ±1 °C) using three different values of the rotational speed 
(1500, 2000 and 2500 rpm, ±3 rpm) in order to verify the Reynolds-independence of the test 
results.  

 
Figure 10. Comparison between the experimental and analytically p redicted non-cavitating performance of 
the DAPAMITO3 inducer). 

Figure 10 reports the experimental pumping performance compared to the results predicted 
by the analytical model scaled for tip clearance effects (blue circles). The results confirm that 
the characteristic curves are Reynolds-independent, as expected since the flow is fully turbulent 
(Re >106 ), and that the inducer head is reduced w.r.t. operation at the reference tip clearance 
value. The predicted performance curves are almost superposed to the experimental data, thus 
validating the effectiveness of the proposed method for tip clearance scaling.  

Temperature Effects. The non-cavitating characteristic curve of the DAPAMITO3 inducer 
has been experimentally determined at different values of the temperature of the working fluid. 
As shown in Figure 11, the non-cavitating performance is affected by the variation of the water 
temperature. All tests have been conducted at fully-developed turbulent Reynolds numbers 
(Re >106 ), and therefore at flow conditions where turbulence effects are Reynolds-independent. 
In present experiments the only relevant flow property that is significantly influenced by 
temperature is the kinematic viscosity, which for water decreases approximately by a factor of 3 
from 20 to 75 °C.  
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Figure 11. Non-cavitating performance of the DAPAMITO3 inducer at different water temperatures. 

The available evidence shows that the performance of the inducer decreases when the 
temperature of the flow is higher, and therefore its kinematic viscosity is lower. Furthermore, it 
is worth noting that even in the case of full Reynolds similarity, obtained by adjusting the 
rotational speeds to attain equal Reynolds numbers in both of the experiments, the characteristic 
curves obtained at different water temperatures do not overlap (red stars and green circles in 
Figure 11). On the other hand, two hot tests conducted at the same temperature essentially give 
the same characteristic curve even if the values of fully-developed turbulent Reynolds numbers 
are different (pink triangles and green circles in Figure 11). This result is fully consistent with 
the cold water tests carried out at the same temperature with different rotating speeds, illustrated 
in Figure 10.  

As for the head degradation observed for different tip clearances, the reduction of the 
pumping performance of the inducer with the flow temperature is evident in the simultaneous 
decrease of both the head and flow coefficients along the load characteristics of the water loop, 
as expressed by the previous equation. It appears that the liquid temperature influences the 
intensity of the tip leakage. Strictly speaking, the temperature, which affects the physical 
properties of the working fluid, can also slightly modify the geometric similarity of the 
experiments when the rotor and stator have different thermal expansion coefficients. In 
particular, the thermal expansion coefficient of the Plexiglas casing is three times larger than 
that of the aluminum inducer. As a result of a preliminary analysis, this effect is not completely 
negligible, but it is not by itself sufficient to justify the degradation of the pumping performance 
experienced in the hot tests.  

The available experimental evidence suggests therefore that the observed behavior of the 
head coefficient is due to the sensitivity of the tip clearance flow to the temperature of the 
working fluid. Viscous blockage effects reduce the tip leakage flow and their intensity is 
expected to scale with the tip clearance Reynolds number Reδ = 2ΩrTδ ν , whose value is much 
lower than the value needed to attain Reynolds independence of the nondimensional inducer 
performance. Hence, changes of the tip clearance Reynolds number induced by the differential 
thermal expansion of rotor and stator are expected to affect the nondimensional performance of 
the inducer even at constant values of Re = 2ΩrT

2 ν  in excess of 106 .  
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Figure 12. The effect of the tip clearance Reynolds number on the non-cavitating inducer performance. 

Consistently with the this interpretation, the results of Figure 12 confirm that the 
noncavitating performance of the DAPAMITO3 inducer at different flow temperatures is well 
correlated to the tip clearance Reynolds number computed using the temperature-dependent 
liquid viscosity, neglecting the small changes of the tip clearance due to rotor/stator differential 
thermal expansion. The characteristic curve at 19.2 °C has been chosen as reference, while the 
ratio of the head coefficients has been extrapolated from the experimental data with the same 
scaling equation used for the clearance. In first approximation, the ratio between the head 
coefficients can be considered approximately linear v/s the tip clearance Reynolds number. The 
influence of the working fluid and its temperature on the non–cavitating performance is also 
evident in Yoshida et al., 2005, where the same test article has been tested in cold water and in 
liquid nitrogen. Due to the lower kinematic viscosity of the liquid nitrogen with respect to cold 
water, the non-cavitating head coefficient at the same flow coefficient is lower in nitrogen than 
in cold water.  

MODEL DISCUSSION AND VALIDATION  
With reference to the definition of the inducer geometry, in the stated assumptions and 

approximations the standard requirement for radially uniform axial velocity in the blade 
channels at design conditions determines the correlation between the axial schedules of the hub 
radius and blade pitch angle of helical inducers. If, in particular, the hub-to-tip radius ratio is 
known at the leading and trailing edge sections and the design flow coefficient and leading edge 
blade angle are assigned, then all of the main geometric features of tapered hub helical inducers 
can be derived, including the trailing edge pitch angle. Comparison with the geometry of the 
MK1 and FAST2 space inducers, produced by Avio and tested in the Cavitating Pump 
Rotordynamic Test Facility (CPRTF), confirms that all of the main design characteristics and 
the relation between the hub geometry and the blade pitch are almost perfectly predicted by the 
proposed model.  

As an example, Fig. 13 shows a three-dimensional drawing of a 4-bladed inducer designed 
by using the model. The inducer tip radius is 90.9 mm, the hub radius is 57 mm at the inlet and 
73 mm at the outlet, the tip blade angle is 8.9 degrees at the inlet and 20.54 degrees at the outlet, 
the tip solidity is 1.97 and the design flow coefficient is 0.060. 
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Figure 13. 3D rendering of a four-bladed, tapered-hub, variable-pitch inducer designed according to the 
proposed model. 

With reference to the inducer performance evaluation, it is first worth noticing that the 
numerical solution of the BVP for the discharge velocity profiles and the corresponding closed 
form approximation lead to essentially equivalent results, as illustrated by the comparison of the 
noncavitating pumping characteristics shown Fig. 14. Only for significantly low values of the 
flow coefficient (Φ < 0.02 ), when the slip velocity becomes comparable to the axial velocity, a 
small difference between the two curves can be observed. 

 
Figure 14. Comparison between the numerical solution (ODE) and the corresponding closed form 
approximation (MOD) for the noncavitating performance prediction of tapered inducers. 

The model has been validated against the experimental performance of six different tapered-
hub inducers, whose main characteristics are summarized in Table 2. Information on inducers A, 
B, C and D comes from the open Japanese literature. The experimental data concerning inducers 
A and B have been taken from Hashimoto et. al., 1997, and refer to two different LOX pumps. 
The tests of inducer C are documented in Fujii et. al. , 2002. Finally, inducer D is used in the 
LE-7A HTP and its experimental performance is reported in Fujii et. al., 2005.  

Table 2. Geometrical characteristics of the inducers used for validation of the proposed model. 
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Figures 15, 16, 17 and 18 compare the experimental noncavitating characteristics of the 

MK1, FAST2, A and B inducers with the respective predictions of the simplified closed form 
solution. The head coefficients based on the static and total pressure, with and without losses, 
are reported, together with the “ideal” pumping performance for perfectly guided flow in the 
absence of pressure losses and deviation effects. For all of these inducers, the static head rise 
predicted by the model closely agrees with the experimental results.  

 
Figure 15. Comparison between the experimental non-cavitating performance of the MK1 inducer (dark 
stars) and the predictions of the analytical model. 

 
Figure 16. Comparison between the experimental noncavitating performance of the FAST2 inducer (white 
stars) and the prediction of the analytical model. 
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Figure 17. Comparison between the experimental noncavitating performance of the inducer A (dark stars) 
and the predictions of the analytical model. 

 

 
Figure 18. Comparison between the experimental noncavitating performance of the inducer B (dark stars) 
and the predictions of the analytical model. 
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Figure 19. Comparison between the experimental noncavitating performance of the inducer C (dark stars) 
and the predictions of the analytical model. 

 
Figure 20. Comparison between the experimental noncavitating performance of the inducer D (dark stars) 
and the predictions of the analytical model. 

For better assessment of these results, it is worth noting that the pressure tap used for the 
measurement of the static head rise developed by the MK1, FAST2, A and B inducers was 
located more than two diameters downstream of the blade trailing edge. At this location the flow 
closely approximates the fully-settled axisymmetric conditions necessary for correct comparison 
of the experimental data with the model predictions. Conversely, Figs. 18 and 19 show that the 
non-cavitating performance of inducers C and D is evaluated with lower accuracy. Most likely, 
this situation is related to the different position of the downstream pressure tap, which in this 
case was located very close to the blade trailing edge. This is clearly inconsistent with the 
intrinsic nature of the proposed model, whose predictions are specifically derived from 
consideration of the axisymmetric far-field flow downstream of the inducer. The consequent 
deviation of the tangential velocity profile from the radial equilibrium introduces a systematic 
error in the evaluation of the centrifugal effects and, therefore, of the static pressure downstream 
of the inducer. This is confirmed by the almost linear nature of the measured pumping 
characteristics of inducers C and D, which is consistent with the expected behavior for nearly 
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uniform distribution of the axial flow velocity at the inducer trailing edge before the 
establishment of radial equilibrium conditions.  

The proposed model can also be applied for predicting the performance of helical inducers 
of more general hub and blade shapes. However, it is obviously expected to deliver best results 
when used for geometries more closely consistent with the assumptions used for its derivation, 
as confirmed by the results for the MK1 and FAST2 inducers. 

CONCLUSIONS 
Based on the available evidence, the present theoretical model proved to represent a useful 

tool for preliminary design and performance analyses of turbopump inducers. More specifically, 
the model is able to provide accurate quantitative indications for geometry definition, 3D flow 
field description, characterization and control of the blade loading, and prediction of the 
noncavitating pumping characteristics of helical inducers with tapered hub and variable blade 
pitch angle. 

In this context, the model can be effectively used in two ways: 
• for the preliminary definition of the geometry of tapered inducers, with particular reference 

to the hub and blade shape in order to minimize secondary flow losses and attain  adequate 
cavitation performance;  

• for the preliminary evaluation of the noncavitating performance of an inducer of given shape, 
or for defining the main geometric characteristics of an inducer, starting from the desired 
noncavitating pumping characteristic. 
More generally, the model provides inducer designers with a comprehensive interpretative 

framework where the main – often conflicting – aspects of inducer design and their mutual 
implications can be assessed, quantified and balanced in view of the attainment of the desired 
requirements and performance. 

The tests on the DAPAMITO3 inducer at different tip clearances and water temperatures 
indicate that the resulting variation of the inducer performance is generated by the modulation of 
the tip leakage flow and its response to the variations of the liquid viscosity. They also 
suggested a semi-empirical scaling correction of the inducer head to account for these effects, 
and confirmed its validity. This correction has been successfully integrated in the model for 
more accurate prediction of the non-cavitating performance of high-head axial inducers. 

The limitations of the model are mostly related to the simplifying assumptions  and 
approximations introduced in order to attain a practical solution. In particular, improvements in 
the description of the flow, control of the blade load, and accuracy of the inducer performance 
prediction are expected to be gained by a more refined treatment of viscous effects, capable to 
account for the axisymmetric nature of the blade boundary layers and the radial changes of their 
thickness across the inducer annulus 
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