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Abstract—This paper studies trace-based equivalences for sys-

tems combining nondeterministic and probabilistic choices.

We show how trace semantics for such processes can be

recovered by instantiating a coalgebraic construction known

as the generalised powerset construction. We characterise and

compare the resulting semantics to known definitions of trace

equivalences appearing in the literature. Most of our results

are based on the exciting interplay between monads and their

presentations via algebraic theories.

1. Introduction

Systems exhibiting both nondeterministic and proba-
bilistic behaviour are abundantly used in verification [1],
[2], [3], [4], [5], [6], [7], AI [8], [9], [10], and studied from
semantics perspective [11], [12], [13]. Probability is needed
to quantitatively model uncertainty and belief, whereas non-
determinism enables modelling of incomplete information,
unknown environment, implementation freedom, or concur-
rency. At the same time, the interplay of nondeterminism
and probability has been posing some remarkable chal-
lenges [14], [15], [16], [17], [18], [19], [20], [21].

Figure 1 shows a nondeterministic probabilistic system
(NPLTS) that we use as a running example.

Traces and trace semantics [22] for nondeterministic
probabilistic systems have been studied for several decades
within concurrency theory and AI using resolutions or
schedulers—entities that resolve the nondeterminism. Most
proposals of trace semantics in the literature [23], [24], [25],
[26] are based on such auxilary notions of resolutions and
differ on how these resolutions are defined and combined.
We call such approaches local-view approaches.

On the other hand, the theory of coalgebra [27], [28] pro-
vides uniform generic approaches to trace semantics of vari-
ous kinds of systems and automata, via Kleisli traces [29] or
generalised determinisation [30], providing e.g. an abstract
treatment of language equivalence for automata. We use the
term global-view approaches for the coalgebraic methods
via generalised determinisation.

In this paper, we propose a theory of trace semantics
for nondeterministic probabilistic systems that unifies the
local and the global view. We start by taking the global-view
approach founded on algebras and coalgebras and inspired
by automata theory, and study determinisation of NPLTS in
this framework. Then we find a way to mimic the local-
view approach and show that we can recover known trace
semantics from the literature. We introduce now the main

pieces of our puzzle, and show how everything combines
together in the theory of traces for NPLTS.

In order to illustrate our approach, it is convenient to
recall nondeterministic automata (NDA) and Rabin prob-
abilistic automata (PA) [31]. Both NDA and PA can be
described as maps 〈o, t〉 : X → O × (MX)A where X is
a set of states, A is the set of labels, o : X → O is the
output function assigning to each state in X an observation,
and t : X → (MX)A is the transition function that assigns
to each state x in X and to each letter a of the alphabet
A an element of MX that describes the choice of a next
state. For NDA, this is a nondeterministic choice; for PA, the
choice is governed by a probability distribution. An NDA
state observes one of two possible values which qualify the
state as accepting or not. A state in a PA observes a real
number in [0, 1]. Below we depict an example NDA (on the
left) and an example PA (on the right) with labels A = {a, b}
and with outputs denoted by ↓.

x ↓0 y ↓1
a

a b

x ↓0 y ↓1
a, b

a, b

1
2

1
2

The type of choice, modelled abstractly by a monad
M , is often linked to a concrete algebraic theory, the pre-
sentation of M . Having such a presentation is a valuable
tool, since it provides a finite syntax for describing finite
branching. For nondeterministic choice this is the algebraic
theory of semilattices (with bottom), for probabilistic choice
it is the algebraic theory of convex algebras. Once we
have such an algebraic presentation, we have a determinised
automaton (as depicted below) and we inductively compute
the output value after executing a trace by following the
algebraic structure.

x ↓0 x⊕ y ↓1

⋆ ↓0

a

b

a, b

a
b

x ↓0

x+ 1
2
y ↓ 1

2

x+ 1
4
y ↓ 3

4

.

.

.

a, b

a, b

a, b

Here x ⊕ y denotes the nondeterministic choice of x or y,
and x+p y the probabilistic choice where x is chosen with
probability p and y with probability 1− p.
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For example, in the determinised PA we have, since x
a
→

x+ 1
2
y and y

a
→ y:

x+ 1
2
y

a
→ (x+ 1

2
y) + 1

2
y = x+ 1

4
y

and hence the output of x+ 1
4
y is o(x)+ 1

4
o(y) = 3

4 giving us

the probability of x executing the trace aa. Our computation
is enabled by having the right algebraic structure on the set
of observations: a semilattice on {0, 1} and a convex algebra
on [0, 1]. The induced semantics is language equivalence and
probabilistic language equivalence, respectively.

This is the approach of trace semantics via a determinisa-
tion [30], founded in the abstract understanding of automata
as coalgebras and computational effects as monads.

We develop a theory of traces for NPLTS using such
approach. For this purpose we take the monad for nondeter-
minism and probability [17] with origins in [14], [18], [19],
[20], [21], [32], namely, the monad C of nonempty convex
subsets of distributions, and provide all necessary and con-
venient infrastructure for generalised determinisation. The
necessary part is having an algebra of observations, the con-
venient part is giving an algebraic presentation in terms of
convex semilattices. These are algebras that are at the same
time a semilattice and a convex algebra, with a distributivity
axiom distributing probability over nondeterminism. Having
the presentation we can write, for example

x
a
→ x1 ⊕ (x3 + 1

2
x2)

for the NPLTS from Figure 1.
The presentation for C is somewhat known, although

not explicitly proven, in the community — proving it and
putting it to good use is part of our contribution which,
in our opinion, drastically clarifies and simplifies the trace
theory of systems with nondeterminism and probability.

Remarkably, necessity and convenience go hand in hand
on this journey. Having the presentation enables us to clearly
identify what are the interesting algebras necessary for
describing trace and testing semantics (with tests being finite
traces). We identify three different algebraic theories: the
theory of pointed convex semilattices, the theory of convex

semilattices with bottom, and the theory of convex semilat-

tices with top. These theories give rise to three interesting
semantics by taking as algebras of observations those freely
generated by a singleton set. We prove their concrete charac-
terisations: the free convex semilattice with bottom is carried
by [0, 1] with max as semilattice operation and standard
convex algebra operations; the free convex semilattice with
top is carried by [0, 1] with min as semilattice operation;
and the pointed convex semilattice freely generated by 1
is carried by the set of closed intervals in [0, 1] where the
semilattice operation combines two intervals by taking their
minimum and their maximum, and the convex operations
are given by Minkowski sum.

We call the resulting three semantics may trace, must

trace and may-must trace semantics since there is a close
correspondence with probabilistic testing semantics [33],
[34], [35], [36] when tests are taken to be just the finite
traces in A∗. Indeed, the may trace semantics gives the
greatest probability with which a state passes a given test;

x

x1 ∆2

∆1 x2

x3

a a

b

b

c

1
2

1
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1
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1
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y4
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b
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1
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1
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4
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1
4

Figure 1. NPLTS

the must trace semantics gives the smallest probability with
which a state passes a given test, and the may-must trace
semantics gives the closed interval ranging from the smallest
to the greatest.

From the abstract theory, we additionally get that:

1) The induced equivalence can be proved coinductively
by means of proof-techniques known as bisimulations

up-to [37]. More precisely, it holds that up-to ⊕ and
up-to +p are compatible [38] techniques.

2) The equivalence is implied by the standard branching-
time equivalences for NPLTS, namely bisimilarity and
convex bisimilarity [7], [39].

3) The equivalence is backward compatible w.r.t. trace
equivalence for LTS and for reactive probabilistic sys-
tems (RPLTS): When regarding an LTS and RPLTS as
a nondeterministic probabilistic system, standard trace
equivalence coincides with our may trace equivalence
and with our three semantics, respectively.

Last but certainly not least, we show that the global view
coincides with the local one, namely that our three semantics
can be elegantly characterised in terms of resolutions. The
may-trace semantics assigns to each trace the greatest prob-
ability with which the trace can be performed, with respect
to any resolution of the system; the must-trace semantics
assigns the smallest one. It is important to remark here that
our resolutions differ from those previously proposed in the
literature in the fact that they are reactive rather than fully
probabilistic. We observe that however this difference does
not affect the greatest probability, and we can therefore show
that the may-trace coincides with the randomized ⊔-trace
equivalence in [25], [26], [40].

Synopsis. We recall monads and algebraic theories in Sec-
tion 2. We provide a presentation for the monad C in
Section 3 (Theorem 4) and combine it with termination
in Section 4. We then recall, in Section 5, the generalised
determinisation and show an additional useful result (The-
orem 16). All these pieces are put together in Section 6,
where we introduce our three semantics and discuss their
properties. The correspondence of the global view with the
local one is illustrated in Section 7 (Theorem 23). The
effectiveness of the bisimulation up-to techniques is shown
in Appendix A (Example 30). All proofs are in the appendix.



2. Monads and Algebraic Theories

In this paper, on the algebraic side, we deal with
Eilenberg-Moore algebras of a monad on the category Sets

of sets and functions, for which we also give presentations
in terms of operations and equations, i.e., algebraic theories.

2.1. Monads

A monad on Sets is a functor M : Sets → Sets

together with two natural transformations: a unit η : Id ⇒ M
and multiplication µ : M2 ⇒ M that satisfy the laws
µ ◦ ηM = µ ◦ Mη = id and µ ◦ Mµ = µ ◦ µM .

We next introduce several monads on Sets, relevant to
this paper. Each monad can be seen as giving side-effects.

Nondeterminism. The finite powerset monad P maps a set
X to its finite powerset PX = {U | U ⊆ X, U is finite}
and a function f : X → Y to Pf : PX → PY , Pf(U) =
{f(u) | u ∈ U}. The unit η of P is given by singleton, i.e.,
η(x) = {x} and the multiplication µ is given by union, i.e.,
µ(S) =

⋃

U∈S U for S ∈ PPX . Of particular interest to
us in this paper is the submonad Pne of non-empty finite
subsets, that acts on functions just like the (finite) powerset
monad, and has the same unit and multiplication. We rarely
mention the unrestricted (not necessarily finite) powerset
monad, which we denote by Pu. We sometimes write f
for Puf in this paper.

Probability. The finitely supported probability distribution
monad D is defined, for a set X and a function f : X → Y ,
as
DX = {ϕ : X → [0, 1] |

∑

x∈X

ϕ(x) = 1, supp(ϕ) is finite}

Df(ϕ)(y) =
∑

x∈f−1(y)

ϕ(x).

The support set of a distribution ϕ ∈ DX is supp(ϕ) =
{x ∈ X | ϕ(x) 6= 0}. The unit of D is given by a
Dirac distribution η(x) = δx = (x 7→ 1) for x ∈ X and
the multiplication by µ(Φ)(x) =

∑

ϕ∈supp(Φ) Φ(ϕ) · ϕ(x)
for Φ ∈ DDX . We sometimes write

∑

i∈I pixi for a
distribution ϕ with supp(ϕ) = {xi | i ∈ I} and ϕ(xi) = pi.

Termination. The termination monad, also called lift and
denoted by · + 1 maps a set X to the set X + 1, where +
denotes the coproduct in Sets, which amounts to disjoint
union, and 1 = {⋆}. For a coproduct A + B we write
inl : A → A + B and inr : B → A + B for the left and
right coproduct injections, respectively. This monad maps a
function f : X → Y to the function f +1: X +1 → Y +1
defined, as expected, by (f + 1)(inl(x)) = inl(f(x)) for
x ∈ X and (f + 1)(inr(⋆)) = inr(⋆). The unit of the ter-
mination monad is given by the left injection, η : X → X+1
with η(x) = inl(x) and the multiplication by µ(inl ◦
inl(x)) = inl(x) for x ∈ X , µ(inl ◦ inr(⋆)) = inr(⋆), and
µ(inr(⋆)) = inr(⋆). If clear from the context, we may omit
explicit mentioning of the injections, and write for example
(f + 1)(x) = x for x ∈ X and (f + 1)(⋆) = ⋆.

2.2. Monad Maps, Quotients and Submonads

A monad map from a monad M to a monad M̂ is a

natural transformation σ : M ⇒ M̂ that makes the following
diagrams commute, with η, µ and η̂, µ̂ denoting the unit and

multiplication of M and M̂ , respectively, and σσ = σ ◦
Mσ = M̂σ ◦ σM .

X

η̂ %%❑❑
❑❑

❑❑

η // MX

σ��

MMX

µ
��

σσ // M̂M̂X

µ̂��
M̂X MX σ

// M̂X

If σ : MX → M̂X is an epi monad map, then M̂ is a
quotient of M . If it is a mono, then M is a submonad of

M̂ . If it is an iso, the two monads are isomorphic.

2.3. Distributive Laws

Let (M, η, µ) and (M̂, η̂, µ̂) be two monads. A monad

distributive law of M over M̂ is a natural transformation
λ : MM̂ ⇒ M̂M that commutes appropriately with the
units and the multiplications of the monads, see Appendix C.

Given a monad distributive law λ : MM̂ ⇒ M̂M , we
get a composite monad M̄ = M̂M with unit η̄ = η̂η and

multiplication µ̄ = µ̂µ ◦ M̂λM .
For any monad M on Sets, there exists a distributive

law ι : M + 1 ⇒ M(·+ 1) defined as

ιX =
(

MX + 1
[Mil,ηX+1◦ir ] // M(X + 1)

)

. (1)

As a consequence, M(·+1) is a monad. Moreover, we get
the following useful property.

Lemma 1. Whenever σ : M ⇒ M̂ is a monad map, also

σ(·+1): M(·+1) ⇒ M̂(·+1) is a monad map. Injectivity

of σ implies injectivity of σ(· + 1).

2.4. Algebraic Theories

With a monad M one associates the Eilenberg-Moore
category EM(M) of M -algebras. Objects of EM(M) are
pairs A = (A, a) of a set A ∈ Sets and a map a : MA → A,
making the first two diagrams below commute.

A

❊
❊
❊
❊
❊

❊
❊
❊
❊
❊

η // MA
a��

M2A
µ ��

Ma// MA
a��

MA
a ��

Mh// MB

b��
A MA

a
// A A

h
// B

A homomorphism from an algebra A = (A, a) to an algebra
B = (B, b) is a map h : A → B between the underlying sets
making the third diagram above commute.

In this paper we care for both categorical algebra, alge-
bras of a monad, and their presentations in terms of algebraic
theories and their models. An algebraic theory is a pair
(Σ, E) of signature Σ (a set of operation symbols) and a set
of equations E (a set of pairs of terms). A (Σ, E)-algebra,
or a model of the algebraic theory (Σ, E) is an algebra
A = (A,ΣA) with carrier set A and a set of operations
ΣA, one for each operation symbol in Σ, that satisfies the



equations in E. A homomorphism from a (Σ, E)-algebra
A = (A,ΣA) to a (Σ, E)-algebra B = (B,ΣB) is a
function h : A → B that commutes with the operations, i.e.,
h ◦ fA = fB ◦ hn for all n-ary f ∈ Σ, and fA, fB its in-
terpretations in A,B, respectively. (Σ, E)-algebras together
with their homomorphisms form a category and a variety.

Definition 2. A presentation of a monad M is an algebraic

theory, (Σ, E) such that the category (variety) of (Σ, E)-
algebras is isomorphic to EM(M).

Given a presentation (Σ, E) of a monad M , M is
isomorphic to the monad MΣ,E of Σ-terms modulo E-
equations, i.e., there is an isomorphism monad map between
them. Given a signature Σ, the free monad TΣ = TΣ,∅ of
terms over Σ maps a set X to the set of all Σ-terms with
variables in X , and f : X → Y to the function that maps
a term over X to a term over Y obtained by substitution
according to f . The unit maps a variable X to itself, and
the multiplication is term composition. We have that TΣ,E

is a quotient of TΣ. Moreover, for two sets of equations
E1 ⊆ E2 we have that the monad TΣ,E2 is a quotient of
TΣ,E1 . In the sequel we present several algebraic theories
that give presentations to the monads of interest.

Presenting the monad Pne. Let ΣN be the signature
consisting of a binary operation ⊕. Let EN be the following
set of axioms.

(x⊕ y)⊕ z
(A)
= x⊕ (y ⊕ z)

x⊕ y
(C)
= y ⊕ x

x⊕ x
(I)
= x

The algebraic theory (ΣN , EN ) of semilattices provides
a presentation for the monad Pne. We refer to this theory
as the theory of nondeterminism. To avoid confusion later,
it is convenient to fix here the interpretation of ⊕ as a join
(rather than a meet) and, thus, to think of the induced order
as x ⊑ y iff x+ y = y.

Presenting the monad D. Let ΣP be the signature consist-
ing of binary operations +p for all p ∈ (0, 1). Let EP be
the following set of axioms.

(x +q y) +p z
(Ap)
= x+pq (y + p(1−q)

1−pq

z)

x+p y
(Cp)
= y +1−p x

x+p x
(Ip)
= x

Here, (Ap), (Cp), and (Ip) are the axioms of parametric as-
sociativity, commutativity, and idempotence. The algebraic
theory (ΣP , EP ) of convex algebras, see [41], [42], [43],
[44], [45], provides a presentation for the monad D.

Another presentation of convex algebras is given by the
algebraic theory with infinitely many operations denoting
arbitrary (and not only binary) convex combinations — see
Appendix C for more details. This allows us to interchange-
ably use binary convex combinations or arbitrary convex
combinations whenever more convenient. Moreover, we can

write binary convex combinations +p for p ∈ [0, 1] and not
just p ∈ (0, 1). We refer to the theory of convex algebras as
the algebraic theory for probability.

Presenting · + 1. The algebraic theory (ΣT , ET ) for the
termination monad consists of a single constant (nullary
operation symbol) ΣT = {⋆} and no equations ET = ∅.
This is called the theory of pointed sets.

Combining Algebraic Theories. Algebraic theories can be
combined in a number of general ways: by taking their
coproduct, their tensor, or by means of distributive laws (see
e.g. [46]). Unfortunately, these abstract constructions do not
lead to a presentation for the monad we are interested in.
We will thus devote the next section to show a “hand-made”
presentation for this monad.

We conclude this section with a well known fact that
can be easily proved, for instance by taking the distributive
law in (1): given a presentation (Σ, E) for a monad M , the
monad M(· + 1) is presented by the theory (Σ′, E) where
Σ′ is Σ together with an extra constant ⋆. For instance, the
subdistributions monad D(·+ 1) is presented by the theory
(ΣP ∪ ΣT , EP ) of pointed convex algebras, also known
as positive convex algebras. The theory (ΣN ∪ ΣT , EN )
of pointed semilattices provides instead a presentation for
the monad Pne(· + 1). It is interesting to observe that the
powerset monad P is presented by adding to (ΣN∪ΣT , EN )
the equation

x⊕ ⋆
(B)
= x

leading to the theory of semilattices with bottom. The theory
of semilattices with top can be obtained by adding instead
the following equation:

x⊕ ⋆
(T )
= ⋆.

Similar axioms can be added to the theory of pointed convex
algebras (ΣP ∪ ΣT , EP ). The axiom

x+p ⋆
(Bp)
= x

makes the probabilistic structure collapse, see Figure 6 in
Appendix C for the details. On the other hand, the axiom

x+p ⋆
(Tp)
= ⋆

quotients the monad D(· + 1) into D + 1: intuitively, each
term of this theory is either a sum of only variables (a
distribution) or an extra element (⋆). This axiom describes
the unique functorial way of adding termination to a convex
algebra, the so-called black-hole behaviour of ⋆, cf. [47].

3. Algebraic Theory for Nondeterminism and

Probability

In this section we recall the definition of the monad C
for probability and nondeterminism, give its presentation via
convex semilattices, and present examples of C-algebras.



3.1. The monad C of convex subsets of distributions

The monad C origins in the field of domain theory [19],
[20], [21], and in the work of Varacca and Winskel [14],
[18], [32]. Jacobs [17] gives a detailed study of (a general-
isation of) this monad.

For a set X , CX is the set of non-empty, finitely-
generated convex subsets of distributions on X , i.e.,

CX = {S ⊆ DX |S 6= ∅, conv(S) = S,

S is finitely generated}.

Recall that, for a subset S of a convex algebra, conv(S) is
the convex closure of S, i.e., the smallest convex set that
contains S, i.e.,

conv(S) = {
∑

pixi | pi ∈ [0, 1],
∑

pi = 1, xi ∈ S}.

We say that a convex set S is generated by its subset B if
S = conv(B). In such a case we also say that B is a basis
for S. A convex set S is finitely generated if it has a finite
basis.

For a function f : X → Y , Cf : CX → CY is given by

Cf(S) = {Df(d) | d ∈ S} = Df(S).

The unit of C is η : X → CX given by η(x) = {δx}.
The multiplication of C, µ : CCX → CX can be ex-

pressed in concrete terms as follows [17]. Given S ∈ CCX ,

µ(S) =
⋃

Φ∈S

{
∑

U∈suppΦ

Φ(U) · d | d ∈ U}.

3.2. The presentation of C

We now introduce the algebraic theory (ΣNP , ENP ) of
convex semilattices, that gives us the presentation of C and
thus provides an algebraic theory for nondeterminism and
probability.

A convex semilattice A is an algebra A = (A,⊕,+p)
with a binary operation ⊕ and for each p ∈ (0, 1) a binary
operation +p satisfying the axioms (A), (C), (I) of a semi-
lattice, the axioms (Ap), (Cp), (Ip) for a convex algebra,
and the following distributivity axiom:

(x⊕ y) +p z
(D)
= (x+p z)⊕ (y +p z)

Hence, (ΣNP , ENP ) for ΣNP = ΣN ∪ ΣP and ENP =
EN ∪ EP ∪ {(D)}.

In every convex semilattice there also holds a convexity
law, of which we directly present the generalized version in
the following lemma.

Lemma 3. Let A = (A,⊕,+p) be a convex semilattice.

Then for all n ∈ N, all a1, . . . an ∈ A and all p1, . . . , pn ∈
[0, 1] with

∑n
i=1 pi = 1 we have

a1 ⊕ . . .⊕ an ⊕
n
∑

i=1

piai
(C)
= a1 ⊕ . . .⊕ an.

For p ∈ [0, 1] we set p = 1 − p. Let X be an arbitrary
set. We define ΣNP -operations on CX by

S1 ⊕ S2 = conv(S1 ∪ S2)

and for p ∈ (0, 1)

S1+pS2 = {ϕ | ϕ = pϕ1+pϕ2 for some ϕ1 ∈ S1, ϕ2 ∈ S2}

where pϕ1 + pϕ2 = ϕ1 +p ϕ2 is the binary convex com-
bination of ϕ1 and ϕ2 in DX , defined point-wise. Note
that S1 +p S2 is the Minkowski sum of two convex sets.
If convenient, we may sometimes also write, as usual,
pS1 + pS2 for the Minkowski sum S1 +p S2.

To prove the presentation theorem, we identify a generic
proof method that we only present in the appendix for lack
of space. We encourage the reader to read the appendix,
also for many other useful properties that deepen the under-
standing of convex semilattices.

Theorem 4. The theory for nondeterminism and probability

(ΣNP , ENP ), i.e., the theory of convex semilattices, is a

presentation for the monad C.

Remark 5. Theorem 4 is to some extent known1 but we

could not find a proof of it in the literature. In [14],

[18] a monad for probability and nondeterminism is given

starting from a similar algebraic theory (with somewhat

different basic algebraic structure). There is also another

possible way of combining probability with nondeterminism,

by distributing ⊕ over +p (see e.g. [15], [48]).

Remark 6. Having the presentation enables us to identify

and interchangeably use convex subsets of distributions and

terms in ΣNP modulo equations in ENP . This is particu-

larly useful in examples and our further developments. Note

that in the syntactic view η(x) is identified with the term x.

The presentation is a valuable tool in many situations
where reasoning with algebraic theories is more convenient
than reasoning with monads. For instance, it is much easier
to check whether a certain algebra is a (ΣNP , ENP )-model,
than to check that it is an algebra for the monad C. We
illustrate this with three (ΣNP , ENP ) models that play a
key role in our further results and exposition.

The max convex semilattice. Max = ([0, 1],max,+p) is a
(ΣNP , ENP )-algebra when taking ⊕ to be max: [0, 1] ×
[0, 1] → [0, 1] and +p the standard convex combination
+p : [0, 1] × [0, 1] → [0, 1] with x +p y = p · x + p · y for
x, y ∈ [0, 1]. To check that this is a (ΣNP , ENP ) model, it
is enough to prove that max satisfies the axioms in EN , that
+p satisfies the axioms in EP , and that they satisfy the ax-
iom (D), namely that max(x, y)+pz = max(x+pz, y+pz).

The min convex semilattice. Min = ([0, 1],min,+p) is
obtained similarly by taking ⊕ to be min: [0, 1]× [0, 1] →
[0, 1] rather than max, and gives another example of a
(ΣNP , ENP )-algebra. It is indeed very simple to check that
([0, 1],min) forms a semilattice and that the distributivity
law holds.

1. Personal communication with Gordon Plotkin.



The min-max interval convex semilattice. We consider the
algebraic structure MI = (I,min-max,+I

p) for I the set of
intervals on [0, 1], i.e.,

I = {[x, y] |x, y ∈ [0, 1] and x ≤ y}.

For [x1, y1], [x2, y2] ∈ I, we define min-max: I× I → I as

min-max([x1, y1], [x2, y2]) = [min(x1, x2),max(y1, y2)]

and +I
p : I× I → I by

[x1, y1] +
I

p [x2, y2] = [x1 +p x2, y1 +p y2].

The fact that this is a model for (ΣNP , ENP ) follows
easily from the fact that Max and Min are models for
(ΣNP , ENP ).

Remark 7. The fact that Max and Min are C-algebras

on [0, 1] was already proven in [49], without an algebraic

presentation. Having the algebraic presentation significantly

simplifies the proofs.

4. Adding termination

So far, we have provided a presentation for the monad C
which combines probability and nondeterminism. In order
to properly model NPLTS, we need a last ingredient: termi-
nation. As discussed in Section 2, termination is given by
the monad ·+1 which can always be safely combined with
any monad. Following the discussion at the end of Section 2,
the theory PCS = (ΣNP ∪ ΣT , ENP ) presents the monad
C(·+1) which is the monad of finitely generated non empty
convex sets of subdistributions.

We call this theory PCS since algebras for this theory
are pointed convex semilattices, namely convex semilattices
with a pointed element denoted by ⋆. A noteworthy ex-
ample is MI,[0,0] = (I,min-max,+I

p, [0, 0]) where MI =
(I,min-max,+I

p) is the convex semilattice of intervals from
Section 3 and [0, 0] is the pointed element. Moreover, this
is not just any pointed convex semilattice:

Proposition 8. MI,[0,0] = (I,min-max,+I
p, [0, 0]) is the

free pointed convex semilattice generated by a singleton set.

Like for the monad Pne, there exist more than one
interesting way of combining C with · + 1. Rather than
pointed convex semilattices, one can consider convex semi-

lattices with bottom, namely algebras for the theory CSB =
(ΣNP ∪ΣT , ENP ∪{(B)}) obtained by adding (B) to PCS.
Otherwise, one can add the axiom (T ) and obtain the theory
CST = (ΣNP ∪ ΣT , ENP ∪ {(T )}) of convex semilattices

with top. We denote by TCSB and TCST the corresponding
monads.

As we will illustrate in Section 5, particularly rel-
evant for defining trace semantics is the free algebra
µ : MM{•} → M{•} generated by a singleton {•}. In
the next two propositions we identify these algebras for the
monads TCSB and TCST in concrete terms.

Proposition 9. MaxB = ([0, 1],max,+p, 0) is the free

convex semilattice with bottom generated by 1 = {•}.

Proposition 10. MinT = ([0, 1],min,+p, 0) is the free

convex semilattice with top generated by 1 = {•}.

At this point the reader may wonder what happens when
one considers the axioms (Bp) and (Tp) in place of (B) and
(T ). We have already shown at the end of Section 2.4, that
the axiom (Bp) makes the probabilistic structure collapse.
When focussing on the free algebra generated by {•}, also
quotienting by (Tp) is not really interesting: one can show
by induction on the terms in TΣNP∪ΣT

({•}) that every term
is equal via ENP ∪ {(Tp)} to either • or ⋆ or • ⊕ ⋆.

So, we have found three interesting ways of combining
termination with probability and nondeterminism. Table 1
summarises these theories, their monads, and their algebras.

5. Coalgebras and Determinisation

In this section, we briefly introduce coalgebra and the
generalized determinization [30] construction, as well as
trace semantics by determinization. We present some sim-
ple properties and a new important result concerning the
semantics.

5.1. Coalgebra

The theory of coalgebra provides an abstract framework
for state-based transition systems and automata. Let Sets

be the category of sets and functions. A coalgebra in Sets

is a pair (S, c) of a state space S and a function c : S → FS
where F : Sets → Sets is a functor that specifies the type
of transitions. Sometimes we say the coalgebra c : S → FS,
meaning the coalgebra (S, c).

A coalgebra homomorphism from a coalgebra (S, c) to
a coalgebra (T, d) is a function h : S → T that satisfies
d◦h = Fh◦c. Coalgebras of a functor F and their coalgebra
homomorphisms form a category, denoted by Coalg (F ).

The final object in Coalg (F ), when it exists, is the
final F -coalgebra. We write ζ : Z

∼=
−→ FZ for the final

F -coalgebra. For every coalgebra c : S → FS, there is
a unique homomorphism J·Kc to the final one, the final

coalgebra map, making the diagram below commute:

FS
F J·Kc //❴❴❴❴❴❴ FZ

S

c

OO

∃! J·Kc //❴❴❴❴❴❴❴ Z

ζ∼=

OO

The final coalgebra semantics ∼ is the kernel of the final
coalgebra map, i.e., two states s and t are equivalent in the
final coalgebra semantics iff JsKc = JtKc.

Even without a final coalgebra, coalgebras over a con-
crete category are equipped with a generic behavioural
equivalence. Let (S, c) be an F -coalgebra on Sets. An
equivalence relation R ⊆ S × S is a kernel bisimulation
(synonymously, a cocongruence) [50], [51], [52] if it is the
kernel of a homomorphism, i.e., R = kerh = {(s, t) ∈
S × S | h(s) = h(t)} for some coalgebra homomorphism
h : (S, c) → (T, d) to some F -coalgebra (T, d). Two states
s, t of a coalgebra are behaviourally equivalent (notation:



Theory (Σ, E) Monad M free algebra µ1 : MM1 → M1

PCS = (ΣNP ∪ ΣT , ENP ) C(·+ 1) = TPCS MI,[0,0] = (I,min-max,+I
p , [0, 0])

CSB = (ΣNP ∪ ΣT , ENP ∪ {(B)}) TCSB MaxB = ([0, 1],max,+p, 0)
CST = (ΣNP ∪ΣT , ENP ∪ {(T )}) TCST MinT = ([0, 1],min,+p, 0)

TABLE 1. THE THEORIES OF POINTED CONVEX SEMILATTICES, WITH BOTTOM, AND WITH TOP.

s ≈ t) iff there is a kernel bisimulation R with (s, t) ∈ R.
If a final coalgebra exists, then the behavioural equivalence
and the final coalgebra semantics coincide, i.e., ≈ = ∼.

The following are well-known examples of F -coalgebras
on Sets:

1) Labelled transition systems, LTS, are coalgebras for the
functor F = PA. Behavioural equivalence coincides
with strong bisimilarity.

2) Nondeterministic automata, NA, are coalgebras for
F = 2×PA where 2 = {0, 1} is needed to differentiate
whether a state is accepting or not.

3) Deterministic automata, DA, are coalgebras for F =
2× (·)A. The final coalgebra is carried by the set of all

languages 2A
∗

.
4) Moore automata, MA, are a slight generalisation of

deterministic automata with observations O: they are
coalgebras for F = O × (·)A. The final coalgebra is

carried by the set of all O-valued languages OA∗

.

Systems and Automata with M -effects. In general, for
a monad M , we call an MA-coalgebra a system with M -

effects, and we call an O×MA-coalgebra an automaton with

M -effects and observations in O. We write c = 〈o, t〉 for
an automaton with M -effects and observations in O, where
o : X → O is the observation map assigning observations
to states, and t : X → (MX)A is the transition structure.

For instance, an LTS is a system with P-effects, and a
nondeterministic automaton is an automaton with P-effects
and observations in 2. We now introduce the systems and
automata that we focus on in this paper.

Nondeterministic probabilistic labelled transition sys-

tems, NPLTS,. also known as simple Segala systems, are
coalgebras for the functor F = (PD)A. Behavioural equiv-
alence coincides with strong probabilistic bisimilarity [53],
[54]. Special cases of NPLTS are LTS, when all distributions
are Dirac distributions, and reactive probabilistic labelled
transition systems (RPLTS), when all subsets are at most
singletons. An RPLTS is a coalgebra of the functor (D+1)A.

Convex NPLTS. are coalgebras for (C + 1)A. Behavioural
equivalence coincides with convex probabilistic bisimilar-
ity [16]. The move from NPLTS to convex NPLTS is given
by a natural transformation conv: PD ⇒ C + 1 with
conv(X) the convex hull for X ⊆ DS, X 6= ∅, and
conv(∅) = ⋆. Therefore, convA : (PD)A ⇒ (C + 1)A

defined pointwise is natural as well. As a consequence [27],
[53], we get a translation functor from NPLTS to convex
NPLTS, and hence bisimilarity implies convex bisimilarity
for NPLTS.

Nondeterministic Probabilistic automata, NPA,. with ob-
servations in O are (for us in this paper) coalgebras for
F = O × (C(· + 1))A. We explain in Section 5.3 below
how to move from (convex) NPLTS to NPA, which involves
two steps: (1) Adding observations and (2) Dealing with
termination.

We write x
a
→ m for t(x)(a) = m with a ∈ A, x ∈

X,m ∈ MX in a system or automaton with M -effects. For

an LTS t : X → (PX)A we also write, as usual, x
a
→ y for

y ∈ t(x)(a) and x
a

6→ if t(x)(a) = ∅; for an RPLTS t : X →
(DX +1)A, we may also write x

a
→p y for t(x)(a)(y) = p

and again x
a

6→ if t(x)(a) = ⋆. Note that in all our examples
of systems and automata there is an implicit finite branching
property ensured by the use of P, D and C involving only
finite subsets, finitely supported distributions, and finitely
generated convex sets.

5.2. Generalised Determinisation

The construction of generalised determinisation was
originally discovered in [30]. It enables us to obtain trace
semantics for coalgebras of type c : X → FMX where F
is a functor and M a monad. The result is a determinised
coalgebra c# : MX → FMX and the semantics is derived
from behavioural equivalence for F -coalgebras.

Let c : X → FMX be a coalgebra and λ : MF ⇒ FM
a distributive law of the monad M over the functor F . Such
a λ is a natural transformation that commutes appropriately
with the unit and the multiplication of M , i.e., λ ◦ η = Fη
and λ ◦ µ = Fλ ◦ λ ◦ Mλ. Then the determinisation is the
coalgebra

c♯ = Fµ ◦ λ ◦Mc. (2)

It is easy to show that c♯ ◦ η = c which justifies the
notation c♯: The carrier MX carries an M -algebra, the
free one generated by X , FMX also does, Fµ ◦ λ is
an M -algebra, and c♯ is the unique extension of c to a
homomorphism from the free M -algebra (MX,µ) to the
M -algebra (FMX,Fµ ◦ λ).

We obtain behavioral equivalence on MX via the final
coalgebra morphism J·Kc♯ into the final coalgebra for F :
for m,n in MX , m ∼ n iff JmKc♯ = JnKc♯ . This in turn
induces an equivalence on X , via the unit of the monad η:
for x, y ∈ X , x ≡ y iff η(x) ∼ η(y). If F is such that
a final F -coalgebra does not exist, we can still define ≡
via behavioural equivalence by: for x, y ∈ X , x ≡ y iff
η(x) ≈ η(y). This induced semantics ≡ on X is what we
call the trace semantics via determinisation.



Determinizing automata with M -effects and observa-
tions in O. In this paper, we only consider determin-
isation of automata with M -effects and observations in
O. Hence, FM -coalgebras for the Moore-automata functor
F = O × (·)A, where O is a set of observations. The
following proposition shows that determinising automata
with M -effects and observations in O is always possible
when the observations carry an M -algebra [30], [55].

Proposition 11. For an Eilenberg-Moore algebra

a : MO → O, for F = O×(·)A and any monad M on Sets

there is a canonical distributive law λX : MF ⇒ FM
given by

M
(

O×XA
) 〈Mπ1,Mπ2〉 // MO×M(XA)

a×st // O×(MX)A

where st is the map st : M(XA) → (MX)A defined by

st(ϕ) = (a 7→ Meva(ϕ)) with eva : X
A → X the evalua-

tion map defined as eva(ϕ) = ϕ(a).

As a consequence, we can determinise c = 〈o, t〉 : X →
O × (MX)A to c♯ = 〈o♯, t♯〉 where o♯ = a ◦ Mo and
t♯ = µA

X ◦ st ◦ Mt. The final coalgebra for the determiniza-
tion of automata with M -effects and observations in O is
carried by the O-weighted languages over alphabet A, i.e.,
maps A∗ → O. Unfolding the inductive definition of the
final coalgebra semantics for automata with M -effects and
observations in O, see e.g. [28], gives [[η(x)]]c♯(ε) = o♯(x)
and [[η(x)]]c♯ (aw) = [[t♯(x)(a)]]c♯ (w).

Knowing that (Σ, E) is a presentation for the monad
M , we can write the algebraic structure, and hence the de-
terminisation concretely as follows. For an n-ary operation
symbol f ∈ Σ and a (Σ, E)-algebra A = (A,ΣA) we write
fA for the n-ary operation on A that is the interpretation of
f . We have

fFMX(〈o1, f1〉, . . . , 〈on, fn〉) =

〈fO(o1, . . . , on), (a 7→ fMX(f1(a), . . . , fn(a)))〉.

Therefore, for a coalgebra c : X → FMX , we have that
c♯ = 〈o♯, t♯〉 is inductively defined on the structure of the
Σ-terms by o♯(x) = o(x), t♯(x) = t(x) and

o♯(fMX(t1, . . . , tn)) = fO(o
♯(t1), . . . , o

♯(tn)) (3)

t♯(fMX(t1, . . . , tn))(a) = fMX(t♯(t1)(a), . . . , t
♯(tn)(a))

Example 12. Applying this construction to F = 2 × (·)A

and M = P, one transforms c : X → 2 × (PX)A into

c♯ : PX → 2 × (PX)A. The former is a nondeterministic

automaton and the latter is a deterministic automaton which

has PX as states space. In [30], see also [55], it is shown

that, using the distributive law from Proposition 11, as 2 =
P1 is the carrier of the free P-algebra, this amounts exactly

to the standard determinisation from automata theory and

justifies the term generalised determinisation. The obtained

semantics is language equivalence.

It is worth to mention that both the determinised coalge-
bra c♯ : MX→FMX and the final F -coalgebra are actually
bialgebras [56], [57], roughly they are both an M -algebra

and an F -coalgebra. Moreover, the unique coalgebra mor-
phism [[·]]c♯ : MX → OA∗

is also an M -algebra homomor-
phism. The latter entails the first item of the following.

Theorem 13 ( [30], [58]). The following properties hold

for any coalgebra c : X→FMX and its determinisation

c♯ : MX→FMX:

1) Behavioural equivalence for (MX, c♯) is a congruence

w.r.t. the algebraic structure of M .

2) Behavioural equivalence for (X, c) implies trace se-

mantics via determinisation.

3) Up-to context is a compatible [38] proof technique.

The second item will be used later in Section 6 to
show that convex bisimilarity implies trace equivalence for
NPLTS. The third item will be better explained in Section A.

5.3. From Systems to Automata

Dealing with automata, i.e., having observations, is cru-
cial for determinisation. Starting from an LTS t : X →
(PX)A, we can add observations in 2 = P1 in the simplest
possible way, making every state an accepting state:

o = (X
!

−→ 1
η1
−→ P1 = 2)

and determinise the NA 〈o, t〉 : X → 2 × (PX)A. The in-
duced semantics ≡LTS on the state space X is the standard
trace semantics for LTS [59].

This same approach can be applied in the case of any
system with M -effects t : X → (MX)A. We can add
observations in O = M1 by

o = (X
!

−→ 1
η1
−→ M1),

determinise the automaton 〈o, t〉 with M -effects using the
free algebra on M1, and obtain the trace semantics after
determinisation ≡.

From NPLTS to NPA. In order to define trace semantics
for NPLTS via generalised determinisation, we need to
transform them into NPA which are automata with C(·+1)-
effects. We proceed in two steps: we transform an NPLTS
to a system with C(·+1)-effects, and then add observations
via the general recipe of this section. Given an NPLTS
t : X → (PDX)A we first transform it into the convex

NPLTS X
t

−→ (PDX)A
convA

−→ (CX+1)A and then employ
the distributive law ι from Section 2.3 to obtain

t̄ =
(

X
t // (PDX + 1)A

convA
// (CX + 1)A

ιA // (C(X + 1))A
)

(4)

Note that t̄ is a system with C(·+1)-effects. Moreover,
by construction, NPLTS-bisimilarity for t implies convex
bisimilarity, and further convex bisimilarity implies be-
havioural equivalence for the resulting system with C(·+1)-
effects t̄. Finally, we add observations as prescribed above:

ō =
(

X
!
−→ 1

η1

−−→ C(1 + 1)
)

(5)



and get the desired automaton with C(· + 1)-effects and
observations in C(1 + 1). Adding such observations again
preserves behavioural equivalence.

Why is termination inside?. We have seen that, when
moving from NPLTS to NPA, in particular when moving
from convex NPLTS to NPA, we are not just adding an
observation. We are also moving, via the ι distributive law,
from the functor C + 1 to the functor C(·+ 1). The reason
why we do this can already be understood in the simpler case
of RPLTS, where the monad D is used instead of C. We
have that D+1 is already a monad, and there is a monad map
in both directions between D(·+1) and D+1. So we could
take a D + 1-algebra and perform a determinisation with
respect to D+1. There is however an undesired consequence
of doing so, as illustrated by the following example.

Example 14. Trace semantics for RPLTS is defined in a

similar way, see the construction in [60], [61]. An RPLTS

t∗ : X → (DX + 1)A can similarly be transformed to a

system with D(·+ 1)-effects using the distributive law ι:

t = X
t∗−→ (DX + 1)A

ιA

−→ (D(X + 1))A.

Consider the following RPLTS.

x

∆

x1 x2

a
b

1
2

1
2

y

Θ

y1 y2

a
b

1
4

3
4

The states x and y should not be trace equivalent, since

x has probability 1
2 of performing trace ab, and y has

probability 1
4 of performing trace ab. Let us look at what

happens, however, if we determinize this system (seen as the

(D + 1)A coalgebra t∗) with respect to the monad D + 1.

The determinised transition function t
♯
∗ will give us states

in DX + 1, i.e., states that are either full distributions or

the element ⋆ ∈ 1 and we have

t♯∗(x)(a) = x1 + 1
2
x2 t♯∗(y)(a) = y1 + 1

4
y2

However, t♯∗(x1 + 1
2
x2)(b) = t∗(x1)(b) + 1

2
t∗(x2)(b) = ⋆

t♯∗(y1 + 1
4
y2)(b) = t∗(y1)(b) + 1

4
t∗(y2)(b) = ⋆

Hence, whatever (D + 1)-algebra of observation we take,

these states in the lifted system will return the same ob-

servation, i.e., o♯(x)(ab) = o♯(y)(ab). As a consequence, x
and y will be equivalent.

Hence, moving to a monad with termination inside is a fun-
damental step in our construction, if we want to distinguish
processes such as those in the previous example.

However, there are cases in which determinizing with
respect to two different monads and algebras leads to the
same semantics, as shown in the next example.

Example 15. As described above, we turn an RPLTS into

an automaton with D(· + 1)-effects with observations in

[0, 1] = D(1 + 1) equipped with the the free algebra

generated by 1. The observation function o : X → [0, 1]
maps every state x ∈ X into the element 1 ∈ [0, 1].
The function J·Kc♯ ◦ η : X → [0, 1]A

∗

obtained via the

generalised determinisation of c = 〈o, t〉 assigns to each

state x ∈ X and trace w ∈ A∗ the probability of reaching

from x any other state via w. We write ≡RP for the induced

trace equivalence.

Interestingly, (Rabin) probabilistic automata [31] are de-

fined slightly differently: these are automata with D-effects

and observations in [0, 1], 〈o, t〉 : X → [0, 1]× (DX)A (see

[30]). The set of observations is the same, but transitions go

in distributions rather than in subdistributions. The theorem

of the next section guarantees that only the algebra of

observations matters for the resulting semantics, so using

D in place of D(·+1) does not change the obtained equiv-

alence which in both cases coincides with the probabilistic

language equivalence of [31].

5.4. Invariance of the Semantics

We next state a theorem that guarantees invariance of
the trace semantics via determinisation for automata with
M -effects and observations in O, under controlled changes
of the monad or the algebra of observations. The proofs of
the invariance theorem and its corollary are in Appendix F.

Theorem 16 (Invariance Theorem). Let (M, η, µ) be a

monad and a : MO → O an M -algebra. Let c =
〈o, t〉 : X → O × (MX)A be an automaton with M -effects

and observations in O and J·K : MX → OA∗

the semantic

map induced by the generalised determinisation wrt. a, i.e.,

J·K = J·Kc♯
1) Transitions: Let (M̂, η̂, µ̂) be a monad and σ : M ⇒

M̂ a monad map. Let â : M̂O → O be an M̂ -algebra.

Consider the coalgebra

ĉ = 〈o, t̂ 〉 = 〈o, σA
X ◦ t〉 : X → O × (M̂X)A

and let ˆ[[·]] : M̂X → OA∗

be the semantic map

induced by its generalised determinisation wrt. â. If

a = â ◦ σO , then [[·]] ◦ ηX = ˆ[[·]] ◦ η̂X .

2) Observations: Let â : MÔ → Ô be an M -algebra and

let h : (O, a) → (Ô, â) be an M -algebra morphism.

Consider the coalgebra

ĉ = 〈ô, t〉 = 〈h ◦ o, t〉 : X → Ô × (MX)A

and let ˆ[[·]] : TX → ÔA∗

be induced by the generalised

determinisation wrt. â. Then ˆ[[·]] = hA∗

◦ [[·]].

Corollary 17. Let (M, η, µ) be a submonad of (M̂, η̂, µ̂) via

an injective monad map σ : M ⇒ M̂ . Let t : X → (MX)A

be a system with M -effects and let t̂ be the system with M̂ -

effects σA
X ◦ t : X → (M̂X)A. Let o =

(

X
!

−→ 1
η1
−→ M1

)

and ô =
(

X
!

−→ 1
η̂1
−→ M̂1

)

and ≡, ≡̂ ⊆ X × X be the

corresponding trace equivalences after determinisation of

〈o, t〉, 〈ô, t̂ 〉, respectively. Then ≡= ≡̂.



6. May / Must Traces for NPLTS

In this section, we put all the pieces together and give
the definitions of may, must, and may-must trace semantics
for NPLTS using generalised determinisation. We work with
the monad TPCS = C(·+ 1) and consider its two quotients
TCSB and TCST . Each of these choices gives us a trace
equivalence via determinisation. We start with the notion of
may-must traces.

May-must trace equivalence. Given an NPLTS t : X →
(PDX)A, let (ō, t̄ ) be the automaton with TPCS-effects and
observations in TPCS1 as in Equation (4) and Equation (5).
Let 〈ō♯, t̄♯〉 be the determinisation of 〈o, t〉 using the free
TPCS-algebra, i.e., by Proposition 8, the min-max interval
pointed convex semilattice MI,[0,0], on TPCS1. We write J·K
for the semantics map from TPCSX → (TPCS1)

A∗

and
≡ for the corresponding trace equivalence on X . We call
this equivalence may-must trace equivalence for the original
NPLTS.

Using the presentation of the monad, as in Equation (3),
recalling that ō(x) = [1, 1] we can spell out the inductive
definition of the determinisation:

ō♯(S) =



















[1, 1] if S = x;

[0, 0] if S = ⋆;

S1 min-maxS2 if S = S1 ⊕ S2;

S1 +p S2 if S = S1 +p S2.

t̄♯(S)(a) =



















t̄(x)(a) if S = x;

⋆ if S = ⋆;

t̄♯(S1)(a) ⊕ t̄♯(S2)(a) if S = S1 ⊕ S2;

t̄♯(S1)(a) +p t̄
♯(S2)(a) if S = S1 +p S2.

May trace equivalence and must trace equivalence.

Now one may want to treat termination in a different way
and exploit the monads TCSB and TCST discussed in Sec-
tion 4. Given the monad morphisms qB : TPCS ⇒ TCSB

and qT : TPCS ⇒ TCST quotienting TPCS by (B) and (T ),
respectively, one can construct the transition functions

t̄B = qAB ◦ t̄ : X → (TCSBX)A

t̄T = qAT ◦ t̄ : X → (TCSTX)A.

For the observations, we always use the general recipe of
Section 5.3 and take the observation functions:

ōB =
(

X
!
−→ 1

η1

−→ TCSB1
)

ōT =
(

X
!
−→ 1

η1

−→ TCST1
)

.

Recall from Proposition 9 and Proposition 10 that MaxB =
([0, 1],max,+p, 0) and MinT = ([0, 1],min,+p, 0) are,
the free convex semilattice with bottom and, respectively,
with top, generated by the singleton set 1. Therefore these
algebraic structures will be used for the determinisations.

We have, ō
♯
B : TCSBX → [0, 1] and ō

♯
T : TCSTX → [0, 1]

are given as follows, since ōB(x) = 1 and ōT (x) = 1:

ō
♯
B(S) =



















1 if S = x;

0 if S = ⋆;

S1 maxS2 if S = S1 ⊕ S2;

S1 +p S2 if S = S1 +p S2.

ō
♯
T (S) =



















1 if S = x;

0 if S = ⋆;

S1 minS2 if S = S1 ⊕ S2;

S1 +p S2 if S = S1 +p S2.

The determinisation of the transition function
t̄
♯
B : TCSBX → (TCSBX)A and t̄

♯
T : TCSTX → (TCSTX)A

are defined in the same way like t̄♯ above.

The coalgebras 〈ō♯B , t̄
♯
B〉 and 〈ō♯T , t̄

♯
T 〉 give rise to mor-

phisms [[·]]B : TCSBX → [0, 1]A
∗

and [[·]]T : TCSTX →
[0, 1]A

∗

and corresponding behavioural equivalences: ≡B

and ≡T . We call ≡B the may trace equivalence for the
NPLTS, and ≡T the must trace equivalence.

Example 18. Consider the convex closure of the NPLTS

from Figure 1. We can syntactically describe the sets of

subdistributions reached by a state when performing a tran-

sition as follows:

x
a

−→ x1 ⊕ (x3 + 1
2
x2)

y
a

−→ y1 ⊕ (y4 + 1
2
y2)⊕ ((y2 + 1

2
y4) + 1

2
y3)

x1
b

−→ x+ 1
2
x3 y1

b
−→ y + 1

2
y4

x2
b

−→ x3 x2
c

−→ x y2
b

−→ y4 y3
c

−→ y

In the determinised system, we have

x
a

−→ S1
b

−→ S2 y
a

−→ S′
1

b
−→ S′

2

for S1 = x1⊕(x3+ 1
2
x2) S2 = (x+ 1

2
x3)⊕(⋆+ 1

2
x3)

S′
1 = y1 ⊕ (y4 + 1

2
y2)⊕ ((y2 + 1

2
y4) + 1

2
y3)

S′
2 = (y + 1

2
y4)⊕ (⋆+ 1

2
y4)⊕ ((y4 + 1

2
⋆) + 1

2
⋆)

Consider now the observations associated to the terms in

the may-must semantics. We have ō♯(x) = [1, 1] = ō♯(y)
and hence

ō♯(S1) = [1, 1]min-max([1, 1] + 1
2
[1, 1]) = [1, 1].

Analogously, ō♯(S′
1) = [1, 1]. Furtheron

ō♯(S2) = ([1, 1]+ 1
2
[1, 1])min-max([0, 0]+ 1

2
[1, 1]) = [

1

2
, 1]

and in the same way we derive ō♯(S′
2) = [ 14 , 1]. Hence,

x and y are not may-must trace equivalent: [[x]](ab) =
ō♯(S2) 6= ō♯(S′

2) = [[y]](ab).
However, using MaxB , we get ō

♯
B(S2) = ō

♯
B(S

′
2) as the

intervals obtained via the may-must observation over S2, S
′
2

have the same upper bound 1, which is the value returned

by both ō
♯
B(S2) and ō

♯
B(S

′
2). Hence, [[x]]B(ab) = ō

♯
B(S2) =



ō
♯
B(S

′
2) = [[y]]B(ab). More generally, it holds that x and y

are may trace equivalent. We can elegantly prove this by

using up-to techniques, as shown in Appendix A.

The following properties follow automatically from our
abstract construction: see Theorem 13 and the discussions
in Section 5.3.

Theorem 19. The following properties hold for NPLTS:

1) Each of the three trace equivalences is a congruence

w.r.t. +p, ⊕ and ⋆.
2) Both bisimilarity and convex bisimilarity imply each of

the three trace equivalences.
3) Up-to context is compatible (see Appendix A) for each

of the three equivalences.

We might have performed the generalised determinisa-
tion in a number of different ways, for instance by eliminat-
ing conv from the definition of t̄. In Appendix G, we show
that Theorem 16 guarantees that many different construction
always lead to our semantics. In the same appendix we
give also a simple concrete description of the final-coalgebra
bialgebra of probabilistic traces.

Backward compatibility. We now state the backward com-
patibility of our semantics with the corresponding trace
semantics for LTS and RPLTS. The proof follows from
Corollary 17, since: (1) P ∼= TSB for the theory SB of
semilattices with bottom and we show that there is an
injective monad map TSB ⇒ TCSB; and (2) The natural
transformation conv ◦ ηPne : D ⇒ C is an injective monad
map and hence, by Lemma 1, there is an injective monad
map D(·+ 1) ⇒ C(·+ 1).

Theorem 20. Trace semantics ≡LTS for LTS coincides with

may trace semantics after determinisation ≡B of the LTS

seen as NPLTS. Trace semantics ≡RP for RPLTS coincides

with each of the three (may, must, and may-must) trace

semantics ≡ of the RPLTS seen as NPLTS.

For LTS, one can also study the variants corresponding
to must and may-must trace semantics, that have not been
studied in the literature. We define them in Appendix G, and
show backward compatibility results for them as well.

7. From the global to the local perspective

Usually trace semantics for NPLTS is defined in terms of
schedulers, or resolutions: intuitively, a scheduler resolves
the nondeterminism by choosing, at each step of the ex-
ecution of an NPLTS, one of its possible transitions; the
transition systems resulting from these choices are called
resolutions.

This perspective on trace semantics is somehow opposed
to ours, where the generalised determinisation keeps track
of all possible executions at once. In this sense, the deter-
minisation provides a perspective which is global, opposite
to those of resolutions that are local. In this section, we
show that our semantics can be characterised through such
local views, by means of resolutions, defined as follows.

x

x1

∆1

x3

a

b

1
2

1
2

x

∆3

x1 x2

∆1 x3

a

b b

c

1
2

1
2

1
4

1
4

1
2

Figure 2. The resolutions R1 (left) and R2 (right)

Definition 21. Let t : X → (PDX)A be an NPLTS. A (ran-
domized) resolution for t is a triple R = (Y, corr, r) where

Y is a set of states, corr: Y → X is the correspondence
function, and r : Y → (DY + 1)A is an RPLTS such that

for all y ∈ Y and a ∈ A,

1) r(y)(a) = ⋆ iff t(corr(y))(a) = ⋆,
2) if r(y)(a) 6= ⋆ then D(corr)(r(y)(a)) ∈

conv(t(corr(y))(a)).

Intuitively, this means that a resolution of an NPLTS is
built from the original system by discarding internal non-
determinism (the possibility to perform multiple transitions
labelled with the same action) and in such a way that the
structure of the original system is preserved.

Example 22. Consider the NPLTS on the left of Figure 1.

Figure 2 illustrates two resolutions for it, both having the

identity as correspondence function. In the resolution R1,

the nondeterministic choice of x is resolved by choosing the

leftmost a-transition. Instead, the resolution R2 is obtained

by taking a convex combination of the two distributions δx1

and ∆1, assigning one half probability to each of them.

The reason why we take arbitrary corr functions, rather
than just injective ones, is that the original NPLTS might
contain cycles, in which case we want to allow the res-
olution to take different choices at different times (see
Appendix B.1).

Given a resolution R = (Y, corr, r), we define the

function probR : Y → [0, 1]A
∗

inductively for all y ∈ Y
and all w ∈ A∗ as

probR(y)(ε) = 1;

probR(y)(aw) =
{

0 if r(y)(a) = ⋆;
∑

y′∈supp(∆) ∆(y′) · probR(y
′)(w) if r(y)(a) = ∆.

Intuitively, for all states y ∈ Y , probR(y)(w) gives the
probability of y performing the trace w. For instance, in
the resolutions in Figure 2, probR1

(x)(abab) = 1
4 and

probR2
(x)(abab) = 3

16 .

Now, given an NPLTS (X, t), define ⌊⌊·⌋⌋ : X → [0, 1]A
∗

with, for all x ∈ X and w ∈ A∗, ⌊⌊x⌋⌋(w) equal to
⊔

{probR(y)(w) |R = (Y, corr, r) is a resolution of (X, t)

and corr(y) = x}.



Similarly, we define ⌈⌈x⌉⌉(w) as
l

{probR(y)(w) |R = (Y, corr, r) is a resolution of (X, t)

and corr(y) = x}.

The following theorem states that the global view of trace
semantics developed in Section 6 coincides with the trace
semantics defined locally via resolutions.
Theorem 23 (Global/local correspondence). Let (X, t) be

an NPLTS. For all x ∈ X and w ∈ A∗, it holds that

[[x]](w) = [ ⌈⌈x⌉⌉(w), ⌊⌊x⌋⌋(w) ].

Corollary 24. Let (X, t) be an NPLTS. For all x ∈ X and

w ∈ A∗, [[x]]B(w) = ⌊⌊x⌋⌋(w) and [[x]]T (w) = ⌈⌈x⌉⌉(w).

Theorem 23 and Corollary 24 provide a characterisation
of ≡, ≡B and ≡T in terms of resolutions. We next show
that ≡B coincides with the randomized ⊔-trace equivalence
investigated in [40] and inspired by [25], [26].

Coincidence with randomized ⊔-trace equivalence. Let
t : X → (PDX)A be an NPLTS. A fully probabilistic

resolution for t is a triple R = (Y, corr, r) such that Y
is a set, corr: Y → X , and r : Y → (A × DY ) + 1 such
that for every y ∈ Y and a ∈ A it holds:
if r(y) = 〈a,∆〉 then D(corr)(∆) ∈ conv(t(corr(y))(a)).

While resolutions resolve only internal nondeterminism,
fully probabilistic resolutions resolve both internal and ex-
ternal nondeterminism. Indeed, in a resolution a state can
perform transitions with different labels, while in a fully
probabilistic resolution a state can perform at most one tran-
sition. Moreover, a state y in a fully probabilistic resolutions
might not perform any transition (i.e., r(y) = ⋆), even if the
corresponding state corr(y) may perform a transition (i.e.,
t(corr(y))(a) 6= ⋆ for some a).

Example 25. As in Example 22, consider the NPLTS on

the left of Figure 1. The resolution R1 in Figure 2 is a

fully probabilistic resolution, while R2 is not, since x2 is

allowed to perform more than one transition, even if labelled

by different actions. Other examples of fully probabilistic

resolutions are given in Appendix B.2.

As for resolutions, we can define probR : Y → [0, 1]A
∗

for R = (Y, corr, r) a fully probabilistic resolution induc-
tively for all y ∈ Y and all w ∈ A∗ as

probR(y)(ε) = 1;

probR(y)(aw) =
{

∑

y′∈supp(∆)∆(y′) · probR(y
′)(w) if r(y) = 〈a,∆〉,

0 otherwise.

Given an NPLTS (X, t), we define for all x ∈ X and
w ∈ A∗ ⌊⌊x⌋⌋fp(w) as
⊔

{probR(y)(w) |R = (Y, corr, r) is a fully probabilistic

resolution of (X, t) and corr(y) = x}.

In [40] (following [25], [26]), two states x and y
are defined to be randomized ⊔-trace equivalent whenever

⌊⌊x⌋⌋fp(w) = ⌊⌊y⌋⌋fp(w) w ∈ A∗2. The following proposi-
tion guarantees that such equivalence coincides with ≡B.

Proposition 26. Let (X, t) be an NPLTS. For all x ∈ X and

w ∈ A∗, it holds that [[x]]B(w) = ⌊⌊x⌋⌋(w) = ⌊⌊x⌋⌋fp(w).

Remark 27. The correspondence in Proposition 26 does

not hold when infima are considered, instead of suprema.

Indeed define ⌈⌈x⌉⌉fp(w) as expected, namely, by replacing
⊔

with
d

in ⌊⌊x⌋⌋fp(w). Then for any state x of an arbitrary

NPLTS it holds that ⌈⌈x⌉⌉fp(w) = 0 for all w 6= ε. To see

this, observe that R
′ = ({y}, corr′, r′) with corr′(y) = x

and r′(y) = ⋆ is always a fully probabilistic resolution, and

that probR′(y)(w) = 0.

To avoid this problem, one typically modifies the defini-

tion of ⌈⌈·⌉⌉fp by restricting only to those fully probabilis-

tic resolutions that can perform a certain trace (see e.g.

[25], [26]). Instead, with our notion of resolution based on

RPLTSs (Definition 21), this problems does not arise and

the definition of ⌈⌈·⌉⌉ is totally analogous to the one of ⌊⌊·⌋⌋.

Why may, must, may-must? Trace equivalences as test-

ing equivalences. The notion of resolution is at the basis
not just of the definitions of trace equivalences for NPLTS
investigated in the literature, but also of testing equivalences
for nondeterministic and probabilistic processes [33], [34],
[35], [36]. In testing equivalences, we say that x, y are may
testing equivalent if, for every test, they have the same
greatest probabilities of passing the test, with respect to any
resolution R of the system resulting from the interaction
between the test and the NPLTS. Analogously, x, y are must
testing equivalent if the smallest probabilities coincide, and
the may-must testing equivalence requires both the greatest
and the smallest probabilities to coincide.

Now, take tests to be finite traces, and the probability
of passing a given test in a resolution as the probability
of performing the trace in the resolution. Then it becomes
clear, by the correspondence between the local and the
global view proven in Theorem 23, that each of our three
trace equivalences indeed coincides with the corresponding
testing equivalence, when tests are finite traces.

8. Conclusion

We developed an algebra-and-coalgebra-based trace the-
ory for systems with nondeterminism and probability, that
covers intricate trace semantics from the literature. The
abstract approach sheds light on all choices and leaves no
space for ad-hoc solutions.

The combination of nondeterminism and probability has
been considered notorious for many years, and for good
reasons. In our view, this new algebraic theory of traces for
NPLTS shows that their bad reputation is not deserved.

2. Actually, [25], [26], [40] use a notion of resolution which is equal
to our fully-probabilistic resolution modulo a tiny modification due to a
mistake in [25], [26], as confirmed by the authors in a personal communi-
cation.
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Appendix A.

Coinduction Up-to

As anticipated in Theorem 19, ≡, ≡B and ≡T can be
proved coinductively by means of bisimulation up-to. In
order to define uniformly the proof techniques for the three
equivalences, we let ≡i to range over ≡, ≡B and ≡T ; Ti

to range over TPCS, TCSB and TCST; t̄
♯
i over t̄♯, t̄

♯
B and t̄

♯
T ;

ō
♯
i over ō♯, ō

♯
B and ō

♯
T .

Definition 28. Let (X, t) be a NPLTS and (Ti(X), 〈ō♯i , t̄
♯
i〉)

the corresponding determinised system. A relation R ⊆
Ti(X)× Ti(X) is a bisimulation iff for all S1, S2 ∈ Ti(X)
it holds that

1) ō
♯
i(S1) = ō

♯
i(S2) and

2) t̄
♯
i(S1)(a) R t̄

♯
i(S2)(a) for all a ∈ A.

Coinduction tells us (see e.g. [58]) that for all x, y ∈ X ,
x ≡i y iff there exists a bisimulation R such that xR y.

To make this proof principle more effective, one can use
up-to techniques [37], [38]. Particularly relevant for us is up-
to contextual closure which, for all relations R ⊆ Ti(X)×
Ti(X), is defined inductively by the following rules.

S R S′

S Ctx(R) S′

−

∗ Ctx (R) ∗

S1 Ctx (R) S′
1 S2 Ctx (R) S′

2

S1 ⊕ S2 Ctx(R) S′
1 ⊕ S′

2

S1 Ctx (R) S′
1 S2 Ctx (R) S′

2

S1 +p S2 Ctx(R) S′
1 +p S

′
2
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Definition 29. Bisimulations up-to context are defined as in

Definition 28, but with Ctx(R) replaced to R in point 2).

By virtue of the general theory in [58], one has that Ctx
is a sound up-to technique, that is x ≡i y iff there exists
a bisimulation up-to context R such that xR y. Actually,
the theory in [58] guarantees a stronger property known
as compatibility [38], [62], [63]. Intuitively, this mean that
the technique is sound and it can be safely combined with
other compatible up-to techniques. We refer the interested
reader to [38] for a detailed introduction to compatible up-to
techniques.

We conclude with an example illustrating a finite bisim-
ulation up-to context witnessing that the states x and y from
Figure 1 are in ≡B .

Example 30. Consider the NPLTS depicted in Figure 1.

One can prove that x ≡B y by exhibiting a bisimulation

on (TCSBX, 〈ō♯B, t̄
♯
B〉) relating them. However, due to the

presence of cycles, the determinization of the NPLTS is

infinite and the bisimulation relation contains infinitely many

pairs. The interested reader may check such bisimulation in

Appendix B.3.

With bisimulations up-to, only few pairs are necessary.

Indeed, we prove that the relation

R = {(x, y), (x1, y1), (x3, y4),

(x3 + 1
2
x2, (y4 + 1

2
y2)⊕ ((y2 + 1

2
y4) + 1

2
y3))}

is a bisimulation up-to context. First, note that the observa-

tion is trivially the same for all pairs in the relation, since

ō
♯
B(S) = 1 for all S in the relation. We can now check that

the clauses of bisimulation up-to context on the transitions

are satisfied. Consider the first pair. In (TCSBX, 〈ō♯B , t̄
♯
B〉),

we have

x
a

−→ x1 ⊕ (x3 + 1
2
x2)

y
a

−→ y1 ⊕ (y4 + 1
2
y2)⊕ ((y2 + 1

2
y4) + 1

2
y3)

The reached states are in Ctx(R) by the second and fourth

pairs of R. For any action a′ 6= a, we have x
a′

−→ ⋆, y
a′

−→ ⋆
and ⋆Ctx(R) ⋆.

The second and the third pairs can be checked in a

similar way. For the fourth pair, we have

x3 + 1
2
x2

b
−→ ⋆+ 1

2
x3

(y4+ 1
2
y2)⊕((y2+ 1

2
y4)+ 1

2
y3)

b
−→ (⋆+ 1

2
y4)⊕((⋆+ 1

2
y4)+ 1

2
⋆)

We observe that

(⋆+ 1
2
y4)⊕ ((⋆ + 1

2
y4) + 1

2
⋆)

(B)
= (⋆+ 1

2
y4)⊕ ((⋆ + 1

2
y4) + 1

2
⋆)⊕ ⋆

(C)
= (⋆+ 1

2
y4)⊕ ⋆

(B)
= ⋆+ 1

2
y4

and we conclude by ⋆+ 1
2
x3 Ctx(R) ⋆+ 1

2
y4. The cases for

a and c are simpler.

x

∆3

x2

x3 x4

x1

∆1

a

b

b c

a
1
2

1
2

1
2

1
2

Figure 3. The resolution R3

Appendix B.

Additional examples

B.1. Example: a resolution with non-injective cor-

respondence function

In order to understand how a resolution allows to resolve
differently nondeterministic choices at different times, when
cycles occur in the original system, consider the NPLTS
on the left of Figure 1 and its resolution in Figure 3. In
the latter, the state space is enlarged with state x4, which
is mapped to x by the correspondence function. On the
remaining states, the correspondence function is the iden-
tity over X . In this resolution, x first chooses the right-
hand transition of the original NPLTS, and at the second
cycle, represented by x4, the left-hand transition is chosen.
Observe that probR3

(x)(abab) = 0.

B.2. Example: fully probabilistic resolutions

In Figure 4, we show three examples of fully probabilis-
tic resolutions of the process x in Figure 1. Note that neither
of them is a resolution. In R1, state x1 does not satisfy the
first clause of the definition of resolution, since x1 does not
move while its corresponding state in the original NPLTS
does. In R2 and R3, state x2 respectively only performs a b-
labelled transition and only performs a c-labelled transition.
In a resolution, it should perform both.

B.3. Example: infinite determinization and bisim-

ulation

Consider the NPLTS (X, t) depicted in Figure 1, and
discussed in Example 18. Figure 1 shows the determiniza-
tion of the system, where the terms are defined as follows

S1
def
= x1 ⊕ (x3 + 1

2
x2) S2

def
= (x+ 1

2
x3)⊕ (⋆ + 1

2
x3)

S′
1

def
= y1 ⊕ (y4 + 1

2
y2)⊕ ((y2 + 1

2
y4) + 1

2
y3)



x

x1

a

x

∆3

x1 x2

∆1 x3

a

b b

1
2

1
2

1
4

1
4

1
2

x

∆3

x1 x2

∆1 x3

a

b

c
1
2

1
2

1
4

1
4

1
2

Figure 4. Fully probabilistic resolutions (R1, R2, R3, from left to right)

S′
2

def
= (y + 1

2
y4)⊕ (⋆+ 1

2
y4)⊕ ((⋆ + 1

2
y4) + 1

2
⋆)

S3
def
= ⋆⊕ (⋆+ 1

2
x) S′

3
def
= ⋆⊕ (⋆ + 1

2
y)

and the depicted transitions are those given by t̄♯.
The determinized NPLTS is a system with infinitely

many states, which are given by the presence of cycles in
the original system. In the determinization of the automaton
with algebra of observation MaxB , each state S is in pair

with the observation ō
♯
B(S) ∈ [0, 1]. We prove that x and

y are may trace equivalent by exhibiting the following
bisimulation R:

R ={(x, y), (S1, S
′
1), (S2, S

′
2), (S3, S

′
3)}

∪ {((Si + 1
2n

⋆)⊕ ⋆, (S′
i + 1

2n
⋆)⊕ ⋆)| 1 ≤ i ≤ 3, n ≥ 1}

The relation satisfies the two clauses required by Defi-
nition 28 of bisimulation. As it emerges from Figure 5,
the clause on transitions (clause 2) is satisfied by each
pair in the relation. As to the clause on the observation
(clause 1), we can derive as in Example 18 that for every
pair (S, S′) ∈ {(x, y), (S1, S

′
1), (S2, S

′
2), (S3, S

′
3)} it holds

ō
♯
B(S) = ō

♯
B(S

′). Finally, clause 1 also holds for the
remaining pairs, since for 1 ≤ i ≤ 3 and n ≥ 1 we have

ō
♯
B((Si + 1

2n
⋆)⊕ ⋆) = (ō♯B(Si) + 1

2n
0)max 0

= (ō♯B(S
′
i) + 1

2n
0)max 0

= ō
♯
B((S

′
i + 1

2n
⋆)⊕ ⋆)

Hence, R is a bisimulation.
As shown in Example 18, x, y are not bisimilar if the

algebra of observation for the must equivalence, i.e, MinT ,
is used instead of the one for the may equivalence, since

ō
♯
T (S2) 6= ō

♯
B(S

′
2). Analogously, they are not equivalent if

we take the may-must algebra of observation MI,[0,0].

Appendix C.

Proofs for Section 2, Monads

For completeness, we recall that a monad distributive

law of M over M̂ is a natural transformation λ : MM̂ ⇒
M̂M that commutes appropriately with the units and the

multiplications of the monads λ ◦ Mη̂ = ηM̂ , λ ◦ Mµ̂ =

µM ◦ M̂λ ◦ λM̂ , and λ ◦ ηM̂ = M̂η, λ ◦ µM̂ = M̂µM ◦
λM ◦ Mλ.

Lemma 1 follows directly from Lemma 31 and
Lemma 32 below.

Lemma 31. Given three monads M , M̂ , and T , two monad

distributive laws λ : TM ⇒ MT and λ̂ : TM̂ ⇒ M̂T ,

ensuring that MT and M̂T are monads, and a monad map

σ : M ⇒ M̂ . If the following diagram commutes, in which

case we say that σ is a map of distributive laws,

TM
λ //

Tσ
��

MT

σT
��

TM̂
λ̂

// M̂T

then σT : MT ⇒ M̂T is a monad map. If σ is injective,

then σT is as well.

Proof. We denote by η, µ the unit and multiplication of M ,

by η̂, µ̂ those of M̂ and by ηT , µT those of T . Note that
σTX = σTX and hence, using that σ is a monad map, we
get immediately σTX ◦ ηTX ◦ ηTX = η̂TX ◦ ηTX .

The following diagram commutes since σ is a monad
map.

MMTX

µ

��

σMTX // M̂MTX
M̂σTX // M̂M̂TX

µ̂��
MTX

σTX=σTX // M̂X
(6)

From the naturality of σ, the following diagram also com-
mutes.

MMTTX

MMµT

��

σMTTX// M̂MTTX

M̂MµT

��

M̂σTTX// M̂M̂TTX

M̂MµT

��
MMTX

σMTX // M̂MTX
M̂σTX // M̂M̂TX

(7)

Using once again the naturality of σ, for the left square,
and the assumption that σ is a map of distributive laws, for
the square on the right, we get the commutativity of the
following diagram.

MTMTX

MλTX

��

σTMTX// M̂TMTX

M̂λTX��

M̂TσTX// M̂TM̂TX

M̂λ̂TX��
MMTTX

σMTTX// M̂MTTX
M̂σTTX// M̂M̂TTX

(8)

Stacking diagram (8) on top of diagram (7) and further on
top of diagram (6) gives the commutativity of

MTMTX

µMT

��

σTσT // M̂TM̂TX

µM̂T

��
MTX

σT
// M̂TX

and completes the proof that σT is a monad map. Clearly,
if all components of σ are injective, then all components of
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S2 S3

(S1 + 1
2
⋆)⊕ ⋆

(S2 + 1
2
⋆)⊕ ⋆ (S3 + 1

2
⋆)⊕ ⋆

(S1 + 1
4
⋆)⊕ ⋆

(S2 + 1
4
⋆)⊕ ⋆ (S3 + 1

4
⋆)⊕ ⋆

(S1 + 1
8
⋆)⊕ ⋆

...
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y
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S′
2 S′
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(S′
1 + 1

2
⋆)⊕ ⋆

(S′
2 + 1

2
⋆)⊕ ⋆ (S′

3 + 1
2
⋆)⊕ ⋆

(S′
1 + 1

4
⋆)⊕ ⋆

(S′
2 + 1

4
⋆)⊕ ⋆ (S′

3 + 1
4
⋆)⊕ ⋆

(S′
1 + 1

8
⋆)⊕ ⋆

...

a

cb

a a

cb

a a
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Figure 5. Determinization

x+p y
(Bp)
= (x+q ⋆) +p y

(Ap)
= x+pq (⋆+ p(1−q)

1−pq

y)

(Bp)
= x+pq y

(Bp)
= x+pq (⋆+ q(1−p)

1−pq

y)

(Ap)
= (x+p ⋆) +q y

(Bp)
= x+q y

Figure 6. When adding (Bp) to the theory of pointed convex algebra x+p

y = x +q y holds for any p, q ∈ (0, 1). At the monad level, adding the
axioms (Bp) can be seen as the quotient of monads supp : D(·+1) ⇒ P

mapping each sub-distribution into its support (e.g., (x+py)+q ⋆ becomes
x+ y).

σT (which are the components of σ at TX) are injective as
well.

Lemma 32. Let M and M̂ be two monads and σ : M ⇒ M̂
be a monad map. Then the following commutes.

MX + 1
ιX //

σX+id1

��

M(X + 1)

σX+1

��
M̂X + 1 ιX

// M̂(X + 1)

Proof. First observe that the following commutes: the left
square commutes trivially; the right commutes since σ is a

monad map.

1
ir //

idl

��

X + 1
ηX+1//

idX+1

��

M(X + 1)

σX+1

��
1

ir // X + 1
η̂X+1

// M̂(X + 1)

The following diagram commutes by naturality of σ.

MX
Mil//

σX

��

M(X + 1)

σX+1

��
M̂X

M̂il

// M̂(X + 1)

The statement of the lemma follows from the commutativity
of the two above diagrams and the universal property of the
coproduct.

Convex Algebras. Another presentation of convex algebras
is given by the algebraic theory with infinitely many op-
erations denoting arbitrary (and not only binary) convex
combinations (ΣP̂ , EP̂ ) where ΣP̂ consists of operations
∑n

i=1 pi(·)i for all n ∈ N and (p1, . . . , pn) ∈ [0, 1]n such
that

∑n
i=1 pi = 1 and EP̂ is the set of the following two



axioms.

n
∑

i=0

pixi
(P )
= xj if pj = 1

n
∑

i=0

pi

(

m
∑

j=0

qi,jxj

)

(BC)
=

m
∑

j=0

(

n
∑

i=0

piqi,j

)

xj .

Here, (P ) stands for projection, and (BC) for barycentre.

Convex algebras are known under many names: “con-
vex modules” in [64], “positive convex structures” in [43]
(where X is taken to be endowed with the discrete topol-
ogy), “sets with a convex structure” in [41], and barycentric
algebras [65].

Remark 33. Let X be a (ΣP̂ , EP̂ )-algebra. Then (for pn 6=
1 and pn = 1− pn)

n
∑

i=1

pixi = pn

(

n−1
∑

j=1

pj

pn
xj

)

+ pnxn. (9)

Hence, an n-ary convex combination can be written as a

binary convex combination using an (n − 1)-ary convex

combination.

One can also see Equation (9) as a definition – the

classical definition of Stone [65, Definition 1]. The following

property, whose proof follows by induction along the lines

of [65, Lemma 1–Lemma 4], gives the connection:

Let X be the carrier of a (ΣP , EP )-algebra. Define

n-ary convex operations inductively by the projection ax-

iom and the formula (9). Then X becomes an algebra in

(ΣP̂ , EP̂ ).

Appendix D.

Proofs for Section 3, the Presentation for C

of Lemma 3. For n = 1 the property amounts to idempo-
tence. Assume n > 1 and the property holds for n− 1.

Below, we will write (D) also for generalised distribu-
tivity as in

⊕

i

ai +p

⊕

j

bj
(D)
=
⊕

i,j

(ai +p bj).

First, we observe that

a1 ⊕ . . .⊕ an = a1 ⊕ . . .⊕ an ⊕
⊕

i

(ai +p1

⊕

j 6=i

aj) (10)

which follows from

a1 ⊕ . . .⊕ an
(Ip)
= (a1 ⊕ . . .⊕ an) +p1 (a1 ⊕ . . .⊕ an)
(D)
=

⊕

i,j

(ai +p1 aj)

(Ip,D)
= a1 ⊕ . . .⊕ an ⊕

⊕

i

(ai +p1

⊕

j 6=i

aj)

Recall that we write p for 1 − p if p ∈ [0, 1]. Furthermore,
having in mind that

∑n
i=1 piai = a1 +p1 (

∑n
i=2

pi

p1
ai) we

have

a1 +p1 (
⊕

j 6=1

aj)
IH
= a1 +p1 (

⊕

j 6=1

aj ⊕
∑

j 6=1

pj

p1
aj)

(D)
= (a1 +p1

⊕

j 6=1

aj) + (a1 +p1

∑

j 6=1

pj

p1
aj)

= (a1 +p1

⊕

j 6=1

aj) +
∑

i

piai.

Using this in the second equality below, we get

a1 ⊕ . . .⊕ an ⊕
n
∑

i=1

piai

Eq. (10)
= a1 ⊕ . . .⊕ an ⊕

⊕

i

(ai +p1 (
⊕

j 6=i

aj)⊕
n
∑

i=1

piai

= a1 ⊕ . . .⊕ an ⊕
⊕

i

(ai +p1 (
⊕

j 6=i

aj)

Eq. (10)
= a1 ⊕ . . .⊕ an.

We next formulate a property that provides a way to
prove that an algebraic theory is a presentation for a monad,
which we use in the proof that (ΣNP , ENP ) is a presenta-
tion for C.

Proposition 34. Let V be the variety of (Σ, E)-algebras

with signature Σ and equations E. Let U : V → Sets be

the forgetful functor. In order to prove that (Σ, E) is a

presentation for a monad (M, η, µ), it suffices to:

1. For any set X , define Σ-operations ΣX on MX
and prove that with these operations (MX,ΣX)
is an algebra in V. Moreover prove that for any

map f : X → Y , Mf is a V-homomorphism from

(MX,ΣX) to (MY,ΣY ).
2. Prove that (MX,ΣX) is the free algebra in V with

basis η(X), i.e., for any algebra A = (A,ΣA) in

V and any map f : X → A, there is a unique

homomorphism f# : (MX,ΣX) → A that extends

f , i.e., that satisfies f = Uf# ◦ η.

3. Prove that µX = (idMX)#.

Proof. Assume that 1.-3. hold. Let F : Sets → V be the
functor defined on objects as FX = (MX,ΣX). This shows
that UFX = MX .

On arrows f : X → Y , we set Ff = (η ◦ f)#. Then F
is a left adjoint of the forgetful functor U , and the adjunction
is given by the bijective correspondence (f : X → UA) 7→
(f# : FX → A).

Next, we see that UFf = Mf as a consequence of
naturality of η. Namely, we have that Ff = (η ◦ f)# is the
unique homomorphism with the property UFf ◦ η = η ◦ f .
Hence, using 1., since Mf ◦ η = η ◦ f by naturality of η,
we get UFf = Mf .



Let (T, η̄, µ̄) be the monad of this adjunction. Then, see
e.g. [66], η̄# = idFX . We next show that η# = idFX which
implies η̄ = η. All we need to observe is that U idFX ◦ η =
idUFX ◦ η = η and since η# is the unique homomorphism
with Uη# ◦ η = η and idFX is a homomorphism from
FX to itself, we get η# = idFX . Finally, see e.g. [66],
µ̄X = (idMX)# so item 3. proves that µ̄ = µ.

Before we proceed with the proof of the presentation,
we recall several properties that are known or immediate to
check, but very helpful in our further proofs.

Lemma 35. Let X be a set and S ∈ CCX . Then
⋃

S ∈
CX .

Proof. Let S = {Si | i ∈ I}. Let Φ,Ψ ∈
⋃

S. Then there
exist i, j ∈ I with Φ ∈ Si and Ψ ∈ Sj . We have pΦ+pΨ ∈
pSi + pSj ∈ S as S is convex.

Lemma 36. Let A and B be two convex algebras, and

f : A → B a convex homomorphism. Then the image

map f = Puf : PuA → PuB, for Pu being the unre-

stricted (not necessarily finite) powerset, is a convex map,

i.e. if S = X +p Y for X ∈ PuA, Y ∈ PuB, then

f(S) = f(X) +p f(Y ).

Proof. Let S = X +p Y for X ∈ PuA, Y ∈ PuB. Then

f(S) = {f(s) | s ∈ S}

= {f(px+ py) | x ∈ X, y ∈ Y }
(∗)
= {pf(x) + pf(y) | x ∈ X, y ∈ Y }

= pf(X) + pf(Y ).

where the equality marked by (∗) holds by the assumption
that f is a convex homomorphism.

Lemma 37. Let A and B be two convex algebras, and

f : A → B a convex homomorphism. Then for all X ∈ PuA,

for Pu being the unrestricted (not necessarily finite) pow-

erset, convB f(X) = f(convA X). In particular, if X is

convex then also f(X) is convex.

Proof. For ⊆, for an arbitrary pf(x)+pf(y) ∈ convB f(X)
with x, y ∈ X , we have

pf(x) + pf(y)
(∗)
= f(px+ py) ∈ f(convA X)

and here, again, (∗) holds since f is convex. For ⊇, consider

f(a) ∈ f(convA X). Then a = px+ py for some x, y ∈ X .
Since f is convex, f(a) = pf(x)+ pf(y) and f(x), f(y) ∈
f(X). Hence f(a) ∈ convB f(X).

The proof of the presentation follows the structure of
Proposition 34 via the following three lemmas.

Lemma 38. With the above defined operations (CX,⊕,+p)
is a convex semilattice, for any set X . Moreover, for a map

f : X → Y , the map Cf : CX → CY is a convex semilat-

tice homomorphism from (CX,⊕,+p) to (CY,⊕,+p).

of Lemma 38. In any convex algebra A for S, T ⊆ A we
have

conv(conv(S) ∪ T ) = conv(S ∪ T ).

As a consequence, using the associativity of union, we get
that the axiom (A) holds. For S1, S2, S3 ∈ CX :

S1 ⊕ (S2 ⊕ S3) = conv(S1 ∪ conv(S2 ∪ S3))

= conv(S1 ∪ (S2 ∪ S3))

= conv((S1 ∪ S2) ∪ S3)

= conv(conv(S1 ∪ S2) ∪ S3)

= (S1 ⊕ S2)⊕ S3.

Commutativity and idempotence hold due to commutativity
and idempotence of union.

Defining convex operations on CX using Minkowski
sum, see [67], leads to a convex algebra, i.e.,
(Ap), (Cp), (Ip) hold.

The axiom (D) holds as:

(S1 ⊕ S2) +p S3

= p conv(S1 ∪ S2) + pS3 =

= {pqd1 + pqd2 + pd3 | q ∈ [0, 1], di ∈ Si}

= conv((pS1 + pS3) ∪ (pS2 + pS3)).

Finally, Cf is a homomorphism from (CX,⊕,+p) to
(CY,⊕,+p) as

Cf(S1 ⊕ S2) = Df(S1 ⊕ S2)
(a)
= conv(Df(S1 ∪ S2))

= conv(Df(S1) ∪Df(S2)))

= Df(S1)⊕Df(S2)

= Cf(S1)⊕ Cf(S2)

where the equality marked by (a) holds by Lemma 37.
Similarly

Cf(S1 +p S2) = Df(S1 +p S2)
(b)
= Df(S1) +p Df(S2)

= Cf(S1) +p Cf(S2).

where the equality marked by (b) holds by Lemma 36.

Lemma 39. The convex semilattice (CX,⊕,+p) is the free

convex semilattice generated by η(X).

Proof. We need to show that for any map f : X → A for a
convex semilattice A = (A,⊕,+p), there is a unique convex

semilattice homomorphism f# : (CX,⊕,+p) → A such
that Uf# ◦ η = f . So, let A = (A,⊕,+p) be a convex
semilattice, and let f : X → A be a map. We use the same
notation for the operations in A and in CX for simplicity.

Note that, since any convex semilattice is a convex alge-

bra, there is a unique convex homomorphism f
#
D
: DX →

(A,+p), as DX is the free convex algebra generated by

ηD(X). Hence, Uf
#
D

◦ ηD = f .

Now, given a convex set S = conv{d1, . . . , dn} ∈ CX
we put

f#(S) = f
#
D
(d1)⊕ f

#
D
(d2)⊕ . . .⊕ f

#
D
(dn).



We first prove that f# is well defined, which is the most
important step. We show that whenever

conv{d1, . . . , dn} = conv{e1, . . . , em} (11)

then

f#
D
(d1)⊕ . . .⊕ f

#
D
(dn) = f

#
D
(e1)⊕ . . .⊕ f

#
D
(em).

Clearly, if Equation (11) holds, then for all i ∈ {1, . . . , n},
di ∈ conv{e1, . . . , em} and for all j ∈ {1, . . . ,m}, ej ∈
conv{d1, . . . , dn}. Hence,

conv{d1, . . . , dn, e1, . . . , em} = conv{d1, . . . , dn}

= conv{e1, . . . , en}.

If we can prove that whenever e ∈ conv{d1, . . . , dn} then

f
#
D
(d1)⊕ . . .⊕ f

#
D
(dn)⊕ f

#
D
(e) = f

#
D
(d1)⊕ . . .⊕ f

#
D
(dn),

we would be done with well defined-ness as then

f
#
D
(d1)⊕ . . .⊕ f

#
D
(dn)

= f
#
D
(d1)⊕ . . .⊕ f

#
D
(dn)⊕ f

#
D
(e1)⊕ . . .⊕ f

#
D
(em)

= f
#
D
(e1)⊕ . . .⊕ f

#
D
(em).

So, let e ∈ conv{d1, . . . , dn}. Then e =
∑

i pidi and

since f
#
D

is a convex algebra homomorphism, f
#
D
(e) =

∑

i pif
#
D
(di). Now, by the convexity law, Lemma 3, we have

that for any a1, . . . , an ∈ A and any p1, . . . , pn ∈ [0, 1] with
∑

i pi = 1

a1 ⊕ . . .⊕ an ⊕
∑

i

piai = a1 ⊕ . . .⊕ an.

Hence, indeed

f
#
D
(d1)⊕ . . .⊕ f

#
D
(dn)⊕ f

#
D
(e) = f

#
D
(d1)⊕ . . .⊕ f

#
D
(dn).

It remains to show that f# is a homomorphism and
that it is uniquely extending η(X). Let S, T ∈ CX . Let
S = conv{d1, . . . , dn}, T = conv{e1, . . . , em}.

Then S ⊕ T = conv(S ∪ T ) =
conv{d1, . . . , dn, e1, . . . , em} and we get

f#(S ⊕ T )

= f
#
D
(d1)⊕ . . .⊕ f

#
D
(dn)⊕ f

#
D
(e1)⊕ . . .⊕ f

#
D
(em)

= f#(S)⊕ f#(T ).

Next, we first notice that S +p T = conv{pdi + pej |
i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}}. For ⊇, we see that
∑

i,j

qi,j(pdi + pej) = p
∑

i,j

qi,jdi + p
∑

i,j

qi,jej ∈ S +p T.

For ⊆, take pd + pe ∈ S +p T . So, d =
∑

i qidi and e =
∑

j rjej and we have

pd+ pe = p
∑

i

qidi + p
∑

j

rjej

= p
∑

i

qi

(

∑

j

rj

)

di + p
∑

j

rj

(

∑

i

qi

)

ej

=
∑

i,j

qirj(pdi + pej).

Now

f#(S +p T )

=
⊕

i,j

f
#
D
(pdi + pej)

=
⊕

i,j

pf
#
D
(di) + pf

#
D
(ej)

=
⊕

i,j

f
#
D
(di) +p f

#
D
(ej)

(D)
= (f#

D
(d1)⊕ . . .⊕ f

#
D
(dn)) +p (f

#
D
(e1)⊕ . . .⊕ f

#
D
(em))

= f#(S) +p f
#(T ).

Finally, assume f∗ : (CX,⊕,+p) → A is another
homomorphism that extends f on η(X), i.e., such that
Uf∗ ◦ η = f . Then f∗({δx}) = f#({δx}) = f(x).
Since both f# and f∗ are convex homomorphisms, and
{
∑

i pixi} =
∑

i pi{δxi
}, we get

f∗({
∑

i

pixi}) =
∑

i

pif
∗({δxi

})

=
∑

i

pif
#({δxi

}) = f#({
∑

i

pixi}).

Further on, for S = conv{d1, . . . , dn} we have S = {d1}⊕
. . .⊕{dn} and hence f∗(S) = f∗({d1})⊕. . .⊕f∗({dn}) =
f#({d1})⊕ . . .⊕ f#({dn}) = f#(S) shows that f∗ = f#

and completes the proof.

The final missing property for the presentation,
Lemma 41, is an easy consequence of the next property
that clarifies the definition of f#.

Lemma 40. Let X be a set and f : X → CY a map. Then

for all S in CX

f#(S) =
⋃

f
#
D
(S) =

⋃

Φ∈S

∑

u∈suppΦ

Φ(u) · f(u).

Proof. The first task is to prove that f#(S) =
⋃

f
#
D
(S).

Before we proceed, let’s recall all the types. We have
f : X → CY (and CY is the carrier of a convex semi-

lattice), so f# : CX → CY . Also, f
#
D
: DX → CY

and hence f
#
D
: PuDX → PuCY for Pu denoting the

unrestricted (and not just finite) powerset. Finally, here
⋃

: PuPuDY → PuDY . Clearly, CZ ⊆ PuDZ for any
set Z .

Now, since S is convex, by Lemma 37 also f
#
D
(S) is

convex. Each element of f
#
D
(S) is of the form f

#
D
(Φ) for

Φ ∈ S and hence it is in CY , i.e., is convex. By Lemma 35,

we get that
⋃

f
#
D
(S) is convex.

Let Ψ1, . . . ,Ψn ∈ DX be such that S =
conv{Ψ1, . . . ,Ψn}. Clearly, Ψ1, . . . ,Ψn ∈ S. Now, we have

{f#
D
(Ψi) | i = 1, . . . , n} ⊆ {f#

D
(Φ) | Φ ∈ S}



and hence
⋃

{f#
D
(Ψi) | i = 1, . . . , n} ⊆

⋃

{f#
D
(Φ) | Φ ∈ S}

=
⋃

f
#
D
(S)

and since the set on the right hand side is convex, as we
noted above,

f#(S) = conv
⋃

{f#
D
(Ψi) | i = 1, . . . , n}

⊆
⋃

{f#
D
(Φ) | Φ ∈ S},

where the first equality is simply the definition of f#.
For the other inclusion, let Φ ∈ S. Then S =

conv{Ψ1, . . . ,Ψn,Φ} and

f#(S) = conv
⋃

{f#
D
(Ψ1), . . . , f

#
D
(Ψn), f

#
D
(Φ)}

by the definition of f#. Therefore, f
#
D
(Φ) ⊆ f#(S) and

since Φ was arbitrary,
⋃

{f#
D
(Φ) | Φ ∈ S} ⊆ f#(S).

This proves the first equality of our statement. For the
second equality, note that

f#(S) =
⋃

{f#
D
(Φ) | Φ ∈ S}

(∗)
=

⋃

{
∑

u∈suppΦ

Φ(u) · f(u) | Φ ∈ S}

=
⋃

Φ∈S

∑

u∈suppΦ

Φ(u) · f(u)

where the equality (∗) holds as f
#
D

is convex.

Lemma 41. The multiplication µ of the monad C satisfies

µ = (idCX)#.

Proof. Using Lemma 40, we immediately get

(idCX)#(S) =
⋃

Φ∈S

∑

A∈suppΦ

Φ(A) · A = µX(S).

Appendix E.

Proofs of Section 4

Proof. (of Proposition 8) We denote by {•} the generating
set. Let 2 = {•, ⋆}. Note that the carrier of the free pointed
semilattice generated by {•} is C(1 + 1) = C(2). Recall
that (C(2),⊕,+p), where ⊕ is the convex union and +p is
the Minkowski sum, is the free convex semilattice generated
by 2.

We first show that (C(2),⊕,+p) is isomorphic to MI.
Indeed D(2) is isomorphic to [0, 1]: the real number 0 cor-
responds to δ⋆, 1 to δ• and p ∈ (0, 1) to •+p⋆. Furthermore,
the non-empty finitely-generated convex subsets of [0, 1]
are the closed intervals. To conclude, it suffices to see that
min-max is ⊕ on I and +I

p is the Minkowski sum.

Proof. (of Proposition 9) By Proposition 8, we know that
C(2) is isomorphic to I. We show that MI,[0,0] modulo the
axiom (B) is isomorphic to MaxB . We have

min-max([x, y], [0, 0])
(B)
= [x, y],

for [x, y] ∈ I. From

[0, y] = min-max([x, y], [0, 0]) = [x, y],

we derive that [x1, y] = [x2, y] for any x1, x2, y. Hence,
we define the isomorphism [x, y] 7→ y mapping any interval
[x, y] to its upper bound y.

The interval [0, 0] is mapped to the bottom element 0,
and the operations are such that:

min-max([x1, y1], [x2, y2]) = min-max([0, y1], [0, y2])

= [0,max(y1, y2)]

hence min-max([x1, y1], [x2, y2]) 7→ max(y1, y2) and

[x1, y1]+p[x2, y2] = [0, y1]+p[0, y2] = [0, y1+py2] 7→ y1+py2.

Proof. (of Proposition 10) We show that MI,[0,0] modulo
the (T) axiom

min-max([x, y], [0, 0])
(T )
= [0, 0]

is isomorphic to MinT . First, we derive [x, y1] = [x, y2] for
any x, y1, y2 as follows. For x = 1 the property trivially
holds. For x = 0 we have

[0, y1] = min-max([x, y1], [0, 0])
(T )
= [0, 0]

(T )
= min-max([x, y2], [0, 0]) = [0, y2] (*)

Finally, for x ∈ (0, 1) and y1, y2 ≥ x we derive

[x, y1] = [1, 1]+x[0,
y1 − x

1− x
]
(∗)
= [1, 1]+x[0,

y2 − x

1− x
] = [x, y2].

Hence, we can now map every interval [x, y] to its lower
bound x. Then [0, 0] is mapped to the top element 0, and

min-max([x1, y1], [x2, y2]) = [min(x1, x2),max(y1, y2)]

7→ min(x1, x2)

[x1, y1] +p [x2, y2] = [x1 +p x2, y1 +p y2] 7→ x1 +p x2.

Appendix F.

Proofs of Section 5

Proof. (of Corollary 17) We first transform the automaton
c = 〈o, t〉 to ĉ = 〈ô, t〉 and apply Theorem 16.2 and then

transform ĉ = 〈ô, t〉 to ˆ̂c = 〈ô, t̂ 〉 and apply Theorem 16.1.
For the determinisation, take for a in Theorem 16.2 the

free algebra µ1 : MM1 → M1 and as â the M -algebra

(µ̂ ◦ σM̂1) : MM̂1 → M̂1. It is easy to see that â is indeed
an M -algebra using that σ is a monad map, its naturality,
and the associativity of µ̂. Since σ is a monad map, the



following diagram commutes showing that σ1 is an M -
algebra homomorphism.

MM1

µ

��

Mσ1 // MM̂1
σM̂1��

M̂M̂1

µ̂��
M1

σ1 // M̂1

Observe that ô = σ1 ◦ o, again since σ is a monad map.

Then, by Theorem 16.2 Ĵ·K = σA∗

1 ◦ J·K where ˆ[[·]] is the
semantics obtained by determinisation of ĉ and [[·]] the one

after determinisation of c. Since σ1 is injective, also σA∗

1 is

injective and we have that for all x, y ∈ X , ˆ[[η(x)]] = ˆ[[η(y)]]
iff [[η(x)]] = [[η(y)]], i.e., the semantics remains the same.

For the second step, take ˆ̂a = µ̂ : M̂M̂1 → M̂1 for

the determinisation of ˆ̂c. By definition â = ˆ̂a ◦ σÔ .
Therefore Theorem 16.1 guarantees that the semantics after

determinisation of ˆ̂c again remains the same as the semantics
after determinisation of ĉ.

Proof. (of Theorem 16.1) The proof proceeds in two steps.
First, we show that the following diagram commutes

MFX
σFX //

λX

��

M̂FX

λ̂X

��
FMX

FσX

// FM̂X

(12)

where σ is the monad map from the hypothesis, and λ and

λ̂ are the distributive laws from Proposition 11 used for

the determinisation of FM - and FM̂ -coalgebras using the
algebras a and â, and the strengths st and ŝt, respectively.

The following diagram commutes by naturality of σ:

M(XA)
σ
XA //

Meva

��

M̂(XA)

M̂eva��
MX σX

// M̂X

Using this, by definition of the strengths, we have

(σA
X ◦ st(ϕ))(a) = σA

X(st(ϕ)(a))

= σA
X(Meva(ϕ))

= (σA
X ◦ Meva)(ϕ)

(∗)
= M̂eva ◦ σXA(ϕ)

= M̂eva(σXA(ϕ))

= ŝt(σXA(ϕ))(a)

= (ŝt ◦ σXA(ϕ))(a).

where the equality marked by (∗) holds by the commuta-
tivity of the diagram above. Hence, the following diagram
commutes.

M(XA)
σ
XA //

st
��

M̂(XA)

ŝt
��

(MX)A
σA
X

// (M̂X)A

Recall now that by hypothesis a = â ◦ σO . Therefore,
the following commutes.

MO ×M(XA)
σO×σ

XA //

a×st
��

M̂O × M̂(XA)

â×ŝt
��

O × (MX)A
idO×σA

X

// O × (M̂X)A

Finally, the following two squares commute by naturality
of σ.

M(O ×XA)
σ
O×XA//

Mπ1

��

M̂(O ×XA)

M̂π1

��
MO

σO

// M̂O

M(O ×XA)
σ
O×XA//

Mπ2

��

M̂(O ×XA)

M̂π2

��
M(XA)

σ
XA

// M̂(XA)

By pasting together the last three diagrams, we obtain that
the following commutes.

M(O ×XA)
σ
O×XA //

〈Mπ1,Mπ2〉

��

M̂(O ×XA)

〈M̂π1,M̂π2〉
��

MO ×M(XA)
σO×σ

XA //

a×st
��

M̂O × M̂(XA)

â×ŝt
��

O ×M(X)A
idO×σA

X

// O × M̂(X)A

Observe that, by the definition of the distributive law (Propo-
sition 11), this diagram is exactly (12). Using (12), we can



now easily show that the following commutes.

MX

M〈o,t〉

��

σX // M̂X

M̂〈o,t〉
��

MFMX

λMX

��

σFMX // M̂FMX

λ̂MX

��

M̂FσX

&&▼▼
▼▼

▼▼
▼▼

▼▼

FMMX

Fµ

��

FσMX // FM̂MX

FM̂σX

��

M̂FM̂X

λ̂M̂Xxxqqq
qq
qq
qq
q

FM̂M̂X

Fµ̂X

��
FMX

FσX

// FM̂X

Indeed, commutativity of the topmost square is given by
naturality of σ. The fact that σ is a monad morphism entails
commutativity of the bottom square. The rightmost square

commutes by naturality of λ̂. The missing square, the one
in the centre, is exactly (12).

Now observe that the leftmost border in the above
diagram, the morphism MX → FMX , equals c♯ =
〈o♯, t♯〉 (see (2)). The determinisation ĉ♯ of ĉ = 〈o, t̂ 〉 =
〈o, (σX)A ◦ t〉 obtained using â and λ̂ coincides with
the rightmost border of the above diagram, the morphism

M̂X → FM̂X . The commuting of the above diagram
means that σX is a homomorphism of F -coalgebras. By
postcomposing this homomorphism with the unique F -

coalgebra morphism ˆ[[·]] : M̂X → OA∗

, one obtains an F -

coalgebra morphism of type TX → OA∗

. Since [[·]] is the

unique such, [[·]] = ˆ[[·]] ◦ σX follows.

MX

[[·]]

&&

c♯

��

σX // M̂X
ˆ[[·]] //

ĉ♯

��

OA∗

ζ∼=
��

FMX

F [[·]]

88
FσX // FM̂X

F ˆ[[·]] // F (OA∗

)

Now, since σ is a monad map, η̂ = σ ◦ η. Therefore [[·]] ◦
ηX = ˆ[[·]] ◦ σX ◦ ηX = ˆ[[·]] ◦ η̂X .

Proof. (of Theorem 16.2) Consider the following diagram
in Sets. Both squares on the left trivially commute by defi-
nition. To prove that also the square on the right commutes,

it is enough to show that hA∗

: OA∗

→ ÔA∗

coincides
with the unique coalgebra morphism [[·]]d from the coalgebra

d = 〈h ◦ ǫ, (·)a〉 where ζ = 〈ǫ, (·)a〉 to the final Ô × (·)A-

coalgebra ζ̂. Here ǫ : OA∗

→ O is given by ǫ(ϕ) = ϕ(ε)
for the empty word ε ∈ A∗, and (·)a : OA∗

→ (OA∗

)A

is defined by (ϕ)a(a) = ϕa = λw ∈ A∗. ϕ(aw). The

definition of ζ̂ is the same as the definition of ζ, with Ô
instead of O.

From the inductive definition of [[·]]d, see e.g. [28], we
get [[ϕ]]d = λw ∈ A∗. h ◦ ǫ((ϕ)w) where (ϕ)w(u) = ϕ(wu)
which easily leads to [[ϕ]]d = h ◦ ϕ = hA∗

(ϕ).
Now observe that h ◦ o♯ is equal to (h ◦ o)♯, since h is

an algebra morphism.
From this observation and the commuting of the above

diagram, it follows that hA∗

◦ [[·]] is the unique coalgebra

morphism from ĉ♯ = 〈(h ◦ o)♯, t♯〉 to the final Ô × (·)A-

coalgebra, and hence it equals ˆ[[·]].

Appendix G.

Bialgebras, Invariance and Proofs of Back-

Compatibility, Section 6

The bialgebras of probabilistic traces. At this point we
would like to explicitly mention each of the three pointed
convex semilattices, with bottom, or with top, carried by
the carrier of the final coalgebra. The algebraic opera-
tions of these bialgebras of probabilistic traces are defined
pointwise, we illustrate here the explicit definition of the
bialgebra of may probabilistic traces: The carrier of the
final coalgebra is [0, 1]A

∗

. The coalgebra map is ζ = 〈ǫ, ·a〉
where ǫ(ϕ) = ϕ(ε) for ϕ : A∗ → [0, 1] and ε the empty
word in A∗. The algebraic structure is defined pointwise
from MaxB = ([0, 1],max,+p, 0) resulting in the pointed
convex semilattice with bottom ([0, 1]A∗,⊕,+p, ϕ0) where
ϕ0(w) = 0 for all w ∈ A∗; ϕ1 ⊕ ϕ2 = ϕ for ϕ(w) =
max{ϕ1(w), ϕ2(w)}, for all w ∈ A∗; and ϕ1+pϕ2 = ϕ for
ϕ(w) = ϕ1(w) +p ϕ2(w), for all w ∈ A∗. In the same way
one can explicitly write the pointed convex semilattice (with
top) operations of the may-must (and the must) probabilistic
traces.

Consequences of the invariance theorem. We might have
performed the generalised determinisation in a number of
different ways. We now show that all these ways lead
however to the above three semantics.

First consider the coalgebra 〈ōB , t̄〉 : X → TCSB1 ×
(TPCSX)A and observe that the algebra MaxB =
([0, 1],max,+p, 0), namely µ1 : TCSBTCSB1 → TCSB1, is
also a pointed convex semilattice—formally this is µ1 ◦
qB : TPCSTCSB1 → TCSB1. One could thus perform the
generalised determinisation w.r.t. this algebra and the monad
TPCS and obtain an equivalence that we denote by ≡′

B .
Theorem 16.1 guarantees however that ≡′

B=≡B . Similarly,
one could start with the coalgebra 〈ōT , t̄〉, apply the same
construction and end up with an equivalence which, by
Theorem 16.1, coincides with ≡T .

More interestingly, the semantics does not change also
when eliminating conv from the definition of t̄. Indeed
one can consider the monad C′ = TΣNP ,EN∪EP

, namely
the monad C without the axiom (D) and consider the
injective natural tranformation κ : PneD ⇒ C′ defined by
κ({ϕ1, . . . , ϕn}) = ϕ̄1 ⊕ . . . ⊕ ϕ̄n with ϕ̄ being the term
in signature +p representing the distribution ϕ, e.g., for



MX
[[·]] //

c♯

��

OA∗

ζ∼=
��

hA∗

// ÔA∗

ζ̂∼=

��

O × (MX)A

h×id
(MX)A

��

idO×[[·]]A // O × (OA∗

)A

h×id
(OA∗

)A

��
Ô × (MX)A

idÔ×[[·]]A
// Ô × (OA∗

)A
idÔ×(hA∗

)A
// Ô × (ÔA∗

)A

ϕ = (x 7→ 1
2 , y 7→ 1

2 ), ϕ̄ = x + 1
2
y. Let qD : C′ ⇒ C

be the monad morphism quotienting C′ by the axiom (D).
One can check that conv = qD ◦ κ and thus define

t̄′ =
(

X
t // (PneDX + 1)A

(κ+1)A // (C′X + 1)A

ιA // (C′(X + 1))A
)

and ō′ = ō. Since the algebra MI,[0,0], the free C(· + 1)-
algebra generated by 1, is also an algebra for C′(·+ 1) —
formally this is µ1 ◦ qD one can perform the generalised
determinisation of 〈ō′, t̄′〉 and obtains an equivalence ≡′. By
observing that t̄ = qD ◦ t̄′, using Lemma 32, Theorem 16.1
guarantees that ≡′=≡.

Actually, one can even take the purely syntactic monad
TΣNP

and consider the monad map q : TΣNP
⇒ C with epi

components. We pick a right inverse rX of qX and consider

t̄′′ =
(

X
t // (PneDX + 1)A

(∗) // (TΣX + 1)A

ιA // (TΣ(X + 1))A
)

where (∗) = (rX ◦ convX +1)A, and ō′′ = ō. Then again
using Lemma 32 it is easy to see that t̄ = q ◦ t̄′′. Moreover,
MI,[0,0] is also an algebra for TΣ(·+1), hence determinising
〈ō′′, t̄′′〉 w.r.t. TΣ(·+ 1) gives the semantics ≡′′ =≡.

Backcompatibility. For back-compatibility, we consider an
LTS:

t : X −→ (PX)A
∼=
−→ (PneX + 1)A

ι
−→ (Pne(X + 1))A,

take as observation set O = Pne(1 + 1), add observations
o : X → (Pne(1 + 1)) in our standard way, and use the
free pointed semilattice generated by 1 as the algebra on
observations.

We denote by ≡LTS
∗ the semantics obtained via the

determinisation 〈o♯, t♯〉 and call it the LTS may-must trace
equivalence3.

Similarly, quotienting Pne(·+1) by (B) and (T ), respec-
tively, leads to two more trace semantics: ≡LTS

B and ≡LTS
T

which we call may trace equivalence and must trace equiva-
lence, respectively. Note that ≡LTS

B =≡LTS — the standard
LTS trace semantics, due to the isomorphism TSB

∼= P.

3. A more appropriate but longer name is may testing semantics when
tests are finite traces

We start with the following simple observations that are
easy to check by unfolding the definitions.

Lemma 42. We have two injective monad maps

χPne
: Pne ⇒ C and χD : D ⇒ C given by χPne

= conv ◦
Pneη

D and χD = conv ◦ ηPne .

Note that χD(ϕ) = {ϕ}, for any distribution ϕ, as
singleton sets are convex. Using Lemma 1, we immedi-
ately get that χPne

(· + 1): Pne(· + 1) ⇒ C(· + 1) and
χD(· + 1): D(· + 1) ⇒ C(· + 1) are injective monad
maps. From this fact, and Corollary 17, we immediately
get backward compatibility for may-must trace semantics
of LTS and RPLTS.

Corollary 43. May-must trace semantics after determinisa-

tion ≡LTS
∗ for LTS coincides with may-must trace semantics

after determinisation ≡ of the LTS seen as NPLTS. The

same holds for trace semantics after determinisation of

RPLTS, i.e., ≡RP =≡ for the may-must trace semantics

after determinisation ≡ of the RPLTS seen as NPLTS.

Proving back-compatibility of may trace semantics and
must trace semantics is a little bit more involved.

Lemma 44. There are injective monad maps TSB ⇒ TCSB

and TST ⇒ TCST , and hence ≡LTS =≡B and ≡LTS
T =≡T .

Proof. Note that, again by Corollary 17, for ≡LTS
B =≡B

and ≡LTS
T =≡T it is enough to find injective monad maps

TSB ⇒ TCSB and TST ⇒ TCST . We present the proof for
TSB ⇒ TCSB, the proof for TST ⇒ TCST is analogous.

We define e : TSB ⇒ TCSB by eX([t]SB) = [t]CSB
for any term t with variables in X in signature ΣN ∪ ΣT ,
where [t]SB on the left denotes the equivalence class of t
modulo EN ∪{(B)} and [t]CSB on the right the equivalence
class of t modulo ENP ∪ {(B)}. This is justified as every
TSB-term is a TCSB-term as well. This is easily seen to
be a monad map, we need to check well-definedness and
injectivity: t =SB t′ ⇔ t =CSB t′. Well-definedness, the
implication left-to-right, is immediate as the equations of a
semilattice with bottom are included in the equations of a
convex semilattice with bottom. Assume t =CSB t′. Let s̄
denote the term obtained from a term s in TCSB by replacing
every occurrence of +p by ⊕. Then we have

s1 =CSB s2 ⇒ s̄1 =SB s̄2

which is easy to show by checking that it holds for each of
the equations.



Now, let t = t1 =CSB t2 · · · =CSB tn = t′. Then
t = t̄1 =SB t̄2 · · · =SB t̄n = t̄′ where the first and last
equality hold since t and t′ are terms in ΣN∪{(B)} showing
injectivity.

Using similar arguments about the underlaying algebraic
theories, one can prove back-compatibility of may and must
trace semantics after determinisation for RPLTS seen as
NPLTS.

Appendix H.

Proofs of Section 7

H.1. Proof of Theorem 23

Given a resolution R = (Y, corr, r), we define the

function reachR : Y → D(Y + 1)A
∗

inductively as

reachR(y)(ε) = δy;

reachR(y)(aw) =
{

δ⋆ if r(y)(a) = ⋆;
∑

y′∈supp(∆)∆(y′) · reachR(y′)(w) if r(y)(a) = ∆.

Intuitively, this assigns to each state y ∈ Y and word
w ∈ A∗ a subdistribution over Y , which is the state of
the determinised system that y reaches via w.

Let o′♯ : D(Y + 1) → [0, 1] be the function assigning to
a subdistribution ∆ its total mass, namely 1 −∆(⋆). More
formally, this is defined inductively as

o′♯(∆) =











0 if ∆ = δ⋆;

1 if ∆ = δy for y ∈ Y ;

o′♯(∆1) +p o
′♯(∆2) if ∆ = ∆1 +p ∆2.

Lemma 45. o′♯ ◦ reachR = probR.

Proof. We prove that o′♯(reachR(y)(w)) = probR(y)(w)
for all y ∈ Y and w ∈ A∗. The proof proceeds by induction
on w.

Base case: w = ε.

probR(y)(ε) = 1 = o′♯(δy) = o′♯(reachR(y)(ε))

Inductive case: w = aw′. If r(y)(a) = ⋆, then

probR(y)(aw
′) = 0 = o′♯(δ⋆) = o′♯(reachR(y)(aw

′)).

If r(y)(a) = ∆, then

probR(y)(aw
′)

=
∑

y′∈supp(∆)

∆(y′) · probR(y
′)(w′) (definition)

=
∑

y′∈supp(∆)

∆(y′) · o′♯(reachR(y
′)(w′)) (IH)

= o′♯(
∑

y′∈supp(∆)

∆(y′) · (reachR(y
′)(w′))) (o′♯ hom.)

= o′♯(probR(y)(aw
′)) (definition).

Given a NPLTS (X, t), we define the function

reach: X → C(X + 1)A
∗

inductively as

reach(x)(ε){δx};

reach(x)(aw) =






{δ⋆} if t(x)(a) = ⋆;
⊕

∆∈conv(S)

∑

x′∈supp(∆)

∆(x′) · reach(x′)(w) if t(x)(a) = S.

For each NPLTS (X, t), we have a function 〈〈·〉〉 : C(X+
1) → C(X+1)A

∗

defined for all S ∈ C(X+1) and w ∈ A∗

as
〈〈S〉〉(ε) = S;

〈〈S〉〉(aw) = 〈〈t̄♯(S)(a)〉〉(w).

Lemma 46. [[·]] = ō♯ ◦ 〈〈·〉〉

Proof. Trivial by the inductive definitions of [[·]] and 〈〈·〉〉.

Lemma 47. 〈〈·〉〉 ◦ η = reach

Proof. The proof goes by induction on w ∈ A∗.

Base case: if w = ε, then reach(x)(ε) = {δx} = η(x) =
〈〈η(x)〉〉(ε).

Inductive case: w = aw′. If t(x)(a) = ⋆, then
〈〈η(x)〉〉(aw′) = 〈〈t̄♯({δx})(a)〉〉(w′) = 〈〈{δ⋆}〉〉(w′) =
{δ⋆} = reach(x)(aw′).

If t(x)(a) = S, then reach(x)(aw) =
⊕

∆∈conv(S)

∑

x′∈supp(∆)∆(x′) · reach(x′)(w).
By induction hypothesis, the latter is equal to
⊕

∆∈conv(S)

∑

x′∈supp(∆)∆(x′) · 〈〈η(x′)〉〉(w′). Since

〈〈·〉〉 is a homomorphism of convex semilattices, the latter is
equal to 〈〈

⊕

∆∈conv(S)

∑

x′∈supp(∆)∆(x′) · η(x′)〉〉(w)

that is 〈〈conv(S)〉〉(w′) = 〈〈t̄♯({δx})(a)〉〉(w′) =
〈〈η(x)〉〉(aw′).

Proposition 48. [[·]] ◦ η = ō♯ ◦ reach

Proof. By Lemma 46, [[·]] ◦ η = ō♯ ◦ 〈〈·〉〉 ◦ η. By Lemma
47, ō♯ ◦ 〈〈·〉〉 ◦ η = ō♯ ◦ reach.

Proposition 49. Let (X, t) be a NPLTS and let R =
(Y, corr, r) be one of its resolutions. Let x ∈ X and y ∈ Y
such that corr(y) = x. For all w ∈ A∗,

D(corr+1)(reachR(y)(w)) ∈ reach(x)(w).

Proof. By induction on the structure of w. If w = ǫ then

D(corr+1)(reachR(y)(ǫ)) = D(corr+1)(δy)

= δx

⊆ {δx}

∈ reach(x)(ǫ)



If w = aw′ and t(x)(a) = ⋆ then we have r(y)(a) = ⋆, and

D(corr+1)(reachR(y)(aw
′)) = D(corr+1)(δ⋆)

= δ⋆

∈ {δ⋆}

= reach(x)(aw′)

If t(x)(a) 6= ⋆ then we have r(y)(a) 6= ⋆. Let r(y)(a) =
∆ ∈ D(Y ). We have:

D(corr+1)(reachR(y)(aw
′))

= D(corr+1)(
∑

y′∈supp(∆)

∆(y′) · reachR(y
′)(w′))

=
∑

y′∈supp(∆)

∆(y′) ·D(corr+1)(reachR(y
′)(w′))

By the inductive hypothesis, for each y′ we have
D(corr+1)(reachR(y

′)(w′)) ∈ reach(corr(y′))(w′).
Hence, by the definition of Minkowski sum,

∑

y′∈supp(∆)

∆(y′) ·D(corr+1)(reachR(y
′)(w′))

∈
∑

y′∈supp(∆)

∆(y′) · reach(corr(y′))(w′))

Since R is a resolution, there is a ∆′ ∈ conv(t(x)(a))
such that D(corr)(∆) = ∆′. This means that ∆′(x) =
∑

{y′∈supp(∆)| corr(y′)=x′} ∆(y′), and thus:

∑

y′∈supp(∆)

∆(y′) · reach(corr(y′))(w′))

=
∑

x′∈supp(∆′)

∆′(x′) · reach(x′)(w′)

as easily follows from the axioms of convex algebras. We
can then conclude by the definition of reach(x)(aw′)

∑

x′∈supp(∆′)

∆′(x′) · reach(x′)(w′)

⊆
⊕

∆′∈conv(t(a)(x))

∑

x′∈supp(∆′)

∆′(x′) · reach(x′)(w′)

= reach(x)(aw′).

Proposition 50. Let (X, t) be a NPLTS. For all x ∈ X and

w ∈ A∗, if ∆ ∈ reach(x)(w) then there exists a resolution

R = (Y, corr, r) and a state y ∈ Y such that

(1) corr(y) = x and

(2) D(corr+1)(reachR(y)(w)) = ∆.

Proof. The proof proceeds by induction on w ∈ A∗.

In the base case w = ε. For all x ∈ X and a ∈ A such
that t(x)(a) 6= ⋆, we can choose one distribution ∆x,a ∈

t(x)(a) . Then, we take R = (X, idX , r) where r : X →
(D(X) + 1)A is defined for all x ∈ X and a ∈ A as

r(x)(a) =

{

⋆ if t(x)(a) = ⋆;

∆x,a otherwise.

By construction R is a resolution. Then we take x as the
selected state y of the resolution R. Since the correspon-
dence function is idX , (1) is immediately satisfied. Now,
by definition, reachR(x)(ε) = δx and reach(x)(ε) = {δx}.
We conclude by observing that D(idX + 1)(δx) = δx ∈
{δx} = reach(x)(ε).

In the inductive case w = aw′. Now we have two cases
to consider: either t(x)(a) = ⋆ or t(x)(a) = S for S ∈
PneD(X).

Assume t(x)(a) = ⋆. Then reach(x)(aw′) = {δ⋆}. Let
R = (X, idX , r) be the resolution defined as in the base
case, and take x as the selected state y of the resolution
R. Since the correspondence function is idX , (1) is im-
mediately satisfied. Since R is a resolution, t(x)(a) = ⋆
implies r(x)(a) = ⋆. Hence, reachR(x)(a) = δ⋆ and
reach(x)(a) = {δ⋆}. We conclude by D(idX + 1)(δ⋆) =
δ⋆ ∈ {δ⋆} = reach(x)(a).

Assume t(x)(a) = S. Then

reach(x)(aw′) =
⊕

∆′∈conv(S)

∑

x′∈supp(∆′)

∆′(x′)·reach(x′)(w′).

By Proposition 40, it holds that

reach(x)(aw′) =
⋃

∆′∈conv(S)

∑

x′∈supp(∆′)

∆′(x′)·reach(x′)(w′).

This is equivalent to saying that there exists a ∆′ ∈ conv(S)
such that

∆ ∈
∑

x′∈supp(∆′)

∆′(x′) · reach(x′)(w′).

This is in turn equivalent to saying (by the definition of
Minkowski sum) that for every x′ ∈ supp(∆′) there exists
a ∆′

x′ ∈ reach(x′)(w′) such that

∆ =
∑

x′∈supp(∆′)

∆′(x′) ·∆′
x′ .

We can now use the induction hypothesis on ∆′
x′ ∈

reach(x′)(w′): for each ∆′
x′ ∈ reach(x′)(w′) there exists

a resolution Rx′ = (Yx′ , corrx′ , rx′) and a yx′ ∈ Yx′ such
that

(c) corrx′(yx′) = x′ and
(d) D(corrx′ +1)(reachRx′

(yx′)(w)) = ∆′
x′ .

Now we construct the coproduct of all the resolutions Rx′ .
Take Z to be the disjoint union of all the Yx′ and define
corrZ : Z → X as corrZ(z) = corrx′(z) if z ∈ Yx′ . Simi-
larly, we define rZ : Z → (D(Z + 1))A as rZ(z) = rx′(z)
if z ∈ Yx′ . By construction, RZ = (Z, corrZ , rZ) is a
resolution of (X, t).

Let R′ = (X, idX , r′) be a resolution defined as in
the base case, i.e., by arbitrarily choosing a distribution



∆x,a ∈ t(x)(a), for any x and a, as value of r′(x)(a), when-
ever t(x)(a) 6= ⋆. We define the resolution R = (Y, corr, r)
needed to conclude the proof as follows: the state space
is Y = Z + X + {y}, namely the disjoint union of Z ,
of X , and of the singleton containing a fresh state y; the
correspondence function corr: Y → X and the transition
function r : Y → (D(Y )+ 1)A are defined for all u ∈ Y as

corr(u) =











corrZ(u) if u ∈ Z ,

idX(u) if u ∈ X ,

x if u = y,

r(u)(b) =



























rZ(u)(b) if u ∈ Z ,

r′(u)(b) if u ∈ X ,

∆x,b if u = y, a 6= b, t(x)(b) 6= ⋆,

⋆ if u = y, a 6= b, t(x)(b) = ⋆,

∆′′ if u = y, a = b

where ∆′′ is the distribution having as support the set of
states {yx′ |x′ ∈ supp(∆)} ⊆ Z , and such that ∆′′(yx′) =
∆′(x′). Note that ∆′′ is a distribution, since ∆′ is and since
we are taking exactly one yx′ for each x′ ∈ supp(∆′).

The fact that R is a resolution follows from RZ and
R

′ being resolution and y respecting – by construction– the
conditions of resolution: indeed corr(y) = x, and

• if a 6= b and t(x)(b) 6= ⋆, then r(y)(b) = ∆x,b and
D(corr)(∆x,b) = D(idX)(∆x,b) = ∆x,b ∈ t(x)(b)

• if a 6= b and t(x)(b) = ⋆, then r(y)(b) = ⋆;
• if a = b, then r(y)(b) = ∆′′, and D(corr)(∆′′) =

∆′, with ∆′ ∈ conv(t(x)(a)).

To conclude the proof we only need to show that points
(1) and (2) hold. The former is trivially satisfied by defini-
tion of corr. For (2), we display the following derivation.

D(corr+1)(reachR(y)(aw
′))

= D(corr+1)(
∑

yx′∈supp(∆′′)

(∆′′(yx′) · reachR(yx′)(w′)))

= D(corr+1)(
∑

x′∈supp(∆′)

(∆′(x′) · reachR(yx′)(w′)))

=
∑

x′∈supp(∆′)

(∆′(x′) · (D(corr+1)(reachR(yx′)(w′))))

=
∑

x′∈supp(∆′)

(∆′(x′) ·∆′
x′)

= ∆

of Theorem 23. Before starting with the actual proof, we
need the following elementary observation: for all f : X →
Y and ∆ ∈ D(X + 1), it holds that

o′♯(D(f + 1)(∆)) = o′♯(∆), (13)

namely, the total mass is preserved by applying D(f + 1).

Now, suppose that [[η(x)]](w) = [p, q] for some p, q ∈
[0, 1] with p ≤ q. By Proposition 48, it holds that
ō♯(reach(x)(w)) = [p, q]. By definition of ō♯ there ex-
ists ∆min,∆max ∈ reach(x) such that the total mass of
∆min = p, the total mass of ∆max = q and for an arbitrary
∆ ∈ reach(x), its total mass is in between p and q. In other
words,

(a) o′♯(∆min) = p,

(b) o′♯(∆max) = q and

(c) p ≤ o′♯(∆) ≤ q for all ∆ ∈ reach(x).

By Proposition 49, for all resolutions R, states y
such that corr(y) = x and distributions ∆′ such that
reachR(y)(w) = ∆′, one has that D(corr+1)(∆′) ∈
reach(x)(w). By (c), p ≤ o′♯(D(corr+1)(∆′)) ≤ q
and, by (13), p ≤ o′♯(∆′) ≤ q. This means p ≤
o′♯(reachR(y)(w)) ≤ q that, by Lemma 45, coincides with
p ≤ probR(y)(w) ≤ q. This proves that ⌈⌈x⌉⌉(w) ≥ p and
⌊⌊x⌋⌋(w) ≤ q.

We now prove that ⌈⌈x⌉⌉(w) ≤ p; the proof for
⌊⌊x⌋⌋(w) ≥ q is analogous.

By Proposition 50, there exist resolutions R, a state y
and distributions ∆′′ such that

(d) corr(y) = x,

(e) D(corr+1)(∆′′) = ∆min,

(f) reachR(y)(w) = ∆′′.

By (e) and (13), one immediately has that o′♯(∆′′) =
o′♯(∆min) = p. By (f), the latter means that
o′♯(reachR(y)(w)) = p that, by Lemma 45, allows to con-
clude that probR(y)(w) = p. This proves that ⌈⌈x⌉⌉(w) ≤ p.

H.2. Proof of Corollary 24

Proof. Consider the monad morphisms qB : TPCS ⇒ TCSB

and qT : TPCS ⇒ TCST quotienting TPCS by (B) and (T ),
respectively (see Section 6). By Theorem 16 item 2 we have

[[η(x)]]B(w) = (qB
A∗ ◦ [[η(x)]])(w)

[[η(x)]]T (w) = (qT
A∗ ◦ [[η(x)]])(w)

For an interval [p, q], qB([p, q]) = q and qT ([p, q]) = p.
Then by Theorem 23 we derive

(qB
A∗ ◦ [[η(x)]])(w) = qB([[η(x)]](w))

= qB([ ⌈⌈x⌉⌉(w), ⌊⌊x⌋⌋(w) ])

= ⌊⌊x⌋⌋(w)

and, analogously,

(qT
A∗ ◦ [[η(x)]])(w) = qT ([[η(x)]](w))

= qT ([ ⌈⌈x⌉⌉(w), ⌊⌊x⌋⌋(w) ])

= ⌈⌈x⌉⌉(w)



H.3. Proof of Proposition 26

Proof. We first prove that ⌊⌊x⌋⌋(w) ≤ ⌊⌊x⌋⌋fp(w).
Let R = (Y, corr, r) be a resolution of (X, t), x ∈ X ,

and w ∈ A∗. Let y ∈ Y such that corr(y) = x. We show that
there exists a fully probabilistic resolution R′ of (X, t) with
a state z such that z is mapped by the correspondence func-
tion of R′ to x and such that probR(y)(w) = probR′(z)(w).

We define R′ = (Y × A∗, corr′, r′) as follows. The
correspondece function corr′ : Y × A∗ → Y is corr ◦ π1,
namely corr′(y, w′) = corr(y) for all w′ ∈ A∗. To define
r′, we use the notation ∆w′ ∈ D(Y × A∗) to denote, for
all ∆ ∈ D(Y ) and w′ ∈ A∗, the distribution over Y × A∗

given as

∆w′(y, w′′) =

{

∆(y) if w′ = w′′,

0 otherwise.

Now r′ : Y ×A∗ → (A×D(Y ×A∗)) + 1 is defined as:

r′(y, ǫ) = ⋆

r′(y, aw′) =

{

〈a,∆w′〉 if r(y)(a) = ∆ 6= ⋆

⋆ otherwise.

We proceed by proving that R
′ is a fully probabilistic

resolution of (X, t). First, it is necessary to observe that
r′ is well defined: if r(y)(a) = ∆ and r(y)(b) = ∆′ for
some b 6= a, then r′(y, aw′) is by definition 〈a,∆w′〉: this
explains why we needed to take as set of states Y ×A∗.

Now suppose that r′(y, w′′) 6= ⋆. Then w′ = aw′′,
and r′(y, w′′) = 〈a,∆w′′〉 with ∆ = r(y)(a). Hence,
D(corr′)(∆w′′) = D(corr)(∆). Since R is a resolution,
D(corr)(∆) ∈ conv(t(x)(a)) and therefore R′ is a fully
probabilistic resolution.

We now prove that for all w′ ∈ A∗ and for all y ∈ Y ,
it holds that probR(y)(w

′) = probR′(y, w′)(w′). The proof
goes by induction on w′.

If w′ = ǫ then, probR(y)(ǫ) = 1 = probR′(y, ǫ)(ǫ).
If w′ = aw′′ and r(y)(a) = ⋆, then r′(y, w′) = ⋆ and

probR′(y, w′)(w′) = 0 = probR(y)(w
′).

If w′ = aw′′ and r(y)(a) = ∆ 6= ⋆, then r′(y, aw′′) =
〈a,∆w′′〉:

probR(y)(w
′)

=
∑

y′∈supp(∆)

∆(y′) · probR(y
′)(w′′)

=
∑

y′∈supp(∆)

∆(y′) · probR′(y′, w′′)(w′′) (by IH)

=
∑

(y′,w′′)∈supp(∆w′′)

∆w′′(y′, w′′) · probR′(y′, w′′)(w′′)

= probR′(y, aw′′)(aw′′)

Hence, probR(y)(w) = probR′(y, w)(w), with
corr(y) = corr′(y, w) = x.

We now prove that ⌊⌊x⌋⌋(w) ≥ ⌊⌊x⌋⌋fp(w).

Let R = (Y, corr, r) be a fully probabilistic resolution
of (X, t), x ∈ X , and w ∈ A∗. Let corr(y) = x. We show
that there exists a resolution R′ = (Y ′, corr′, r′) of (X, t)
with a state z such that corr′(z) = x and probR(y)(w) ≤
probR′(z)(w). We define R′ = (Y ′, corr′, r′) as follows:

• Y ′ = Y +X is the (disjoint) union of Y and X
• corr′ = corr+idX that is for all y′ ∈ Y ′

corr′(y′) =

{

corr(y′) if y′ ∈ Y ;

idX(y′) if y′ ∈ X .

• r′ : Y ′ → (D(Y ′) + 1)A is defined as:

r′(y′)(a) =











⋆ if t(corr′(y′))(a) = ⋆

∆ if y′ ∈ Y and r(y′) = 〈a,∆〉

∆corr′(y′),a otherwise

where ∆x,a are defined like in the base case of the proof
of Proposition 50 (namely, an arbitrary choice amongst the
distributions in t(x)(a)).

We prove that R′ is a resolution. For elements y′ ∈ X
the conditions of Definition 21 are trivially satisfied (see the
analogous construction used in the base case in the proof of
Proposition 50). Suppose y′ ∈ Y .

1) By definition, r′(y′)(a) = ⋆ iff t(corr′(y′))(a) = ⋆.
2) If r′(y′)(a) 6= ⋆, then we are either in the second or

in the third case of the definition of r′. If we are in
the second case, r′(y′)(a) = ∆ with r(y′) = 〈a,∆〉.
Since ∆ ∈ DY we have D(corr′)(∆) = D(corr)(∆),
and by the definition of fully probabilistic resolution, it
holds that D(corr)(∆) ∈ conv(t(corr(y′))(a)). There-
fore D(corr′)(∆) ∈ conv(t(corr′(y′))(a)). If we are
in the third case, we have r′(y′)(a) = ∆corr′(y′),a,
with ∆corr′(y′),a ∈ t(corr′(y′))(a). By definition of
corr′, D(corr′)(∆corr′(y′),a) = ∆corr′(y′),a. Therefore
D(corr′)(∆corr′(y′),a) ∈ conv(t(corr′(y′))(a)).

We conclude by showing that for all y ∈ Y and for
all w′, probR(y, w

′) ≤ probR′(y, w′). The proof goes
by induction on w′. The case w′ = ǫ is trivial, since
probR(y, ǫ) = 1 = probR′(y, ǫ). For the inductive case,
take w′ = aw′′. Suppose r(y) = 〈a,∆〉. Then, by definition
of r′, r′(y)(a) = ∆, and

probR(y)(aw
′′) =

∑

y′∈supp(∆)

∆(y′) · probR(y
′)(w′′)

≤
∑

y′∈supp(∆)

∆(y′) · probR′(y′)(w′′)

(by IH)

= probR′(y)(aw′′)

Now suppose that r(y) 6= 〈a,∆〉. r(y) = ⋆ then, by defini-
tion of probR, probR(y)(aw

′′) = 0 and there is nothing to
prove.

Hence, probR(y)(w) ≤ probR′(y)(w), with corr(y) =
corr′(y) = x.
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