
Artificial Intelligence 291 (2021) 103428
Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

Evaluating local explanation methods on ground truth ✩

Riccardo Guidotti a,b,∗
a University of Pisa, Largo B. Pontecorvo, Pisa, Italy
b ISTI-CNR, Via G. Moruzzi, Pisa, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 22 November 2019
Received in revised form 26 October 2020
Accepted 7 November 2020
Available online 14 November 2020

Keywords:
Evaluating explanations
Explainable AI
Interpretable models
Open the black box
Local explanation

Evaluating local explanation methods is a difficult task due to the lack of a shared and
universally accepted definition of explanation. In the literature, one of the most common
ways to assess the performance of an explanation method is to measure the fidelity of the
explanation with respect to the classification of a black box model adopted by an Artificial
Intelligent system for making a decision. However, this kind of evaluation only measures
the degree of adherence of the local explainer in reproducing the behavior of the black
box classifier with respect to the final decision. Therefore, the explanation provided by the
local explainer could be different in the content even though it leads to the same decision
of the AI system. In this paper, we propose an approach that allows to measure to which
extent the explanations returned by local explanation methods are correct with respect
to a synthetic ground truth explanation. Indeed, the proposed methodology enables the
generation of synthetic transparent classifiers for which the reason for the decision taken,
i.e., a synthetic ground truth explanation, is available by design. Experimental results show
how the proposed approach allows to easily evaluate local explanations on the ground
truth and to characterize the quality of local explanation methods.
© 2020 The Author. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In the past decade, we have been witnessing the increasing deployment of powerful automated Artificial Intelligence’s
(AI) decision-making systems in settings ranging from pedestrian detection on self-driving cars to evaluation of loan con-
cession in bank systems. While evidently powerful in solving complex tasks, these systems are typically opaque, i.e., they
provide hardly any mechanisms to explore and understand their behavior and the reasons underlying the decisions taken.
The ubiquitous usage of opaque machine learning algorithms in AI systems is leading to the rise of a black box society [1,2].
The benefits of extremely accurate systems come with the price of their opaqueness that on its own leverages numerous
legal, ethical and practical issues. Indeed, this is problematic not only for lack of transparency but also for possible biases
inherited by the AI from collection of artifacts and human prejudices hidden in the training data, which may lead to unfair
or wrong decisions [3]. Well-known examples are the Compas1 and Amazon2 cases where the AI black box models were
taking decisions discriminating ethnic minorities. To prevent such cases, the EU has introduced the General Data Protection

✩ This article belongs to Special Issue: Explainable AI.

* Corresponding author at: University of Pisa, Largo B. Pontecorvo, Pisa, Italy.
E-mail address: riccardo.guidotti@unipi.it.

1 http://www.propublica .org /article /machine -bias -risk-assessments -in -criminal -sentencing.
2 http://www.businessinsider.com /how-algorithms -can -be -racist -2016 -4.
https://doi.org/10.1016/j.artint.2020.103428
0004-3702/© 2020 The Author. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.artint.2020.103428
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artint.2020.103428&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:riccardo.guidotti@unipi.it
http://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
http://www.businessinsider.com/how-algorithms-can-be-racist-2016-4
https://doi.org/10.1016/j.artint.2020.103428
http://creativecommons.org/licenses/by-nc-nd/4.0/

R. Guidotti Artificial Intelligence 291 (2021) 103428
Regulation3 which gives to individuals the right to request “...meaningful information of the logic involved” when automated
decision-making takes place with “legal effects” on individuals [4–6].

As a consequence, nowadays there is high attention in research on methods for explaining AI black box classifiers [7–
9,3,10]. These explanation methods are distinguished as model-agnostic or model-specific if can explain the decision of any
classifier or just of a particular one, and as local or global if can explain the reasons for a single decision, or the overall
logic of a classifier [3]. In particular, due to their recent growth in the literature, in this paper, we focus on local model-
agnostic explanation methods, and because of the crucial and difficult nature of the problem, we point the attention on the
evaluation of the explanation extracted by these methods.

The most used evaluation measure for local explanation methods is the so-called fidelity, i.e., the degree of approximation
with respect to the AI black box that the interpretable surrogate model learned in the neighborhood of the instance to
explain is able to achieve [3,11]. The fidelity is generally measured as the accuracy of the interpretable model with respect
to the black box. However, this kind of evaluation does not take into account the content of the explanation, but only
compares the decision of the black box with the decision provided according to the explanation. This is due to the fact that
the ground truth for explanations is not available. On the other hand, if one is aware of which are the real reasons for which
an AI system takes individual decisions, i.e., the ground truth, then it is possible to judge to which extent the explanations
returned by an explanation method are correct. In this paper, we indicate with the term ground truth explanation the
reasons for which the black box returned a certain outcome for a specific instance. It is fundamental to highlight that
the explanation provided by a local explainer could be not correct, i.e., not similar to the ground truth explanation, even
though it leads to the same decision of the AI system. For instance, if the ground truth explanation for a loan request
is if age ≤ 25 ∧ income > 1500 then deny, and the retrieved explanation is if age ≤ 20 ∧ children > 1 then deny, then the
outcome is the same, while the reasons are only partially in agreement, i.e., the retrieved explanation is not entirely correct.
Paraphrasing Seneca: “Not only how faithful, but also how well you explain is the main thing”. Therefore, the objective of
this work is to propose a way for quantitatively estimating the correctness of local explanations.

In the literature it is recognized that synthetic data has certain advantages over real-world data [12] for evaluating trained
machine learning models adopted by AI systems. Thus, synthetic classifiers generated with a controlled approach can have
advantages in evaluating local explanation methods because synthetic ground truth explanations available from synthetic trans-
parent classifiers can be exploited for evaluating explanation methods. To the best of our knowledge, there are no works
solving the problem of evaluating a local model-agnostic explainer with synthetic ground truth explanations. Therefore, we
overcome existing limitations with the Synthetic ExplaiNablE ClAssifier (seneca) generators. seneca is an array of methods
for generating synthetic transparent classifiers for which the reasons for individual decisions, i.e., the synthetic ground truth
explanations, are available by design. The generated synthetic transparent classifiers allow to measure quantitatively the correctness of
the explanations returned by local explanation methods with respect to synthetic ground truth explanations for tabular data, images
and text. seneca allows to empirically measure to which extent the mimic of a local explanation model follows the same
logic of the machine learning model explained.

Experimental results show how, thanks to seneca generators, it is possible to pursue a systematic evaluation and a
statistically significant comparison of a broad array of local model-agnostic explainers. A massive number of synthetic
explainable classifiers for tabular data, images, and text with different characteristics are generated in a controlled way
such that it is possible to stress out the explainers and understand their strengths and weaknesses.

The practicality of the proposed approach is twofold. First, to the best of our knowledge, it is the only proposal for
evaluating the explanations based on the content of the explanation itself, instead of based on the outcome they lead to.
The evaluation measures made available by seneca can be considered as an “improved fidelity”, not considering only the
outcome but the whole explanation. Second, since it does not exist a standardized way to benchmark local explanation
methods in terms of the content of the explanation, by exploiting seneca would be possible to compare the performance of
local explanation methods with respect to multiple and different transparent classifiers that can be “similar” to the real and
not interpretable one a user could be interested in explaining. This can lead to selecting the best local explanation method.
However, it is worth to underline that, a domain-specific human-based evaluation would be obviously recommended for
an explanation method deployed in a real setting because, since seneca evaluations are calculated on synthetic classifiers
working on synthetic datasets cannot account for domain-specific aspects. In addition, due to the growing proposal of
local explanation methods, seneca can be used for benchmarking and testing novel local explainers compared to existing
ones.

The rest of the paper is organized as follows. In Section 2 we review work proposing the generation of synthetic datasets
in various problem settings. Section 3 recalls basic notions related with local model-agnostic explainers. In Sections 4 and 5
we illustrate the proposed method and evaluation measures, respectively. Section 6 shows a wide experimentation stressing
with seneca state-of-the-art local model-agnostic explainers. Finally, Section 7 summarizes the contribution and proposes
future research directions.

3 https://ec .europa .eu /justice /smedataprotect/.
2

https://ec.europa.eu/justice/smedataprotect/

R. Guidotti Artificial Intelligence 291 (2021) 103428
2. Related work

Although the explanation of machine learning models for AI systems is largely studied and debated, there are no existing
works evaluating local model-agnostic explainers by means of synthetic ground truth explanations.

However, we can observe in the literature a parallel between the issues analyzed in checking the degree of correctness
of an explanation, and those faced in testing accuracy in unsupervised data mining algorithms. In both cases, the main
problem is that the ground truth is missing. With respect to unsupervised algorithms, the solution generally adopted is the
generation of synthetic datasets with a ground truth enclosed. In such a way, the analyzed algorithms can be tested and
stressed by varying the parameters of the synthetic dataset generation. On the other hand, in our case we aim at generating
synthetic transparent classifiers (not dataset) to retrieve synthetic explanation to be used as ground truth.

In [13] is presented an approach for general-purpose clustering based on distribution and transformation to generate
synthetic data for multi-dimensional numerical datasets. Similarly, in [14] are proposed two synthetic generative models to
stress clustering algorithms for the task of location detection in mobility data mining: a generator acting at random, and
a generator following users’ mobility rules inferred from real data. Moving to clustering of transactional data, in [15] it is
designed a synthetic transaction generation process parametric to the number of transactions, items, average transaction
size, clusters, outliers, and degree of overlap among transactions. It is exploited also in [16,17] to compare novel algorithms.
The generation of synthetic ground truth is largely investigated in the field of community detection. In [18] it is proposed an
approach to generate directed and weighted networks with built-in community structure, also considering the possibility
that nodes belong to more communities. In [19], structural communities of complex networks are opposed to ground truth
to find the metadata groups in large networks. In [20] it is presented a methodology for comparing and quantitatively
evaluate how different structural definitions of communities correspond to ground-truth functional communities. In [21] it
is designed a faster alternative to [18] adopting a different quality measure for the evaluation during the generation.

Moreover, since there are some disadvantages in using real-world data (e.g., hand collection, small size, etc.), there
are various other fields of research exploiting synthetic data generation to analyze algorithms performance. In [12] it is
proposed a data generator for the evaluation of supervised and unsupervised methods that produces synthetic data with
guaranteed global and class-specific statistical properties. In [22] it is described a generator of synthetic gene expression
for the analysis of structure learning algorithms. In particular, it creates synthetic transcriptional regulatory networks and
produces simulated gene expression data that approximate experimental data. Finally, synthetic data generation can be
useful for database and software testing. In [23] it is developed an extrapolation system that generates a representative
database given a structure and a scaling rate.

Explanation methods are evaluated with ground truth explanations in [24–26]. However, the synthetic classifiers adopted
in these papers are extremely simple, not customizable nor tunable, i.e., the synthetic classifiers are ad-hoc functions or
rules which are hand-defined and not generated. Therefore, there is a crucial difference between the work presented in this
paper, and the synthetic classifiers adopted in [24–26]. Indeed, while in [24–26], are adopted a priori synthetic classifiers,
in this paper we propose an approach to generate synthetic transparent classifiers.

In line with the motivations of the works presented above, and in order to spread the usage of synthetic classifier
generators, in this paper we propose synthetic transparent classifier generators for testing and comparing local model-
agnostic explanation methods.

3. Setting the stage

In order to understand the motivations and the design of seneca, in the following, we recall the problem definition that
it contributes to analyzing.

A classifier is a function f : X (m) → Y mapping instances (tuples) x from a feature space X (m) with m features to a
decision y in a target space Y of size l = |Y|, i.e., y can assume l different labels.4 We write f (x) = y to denote the
decision y of f , and f (X) = Y as a shorthand for { f (x) | x ∈ X} = Y . An instance x consists of a set of m attribute-value
pairs (ai, vi), where ai is a feature5 (or attribute) and vi is a value from the domain of ai .

We can distinguish between opaque and transparent classification functions [11]. In particular, we denote with b a black
box classifier used by an AI system, whose internals for returning the decision b(x) are either unknown to the observer or
they are known but uninterpretable by humans. Examples include neural networks, SVMs, ensemble classifiers, etc [27]. On
the other hand, we denote with c an interpretable (comprehensible) classifier, whose internal processing yielding a decision
c(x) can be given an interpretation understandable by a human. Examples include rule-based classifiers, decision trees,
decision sets, and linear models [27].

An important problem that is faced nowadays in the literature is the black box outcome explanation problem [3,8]. Given
a black box b and an instance x, the black box outcome explanation problem consists in providing an explanation e ∈ E
belonging to a human-interpretable domain E for the decision b(x) = y. The problem is generally addressed by learning

4 If l = 2 we are dealing with a binary problem, with l > 2 with a multiclass problem. Without losing in generality, in this paper we assume l = 2.
5 The domain of a feature can be continuous or categorical. A categorical feature can be turned into a set of continuous features using techniques like

one-hot encoding [27]. Without loosing in generality, in the following we consider only continuous features.
3

R. Guidotti Artificial Intelligence 291 (2021) 103428
Fig. 1. Left: Local explanation method that takes as input an instance x an AI using a black box function b and returns the explanation e. Right: The seneca

generator returns a synthetic transparent classification function s such that the explanation e returned by the local explanation method can be compared
with the ground truth explanation ̃e.

an interpretable surrogate model c that reproduces and accurately mimes the local behavior of b. An explanation e of the
decision is then derived from c. Fig. 1 (left) illustrates this explanation process.

Given an instance x for which an explanation is required for the decision y = b(x), in the literature [3] we can distin-
guish two forms of human-interpretable domains E and consequently two forms of local explanations: (i) feature importance
explanations, and (ii) rule-based explanations.

A feature importance explanation is modeled as a vector v = {v1, v2, . . . , vm} where the value vi ∈ v is the importance
of the ith feature [3,28,29]. Every value vi is informative in two ways: the sign and the magnitude. If vi > 0, it means that
feature contributes positively to the get the outcome y otherwise, it contributes negatively. With respect to the magnitude,
the greater is the value of |vi |, the greater its contribution. A value of vi = 0.0 means no contribution from the ith feature
for the decision of x. The most well-known model-agnostic local explanation methods returning features importance as
explanation are lime [28], maple [30] and shap [31]. An example of a feature based explanation is e = {age = 0.8, income =
0.0, children = −0.2}, y = deny, meaning that age is the most important feature for the decision deny for a load request with
a positive contribution, children has a small negative contribution, while income is not affecting the outcome. For images
and texts, the features correspond to pixels, or words, respectively [28].

lime [28] randomly generates a local neighborhood around the instance x for which an explanation is required. Then, it
trains a linear model c (a Lasso regression classifier) on the neighborhood annotated with the AI black box b and returns
the feature importance vector v as an explanation. maple [30] exploits a random forest for the selection of the features
used by a local linear model c (as a Ridge regression classifier) in the randomly generated neighborhood of x. shap [31]
tries to overcomes lime limitations’ exploiting the Shapely values of a conditional expectation function of the black box by
providing a unique additive feature importance. Another proposal is presented in [25]: the explainer fits a local subspace
neighborhood around the instance to explain using the local intrinsic dimensionality, then generates neighbors in the local
subspace and projects them back to the original space. The strength of these approaches lies in the fact that, besides tabular
data, they can be employed to explain black box classifiers of AI systems working on text and images [3]. In that cases, the
features importance turns generally into word importance and to pixel importance (e.g., in forms of saliency maps [29,32–34]),
for text and images respectively.

Besides features importance based explainers, in the literature, we can find rule-based explainers. A rule based explanation
is a decision rule r of the form r = p → y, the decision y is the consequence of the rule, while the premise p is a boolean
condition on feature values [3,35,36]. In particular, p is a conjunction of split conditions of the form ai∈[v(l)

i , v(u)
i], where ai

is a feature and v(l)
i , v(u)

i are lower and upper bound values in the domain of ai extended with ±∞.6 Given r as explanation
for x, means that x satisfies r, or r covers x, i.e., the boolean condition p is evaluated true for x. An example of a rule-based
explanation is e = {{age ≤ 25, income > 1500} → deny}.

Well-known rule-based model-agnostic local explanation methods are anchor [36], brl [37], and lore [35]. anchor [36]
uses a bandit algorithm that randomly constructs the “anchor rules” with the highest coverage and respecting a precision
threshold. lore [35] adopts a genetic procedure to generate the local neighborhood and learns decision and counterfactual
rules from that neighborhood using a decision tree as local interpretable classifier c. The brl method [37] given a data
distribution, extracts a sample exploiting the distribution containing the instance to explain. Then it labels this set using
the black box and trains on them a Bayesian rule list c used to explain the instance. Rule-based local explainers are less
used than features importance explainers because they are not effective for images and text. However, for tabular data, an
explanation given as a rule r is generally much more interpretable than an explanation given as a vector v of numbers [11].

6 Using ±∞ we can model with a single notation typical univariate split conditions, such as equality (a = v as a ∈ [v, v]), upper bounds (a ≤ v as
a ∈ [−∞, v]), strict lower bounds (a > v as a ∈ [v + ε, ∞] for a sufficiently small ε).
4

R. Guidotti Artificial Intelligence 291 (2021) 103428
4. Synthetic explainable classifier generators

In this section we present the Synthetic ExplaiNablE ClAssifier (seneca) generators, an array of methods for generating
synthetic transparent classifiers for tabular data, images, and text for which the explanations of individual decisions are
available by design. Fig. 1 (right) shows that, thanks to a seneca generator, it is possible to assess quantitatively the ex-
planation power of a local explanation method returning an explanation e because, for a given instance x, the generated
synthetic transparent classifier s makes available a ground truth explanation ̃e. A seneca generator has no input and pro-
duces in output a synthetic transparent classifier s. Such a transparent classifier takes as input an instance x and returns the
outcome y (decision) for x together with the explanation ̃e for the outcome y. A local explanation method takes as input
an instance x, a black box model b, and retrieves the reasons for the outcome y. seneca allows to estimate to which extent
the retrieved explanation e is similar to the ground truth explanation ̃e. We underline that the nature of the explanations,
both the ground truth ̃e and the one retrieved by the explanation method e, can vary depending on the type of data under
analysis, and by the type of classifier. For instance, if the data is tabular (i.e., relational) and the classifier is rule-based, then
the nature of the explanations ẽ and e is that of logical rules with conditions on the features characterizing the data. As
another example, if we are dealing with text and the classification is based on the positive and negative sentiment of the
words expressed as weights, then the nature of the explanations ẽ and e can be a vector containing the weights for the
words responsible for the classification. Therefore, with the ground truth explanation ẽ revealing the real reasons for the
classification of an instance, it is possible to judge to which extent the explanation e is “correct”. In the most naive setting
e is correct if e is equal to ̃e, otherwise it is not correct. However, since retrieving the exact explanation is quite challenging
and the current state-of-the-art is rarely able to achieve such a perfect match, in this paper we define an array of evaluation
measures between two explanations with a co-domain of “correctness” in the range [0, 1]. In summary, the degree of cor-
rectness of an explanation e indicates how much it matches the ground truth explanation ̃e, i.e., the real reasons for which
a classifier takes a decision y. seneca allows generating synthetic classifiers s from which is possible to extract by design
the ground truth explanations that enable this measurement.

In line with the state-of-the-art in terms of local model-agnostic explainers, we develop four different generators de-
pending on the nature of the explanations, i.e., type of data and on the type of explanation:

• seneca-rb: a generator of synthetic rule-based classifiers on tabular data returning rules as synthetic ground truth
explanations,

• seneca-rc: a generator of synthetic regression model on tabular data returning features importance as synthetic ground
truth explanations,

• seneca-img: a generator of synthetic image classifiers returning pixels importance as synthetic ground truth explanations,
• seneca-txt: a generator of synthetic text classifiers returning words importance as synthetic ground truth explanations.

We highlight that seneca is not a synthetic dataset generator, and is not an explanation method. seneca is a generator
of synthetic transparent classifiers from which it is possible to extract local explanations. These explanations can be used
as ground truth for evaluating local explanation methods with respect to the explanation’s content. To this aim, seneca

generators do exploits and produce synthetic data. However, we stress the point that seneca generators is not a family of
synthetic data generator, and it is not the generated data that is used as ground truth but the explanations extracted from
the synthetic transparent classifiers. Furthermore, we underline that the four seneca generators allow experimenting with
the vast majority of local explainers as they cover almost all the existing types of explanations and data addressed by the
state-of-the-art [3]. There are no restrictions in applying seneca for any type of dataset in the form of tabular data, images,
and text. We leave as future research the development of seneca generators for explainers on black box classifiers working
on sequences, time series, and graphs.

In the following, we describe the details of each generator.

4.1. Rule-based classifier generator

The purpose of the seneca-rb generator is to produce a rule-based classifier s from which, given an instance x, it is
possible to extract the rule r responsible for the classification of x by s. As rule-based classifier s, we adopt a decision
tree classifier [39] since it is simple, effective and guarantees that any instance x is covered only by one rule. The method
seneca-rb, described in Algorithm 1, starts from the generation of a binary dataset of m features (line 1) by allocating
for each class one or more normally-distributed clusters of points using the procedure7 described in [38] implemented by
makeClassificationData. It can be summarized as follows:

1. Each of the two classes is composed by a set of Gaussian clusters. N(0,1) is used to draw for each cluster n examples of
independent features.

7 http://clopinet .com /isabelle /Projects /NIPS2003 /Slides /NIPS2003 -Datasets .pdf.
5

http://clopinet.com/isabelle/Projects/NIPS2003/Slides/NIPS2003-Datasets.pdf

R. Guidotti Artificial Intelligence 291 (2021) 103428
Algorithm 1: seneca-rb(m, α, β).
Input : m - number of features, α - random scaling factor,

β - data generation sampling
Output : s - synthetic rule-based classifier

1 X, y ← makeClassificationData(n, m); // make dataset using [38]
2 X ← addRandomness(X, α); // add variability
3 knn ← trainKNN(X,y,k = 3); // define boundaries
4 X ′ ← sampleData(X, β); // generate data
5 y′ ← applyKNN(X ′, knn); // apply boundaries
6 dt ← trainDecionTree(X′,y′); // define global rules

7 function clf(x):
8 return applyDecisionTree(x, dt);

9 return s ← clf ;

Fig. 2. (Left). Original classification data X ′, y′ . (Center). Dataset X ′′, y′ and decision boundary used for training the decision tree. (Right). Same as (center)
if lines 2-5 would have been removed from Algorithm 1. Best view in color. (For interpretation of the colors in the figure(s), the reader is referred to the
web version of this article.)

2. Covariance is added by multiplying by a random matrix, with uniformly distributed random numbers in [−1, 1].
3. The clusters are then placed at random on the vertices of a hypercube in a m dimensional space.

Even though the makeClassificationData procedure would allow us to generate redundant or uninformative features, we
only generate informative features and, as discussed in the following, we add uninformative features when performing
experiments. We do not train the decision tree directly on the dataset 〈X, y〉 because this kind of dataset is generally
quite simple, resulting in trivial decision trees consisting of few orthogonal rules separating the decision space. Therefore,
since our objective is to stress local model-agnostic classifiers, we add further steps to increase the complexity of the
classification dataset as follows. First, we add an α degree of randomness to X , augmenting the variability among the
instances (line 2). Then, we train a k-NN classifier [27] with k = 3 to define the decision borders that the decision tree
would have to discriminate (line 3). For each feature, we sample a dataset X ′ within the boundaries of X with a sampling
rate of β (line 4).8 We apply k-NN to classify X ′ and to obtain decisions y′ (line 5). This dataset is used to train and generate
the decision tree classifier dt (line 6).

Fig. 2 shows the benefits introduced by the seneca-rb generator with an example in m = 2 features. The plot on the
left depicts the classification data 〈X, y〉, the second plot reports the dataset X ′ and decision boundary y′ provided as
training for the decision tree, the third plot shows how the same information of the second plot if lines 2-5 would have
been removed from Algorithm 1. It is clear how these lines introduce complexity to the decision boundary with the various
turning points that allow the tree to pass from 79 decision rules to 214. This complexity allows to explore the effectiveness
of the local explainer in finding the decision rule using the right features.

Given the decision tree dt, the synthetic classifier s classifies an instance x (line 8) by following the rule r on dt that
covers x by checking the satisfied conditions from the root of s to a decision leaf which provides the outcome y. The rule r
corresponds to the explanation e associated with the classification y = s(x).

For instance, ̃e = r = {{age ≤ 25, income > 1500} → deny}.

8 In the experiments we set α = 10 and β = 0.1. These values are selected as consequence of a sensitivity analysis in which we vary α ∈ [1, 20], β ∈
[0.1, 0.9] with steps of 1 and 0.1, respectively. For each combination, we repeated 100 runs, and we observed the probability distributions of knn and dt
internally generated and trained. The standard deviations of the average probabilities for both models is less than 0.001 for α and less than 0.005 for β . On
the other hand, for α the null hypothesis of the Friedman test [40] is rejected for p−value < 0.01, while for β is not rejected for p−value < 0.05, in both
cases for knn and dt. Hence, β does not impact the internal models of seneca-rb, while α slightly affects their behavior, making the decision boundary of
s more or less complex.
6

R. Guidotti Artificial Intelligence 291 (2021) 103428
Algorithm 2: seneca-rc(m, p).
Input : m - number of features, p - binary operator prob
Output : s - synthetic linear regression classifier

1 f ← 〈〉; // // create random exception
2 for i ∈ [0, . . . , m] do
3 if rnd() < p then
4 j ← selectFeature([0, . . . , m] − i); // randomly select feature
5 op ← selectBinaryOperator(); // randomly select operator
6 f ← f + op(xi , x j); // add operator to expression
7 else
8 op ← selectUnaryOperator(); // randomly select operator
9 f ← f + op(xi); // add operator to expression

10 function clf(x):
11 return evaluate(x, f);

12 return s ← clf ;

We perform experiments with seneca-rb by generating random instances X ∈X (m) with m features in the same domain
of the dataset X ′ on which s is trained. Experiments can be made more complex if u uninformative random features are
added to X , i.e., X ∈ X (m+u) . In this case, the synthetic rule-based classifier s and the corresponding explanations would
work only on the m real features, while the local model-agnostic explainer would consider all the m + u features making
harder the explanation task.

4.2. Linear classification model generator

The purpose of seneca-rc is to generate a linear regression classifier s from which, given an instance x, is possible to
extract the vector v of feature importance expressing the weight that each feature has for the decision s(x).

As linear regression classifier s, we generate a function f using the method seneca-rc described in Algorithm 2. The
generation procedure is a simplification of the approach described in [41]. For each one of the m feature (loop 2-9) the
method randomly decides9 if a binary or unary operator is applied to the ith feature. In the first case, the second feature
j is selected (line 4). Then a binary operator is draw uniformly at random from [x1 + x2, x1 − x2, x1 ∗ x2, x1/x2, xx2

1] and
added to the function with the two selected features (lines 5-6). In the second case a unary operator is draw uniformly at
random from [x, −x, sqrt(x), log(x), sign(x), sin(x), cos(x), tan(x), sinh(x), cosh(x), tanh(x), asin(x), acos(x), atan(x)] and added
to the function with the selected feature (lines 8-9). The final function f in a simplified form constitutes the classifier s.
Examples of generated functions are:

• x3
0 − 2x2

1 + x2
• sin(x1) + x1/x0 + sign(x2)

• −x0 + x2 + x3 ∗ x5 − x4 + x4/x5 + tanh(x4) + x3/x1

Given an instance x ∈R(m) , the outcome of s consists in evaluating10 the function f in s with the values of x (line 11).
Since we aim for a local explanation in form of a linear model, as assumed by local model-agnostic explainers returning
features importance as explanations [25], the explanation e for x consist in the gradient11 (represented as a weight vector
v) of the closest point x∗ on the classification boundary of s to x. More formally,

v = 〈 f ′
xi
(x∗

i)〉 i = 1 . . .m

where x∗ is the closest point of x to the function f = 0. For instance, the feature importance explanation for the first
function used as regression s in the list above is v = 〈3(x∗

0)
2, −4x∗

1, 1〉, i.e., if x = {2, 1, 5}, then the ground truth explanation
for x is ̃e = v = {x0 = 12, x1 = −8, x2 = 1}.

Similarly to seneca-rb, we experiment with seneca-rc by generating random instances X ∈ X (m) and also generating
random instances X ∈X (m+u) with uninformative random features.

4.3. Image classifier generator

The purpose of the seneca-img generator is to return an image classifier s from which, given an instance x (an image),
is possible to extract the vector v of feature importance expressing the weight that each feature (pixel in this case) has for

9 We set the binary operator probability p to 0.7 in our experiments.
10 In order to ensure comparable results, we normalize between 0.0 and 1.0 the values returned by s, i.e., the co-domain of the function f . We accomplish

this point by generating uniformly at random a sample of 1000 instances x ∈R(m) , evaluating f (x) and normalizing the resulting values. To do that, we
force the classifier s to return 0.5 when x takes value outside from the domain of the function f .
11 We force f ′

x (x∗
i) to return 0.0 if f ′

x is not defined on x∗
i .
i i

7

R. Guidotti Artificial Intelligence 291 (2021) 103428
Fig. 3. (Left). Example of image. (Center). Pattern randomly generated. (Right). Saliency map explaining the classifier outcome in recognizing the pattern.

Algorithm 3: seneca-txt(X, m, p).
Input : m - number of meaningful words, X - training set,

p - probability of positive word
Output : s - synthetic text classifier

1 X ← preprocessing(X); // clean data
2 W ← selectWords(X, m); // randomly select m words

3 Ŵ ← 〈〉; // initialize vector of weights
4 for wi ∈ W do // for each word selected
5 v ← rnd(); // draw random number in [0,1)
6 if rnd() < p then Ŵ i ← +v; // add positive weight
7 else Ŵ i ← −v; // add negative weight
8 Function clf(x):
9 x′ ← preprocessing(x); // clean data

10 v ← 0; // initialize final value
11 for xi ∈ x do // for each word in x
12 if xi ∈ Ŵ then v ← v + Ŵ i ; // add word weight
13 return v;

14 return clf ;

the classification of x by s. We restrict here to an image classifier for simple images of small size and without the presence
of noise. However, it can be made arbitrarily more complex to increase the difficulty of the explanation problem. Let h × w
pixels be the size of the images considered by the classifier. We assume that each image is segmented into a grid with cells
of h′ × w ′ pixels such that h′ divides h and w ′ divides w . We consider images with a black background12 and random cells
colored in cyan, green or blue.13 An example is reported in Fig. 3-(left). We define a pattern as an image with ĥ × ŵ pixels
that the classifier has to recognize (ĥ divides h and ŵ divides w). An example of pattern is reported in Fig. 3-(center).

Given an image x and an image classifier s able to recognize a certain pattern a, the outcome of the classifier depends on
the presence of the pattern a in the image x. The classifier s can recognize the presence/absence of a with a linear scan of
the pixels in x with a window of the same dimension of a. In order for the pattern a to be recognized, both the shape and
colors on the image must match with those of the pattern.14 The local explanation e of s for recognizing a in x corresponds
to the importance that each pixel has in revealing the presence of the pattern. Therefore, it can be modeled as a vector v
of features (i.e., pixels) importance. The values vi in v are equal to one if the pixel is part of the pattern, zero otherwise.15

An example of feature importance vector visualized as a saliency map is reported in Fig. 3-(right).
The experiments with seneca-img can be carried on as follows. First, it is fixed the dimensions of the pattern. Then, it

is generated s, and a dataset X of random images. Finally, the presence of the pattern recognized by s is guaranteed by
randomly drawing it on half of the images of X .

4.4. Text classifier generator

The purpose of the seneca-txt generator is to return a text classifier s from which, given an instance x (text), is possible
to extract the vector v of feature importance expressing the weight that each feature (word in this case) has for the
classification of x by s. We restrict here to a simple text classifier using the positive/negative weights of words to classify

12 All the three color channels turned to zero.
13 On of the three color channels turned to one and the other two to zero.
14 If present, black cells in the contour of the pattern contribute to the recognition and must be present also in the image for guaranteeing the match.
15 If an image x does not contain the pattern then vi = 0 for every pixel.
8

R. Guidotti Artificial Intelligence 291 (2021) 103428
a text as positive or negative. However, like for the case of images, the classifier can be made arbitrarily more complex
using n-grams (sets of words), or more semantically complex patterns. In the following, we provide the details of the text
classifier generator described in Algorithm 3. Given a textual dataset X and the number of words m that the classifier has
to use to perform the classification, seneca-txt works as follows. First, it cleans X (line 1, preprocessing) by removing stop-
words, numbers and punctuation and separating every instance x ∈ X into a list of words [42]. Then, it selects uniformly
at random a set W of m words, among all the different words in X (line 2). For each word wi ∈ W (loop in lines 4-7),
it randomly assigns a positive or negative weight v drawn uniformly at random in [0, 1] to that word and stores it in the
vector of weights Ŵ . The synthetic text classifier s is defined (lines 8-13) using the weights Ŵ .

Given a text x, the synthetic text classifier s, after cleaning x (line 9), assigns a positive or negative value to x depending
on the words it contains (lines 11-12) with respect to the vector of weights Ŵ . The local explanation e, in this case,
corresponds to a vector v where, for each word contained in x, vi is zero if the wi word is not used by the classifier
(i.e., is not in Ŵ); otherwise it takes the value Ŵ i . An example is reported in the following. Given the weights used by
the classifier as Ŵ = 〈(dog, 0.4), (f rog, −0.3), (sun, 0.6), (green, −0.7), (jumps, 0.5)〉 and the text x = “The quick brown fox
jumps over the lazy dog”, s returns the value 0.9 classifying the instance as positive. The ground truth explanation consists of
ẽ = v = {dog = 0.4, frog = 0.0, sun = 0.0, green = 0.0, jumps = 0.5}.

The experiments with seneca-txt are performed as follows. Given a textual data X , X is split into training and test. The
number of words to use m is fixed. Then, the classifier s is generated using the training set and used to classify the test set.

4.5. Discussion on synthetic explainable classifier generators

In this section, we discuss the strengths and weaknesses of seneca generators. seneca generators exploit synthetic random
data and random weights to provide multiple and different transparent classifiers to deeply stress local explanation methods.
An alternative approach to synthetic datasets would be to build transparent classifiers on real dataset. However, this kind
of approach would tie the transparent classifier to a specific dataset without any possibility to play with the number of
features or with the complexity of the explanation. On the other hand, these characteristics are allowed by the transparent
classifiers generated by seneca and are fundamental for stressing local explainers. In addition, testing the content of an
explanation generated by a local explanation method only using real data would be limited by the availability of the real
datasets and to the effectiveness of the transparent classifiers built on it. Moreover, a transparent classifier providing ground
truth explanations based on real data can also be quite challenging to design concerning images (where we would need
annotated images with relevant superpixels), and text (where we would need selected words together with their importance
for the outcome). seneca overcomes these limitations at the price of using randomness and synthetic data for building the
transparent classifiers allowing access to ground truth explanations.

Another aspect to discuss is related to the fact that dimensionality can be a problem for classification models of AI
systems. However, seneca aims is to generate transparent classifiers having control of the data used to generate it. Therefore,
the user can tune the dimensionality and stress the dimensionality aspect for the local explanation methods, as shown in
the experimental section. As a consequence, seneca does not suffer from large spaces or large models, but can help in
testing the robustness of local explainers when explanations for classifiers dealing with large spaces are generated.

Finally, we point out that we could have formalized a unique notion of explanation and, as a consequence, a unique
seneca generator. However, we preferred to keep the different problems slightly separated even though with a similar
formulation in order to be adherent with the state-of-the-art where each explanation method returns a slightly different
type of explanation according to both the data type and problem solved.

5. Explanation evaluation

We measure the quality of an explanation e returned by a local model-agnostic explainer by observing its closeness with
the true explanation ẽ returned by a synthetic transparent classifier, i.e., the ground truth. Given e and ẽ, we adopts the
following metrics [25]. If e and ̃e are feature importance vectors, we measure the quality of e with respect of ̃e using the
cosine similarity of the two vectors:

q(e, ẽ) = cosine(e, ẽ) = ‖e · ẽ‖
‖e‖‖̃e‖

where e · ẽ is the dot product, and ‖e‖ calculates the L2-norm of e. The closer q(e, ̃e) is to 1, the higher the quality of e.
For decision rules, we model the explanation quality in two fashions. For the first metric, each rule is modeled as a

vector expressing the presence/absence (one/zero) of a feature in the rule for each feature in the observed domain, and
we measure the correct features presence in the explanation. For instance, if the domain consists of three features, given
r = {x0 > 0.3 ∧ x1 ≤ 0.7 ∧ x1 > 0.2} → 1, then the explanation is turned into e = {(x0, 1), (x1, 1), (x2, 0)}. Hence, we measure
the quality of rule explanations e regarding features correctness with respect to ̃e using the f1-score:

q(e, ẽ) = f1−score(e, ẽ) = 2
recall(e, ẽ) · precision(e, ẽ)
recall(e, ẽ) + precision(e, ẽ)

9

R. Guidotti Artificial Intelligence 291 (2021) 103428
where the recall(e, ̃e) indicates how many features retrieved by e are truly important in ̃e, and the precision(e, ̃e) indicates
how many truly important features of ̃e are correctly identified by e.

We highlight that the f1-score can also be used for measuring the quality of feature importance explanations by turning
explanation vectors into binary vectors with zero if a feature has magnitude equals to zero, and one otherwise.

We name the second evaluation measure for rules complete rule quality. Every rule is turned into a vector where
for each feature ai in the observed domain are reported the values of the lower and upper bounds v(l)

i , v(u)
i . With re-

spect to the previous example for r = {x0 > 0.3 ∧ x1 ≤ 0.7 ∧ x1 > 0.2} → 1, for the complete rule quality we have
e = {(x(u)

0 , ∞), (x(l)
0 , 0.3), (x(u)

1 , 0.7), (x(l)
1 , 0.2), (x(u)

2 , ∞), (x(l)
2 , −∞), }. Thus, inspired by k-mode algorithm [43], we measure

the quality of e with respect to ̃e as:

q(e, ẽ) = 1

N ∞

|e|∑
i=1

δε(ei, ẽi)

where

δε(ei, ẽi) =
{

1 if |ei − ẽi | ≤ ε ∧ |ei | = ∞ ∧ |̃ei | = ∞,

0 otherwise

ε is the similarity threshold, and N ∞ is the number of lower and upper bounds which are different from ∞ and −∞ in
both e and ̃e.16 The more similar are two rules considering the thresholds of the upper and lower bounds, the higher is the
quality. In the experiments, we report results using cosine similarity for explainers returning features importance on tabular
data, images, and text; f1-score for explainers returning rules on tabular data and text; and complete rule quality17 for rules
on tabular data.

Concerning the definition of evaluation measures for explanation, it is worth to remark that in the literature there is not
a shared definition of explanation. Consequently, there is no agreement on how to evaluate an explanation. Probably the
best way to evaluate an explanation would be through a real experiment involving humans. However, since this is generally
not possible, we propose seneca. seneca produces transparent synthetic classifiers that return ground truth explanations
comparable with those of the local explanation methods in the state-of-the-art. Therefore, by construction, ground truth
explanations returned by seneca’s classifiers have the same structural form of explanations returned by existing local expla-
nation methods. As a consequence, the quality of an explanation can be evaluated using syntactical measures considering
the presence/absence of features, weights of the features, features range, etc. In particular, we adopt the metrics defined
above. Obviously, this kind of evaluation could be not generic enough, but it is parametric to future ways for evaluating the
quality of an explanation with respect to its content. Indeed, the strength of the results presented in the following section
lies in the context in which the experimentation is run and helps in reducing the very large spectrum of possible explana-
tions and explanation methods. We highlight again that our proposal does not depend on a specific evaluation measure, but
it focuses on the generation of synthetic transparent classifiers providing the ground truth for explanation evaluation.

6. Experiments

In this section, we employ seneca generators for producing synthetic explainable classifiers. The objective is to evaluate,
with massive experimentation involving various classifiers, the explanations returned by the following local model-agnostic
explainers: lime [28], maple [30], shap [31], anchor [36], brl [37] (as implemented in [44]) and lore [35]. We show how
thanks to seneca generators, it is possible to achieve an effective and statistically significant evaluation of these local ex-
planation methods.18 Besides evaluating the performance of local explanation methods, another application of seneca could
be to study to which extent interpretable classifiers [3] can recover local explanations. However, we remark that seneca

is meant to stress the behavior of local explanation methods, while a global interpretable classifier could not successfully
address the task of retrieving a local explanation as it is not designed to solve it.

6.1. Experiments on tabular data

Using seneca-rb and seneca-rc, we study the behavior of the selected local model-agnostic explainers on tabular data.
We differentiate the synthetic classifiers by changing the dimension of the instances X . In particular, we vary the number
of (informative) features m, and the number of uninformative features u. The total number of features m + u varies over
{2, 4, 8, 16, 32, 64, 128} and, for a fixed m + u we set m < min{32, m + u}. We generate 1000 rule-based classifiers and 1000
linear classifiers. For each synthetic classifier, we generate and explain 1000 instances.

16 In this way, like for the Jaccard coefficient [27], the similarity is based only on the presence of a feature in a rule, and do not account for absence.
17 We use ε = 0.01 in our experiments.
18 The source code of seneca and details of the initialization of the explainers in the various experiments are available at https://github .com /riccotti /

SyntheticExplanationGenerator. lime https://github .com /marcotcr /lime, maple https://github .com /GDPlumb /MAPLE, shap https://github .com /slundberg /shap,
anchor https://github .com /marcotcr /anchor, brl https://github .com /rulematrix /rule -matrix -py, lore https://github .com /riccotti /LORE.
10

https://github.com/riccotti/SyntheticExplanationGenerator
https://github.com/riccotti/SyntheticExplanationGenerator
https://github.com/marcotcr/lime
https://github.com/GDPlumb/MAPLE
https://github.com/slundberg/shap
https://github.com/marcotcr/anchor
https://github.com/rulematrix/rule-matrix-py
https://github.com/riccotti/LORE

R. Guidotti Artificial Intelligence 291 (2021) 103428
Fig. 4. Quality of rule-based explanations evaluated with f1-score (left) and complete rule quality (center), and feature importance explanations evaluated
with cosine similarity (right) on tabular data varying the number of features m used by the classifiers generated with seneca-rb and seneca-rc, respectively.

Table 1
Quality of explanations for values in Fig. 4 up to m + u = 512 expressed as f1-score (left), complete rule (center), and
cosine similarity (right).

f1 cplt cs
m anchor lore brl anchor lore brl lime shap maple

2 .90 ± .1 .96 ± .1 .90 ± .1 .09 ± .2 .65 ± .36 .02 ± .1 .48 ± .4 .38 ± .4 .33 ± .4
4 .77 ± .1 .92 ± .1 .77 ± .1 .14 ± .2 .55 ± .30 .07 ± .2 .40 ± .3 .36 ± .3 .25 ± .3
8 .68 ± .2 .87 ± .1 .59 ± .4 .07 ± .1 .43 ± .3 .07 ± .3 .29 ± .3 .26 ± .3 .23 ± .3
16 .41 ± .2 .42 ± .2 .20 ± .3 .06 ± .1 .34 ± .3 .10 ± .3 .25 ± .2 .18 ± .2 .12 ± .2
32 .26 ± .2 .27 ± .2 .10 ± .3 .03 ± .1 .25 ± .2 .05 ± .2 .24 ± .2 .13 ± .2 .13 ± .2
64 .18 ± .2 .21 ± .2 .09 ± .2 .06 ± .1 .22 ± .2 .03 ± .1 .22 ± .2 .24 ± .3 .12 ± .2
128 .16 ± .3 .19 ± .3 .07 ± .3 .25 ± .4 .34 ± .4 .30 ± .4 .19 ± .2 .19 ± .32 .11 ± .2
256 .15 ± .2 .17 ± .2 .05 ± .2 .05 ± .1 .40 ± .3 .11 ± .2 .16 ± .2 .26 ± .3 .11 ± .3
512 .13 ± .2 .16 ± .2 .04 ± .3 .01 ± .1 .22 ± .3 .03 ± .1 .13 ± .3 .27 ± .3 .10 ± .4

Fig. 4 reports the quality of rule-based explanations evaluated with f1-score (left) and complete rule quality (center),
and feature importance explanations evaluated with cosine similarity (right) on tabular data varying the number of features
m +u ≤ 64 (also considering a part of uninformative features u) used by classifiers generated with seneca-rb and seneca-rc,
respectively. Every point is the average quality among various instances and classifiers (the higher, the better). The vertical
bar represents the standard deviation of the quality (the smaller, the better). We add a small misalignment of the vertical
bars for the sake of readability. Table 1 reports the values of the lines in Fig. 4 plus explanation quality up to m + u = 512.

With respect to the f1-score quality anchor and lore achieve comparable performance (both in terms of mean and
standard deviation) and with a similar decrease when the number of features m + u increases for the presence of the
features in the rules. lore slightly performs better than anchor and brl when m + u ≤ 4. Then, for m + u ≥ 16, the
performance of brl are significantly lower than those of the others. A weakness of brl is that it is not able to return
an explanation within sixty seconds when m + u > 6, therefore we do not report its performance. lore performs better
than anchor when m + u ≤ 8. After this point they maintains comparable f1-score quality with lore having slightly higher
quality at the price of a slightly lower stability. On the other hand, with respect to complete rule quality, Fig. 4 (center), lore

markedly outperforms both anchor and brl independently from the number of features. This implies that despite anchor

is comparable to lore in terms of the features detected for composing a rule-based explanation, the upper and lower bound
identified by lore are much more accurate than those of anchor. The markedly better performance of lore with respect
to anchor and brl in terms of complete rule quality are probably due to the interpretable surrogate model internally
adopted for finding the explanation rule. anchor builds a unique rule trying to identify fundamental conditions focusing on
coverage and precision. However, perhaps this induces a too restricted set of conditions with a unique perspective for the
rule searched. brl builds a Bayesian rules list and selects the most promising rule according to the probabilities detected.
Inaccurate probabilities due to the noise and the number of features can negatively impact on the construction of the
rule lists and on the final selection. Finally, lore adopts a decision tree which aims at covering the overall local decision
boundary and also find counter-factual explanations to understand the factual reasons. This double objective in search of
the explanation can help lore in finding the most correct explanation in terms of conditions in the rule.

On the other hand, with respect to explainers based on feature importance, the three approaches have comparable
performance with lime performing better than the others when m + u < 16, and shap when m + u ≥ 64. shap is also the
explainer with the lowest deviation among the explanation qualities. In addition, when the number of features m + u grows,
shap, with alternating results, shows the best performance. maple explanation qualities are always shallow, even though
when the number of features is low and therefore should be easier to retrieve the correct explanation. We highlight how
the explanation quality measured with cosine similarity is lower than the one measured with f1-score. This happens because
the evaluation through cosine similarity makes the explanation task more difficult since not only the presence/absence of a
feature is considered, but also its local importance. Finally, we highlight that all the explainers have not good performance
(with explanation quality around 0.2) when m + u ≤ 16.

In Fig. 5, given the total number of features m + u, we show the effect of varying the number of informative features
m on the quality of rule-based explainers evaluated with f1-score (top) and complete rule (center), and on the quality of
11

R. Guidotti Artificial Intelligence 291 (2021) 103428
Fig. 5. Quality of rule-based explanations evaluated with f1 (top) and complete rule (center), and feature importance explanation evaluated with cosine
similarity (bottom) on tabular data varying the number of features m given the total number of features m + u used by the transparent classifiers generated
with seneca-rb and seneca-rc.

explainers based on feature importance evaluated with cosine similarity (bottom) on tabular data. The higher m, the higher
is the correspondence between all the features and the informative features. With respect to rule-based explainers (Fig. 5
(top) and (center)), when m + u = 8, i.e., 1st plot, there is not a consistent variation on the performance when varying
m: brl and anchor are the worst explainers for f1 and cplt, respectively. When m + u = 16, i.e., 2nd plot, we observe a
drop in the performance when 6 ≤ m ≤ 12 for the f1. It means that, when there are few or many informative features
out of 16, the explainers are able to identify them, while for cases in between they fail. The same pattern appears for
m + u ≥ 32, i.e., 3rd plot,19 when m = 2. It means that the explainers fail to understand the important features among the
available ones, whether they are informative or uninformative. For cplt we do not observe the same variations as for f1,
because lore explanations’ quality remains stably higher varying m for both m + u = 16 and m + u = 32. On the other
hand, with respect to explainers returning features importance (Fig. 5-(bottom)), we observe in every plot that a decrease in
the number of uninformative features causes a decrease of the quality. It means that the linear explainers can capture the
correct coefficient of features only when there are a few important features. This appears to be the main limitation for all
the explainers with respect to tabular data. Finally, we highlight that in every plot, there are no changes in the deviations
when varying the number of features.

6.2. Experiments on images

We analyze the behavior of lime, shap and maple in explaining the classifications of synthetic image classifiers generated
using seneca-img. We set the image dimension in terms of number of pixels as h = w = 32 and the cell dimension as h′ =
w ′ = 4. We generate different synthetic image classifiers by varying the dimension ĥ× ŵ of the pattern a that the classifier is
able to recognize with ĥ = ŵ = m and m ∈ {8, 12, 16, 20, 24, 28, 32}. For each dimension, we generate 20 different patterns,
and for each pattern, we generate a dataset X of 1000 random images, of which half of them contain the pattern to
recognize. We evaluate the explanation quality using the f1-score [45]: the higher is the overlap between pixels of the
ground truth (corresponding to the pattern), and pixels of the explanation, the better is the explanation. Fig. 6 shows
explanations in the form of saliency maps with respect to the image and to the classifier that recognizes the pattern

19 m + u = 64 not reported in the paper but available in the repository.
12

R. Guidotti Artificial Intelligence 291 (2021) 103428
Fig. 6. Pixel importance explanations in forms of saliency maps for a synthetic transparent classifier able to recognize the pattern in Fig. 3-(center) returned
by lime, shap and maple for the image in Fig. 3-(left). The values are the explanation quality in terms of f1-score, recall and precision.

Fig. 7. Explanation quality of pixel importance explanations evaluated with f1-score varying the pattern dimension m = ĥ = ŵ used by the synthetic image
classifiers generated with seneca-img (left), and corresponding values (right).

Table 2
Explanation quality values for lines in Fig. 7
in terms of f1-score.

m lime shap maple

8 .46 ± .41 .66 ± .27 .02 ± .04
12 .62 ± .39 .72 ± .29 .04 ± .07
16 .66 ± .35 .71 ± .30 .08 ± .11
20 .68 ± .34 .70 ± .30 .09 ± .14
24 .73 ± .28 .68 ± .33 .11 ± .17
28 .78 ± .24 .66 ± .34 .18 ± .23
32 .81 ± .20 .64 ± .36 .07 ± .18

reported in Fig. 3. Under each figure is reported the f1-score, recall, and precision. We notice how lime’s explanation covers
all the areas of the pattern (recall 1.0) but also other areas that are not used by the classifier (that implies the low precision).
maple seems to better delineate the pattern with respect to lime, but it also adds to the explanation of some wrong cells.
shap is more conservative in signaling important pixels, and the high precision leads to the highest f1-score in the example.

In Fig. 7 we show the explanation quality of pixel importance explanations varying the pattern dimension m = ĥ = ŵ
used by the synthetic image classifiers generated with seneca-img. The table on the right reports the corresponding values.
shap is the best image explainer with respect to both average explanation quality and deviation up to m = 20. On the
other hand, lime performance improves with the increasing dimension of the pattern, and for m ≥ 24 lime becomes better
than shap in providing the explanation as saliency maps. Moreover, how highlighted in Table 2, lime deviation markedly
decreases. This behavior is probably due to (i) the superpixel technique adopted by lime to segment the image, and (ii)
lime’s attitude to overestimate important areas leading to a high recall (like in the example). As a consequence, when the
relevant area grows and becomes of the same dimension of the image, lime performance turns to be the best one, Finally,
maple is constantly the worst explainer.

6.3. Experiments on texts

In the following, we analyze the explanation returned by feature importance based explainers for synthetic text classifiers
generated using seneca-txt. As textual dataset X we use 20 Newsgroups.20 We split it into train and test in line with the

20 http://qwone .com /~jason /20Newsgroups/.
13

http://qwone.com/~jason/20Newsgroups/

R. Guidotti Artificial Intelligence 291 (2021) 103428
Fig. 8. Explanation quality of word importance explanations evaluated with f1-score (left) and cosine similarity (right) varying the number of words m used
by the synthetic text classifiers generated with seneca-txt.

Table 3
Explanation quality values for lines in Fig. 8 in terms of f1-score (left) and cosine sim-
ilarity (right).

m lime f1 shap f1 maple f1 lime cs shap cs maple cs

10 .32 ± .22 .12 ± .31 .00 ± .00 .15 ± .36 .18 ± .38 .00 ± .00
25 .55 ± .25 .26 ± .40 .00 ± .00 .33 ± .47 .38 ± .48 .00 ± .00
50 .74 ± .22 .35 ± .43 .00 ± .00 .47 ± .48 .53 ± .49 .00 ± .00
100 .86 ± .15 .53 ± .44 .00 ± .02 .65 ± .44 .72 ± .44 .00 ± .02
250 .91 ± .07 .42 ± .32 .00 ± .03 .80 ± .31 .86 ± .30 .00 ± .03
500 .92 ± .05 .63 ± .29 .01 ± .02 .87 ± .21 .93 ± .20 .01 ± .02
1000 .92 ± .05 .64 ± .27 .03 ± .04 .90 ± .15 .95 ± .14 .01 ± .02

literature and, after the preprocessing, we consider 1056 words. We generate different synthetic text classifiers by varying
the number of words m that the classifier uses to label a text as positive or negative in {10, 25, 50, 100, 250, 500, 1000}.
The selection of m words to build a text classifier is repeated ten times and, for each text classifier, we classify 1000 texts
of the test set. We evaluate the text explanation quality using both the f1-score and the cosine similarity.

Fig. 8 reports the explanation quality of word importance explanations evaluated with f1-score (left) and cosine similarity
(right) varying the number of words m used by the synthetic text classifiers generated with seneca-txt. We report in Table 3
the values of the lines in Fig. 8. The two plots highlight a different behavior. lime returns the best explanations with respect
to which are the words identified. On the other hand, shap appears to be the best in understanding, which is the level of
importance of these words. Thus, the coefficients of a linear regressor are better to identify which are the most important
features, while the Shapely values are better for identifying the level of importance of these features. Perhaps a combined
approach would lead to an overall more correct explanation. In both cases, the explanations reach higher quality when
synthetic classifiers use a larger set of important words. Therefore, the higher is the number of important words used by a
text classifier with respect to the vocabulary considered, the better is the explanation quality. Another aspect that is worth
mentioning is that with respect to both the evaluation measures, lime extracts more stable explanations than shap (lower
standard deviations). Finally, like for images, also for text maple is not a good explainer. We highlight that, similarly to the
results observed for images, lime’s f1-scores are largely supported by a very high recall that is on average of 0.99 versus
the 0.38 of shap. However, differently from what observed for images, lime performance is guaranteed not only by the high
recall but also by an average precision of 0.66, while shap’s average precision is 0.62.

6.4. Statistical comparison of explanation methods

In the following, we show the statistical significance of the results previously discussed. The non-parametric Friedman
test [40] compares the average ranks of explanation methods over multiple classifiers with respect to an evaluation measure,
i.e., the average explanation quality measured as f1-score, complete rule quality, or cosine similarity. The null hypothesis
of the Friedman test that all methods are equivalent is rejected (p-value<0.001) for all the experiments using seneca-rb,
seneca-rc, seneca-img and seneca-txt considering all the synthetic classifiers and datasets. Moreover, we represent the
comparison of the ranks of all explainers against each other in Fig. 9 with the critical difference plots (see [46] for details).
Critical difference diagrams show the results of a statistical comparison of the performance of all the local explanation
methods. In these diagrams, the explanation methods, represented by vertical+horizontal lines, are displayed from left to
right in terms of the average rank obtained for the various evaluation measures and experiments (1 indicates the best
performer, 3 indicates the worst performer). Horizontal bold lines connect the methods producing statistically equivalent
performance according to a post-hoc Nemenyi test. We observe that for rule-based explainers lore is significantly better
than the others for both correct feature presence (f1-score), and complete rule quality. With respect to feature importance
explanation for tabular data and images we can choose independently from lime and shap. shap is the best choice for small
and scattered relevant areas, while lime should be preferred when it is known that the relevant areas are consistently large.
With respect to text, lime is statistically the best choice when looking to the words used, while if we look at the weight of
the words shap is the best choice.
14

R. Guidotti Artificial Intelligence 291 (2021) 103428
Fig. 9. Critical difference diagrams using the Post-hoc Nemenyi test for rule-based explanation (1st and 2nd plots) and feature importance (3rd plot) for
tabular data, for pixel importance (4th plot) for images, and word importance (5th and 6th plots) for text, respectively. Every critical difference diagram
shows the results of a statistical comparison of the performance of all the local explanation methods for a specific evaluation measure and problem setting.
The explanation methods are represented by vertical+horizontal lines and are displayed from left to right in terms of the average rank obtained. The
post-hoc Nemenyi test ties with a horizontal bold line pair of methods for which the ranking of performance is not statistically significant.

It is worth to underline the similarity between the final aim of the presented work with model selection consistency [47]
as seneca could be exploited for explanation model selection. Indeed, thanks to the proposed approach it is possible to
evaluate the performance of various local explanation methods with respect to multiple and different transparent classifiers
that can be “similar” (e.g., in terms of the number of features) to the real and not interpretable one a user could be
interested in explaining.

7. Conclusion

In this paper, we have proposed seneca a family of synthetic explainable classifier generators for tabular data, images,
and text for which the explanations of individual decisions are available by design such that it is possible to evaluate
the performance of local model-agnostic explanation methods with ground truth. A deep experimentation on state-of-the-
art local explainers has shown how it is possible to estimate the quality of the explanations returned and enhance the
strengths and weaknesses of the explanation methods. With the support of statistical tools, the proposed methodology
provides reliable indexes that capture the quality of local explanations and describe if an explanation method focuses on
the ground truth. Experiments with seneca generators highlighted the following weaknesses. With respect to tabular data,
results show that local explainers suffer in finding good explanations when the explanation is formed by many relevant
features: they fail in considering all the relevant features and in assigning the correct weight to them. Concerning images,
they lack in returning accurate saliency maps as the explanations provided are either too large (lime) or too small and
scattered (shap). Finally, regarding text, the explainers are not good when the classifiers focus on a restricted set of words
with respect to the vocabulary.

As future work, we plan to extend the benchmarking to the growing literature of local model-agnostic explainers. More-
over, we would like to overcome some deficiencies of the current version of seneca-img and seneca-txt by improving the
level of complexity of the synthetic transparent image and text classifiers generated. Concerning images, we can produce
transparent classifiers for more sophisticated images (e.g., landscapes, faces, medical records, etc.) able to recognize articu-
lated multiple patterns (e.g., the sun position with respect to the landscape, the distance between eyes). Similarly, we can
generate text classifiers accounting for more complex data structures like n-grams, sentences, etc. Finally, we would like to
devise a synthetic transparent classifier generator with a human-in-the-loop [48], such that the ground truth explanations
can somehow be extrapolated from the interaction with a real person instead of from pure random processes.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgement

This work is partially supported by the European Community H2020 programme under the funding schemes: INFRAIA-
01-2018-2019 Res. Infr. G.A. 871042 SoBigData++ (sobigdata.eu), G.A. 952026 HumanE AI Net (humane-ai.eu), G.A.
825619 AI4EU (ai4eu.eu), G.A. 952215 TAILOR (tailor.eu).

References

[1] A.C.M. Council, US public policy, statement on algorithmic transparency and accountability, Commun. ACM (2018).
15

http://www.sobigdata.eu
https://www.humane-ai.eu/
https://www.ai4eu.eu/
https://cordis.europa.eu/project/id/952215/it
http://refhub.elsevier.com/S0004-3702(20)30177-6/bib9619F54611A39F27334332452A0206C5s1

R. Guidotti Artificial Intelligence 291 (2021) 103428
[2] R. Goebel, A. Chander, K. Holzinger, F. Lecue, Z. Akata, S. Stumpf, P. Kieseberg, A. Holzinger, Explainable AI: the new 42?, in: International Cross-Domain
Conference for Machine Learning and Knowledge Extraction, Springer, 2018, pp. 295–303.

[3] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, D. Pedreschi, A survey of methods for explaining black box models, ACM Comput. Surv.
(CSUR) 51 (5) (2018) 93.

[4] D. Pedreschi, F. Giannotti, R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, Meaningful explanations of black box AI decision systems, in: Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 33, 2019, pp. 9780–9784.

[5] S. Wachter, B. Mittelstadt, L. Floridi, Why a right to explanation of automated decision-making does not exist in the general data protection regulation,
Int. Data Privacy Law 7 (2) (2017) 76–99.

[6] G. Malgieri, G. Comandé, Why a right to legibility of automated decision-making exists in the general data protection regulation, Int. Data Privacy Law
7 (4) (2017) 243–265.

[7] T. Miller, Explanation in artificial intelligence: insights from the social sciences, Artif. Intell. 267 (2019) 1–38.
[8] F. Doshi-Velez, B. Kim, Towards a rigorous science of interpretable machine learning, arXiv:1702 .08608, 2017.
[9] C. Molnar, Interpretable Machine Learning, LeanPub, Victoria, Canada, 2018.

[10] H.J. Escalante, S. Escalera, I. Guyon, et al., Explainable and Interpretable Models in Computer Vision and Machine Learning, Springer, Berlin, Heidelberg,
2018.

[11] A.A. Freitas, Comprehensible classification models: a position paper, ACM SIGKDD Explor. Newsl. 15 (1) (2014) 1–10.
[12] J.V. Frasch, A. Lodwich, F. Shafait, T.M. Breuel, A Bayes-true data generator for evaluation of supervised and unsupervised learning methods, Pattern

Recognit. Lett. 32 (11) (2011) 1523–1531.
[13] Y. Pei, O. Zaïane, A synthetic data generator for clustering and outlier analysis, Tech. Rep. 1 (1) (2006) 1.
[14] R. Guidotti, R. Trasarti, M. Nanni, Tosca: two-steps clustering algorithm for personal locations detection, in: Proceedings of the 23rd SIGSPATIAL Inter-

national Conference on Advances in Geographic Information Systems, ACM, New York, USA, 2015, p. 38.
[15] E. Cesario, G. Manco, R. Ortale, Top-down parameter-free clustering of high-dimensional categorical data, IEEE Trans. Knowl. Data Eng. 19 (12) (2007)

1607–1624.
[16] R. Guidotti, A. Monreale, M. Nanni, F. Giannotti, D. Pedreschi, Clustering individual transactional data for masses of users, in: Proceedings of the 23rd

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, New York, USA, 2017, pp. 195–204.
[17] M. Bouguessa, A practical approach for clustering transaction data, in: International Workshop on Machine Learning and Data Mining in Pattern

Recognition, Springer, Berlin, Heidelberg, 2011, pp. 265–279.
[18] A. Lancichinetti, S. Fortunato, Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities,

Phys. Rev. E 80 (1) (2009) 016118.
[19] D. Hric, R.K. Darst, S. Fortunato, Community detection in networks: structural communities versus ground truth, Phys. Rev. E 90 (6) (2014) 062805.
[20] J. Yang, J. Leskovec, Defining and evaluating network communities based on ground-truth, Knowl. Inf. Syst. 42 (1) (2015) 181–213.
[21] G. Rossetti, L. Pappalardo, S. Rinzivillo, A novel approach to evaluate community detection algorithms on ground truth, in: Complex Networks VII,

Springer, Berlin, Heidelberg, 2016, pp. 133–144.
[22] T. Van den Bulcke, K. Van Leemput, B. Naudts, P. van Remortel, H. Ma, A. Verschoren, B. De Moor, K. Marchal, Syntren: a generator of synthetic gene

expression data for design and analysis of structure learning algorithms, BMC Bioinform. 7 (1) (2006) 43.
[23] T.S. Buda, T. Cerqueus, J. Murphy, M. Kristiansen Rex, Extrapolating relational data in a representative way, in: British International Conference on

Databases, Springer, Berlin, Heidelberg, 2015, pp. 95–107.
[24] Y. Jia, J. Bailey, K. Ramamohanarao, C. Leckie, X. Ma, Exploiting patterns to explain individual predictions, Knowl. Inf. Syst. 1 (2019) 1–24.
[25] Y. Jia, J. Bailey, K. Ramamohanarao, C. Leckie, M.E. Houle, Improving the quality of explanations with local embedding perturbations, in: Proceedings

of the 25nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, vol. 1, ACM, New York, USA, 2019, p. 1.
[26] Y. Zhang, K. Song, Y. Sun, S. Tan, M. Udell, “Why should you trust my explanation?” Understanding uncertainty in lime explanations, arXiv preprint,

arXiv:1904 .12991, 2019.
[27] P.-N. Tan, Introduction to Data Mining, Pearson Education India, India, 2018.
[28] M.T. Ribeiro, S. Singh, C. Guestrin, Why should I trust you?: explaining the predictions of any classifier, in: Proceedings of the 22nd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, ACM, New York, USA, 2016, pp. 1135–1144.
[29] K. Simonyan, A. Vedaldi, A. Zisserman, Deep inside convolutional networks: visualising image classification models and saliency maps, arXiv:1312 .6034,

2013.
[30] G. Plumb, D. Molitor, A.S. Talwalkar, Model agnostic supervised local explanations, in: Advances in Neural Information Processing Systems, Curran

Associates, Inc., New York, USA, 2018, pp. 2515–2524.
[31] S.M. Lundberg, S.-I. Lee, A unified approach to interpreting model predictions, in: Advances in Neural Information Processing Systems, Curran Asso-

ciates, Inc., New York, USA, 2017, pp. 4765–4774.
[32] A. Shrikumar, P. Greenside, A. Shcherbina, A. Kundaje, Not just a black box: learning important features through propagating activation differences,

arXiv:1605 .01713, 2016.
[33] M. Sundararajan, A. Taly, Q. Yan, Axiomatic attribution for deep networks, in: Proceedings of the 34th International Conference on Machine Learning-

Volume 70, JMLR.org., Sydney, Australia, 2017, pp. 3319–3328.
[34] R. Guidotti, A. Monreale, S. Matwin, D. Pedreschi, Black box explanation by learning image exemplars in the latent feature space, in: Joint European

Conference on Machine Learning and Knowledge Discovery in Databases, Springer, 2019, pp. 189–205.
[35] R. Guidotti, A. Monreale, F. Giannotti, D. Pedreschi, S. Ruggieri, F. Turini, Factual and counterfactual explanations for black box decision making, IEEE

Intell. Syst. 34 (6) (2019) 14–23.
[36] M.T. Ribeiro, S. Singh, C. Guestrin Anchors, High-precision model-agnostic explanations, in: AAAI, AAAI Press, New York, 2018, pp. 1527–1535.
[37] H. Yang, C. Rudin, M. Seltzer, Scalable Bayesian rule lists, in: Proceedings of the 34th International Conference on Machine Learning-Volume 70,

JMLR.org., Sydney, Australia, 2017, pp. 3921–3930.
[38] I. Guyon, Design of experiments of the nips 2003 variable selection benchmark, in: NIPS 2003 Workshop on Feature Extraction and Feature Selection,

NIPS, New York, USA, 2003, p. 1.
[39] L. Breiman, Classification and Regression Trees, Routledge, New York, 2017.
[40] M. Friedman, The use of ranks to avoid the assumption of normality implicit in the analysis of variance, J. Am. Stat. Assoc. 32 (200) (1937) 675–701.
[41] A. Klimke, Randexpr: A Random Symbolic Expression Generator, 2003.
[42] C. Manning, P. Raghavan, H. Schütze, Introduction to information retrieval, Nat. Lang. Eng. 16 (1) (2010) 100–103.
[43] N. Sharma, N. Gaud, K-modes clustering algorithm for categorical data, Int. J. Comput. Appl. 127 (1) (2015) 46.
[44] Y. Ming, H. Qu, E. Bertini, Rulematrix: visualizing and understanding classifiers with rules, IEEE Trans. Vis. Comput. Graph. 25 (1) (2018) 342–352.
[45] R. Guidotti, A. Monreale, L. Cariaggi, Investigating neighborhood generation for explanations of image classifiers, in: Pacific-Asia Conference on Knowl-

edge Discovery and Data Mining, Springer, Berlin, Heidelberg, 2019, pp. 136–149.
[46] J. Demšar, Statistical comparisons of classifiers over multiple data sets, J. Mach. Learn. Res. 7 (Jan 2006) 1–30.
[47] P. Zhao, B. Yu, On model selection consistency of lasso, J. Mach. Learn. Res. 7 (Nov 2006) 2541–2563.
[48] B. Krarup, M. Cashmore, D. Magazzeni, T. Miller, Model-Based Contrastive Explanations for Explainable Planning, 2019.
16

http://refhub.elsevier.com/S0004-3702(20)30177-6/bib821DE00ED267C54103509B2EB2020D72s1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bib821DE00ED267C54103509B2EB2020D72s1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bib615BBDF4FB78C920393822795E756722s1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bib615BBDF4FB78C920393822795E756722s1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bib9D12857F64CD7E2958F0AAA4891A0CB2s1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bib9D12857F64CD7E2958F0AAA4891A0CB2s1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bibEFBDB91CF22ABF454B60268FF4C0DF57s1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bibEFBDB91CF22ABF454B60268FF4C0DF57s1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bib461294C26F62B3379F3AEEC661A40B58s1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bib461294C26F62B3379F3AEEC661A40B58s1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bib9849C28107EDAAE3973969199E3C47D7s1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bibDC3AAC8CF6281D97283E3B426596E7F4s1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bib3B090413F53BABE2E80D7BAF9C607CC6s1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bib2989EBBC377F647FC521BD20C2C5B023s1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bib2989EBBC377F647FC521BD20C2C5B023s1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bib52A7B9C3D045F2B08C4BBE73D984F6E2s1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bibBF5FE5B5CA3F40451D3FF3CD92E1749Bs1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bibBF5FE5B5CA3F40451D3FF3CD92E1749Bs1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bibDD90EED6A541675F0D9A30C2EC9B4047s1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bib4A366FC3555AEE441ED5F1473F40D20Es1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bib4A366FC3555AEE441ED5F1473F40D20Es1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bib7390BB5771767A8D6163948FD3B97893s1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bib7390BB5771767A8D6163948FD3B97893s1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bib71B4127E59EEBC82C8CE694F9C60DCAAs1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bib71B4127E59EEBC82C8CE694F9C60DCAAs1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bib12263F5CBD63256E98A04F0510094F6Es1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bib12263F5CBD63256E98A04F0510094F6Es1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bib4F0BC5BC5C4DB3171C7246CBE08AAB9Bs1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bib4F0BC5BC5C4DB3171C7246CBE08AAB9Bs1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bib46EE86886C6A29C054726D5309F3FC25s1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bib1FBBCBD950A30DAFC0EAA19317C2D06Es1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bibD8C79594DC9CD321A29E9240A57E9299s1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bibD8C79594DC9CD321A29E9240A57E9299s1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bibF2B91F85D763E1BA664EDF7148DA4612s1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bibF2B91F85D763E1BA664EDF7148DA4612s1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bib30A5D96DDB705FD20C88F7A15E9864A6s1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bib30A5D96DDB705FD20C88F7A15E9864A6s1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bib2D0291100F4E6DD08A43D1483993399As1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bib75CD5B081E72535FF2809AACB4EC7911s1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bib75CD5B081E72535FF2809AACB4EC7911s1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bib74839419FA05AF2C29AC330C79E341A2s1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bib74839419FA05AF2C29AC330C79E341A2s1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bib3D712E479744AEFA9A99A8D912FE6B7Bs1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bib73A4F1A4390B6D7C4F0C164DC1248DEEs1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bib73A4F1A4390B6D7C4F0C164DC1248DEEs1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bib80994D63F5D26DCB96971B53B176EE4Cs1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bib80994D63F5D26DCB96971B53B176EE4Cs1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bib4EF232BFB934CABE216A2152006CE521s1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bib4EF232BFB934CABE216A2152006CE521s1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bib4F3CC052382D7A93F8E8BE02E7F84F67s1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bib4F3CC052382D7A93F8E8BE02E7F84F67s1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bib308EABC258778035EDDFDE21DA4BC45Fs1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bib308EABC258778035EDDFDE21DA4BC45Fs1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bib74A67B95117264A919A9E3304B8363D1s1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bib74A67B95117264A919A9E3304B8363D1s1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bibCD3375D9F69271B92D53DE1941482361s1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bibCD3375D9F69271B92D53DE1941482361s1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bibF56FEABD6EE8F7C6FB629FB33F26C43Ds1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bibF56FEABD6EE8F7C6FB629FB33F26C43Ds1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bib1C54DB029C85AD23E817B951E7F2AD18s1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bibF14947B9E3FF465C992F5EBB2D8DC0ACs1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bibF14947B9E3FF465C992F5EBB2D8DC0ACs1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bib62D843F1E2B39AA3BF57DF7692CDE951s1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bib62D843F1E2B39AA3BF57DF7692CDE951s1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bibD871E18F9548F3218B98FF582728973Fs1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bib3AC719C554A90642BE84D42572BFBB5Bs1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bib7556F9A09BC5B1F3CA7D77511F032B6Fs1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bib1A9FD95CD4680920FD160ABB4552CB2Es1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bib9BA49604606E76E40C8F755400FC2F3As1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bib65A64334CF4C8CCC62BBEF567D090F84s1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bibB25116B15608D2BE5902A157397DF9A7s1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bibB25116B15608D2BE5902A157397DF9A7s1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bib058B1FA057EA1118F48FCB865BB848ADs1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bib90347E16C677E58912CDCAAD17CFE842s1
http://refhub.elsevier.com/S0004-3702(20)30177-6/bib03DA95CC0EDBDDB31D78CDADF54EBC7As1

	Evaluating local explanation methods on ground truth
	1 Introduction
	2 Related work
	3 Setting the stage
	4 Synthetic explainable classifier generators
	4.1 Rule-based classifier generator
	4.2 Linear classification model generator
	4.3 Image classifier generator
	4.4 Text classifier generator
	4.5 Discussion on synthetic explainable classifier generators

	5 Explanation evaluation
	6 Experiments
	6.1 Experiments on tabular data
	6.2 Experiments on images
	6.3 Experiments on texts
	6.4 Statistical comparison of explanation methods

	7 Conclusion
	Declaration of competing interest
	Acknowledgement
	References

