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Abstract The sensory-motor architecture of human upper limb and hand is charac-
terized by a complex inter-relation of multiple elements, such as ligaments, muscles
and joints. Nonetheless, humans are able to generate coordinated and meaningful
motor actions to explore and interact with the external world. Such a complexity
reduction is usually studied within the framework of synergistic control, whose focus
has been mostly limited on human grasping and manipulation. Little attention has
been devoted to the spatio-temporal characterization of human upper limb kine-
matic strategies and how the purposeful exploitation of the environmental constraints
shapes human execution of manipulative actions. In this chapter, we report results
on the evidence of a synergistic control of human upper limb and during manipu-
lation with the environment. We propose functional analysis to characterize main
spatio-temporal coordinated patterns of arm joints. Furthermore, we study how the
environment influences human grasping synergies. The effect of cutaneous impair-
ment is also evaluated. Applications to the design and control of robotic manipulation
and assistive devices are finally discussed.
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1 Introduction

Human hands are our pre-eminent organ to interact with and manipulate the ex-
ternal environment. Its wonderful architecture gives humans a wide spectrum of
possibilities, which can be roughly summarized in the four functional groups of
sensation, holding, manipulation and communication. Despite the complexity of the
biomechanics and the high versatility of the sensory-motor behavior it embeds, the
human brain is able to cope with and organize it in a simple fashion [9], leveraging
on a control space of reduced dimensionality [46, 54, 39, 62], usually defined as
synergistic control space.

This synergistic behavior seems to be used by the Central Nervous System to
generate coordinated movements, simultaneously activating different Degrees of
Freedom (DoFs), instead of acting separately on each joint or muscle. The existence
of these patterns was observed in different motor tasks and at different levels of
the motor control architecture, i.e. neural [66], muscular [21, 65], kinematic [57,
43, 35]. For a review on these topics see e.g. [56]. Considering the kinematic level,
such observations supported the idea that few combinations of the hand DoFs, e.g.
described in terms of main principal components (PCs, i.e. postural synergies) of
hand joint angles recorded e.g in grasping tasks, can take into account large part of
hand pose variability. Higher order PCs are likely involved to describe more complex
actions such as haptic exploration [67] and contact forces distribution [3].

Several statistical methods have been used to describe kinematics synergies,
e.g. Principal Components Analysis (PCA), Single Value Decomposition (SVD),
Functional PCA (fPCA) and Non-Negative Matrix Factorization (NNMF). In [57],
PCA, applied to a dataset of grasping poses revealed that the first three PCs accounted
for ∼ 90% of the total hand poses variability, while the first two PCs accounted for
∼ 84%. These findings were then confirmed in other studies that take into account
real object grasps [43] and the inter-digit coordination occurring during the whole
grasping procedure.

While a lot of attention has been devoted to analyze hand behavior, little has
been done to investigate synergistic control of the whole upper limb. In this chapter,
we aim at bridging this gap moving from hand synergies to upper limb kinematics
investigation, with the goal of unveiling the principal synergistic actuation pattern
that underpin motion generation in space and time. At the same time, the avenue
of soft, adaptable yet robust artificial grippers that can deform in a human-like
manner to mold around different items and fully exploit environment to multiply
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their degrees of freedom, has motivated our scientific interest in understanding the
role of environmental constraints in synergistic control of human hands. This chapter
is organized around these two topics, and their implications for the design and control
of robotic devices.

2 Experimental setup for data acquisition

The correct investigation of main upper limb modes and the synergistic behavior of
the human hand in interaction with the environment necessarily needs to move from
accurate kinematic recordings. To achieve this goal, we employed a commercial sys-
tem for 3D motion tracking with active markers (Phase Space R©). Ten stereo-cameras
working at 480Hz tracked 3D position of markers, which were rigidly attached to
upper limb and hand links. We used 20 markers for upper limb acquisitions and
additional 20 markers for hand kinematics tracking, four for each finger. We suitably
designed and printed in ABS (see fig. 1a)rigid supports to accomodate markers. Data
acquisition phase was implemented through a custom application developed in C++,
using Boost libraries [60] to synchronize Phase Space recordings - obtained through
OWL library data and force/torque sensors. The complete experimental setup is
reported in figure 1.

In addition, we used two cameras (Logitech hd 1080p) to record the experiments
scene to visually compare the real and reconstructed movement. Subjects wore
Thimblesenses in all fingertips, which are wearable sensors that enable complete
individual digit force/torque measurements and contact point estimation [7]. Since
Thimblesense are composed by an external rigid shell worn at the fingertip level, their
usage also provides cutaneous impairment. The latter aspect is very interesting to be
investigated since it could provide useful guidelines for sensing soft robotic hands, as
discussed later. during the tactile impairment experiments, as in Fig. 1e. Each shell is
connected to the corresponding fingertip as in classical thimbles. Please refer to [7]
for a more extensive description of the impairment effects of the shells. Force infor-
mation acquired by these sensors was also aquired to be used in future investigations.
Force/torque information was also measured on the object/environment side. To this
purpose, a sensorized platform (600×400 mm), which includesforce-torque sensor
ATI mini45E mounted as in Fig. 1f, was used to sense the interaction forces/torques
with the table where objects were placed.
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(a) (b)

(c) (d)

(e) (f)

Fig. 1: In these figures we show the experimental setup. In a) and b) we report the
markers accomodation for upper limb and hand, respectively. In c) and d) we show
a schematic representation of the experimental setup. Subjects were comfortably
seated in front of the table. In the starting position, the subject hand was located
at the right side of the table. Two cameras are included to record the scene. In e)
we show the shells at fingertip level, which produce tactile impairment and in f) an
exploded view of the sensorized table.
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3 Modeling

3.1 Modeling of upper limb kinematics

An accurate description of human upper limb is challenging due to the high com-
plexity of the kinematic structure, e.g. for axis location and direction. To explore the
system complexity, the interested reader can refer to [44, 37]. In this work, we used
a trade-off between complexity and accuracy. This allows to get an acceptable com-
putational time, still maintaining a good level of explanation of physical behaviour.
Taking inspiration from [8], we adopted a model with 7 degrees of freedom (DoFs),
and 3 invariable shape links. Joints angles are defined as q1, . . . ,q7: q1 is associated to
the shoulder abduction-adduction; q2 is associated to the shoulder flexion-extension;
q3 is associated to the shoulder external-internal rotation; q4 is associated to the elbow
flexion-extension; q5 is associated to the elbow pronation-supination; q6 is associated
to the wrist abduction-adduction; q7 is associated to the wrist flexion-extension. In
figure 2 a scheme of the model is reported.

To describe the forward kinematics of the arm, 5 different reference systems was
defined: Sre f , centered in Ore f , fixed to the epigastrium; SS, centered in OS, Center
of Rotation (CoR) of shoulder joints, fixed to the arm; SE , centered in OE , CoR of
elbow joints, fixed to the forearm; SW , centered in OW , CoR of wrist joints, fixed to
the hand; SH , centered in OH , fixed to the hand. The rigid transform between Sre f

Fig. 2: Kinematic model of the upper limb.
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and SS is TOre f OS ; the rigid transform between SS and SE is TOSOE ; the rigid transform
between SE and SW is TOE OW ; the rigid transform between SW and SH is TOW OH .

To parameterize the i-th segment we use the Product of Exponentials (POE)
formula [14]:

gOre f O j(θ) =

[
j

∏
k=1

eξ̂kθk

]
gOre f O j(0)

where ξ̂k are the twists of the joints defining the kinematic chain,
θ = [θ1, . . . ,θk, . . . ,θ j]

T are the exponential coordinates of the 2nd kind for a local
representation of SE(3) (Special Euclidean group, 4 x 4 rototranslation matrices)
for the j-th link, and gOre f O j(0) is the initial configuration. For further details, the
interested reader can refer to [33].

Links movements were tracked by fastening optical active markers to upper
limb links through the rigid supports descrbed in the previous section. Markers
positioning is inspired by [12]. In order to improve tracking performance, a redundant
configuration of marker was used, in particular 4 markers fixed to the chest, 6 markers
fixed to the lateral arm, 6 markers fixed to the dorsal forearm, 4 markers fixed to the
hand dorsum. A picture showing marker distribution is reported in figure 1a. The
position of each marker can be calculated as rigid transform with respect to (w.r.t.)
the center of the corresponding support, while the support kinematic can be described
as a rigid transform from the link reference system to the support reference system.

The model is completely parameterized using 14 parameters (calibrated for each
subject as described later) collected in a vector pG: Bones length (arm and forearm,
2 parameters); rigid transform from epigastrium to the shoulder CoR (3 parameters);
rigid transform from shoulder CoR to the center of arm marker support (3 parame-
ters); rigid transform from elbow CoR to the center of forearm marker support (3
parameters); rigid transform from wrist CoR to the center of hand marker support (3
parameters). The parameter vector pG was calibrated for each subject. Given pG, the
upper limb pose is described by 7 joints angles [q1, . . . ,q7]

T collected in a vector x.

3.2 Kinematic Model of the Human Hand

If the kinematic description of human upper limb is challenging, an accurate repre-
sentation of human hand kinematics is even more challenging, due to the complex
inter-play between different elements such as ligaments, muscles and joints. Fol-
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lowing Occam’s razor approach, we opted also in this case for a trade-off between
accuracy and complexity, proposing a 20 DoF kinematic model (Fig. 3a). Each
long finger is described by a set of four angles: two DoFs for flexion-extension and
abduction-adduction in metacarpophalangeal joints, one DoF for flexion-extension in
proximal and distal intra-phalangeal joints. The thumb is described with four angles:
two DoFs for the trapeziometacarpal joint, one DoF for the metacarpo-phalangeal
joint, and one DoF for the interphalangeal joint. For the sake of space, we do not
report here the mathematical form of the kinematics , which can be easily derived
from the Denavit-Hartenberg parametrization in Fig. 3b (see e.g. [45]). A key charac-
teristic of the model is that it shares the 15 DoFs of the model used in [57], allowing
an easy comparison with the classical postural synergy of grasp, as done e.g. in [33].

(a) Kinematic model (b) DH parametrization

Fig. 3: Kinematic model of the human hand considered in this work. The model
has 20 DoFs, which include the 15 DoFs of the hand model used in [57]. The
left panel graphically describes hand kinematics, while the right one specifies the
Denavit-Hartenberg parametrization of thumb and the long fingers. We denoted with
j the joint index, starting from the proximal joint to the distal, while q1,q2,q3,q4
are the joint angles, and a2,a3,a4 are the phalanx lengths.
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4 Motion Identification

The movement reconstruction - for both the upper limb and the hand movements
- is based on a two-phase procedure: in a first step, we calibrated the model to
retrieve an accurate estimation of the parameters (i.e. bones dimensions), then, we
used this estimation as model for the joint angle estimation procedure based on an
Extended Kalman Filter (EKF), which we applied at each time frame. In particular,
the calibration procedure was implemented by solving a constrained least-squares
minimization problem:

(x∗, p∗G) = arg min
xk∈Dx,pG∈Dp

1
2

Np

∑
k=1

rT
k rk

The residual function rk is calculated as rk(xk, pG) := yk − f (xk, pG), where:
yk is the marker position vector measured with PhaseSpace; xk is the vector of
estimated joint angles; pG is the vector of model kinematic parameters; Dx is the
upper limb joint range of motion; Dp is the variation around a preliminary estimation
of parameters performed with manual measurements; f (xk, pG) is the estimated
position vector of markers using the forward kinematics.

Taking inspiration from [33], the calibrated model was then used to identify the
joints angles using an Extended Kalman Filter (EKF). Indeed, the model can be
considered as an uncertain noisy process, where at the time frame k the joint angle
vector xk is the state of the process, yk is the marker position vector, wk and vk are
process and observation zero mean gaussian noises, with covariance Qk and Rk,
respectively, and f (xk) is the forward kinematics. The system can be described using
the following equations: xk = xk−1 +wk

yk = f (xk)+ vk

(1)

Given the state at time frame k−1, the state at time k was obtained using a 2-steps
procedure: prediction of the future state x̂k|k−1 = x̂k−1; update of the state estimated
in the first step by calculating x̂k|k = x̂k|k−1 +Kk r̃k. The correction amount of the
state prediction is the product between the residual values vector r̃k = yk− f (x̂k|k−1)

and the Kalman Gain Kk. This gain is calculated as product between the covariance
matrix estimation of the predicted state Pk|k−1, the jacobian matrix, i.e. Hk =

∂ ( f (x))
∂ (x) ,

and the inverse matrix of the residual covariance. Both the covariance matrices are
heuristically tuned.
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The implementation described in this section was used for both the upper limb
and hand movement reconstruction. Notwithstanding, the experiments that involved
hand recordings was affected by an higher frequency of marker occlusions compared
with the rest of the upper limb. This may cause degradation in reconstruction quality
(more details in next sections). To face this problem, we introduced constrains in
the identification procedure and developed an on-line adaptation of the observation
noise covariance matrix by adding a scaling factor proportional to the number of
consecutive missing measures (roughly speaking, the higher is the number of missing
frames for the specific marker, the higher is the related observation noise covariance
for the EKF)

5 Principal Functions for Upper Limb Movement Generation

5.1 Experiments

To develop a comprehensive study of human upper limb movements, one of the
key features for the generation of a valid dataset is the definition of meaningful
experimental actions[57, 43, 64, 69], which should ideally span all the range of
motions under specific conditions. For this reason, we selected a set of movements
driven by the study of grasping taxonomies [20, 30], and the analysis of human upper
limb movement workspace [1, 48, 41]. The output of this selection resulted in a set
of 30 different actions. In neuroscience, these movements can be classified in three
classes, according to the presence or absence of an object and, if the object is present,
on the approach with it: intransitive class, which collects actions that does not need
the use of an object; transitive class, which collects actions that introduces the use
of an object; tool mediated class, which collects actions where an object is used to
interact with another one. The complete list of actions can be found in [5].

Seven adult right-handed subjects (5 male and 2 female, aged between 20 and 30),
performed the experiment. Each task was repeated three times in order to increase
the robustness of collected data. The experimenter gave the starting signal to subjects.
In the instructions, the experimenter emphasized that the whole movement should be
performed in a natural fashion. The object order was randomized for every subject.
Each subject performed the whole experiment in a single day.

The performance of the estimation tool at each time frame k was evaluated by
calculating the Mean Squared Error (MSE) Rk as
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Rk =
1

Nmarkers
||(yk− f (x̂k|k))||

where Nmarkers is the number of markers, yk is the marker position vector and f (x̂k|k)

is the vector of marker estimated positions using joint angles calculated with the EKF.
Typical values of Rk are ≈ 1cm, with a mean error for hand and forearm markers of
≈ 0.5 cm and a mean error for arm markers of ≈ 1.8 cm.

5.2 Data Analysis

The goal of this work is the study of functional motor synergies of upper limb in
space and time. More specifically, we are interested in identifying the underpinning
functions that generate joint angle trajectories over time. This is accomplished using
functional PCA, a statistical method that allows to study the differences in shapes
between functions [52, 51]. In order to avoid the inclusion in this analysis of undesired
features due to misalignments in time or in velocity of the samples, we implemented
the following pre-processing techniques: (i) segmentation, to isolate each repetition
for each task, (ii) time warping, to synchronize in time all the elements of the dataset.

1. Segmentation: it was used to segmentate the three repetitions of each action. The
segmentation procedure selects the transition frame between repetitions as mean
frame among two peaks. The mean value is weighted by the mean slopes of the
curve before and after the transition frame.

2. Time Warping: it was used to make comparable in time different samples. Given
two time series, v1 and v2, the affinity between the two signals is increased by the
solution of the following least-squares minimization problem:

(S,T ) = arg min
S>0,T

(||v1(t)− v2(St−T )||)

where S is a scaling factor for the velocity of signal v2, and T is the amount of
shifting in time applied to v2. In this work, we warped all the signals w.r.t. the
same reference to get a dataset of same-length vectors. The reference signal was
selected as the element whose length is the mean value w.r.t. the length of all
dataset elements.
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5.2.1 Functional Principal Component Analysis

Functional PCA can be described as a functional extension of PCA. The first func-
tional principal component ξ1(t) is the function for which the principal component
score fi1 =

∫
ξ1(t)xi(t)dt maximizes ∑i f 2

i1 subject to
∫

ξ 2
1 (t)dt = ||ξ1||= 1; the sec-

ond functional principal component ξ2(t) maximizes ∑i f 2
i2 subject to ||ξ2||= 1 and∫

ξ2(t)ξ1(t)dt = 0, and so on. In practice, this is done implementing the following
steps:

1. Given a dataset of functions xi and extract the mean signal x̄ as x̄ j =
1
N ∑

N
i=1 xi j ;

2. Remove the mean calculated in step 1 from each data element by x̃i = xi− x̄ ;
3. Define a basis function. The basis must contain a number of functions large enough

to consider all possible modes of variations of data. Usually basis elements can
exponential functions, splines, Fourier basis [52, 50, 51];

4. Given the basis functions b1, . . . ,bN , each data element can be described as com-
bination of basis elements x̃i = ∑

N
k=1 θkbk ;

5. Then each function is described by a vector of coefficients Θ = (θ1, . . . ,θN)
′ ;

6. PCA is now performed on these vectors. This leads to define the PCs, which are
vectors of coefficients;

7. Each PC is, then, transformed into the corresponding function Principal Compo-
nents (fPCs) using basis elements as xrec = x̄+ c1ξ1 + c2ξ2 + c3ξ3 + . . . ;

8. Each fPC explains a certain percentage of variance. The variance explained by a
fPC is quantified normalizing (w.r.t. the sum of the eigenvalues) the corresponding
eigenvalue of the covariation matrix.

5.3 Results

We used fPCA on this dataset after the post-processing phase reported in previous
sections. 15 5th order spline basis elements were used, taking inspiration from
the polynomial description in [31]. Each basis function is defined by piecewise
polynomial functions. The places where the pieces of the spline intersect are known
as knots. Each piece has the following form

sk(t) =
5

∑
i=1

aik(t− tk)i
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Fig. 4: Explained percentage variance for different DoFs and for each fPC. Each
subplot refers to the correspondent joint of figure 2 (i.e. DoF1 refers to q1, and so on)

where tk is the kth knot. The fPCs can be used to reconstruct the data sample by adding
M fPCs weighted by coefficients ci, i.e. xrec = x̄+c1ξ1+ · · ·+ciξi+ · · ·+cMξM with
M ≤ N. The number of fPCs in use represents the level of truncation of the basis and
hence the level of approximation in reconstructing joint angle profile in time.

The outcomes of this analysis reveal that the first fPC by itself accounts for 60-
70% of the variation of joint angle profile w.r.t. the mean function, as reported in
figure 4. What is also noticeable is that the reconstruction attained with the first fPCs
provides good results, in fact the explained variance of the first three fPCs is higher
than 84% for all DoFs. In figure 5 we show how the main principal functions can
shape the reconstruction of individual joint trajectories. Individual basis function do
not need to represent meaningful movements. What we would like to point out is
that a combination of basis elements (plus an offset) could reproduce any original
trajectory of the joint dataset. The reconstruction performance is shown in figure 6a,
where an exemplary reconstruction using 1, 2 and 3 fPCs, respectively, is reported.
In order to quantify the reconstruction performance, an index of reconstruction error
can be evaluated as
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(a)

(b)

(c)

Fig. 5: In the top figure we report the mean function (in black) and the same mean
function with the contribution of the first principal function, weighted with a coef-
ficient α equal to one (with positive sign in red dashed line, with negative sign in
red dotted line); in the central figure, we report the mean function (in black) and the
same mean function with the contribution of the second principal function with a
coefficient α equal to one (same legend of top figure); in the bottom figure we report
the mean function (in black) and the same mean function with the contribution of the
third principal function with a coefficient α equal to one (same legend of top figure)
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ERMS =

√√√√√ 1
NDoF

NDoF

∑
i=1

(

√√√√ 1
N f rames

N f rames

∑
j=1

(x− xrec)2)2

where x is the real function and xrec is the reconstructed function.

(a) Trajectories reconstruction. (b) Normalized Reconstruction Error (RMS).

Fig. 6: In the left figure. The black line represents the real data. The red line is the
reconstructed data using the mean values and the first principal component. The
blue line is the reconstructed data using the mean values and the first two principal
components. The green line is the reconstructed data using the mean values and the
first three principal components. In the right figure. The initial point refers to the
error when only the mean function is used for reconstruction. The other points refers
to the error when one or more fPCs are used for the reconstruction.

In figure 6b we plot the normalized error, calculated as ERMS/max(ERMS), for
different numbers of fPCs in use. Initial point refers to the case where only mean
function is used for reconstruction and the value of ERMS is 0.6 rad. The reconstruc-
tion using one fPC has an ERMS value lower than 0.2 rad, adding other fPCs, the
reconstruction error decreases, i.e. using three fPCs the ERMS value is around 0.1 rad.
Furthermore, the whole reconstructed movement for the upper limb (considering all
DoFs) was displayed using a visualization tool developed in MATLAB, showing an
high level of anthropomorphism and realism. We can conclude that the kinematic
complexity of upper limb trajectories can be simplified and easily described using
the mean function and few principal functional modes for each joint.
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6 Postural Hand Synergies during Environmental Constraint
Exploitation

6.1 Experiments

In this section, we investigate the presence of a synergistic behavior underlying
the generation of hand postures during the exploitation of environment, hereinafter
referred to as Environmental Constraint Exploitation (ECE), execution and planning
[22]. We also investigate the effect that cutaneous impairment might have on such
synergies. We performed experiments with six participants (three females, three
males; age range: 23−27 years, mean 25.17 years), who were asked to grasp a
set of objects from a flat surface. We selected this task since it represents a good
trade-off between analytic complexity and richness of kinematic behavior induced
by ECE [29]. For each trial, subjects were asked to reach the object posed in the
center of the sensorized surface. Once the hand reached the object, subjects were
asked to grasp, lift (∼ 20 cm height), hold (∼ 1 s), put it back on the table, and
place the hand back to its starting position. Two trials were performed for any of the
21 objects. The object order was randomized for every subject. Two experimental
conditions were considered: with and without cutaneous impairment. In the first
case, participants were requested to wear rigid shells at their fingertips. Results
were processed through Principal Component Analysis, as it is common in literature
[55], in order to check the existence of a set of Principal Components describing
the recorded data. We performed the analysis during the actual contact with the
environment and on pre-shaping postures, i.e., during the approaching movement that
precedes the hand-object-table interaction. Raw data collected from the experimental
set-up were force and torque from the six axes F/T sensor ATImini45 of the sensorized
platform, and 24 marker positions from the motion capture system, both with and
without tactile impairment.

6.2 Data Pre-Processing and Analysis

Data processing is organized in two phases. First, data is pre-processed to reduce the
noise and to evaluate joint angles and contact points. Second, we perform statistical
analyses to identify the presence of a synergistic behavior in ECE. We perform the
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analyses in pre-shaping, and during the whole contact with the environment. To
quantify the role of tactile impairment, we consider separately the impaired and
unimpaired cases.

The force/torque data from ATI Mini45 (i.e. sensorized surface) are filtered
through a moving average filter based on Savitzky-Golay method [59]. The window
width was heuristically tuned as the 1.5% of total data length. We then use the
knowledge of surface form, to evaluate the centroid of contact of Force/Torque data
and for contact-triggering.

We segment pre-processed data into three main phases, also described in Fig. 7:
i) pre-shaping, where the object is reached and the hand posture is shaped in order
to purposefully interact with the environment, ii) contact, in which the constraint is
exploited in order to manipulate and grasp the object, and iii) post-contact, when the
object is grasped and lifted from the table.

By considering non-adhesive interactions with the environment, we can assume
any change occurring to the force orthogonal to the surface as due to an interaction.
We thus segmented the actions searching for a change in the corresponding force
measured by the sensorized surface. The cut off from the first and the second phase
is identified by the first contact with the table, when the force starts to increase. To
accurately detect this point we consider both the signal and its derivative. The cut off
identifying the end of the contact phase is taken as the first time in which the contact
force returns to zero.

The aim of the analysis is to identify a subspace of reduced dimensionality embed-
ding the hand postures, to test the hypothesis of synergistic behavior in Environmental
Constraint Exploitation. Principal Component Analysis (PCA) is a valuable tool to
achieve this goal [57, 43, 63, 55]. Given a set of data, described by a correlation
matrix C and a mean m, PCA derives an orthonormal base of the data space, whose
first element S1 indicates the direction where data present the greatest variability. In
turn, each successive component Si has the highest variability under orthogonality
constraint. The i−th element of the base is referred to as Principal Component of the
dataset. The normalized percentage of the data variability projected on each Principal
Component is called explained variance of the component.

We evaluate PCA as the singular value decomposition of the data correlation
matrix C, i.e. by finding an orthonormal matrix Σ , which brings C in Jordan form
through the similitude transformation Σ T C Σ . In that case the Principal Components
are the columns of the matrix Σ = [S1, ...,Sn], and the explained variances are the
corresponding eigenvalues. For further details on PCA we refer the interested reader
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(a) Pre-shaping

(b) During contact

(c) Post-contact

Fig. 7: Photo-sequences of experimental constraint exploitation. According to our
contact based classification, (a) shows the pre-shaping phase, (b) shows the during
contact phase, and (c) the post-contact phase.

to [38]. If PCA is used to analyze hand postures in joint space, explained variances
can be used to understand if the hand acts along a reduced set of the configurations
by looking if there are few principal directions that explain the major part of the data
. If this is the case we refer to such principal directions as synergies.

It is worth noticing that the use of the same calibrated kinematic model for every
subject enables a coherent description of the hand configuration space in R20 for
all the experimental conditions. We consider cosine of the angle between synergy
directions as the metric to compare results of the different analyses. We evaluate it as
the absolute value of the normalized dot product between the synergy vectors.

We also compare synergies resulting from our analysis with those employed for
the execution of grasping, as shown in [57]. The kinematic model in [57] takes
into account a subset of the joints considered in this work (see Sec. 3.2). Thus the
configuration space of grasping synergies is a sub-set of dimension 15 of the hand
configuration space considered in this work. To compare vectors, we projected full
hand configurations in the corresponding sub-space. This is equivalent to simply
neglect the values corresponding to joints ID, MD, RD and LD in Fig. 3a, as also
done in [33].
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6.2.1 Pre-shaping analysis

The pre-shaping analysis is done with the purpose of identifying kinematic regu-
larities in the generation of hand postures for the ECE exploitation. In [57] PCA is
performed for constant postures acquired in grasping. There authors took out effects
due to interaction with the objects, by asking subjects to grasp imagined ones. In this
analysis we aim to achieve the same goal by performing PCA on a dataset composed
of the last poses before the contact with the environment in each trial, i.e. the last
pose in pre-shaping phases when a purposeful interaction with the environment is
planned. Unimpaired and impaired cases are separately analyzed. Both datasets are
composed of 252 poses (six subjects, 21 objects, two trials)
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(c) Unimpaired, contact
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(d) Impaired, contact

Fig. 8: Explained variance resulting from PCA analysis of postures in pre-shaping
and during contact, in tactile impaired and unimpaired case. A marked predominance
of the first Principal Component is present in all the cases, showing a synergistic
behavior.
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Fig. 9: Graphical representation of the hand shapes w.r.t. the mean posture, associated
to the first three synergies during pre-shaping in unimpaired condition. Each column
presents a different stage of the synergistic posture generation, obtained by summing
the hand mean configuration m, to the synergy vector Si of the i− th synergy.

Fig. 10: Graphical representation of the hand shapes associated to the second ECE
synergy. Pre-shaping impaired, contact unimpaired and contact impaired conditions
are considered. The mean posture is referred as m, the second synergy as S2. We do
not report here the first synergy for each condition, since there are not significant
and visible discrepancies. The figure also shows a good coherence in the behavior
described by the second synergy, among the considered conditions.
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6.2.2 Contact analysis

In order to evaluate if there are some kinematic regularities in the strategies em-
ployed by the subjects during actual exploitation of the surface, we perform PCA on
data collected during the contact phase. We perform the analysis separately for the
impaired and unimpaired case. To characterize the effect of cutaneous impairment
we also evaluated the mean amount of time in which subjects remained in contact
with the table, mean time for task accomplishment, and the mean norm of interaction
forces, by averaging the corresponding values for every subject and every object.

The datasets for both impaired and unimpaired conditions are composed of
a variable number of poses depending on the strategy execution time. Each ECE
generates an amount of postures equal to 40 times the execution time (the acquisition
rate is 40Hz). All 21 objects, two trials and six subjects were considered.

6.2.3 Differences between Pre and During contact

We investigate the persistence of the same basic ingredients of hand posture before
and during the contact with the environment for both bare fingers and cutaneous
impairment conditions. The dot product of synergies evaluated in previous sections
was computed in order to quantify their similarities.

6.3 Results

6.3.1 Pre-shaping analysis

Fig. 8 shows the explained variance associated to the PCs on the poses during the pre-
shaping phase. For the unimpaired case, the first Principal Component explains about
54% of the variance, while the first three pre-shaping synergies explain more than
72%. Fig. 9 shows the graphical representation of the first three resulting postural
synergies. The same analysis in the impaired case shows that the first synergy
explains about 42% of the variance, while three Principal Components explain more
than 68% of the variance. Thus, for our dataset, the variance explained by the
first main synergies is lower in the impaired condition. In Fig. 9 we present the
graphical representations of the synergistic posture reconstruction corresponding to
the first three synergies of pre-shaping without tactile impairment. Tab. 1 presents
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the numerical values of the first ECE synergy of pre-shaping with and without
impairment, in comparison with the first synergy of grasp [57]. Fig. 10 presents
the movement corresponding to the second synergy of pre-shaping with tactile
impairment.

In all the considered cases, the first synergy describes an opening-closing behavior
of the whole hand, while the second synergy corresponds to a closure of the distal
joints mostly of index and medial fingers, and a closing of the thumb. The third
synergy is similar to the second, but concerning the little and ring fingers.

Fig. 11(a) shows the scalar product between the first grasp synergy in [57] and the
ones found in this work for both sensory conditions. What is noticeable is that there
is a high level of consistency between the main synergy of grasping and pre-shaping
of human hand in impaired and unimpaired conditions (≥ 0.9). The similarity is
reduced for the second synergy, as shown in the same Fig. (b), and so on for the other
orders. Fig. 11 reports also a high correlation between pre-shaping synergies with

(a) First Synergies (b) Second Synergies

Fig. 11: Dot products between first and second grasp synergies and first and second
ECE synergies evaluated during pre-shaping, with and without tactile impairment.
The gray scale graphically codes the product value: black is 1, i.e. very similar,
white is 0, i.e. very different. A high correlation between the first grasping and ECE
synergies is evidenced. The ECE synergies with and without impairment present
high similarity, which however drops for higher order synergies.

and without tactile impairment. The presence of impairment does not alter the first
two synergies during the pre-shaping phase. However the similarity strongly drops
when the synergy order increases further, reaching 0.36 for the third and 0.003 for
the forth.
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6.3.2 Contact analysis

In the unimpaired condition, the first Principal Component explains about the 49%
of the variance, and the first three synergies more than 73%. The same analysis in
the impaired case returns a first synergy explaining about the 39% of the variance,
and the three Principal Components explaining more than 65% of the variance. Also
in this case, for our dataset the percentage of variance explained in the impaired
condition is lower. Tab. 1 presents the numerical values of first ECE synergy during
the contact with the environment, with and without impairment, in comparison with
the first synergy of grasp [57]. Fig. 10 presents the posture corresponding to the
second synergy with and without tactile impairment.

Table 1: Numerical values of the first synergy of Grasp [57] and of Enviromental
Constraint Exploitation, with and without impairment, before and after contact. We
indicate with ‘x’ the DoFs that were not considered in [57].

DoFs Grasp Unimpaired
Pre-Shape

Impaired
Pre-Shape

Unimpaired
Contact

Impaired
Contact

TA -0.43 -0.14 -0.15 -0.12 -0.15
TR 0.29 0.31 0.35 0.30 0.34
TM 0.14 0.14 0.17 0.17 0.16
TI 0.03 0.04 0.05 0.05 0.09
IA -0.13 -0.08 -0.12 -0.08 -0.11
IM 0.33 0.39 0.35 0.40 0.34
IP 0.15 0.16 0.16 0.17 0.20
ID x 0.01 0.03 0.03 0.05

MA x -0.03 -0.08 -0.02 -0.06
MM 0.33 0.38 0.33 0.38 0.32
MP 0.16 0.27 0.27 0.27 0.30
MD x 0.04 0.06 0.05 0.08
RA 0.06 0.00 -0.02 0.02 -0.02
RM 0.40 0.44 0.37 0.43 0.32
RP 0.20 0.22 0.27 0.22 0.35
RD x 0.04 0.06 0.05 0.11
LA 0.14 0.05 0.1 0.08 0.09
LM 0.37 0.43 0.42 0.41 0.37
LP 0.27 0.12 0.21 0.17 0.24
LD x 0.02 0.04 0.02 0.08

The analysis also demonstrates that subjects with tactile impairment are in contact
with the table for an average time of 4.2±3.1s, while for the unimpaired case the
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average time is 2.4±2.4s. The complete task is performed in 13.9±2.7s for the
tactile impairment case, while it is performed in 11.5±2.0s in the other case. Finally,
the contact force is different for the experiments considered. Mean value of norm of
contact forces for the tactile impairment case is 23.2±8.6 N, while mean value is
12.3±5.7 N in the other case.

6.3.3 Differences between Pre and During contact

The result shows that the first Principal Components in unimpaired and impaired
conditions are very similar w.r.t. the corresponding ones of the pre-shaping analysis.
The similarity tends to decrease with the increase of synergy order (correlation
≥ 0.75 till 9th synergy). Dot products are graphically reported in Fig. 12 for the
unimpaired case. Thus ECs induce only changes for the high order synergies, leaving
unaltered the main ones, regardless of availability of tactile input. Note that the first
synergy is still equivalent to the one in [57].

Fig. 12: Dot products between the ECE synergies in pre-shaping and in contact
with the environment, in the bare finger case. The gray scale graphically codes the
product value: black is 1, i.e. very similar, white is 0, i.e. very different. A tendency
to maintain the first main components before and after the contact results clearly
from this analysis. The results for the impaired case are analogous.
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6.3.4 Inference and Statistical Relevance

In the previous sections we presented results from 6 subjects. Despite such a moderate
number of participants, findings and analyses are in line with the existing literature
in the field, see e.g. [57, 43, 47]. To generalize, we here report additional statistical
analyses that provide t–Student based confidence intervals (CI) with 95% probability.
CI refers to dot products performed on the PCs extracted for the different conditions,
and the ones obtained in grasping.

CI for the dot product between the first synergy for impaired and unimpaired
conditions is [0.81,0.96]; CI for the dot product between the first grasping synergy
and the unimpaired first ECE synergy is [0.88,0.94]; CI for the dot product between
the first grasping synergy and the impaired first ECE synergy is [0.79,0.9]. Regard-
ing the contact analysis of Sec. 6.3.3, the dot product between the first Principal
Component before and during contact results in a CI of [0.97,0.99] (unimpaired
case).

7 Implications for Robotics and Motor Control

In this chapter we have focused on characterizing the human upper limb and hand
movements. In particular, the first problem has been faced through a functional
approach, which showed that the complexity of upper limb movements in activities
of daily living can be described using a reduced number of functional principal
components. To achieve this goal we developed an experimental setup, which is
based on kinematic recordings but also allows to include additional sensing modal-
ities. Kinematic data are based on a 7 DoFs model and are quantified through a
calibration-identification procedure. Collected data was used to characterize upper
limb movements through functional analysis. The findings of this work can be used to
pave the path towards a more accurate characterization of human upper limb principal
modes, opening fascinating scenarios in rehabilitation, e.g. for automatic recognition
of physiological and pathological movements.(e.g. stroke affected subjects) through
machine learning.

At the same time, the here reported results and future investigations could also
offer a valuable inspiration for the design and control of robotic manipulators. First,
recognizing that few principal modes describe most of kinematic variability could
provide insights for a more effective planning and control of robotic manipulators.
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For the planning phase, using input trajectories as combinations of the main func-
tional components, which explain most of the kinematic variability in time, could
represent a succesful initial guess to control the movement of the robot – eventually
combined with a feedback correction. This combination of feedforward and feedback
components could be successfully employed also with soft robotic manipulators,
i.e. robots designed to embody safe and natural behaviors relying on compliant
physical structures purposefully used to achieve desirable and sometimes variable
impedance characteristics. In these cases, standard methods of robotic control can
effectively fight against or even completely cancel the physical dynamics of the sys-
tem, replacing them with a desired model - which defeats the purpose of introducing
physical compliance. To overcome this limitation in [23] an anticipative model of
human motor control was proposed, which used a feedforward action combined with
low-gain feedback, with the goal of obtaining human-like behavior through iterative
learning. Results presented in this work could be used to define the feedforward
component for the control of soft robots. Second, using human-like primitives for
controlling robotic systems could improve the effectiveness and safety of Human
- Robot Interaction (HRI). Indeed, several studies identified anthropomorphism as
one of the key enabling factor for successful, acceptable, predictable and safe HRI in
many fields, such as human robot co-working and rehabilitative/assistive robotics
[6, 26, 27, 53].

Furthermore, the here reported experimental and analytical framework could
be used to identify principal actuation schemes for under-actuated robotic devices.
As an example, in [16], we used the identification procedure and the kinematic
model reported in this work to estimate the contribution of wrist joints in the most
common poses for grasping. We performed PCA on the estimated joints of the wrist
pre-grasp poses and we found that the flexo-extension DoF plays a dominant role.
We used these results to calibrate an under-actuated wrist system, which is also
adaptable and allows to implement different under-actuation schemes, demonstrating
its effectiveness to accomplish grasping and manipulation tasks.

Future works will aim at using functional data to allow a dynamic implementation
of principal kinematic modes of human upper-limb in robotic systems. Finally, the
integration of other sensing modalities, such as Electro-encephalographic recordings,
could be used to study neural correlates of human upper limb motions, thus possibly
inspiring the development of effective Brain-Machine Interfaces for assistive robotics.

Regarding the hand movements, we implemented a PCA-based analysis to achieve
a synergistic description of hand control in case of Environmental Constraint Exploita-
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tion, during pre-shaping and contact phase, and with or without tactile impairment.
In particular, we showed that the explained variance reported in Fig. 8 suggests
the presence of an underlying synergistic behavior in the purposeful exploitation of
environmental constraints. Indeed, the space dimensionality required to approximate
hand posture is considerably smaller than the number of degrees of freedom. In
particular, the first Principal Component shows a marked predominance, with a
maximum total variance explained of 54% in the unimpaired pre-shaping case. The
three first synergies explain more than 65% of the total variance in all the conditions.
In the experiments, during contact with the environment, the amount of variability
accounted by higher order synergies increases. This could be explained by observing
that the interaction can shape the subject hand beyond its nominal kinematics. This
behavior is also in agreement with the findings in [58], where the synergistic analysis
of [57] was performed on grasped real objects instead of imagined ones.

Despite our inference analysis (Sec. 6.3.4) is limited to the first synergy, a series
of characteristics of our dataset can be pointed out, which are in accordance with
existing neuroscientific findings. Future works will focus on different experimental
procedures and tasks to further investigations. In our dataset, the first two synergies
in the impaired and unimpaired conditions are very similar, as shown in Fig. 10
and Fig. 11. This suggests that the presence of tactile impairment, while modifying
the strategies themselves, does not substantially modify the most basic kinematic
ingredients commonly used to generate hand postures (for more details please refers
also to [4]). Subjects are aware of the presence of the tactile impairment, so it is
reasonable to expect that they might have changed their planning in accordance to
that. Indeed, the drop of such similarity after the third synergy suggests that cutaneous
impairment affects posture refinement, which can be likely ascribed to higher order
synergies (as described in [57]). However the amount of data collected does not
allow a sound statistical characterization of this behavior. To assess whether higher
order synergies are primarily noise or they actually contribute to hand postures, we
will resort to the usage of discriminant analysis and information theory, as in [57], as
future works.

Analogously, Fig. 12 shows a high similarity in the first Principal Components
during contact and pre-shaping, while differences can be observed for higher order
synergies. Uncontrolled Manifold theory [61, 40] suggests that the central nervous
system selects in the space of joint angles a subset of variables of interest, which are
regulated, purposefully leaving free the remaining variables. The persistence of main
postural synergies of pre-shaping during the contact with the environment can be
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interpreted in the light of this theory by considering the first set of ECE synergies
as the variables of interest for the considered task, which remain constant when an
external disturbance occurs. The sub-space individuated by the higher order synergies
is instead left free to adapt to the external environment. Moreover such behaviour
could also be due to peripheral constraints embedded in the musculoskeletal system,
as discussed e.g. in [55].

Data shown in Fig. 11 and Table 1 demonstrate that a strong resemblance exists
between the first synergy, resulting from the analysis of ECE strategies, and the first
synergy of grasp as found in [57]. This could suggest the presence of underlying
synergies, which are integrated with task specific ones. This was proposed e.g. in
[34], and it is in agreement with experimental results presented in [63], where task
independent synergies are estimated by a set of unconstrained tasks (see CI estimates
in section 6.3.4).

As it can be widely observed in literature, neuroscientific results of synergistic
behavior of human hands have been successfully translated and applied to robotics
to inform the design, control and sensing of artificial systems, with special focus on
grasping, see [11, 10]. One of the first notable application of synergies to robotics
was in [15], where authors propose to use grasp synergies to derive actuation patterns
for an underactuated robotic hand. In [32], the use of hand synergies for the choice
of grasping forces was discussed. In [19] and later in [2, 68, 42], a synergy based
low-dimensional synergistic space is considered to obtain effective pre-grasp shapes
for fully actuated robotic hands.

Recently, synergy-inspired actuation has been combined with the introduction
of compliance in the structure [17, 70, 24, 25, 18] (according to the soft synergy
framework [11]). The availability of robotic hands embedding elasticity in their
mechanics has also led to a shift in their control philosophy, accounted e.g. in
[13, 28]. In the classical planning, suitable points are selected on the object to be
grasped or manipulated, generating a nominal grasp of good quality. Trajectories
are then executed, to correctly position the fingertips while avoiding contacts with
the environment. On the contrary, soft manipulation has changed this scheme. The
hand-environment contacts are no more avoided but exploited to successfully shape
the hand around the object. Under this regard, the study of environmental exploitation
in humans could inform the design, planning, and control of robotic hands to take
full advantage from the external environment.

The most direct implication of the presented results could leverage upon the
observation that the first synergy of grasping is very similar to the first synergy for
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Environmental Constraint Exploitation (ECE). Thus the implementation of the first
synergy of grasp as degree of actuation can target the twofold goal of realizing under-
actuated robotic hands that can effectively grasp objects and, at the same time, are
able to exploit Environmental Constraints. To increase hand functionalities beyond
the first degree of actuation, we could implement additional ECE synergies, possibly
in combination with the grasp synergies. For some examples of the implementation
of synergies for the design of under-actuated robotic hands, we refer the interested
reader to [36, 24, 49].

Looking at the differences between the impaired and unimpaired conditions, the
key kinematic ingredients seem to remain unaltered at least for the gross move-
ments. However, the time for task accomplishment and the force exchanged with
the environment is higher for the impaired case. This result could indicate possible
sensing strategies for soft robotic hands, i.e. to detect contact with the environment
e.g. through IMU sensors, which can lead to the development of planning and control
laws aiming at minimizing force execution on external objects.
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