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ABSTRACT
Subsystem time-dependent density-functional theory (sTDDFT) making use of approximate non-additive kinetic energy (NAKE) func-
tionals is known to be capable of describing excitation energy transfer processes in a variety of applications. Here, we show that
sTDDFT, especially when combined with projection-based embedding (PbE), can be employed for the entire range of photo-induced
electronic couplings essential for modeling photophysical properties of complex chemical and biological systems and therefore rep-
resents a complete toolbox for this class of problems. This means that it is capable of capturing the interaction/coupling associated
with local- and charge-transfer (CT) excitons. However, this requires the choice of a reasonable diabatic basis. We therefore pro-
pose different diabatization strategies of the virtual orbital space in PbE-sTDDFT and show how CT excitations can be included in
sTDDFT using NAKE functionals via a phenomenological approach. Finally, these electronic couplings are compared to couplings
from a multistate fragment excitation difference (FED)–fragment charge difference (FCD) diabatization procedure. We show that
both procedures, multistate FED–FCD and sTDDFT (with the right diabatization procedure chosen), lead to an overall good agree-
ment for the electronic couplings, despite differences in their general diabatization strategy. We conclude that the entire range of
photo-induced electronic couplings can be obtained using sTDDFT (with the right diabatization procedure chosen) in a black-box
manner.
Published under license by AIP Publishing. https://doi.org/10.1063/5.0022677., s

I. INTRODUCTION

The processes of Excitation Energy Transfer (EET) and Pho-
toinduced Electron Transfer (PET) play a crucial role in the field
of material science and biology.1,2 In photosynthesis, for instance,
light is “collected” via the absorption of photons through specifi-
cally designed antenna complexes. Subsequently, excitation energy
is transferred to a reaction center via EET. In order to con-
vert this energy into chemically accessible energy, charge separa-
tion occurs, which is triggered by PET.3 It becomes obvious that

methods that are capable of describing both EET and PET can
give insight into design principles used in nature and can help
build new artificial photosynthetic systems or to design new solar
cells.4

These phenomena rely on the interplay of excited states (exci-
tons) located on Donor (D) and Acceptor (A) chromophores
and are therefore closely related to the chemical picture of
molecular or supermolecular systems consisting of different sub-
systems. Subsystem-based theoretical approaches, therefore, are
obviously appealing to model these phenomena.5 Especially,
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FIG. 1. Different possibilities of the inter-
action of quasi-diabatic excited states
located on different chromophores: (a)
The coupling of local excitations (LE)
located on A and B, which leads to
EET. (b) The coupling of a LE on A and
a charge-transfer (CT) excitation from
A→ B, which leads to an electron trans-
ferred from A to B. (c) The coupling of
a LE located on A and an incoming CT
excitation from B→ A, which leads to an
hole transferred from A to B. (d) The cou-
pling of two CT excitations from A → B
and B→ A.

Frozen-Density-Embedding (FDE),6,7 the related subsystem DFT
formalism (sDFT),8–10 and their extensions to excited states [uncou-
pled/coupled subsystem Time-Dependent Density Functional The-
ory (FDEu/FDEc-TDDFT)],11–13 based on a quantum mechanical
(QM) description of the entire system, appear to be well-suited
methods in order to model EET and PET phenomena. This raises
the question of how to calculate the electronic couplings needed
to model such phenomena from these methods. These couplings
are directly linked to rate constants in different rate theories, e.g.,
Förster14 and Marcus theory.15 Electronic couplings in the con-
text of EET have already been intensively investigated by means
of sTDDFT in combination with approximate non-additive kinetic
energy (NAKE) functionals (cf. Refs. 13 and 16–18). By contrast,
charge-transfer (CT)/local-excitation (LE) couplings, which are
needed to model PET processes, have not been investigated in-depth
so far (a first pilot calculation was reported in Ref. 19). This is mostly
related to the fact that a description of CT excitations within approx-
imate sTDDFT has not been possible. Recent developments of the
so-called exact embedding strategies, relying on projection operators
and thus often denoted as projection-based embedding (PbE), for
ground-20 and excited-states,21 enable the description of CT excita-
tions within sTDDFT.19 Here and in the following, the term “exact”
is used to indicate that supersystem results (of the parent theoret-
ical model without fragmentation) can be exactly restored in the
fragment-based description. Exact sTDDFT, in principle, leads to a
complete description of electronic couplings involved in EET and
PET processes. In Fig. 1, an overview of the possible couplings of
excited states located on two subsystems A and B is given. A carefully
chosen diabatization strategy is essential in order to extract mean-
ingful electronic couplings for all cases shown in Fig. 1 from the sub-
system TDDFT framework as well as from other methods (cf. Refs.
22–25). In the case of sTDDFT, but also for other fragment-based
methods, the diabatization procedure is determined by the selection
of the fragments. Theoretically, a strictly diabatic basis is obtained if
the derivative coupling (dij = ⟨Φi∣∇R∣Φj⟩) for every nuclear config-
uration is zero.26 This requirement is, however, rarely fulfilled and
a strict diabatization is often not possible (apart from the concep-
tual difficulty of calculating such derivate couplings in sDFT). For

practical applications, two common definitions of diabatic states
exist. The “historical” definition requires the diabatic basis to mini-
mize the derivative coupling. In contrast, the “chemical” definition
requires the diabatic basis to maintain the same electronic character
along a reaction coordinate,27,26,28 which is a definition that is easier
to control in a sDFT framework. It can be seen that certain ambigu-
ities in the definition of diabatic states exist, which directly trans-
late into differences of the electronic coupling, depending on the
diabatization procedures employed. However, not only the diaba-
tization procedure itself but also the physical effects included in the
construction of an approximate exciton Hamiltonian can influence
the electronic coupling. This influence has been already analyzed
in Ref. 29 for solvent screening effects on EET couplings employ-
ing a QM/MMpol scheme30 and approximate sTDDFT. The goal
of this paper is therefore twofold. First, we want to establish exact
and approximate sTDDFT as a complete toolbox, which is capa-
ble of modeling EET and PET processes. Second, we want to com-
pare electronic couplings from sTDDFT to those from other dia-
batization procedures, which are capable of including LE and CT
excitations.

This paper is structured as follows: First, we derive the general
theory of sTDDFT without any constraints concerning the embed-
ding method chosen. In a next step, a recently proposed virtual
orbital localization in the context of PbE is recaptured. Further-
more, the framework of subsystem TDDFT, employing approx-
imate NAKE functionals, is extended to include CT excitations.
Finally, electronic couplings obtained from subsystem TDDFT (PbE,
approximate NAKE functionals) are compared to a recently pro-
posed multistate Fragment Excitation Difference (FED)–Fragment
Charge Difference (FCD) scheme,25 which combines the FCD31 and
the FED32 approach and generalizes it to multiple states.

II. THEORY
A. sDFT

In sDFT,8–10,6,7 the total electron density of the system is par-
titioned into electron densities belonging to individual subsystems
{ρI(r)},
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ρ(r) =
Ns

∑
I
ρI(r), (1)

where the sum runs over all subsystems Ns. Each subsystem is rep-
resented by a non-interacting Kohn–Sham- (KS-) like reference sys-
tem. ρI(r) can then obtained from the nI occupied orbitals ψi(r) of
subsystem I via

ρI(r) =
nI
∑
iI
∣ψi(r)∣2. (2)

The total electronic energy Eel of the supermolecular system can
be expressed in subsystem KS energies EKS

I and the subsystem
interaction energies Eint,

Eel =
Ns

∑
I
{V[ρI] + J[ρI] + EXC[{ρI}] + Ts[{ψjσ}I]}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

EKS
I

+ Tnadd
s [{ρI}] + Enadd

XC [{ρI}] + Jint
[{ρI}] + V int

[{ρI}]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Eint

, (3)

where V[ρI] represents the nucleus–electron interaction, J[ρI] rep-
resents the electron–electron Coulomb interaction, EXC[{ρI}] rep-
resents the exchange–correlation energy, and Ts[{ψj}I] represents
the Kohn–Sham-type kinetic energy of subsystem I. The interac-
tion energy Eint contains pair-wise additive Jint[{ρI}] (Coulomb) and
V int[{ρI}] (electron–nucleus interaction) contributions and non-
additive energy contributions for the kinetic, Tnadd

s [{ρI}], and
exchange–correlation energy, Enadd

XC [{ρI}]. While the latter can be
evaluated consistently with the parent non-subsystem model, using
the employed exchange–correlation functional, additional approxi-
mations are practically used for the former. The non-additive kinetic
energy (NAKE) is defined as

Tnadd
s [{ρI}] = Ts[ρtot] −

Ns

∑
I
Ts[ρI]. (4)

In practice, explicitly density-dependent NAKE functionals are
employed for the contribution. Minimization of the energy expres-
sion in Eq. (3) under the constraint that the number of electrons in
each subsystem stays the same and the densities of the other sub-
systems are fixed leads to the so-called Kohn–Sham equations with
Constrained Electron Density (KSCED),7

(−
∇

2
i

2
+ vs[{ρI}](r) + vIemb[{ρI}, ρ](r))ψ

I
i (r) = ϵ

I
iψ

I
i (r), (5)

where the interaction with the environment is expressed through
vIemb[{ρI}, ρ](r), which is defined as

vIemb[{ρI}, ρ] = ∑
K≠I
[∫

ρK(r)
∣r − r′∣

dr′ −∑
α∈K

Zα

∣r − Rα∣
] +

δTs[ρtot]

δρtot(r)

−
δTs[ρIσ]
δρI(r)

+
δEXC[ρtot]

δρtot(r)
−
δEXC[ρI]
δρIσ(r)

= ∑
K≠I
[vcoul[ρK](r) + vKnuc(r)] + vnadd[ρtot, ρI](r). (6)

In Eq. (6), the electron–electron Coulomb interaction with the
environment subsystems is denoted as vcoul[ρK](r), the interaction

with the nuclei in the environment is denoted as vKnuc(r), and
the non-additive kinetic energy and exchange–correlation poten-
tial are summarized in vnadd[ρtot, ρI](r). For further details con-
cerning subsystem DFT using approximate NAKE functionals, see
Refs. 33–38.

1. Projection-based embedding
The fragmentation approach introduced in Sec. II A is concep-

tually and computationally very appealing. However, practical real-
izations are limited by the available NAKE functional approxima-
tions. A workaround to this problem has been proposed by Manby
et al.,20 which will be called projection-based embedding (PbE)
in the following. In this embedding approach, a projection opera-
tor is used instead of the NAKE functional, and consequently, the
subsystem kinetic energies are additive. This ensures orthogonal-
ity between orbitals of different subsystems. Within this approach,
supermolecular KS-DFT results can be restored, assuming that a
supermolecular basis and the same functionals are used for the
individual subsystems and their interactions.20,39 As already shown
and numerically demonstrated in Ref. 19, PbE (with supermolec-
ular basis and the same functionals for each subsystem) leads to
a virtual orbital space, which is identical for all subsystems due to
the non-local nature of the projection operator employed. This fur-
ther implies that the orbital-transition space for each subsystem also
contains CT orbital transitions from one subsystem to another (out-
going CT transitions).19 Note that this cannot be achieved via the
usage of local NAKE functionals.40

B. sTDDFT
In sTDDFT, the full density response δρ(r) is partitioned

into density response functions belonging to individual subsystems
δρI(r),

δρ(r,ω) =∑
I
δρI(r,ω). (7)

The density response of subsystem I determined through a fre-
quency (ω) dependent perturbation δvI(r′, ω) is given as

δρI(r,ω) = ∫ χIs(r, r
′,ω)δvI(r′,ω)dr, (8)

where the noninteracting Kohn–Sham response function of subsys-
tem I is denoted as χIs(r, r′,ω). Following the derivation of sTDDFT
in Refs. 41 and 19 leads to the following non-Hermitian eigenvalue
problem:

(
A B
B A

)(
X
Y
) = ω(

−1 0
0 1

)(
X
Y
), (9)

where the response matrices A and B are given in terms of occupied-
virtual subsystem orbital transitions. The individual matrix elements
are given as

A(ia)I ,(jb)J = δIJδijδab(ϵ
I
a − ϵ

I
i) + K(ia)I ,(jb)J (10)

and
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B(ia)I ,(jb)J = K(ia)I ,(bj)J . (11)

For the response matrices, the usual notation for occupied i, j, . . .
and virtual orbitals a, b, . . . is employed. In Eqs. (10) and (11), the
intrinsic subsystem structure is indicated via (capital indices) I, J,
. . ., orbital energies are given as ϵ, and the so-called coupling matrix
elements K(ia)I ,(jb)J are, in general, defined as

K(ia)I ,(jb)J = (i
IaI ∣ jJbJ) + (iIaI ∣ fxc(r, r′) ∣ jJbJ) − cx(iI jJ ∣ aIbJ)

+ (iIaI ∣ fkin(r, r′) ∣ jJbJ) − δIJ(iIaI ∣ f Ikin(r, r
′
) ∣ jJbJ)

+ (1 − δIJ) ÔEO
(ia)I ,(bj)J . (12)

Here, the Mulliken notation is employed. The kinetic (f kin) and
exchange–correlation (f xc) kernel contributions are obtained by tak-
ing the derivative of the electronic potential of subsystem I with
respect to the electron density ρJ .13 Note that Eq. (12) is given in
a general form of the coupling matrix used in sTDDFT and con-
tains all possible coupling matrix contributions. While Coulomb
and exchange–correlation contributions (first and second term)
are taken into account in sTDDFT independently of the ground-
state embedding procedure employed, the exact exchange (third
term) in this form is only strictly applicable for orthogonal orbitals.
Furthermore, the approximate NAKE kernel contribution (fourth
term) occurs only if approximate NAKE functionals are employed
in the ground-state embedding procedure.11,13 In contrast to that,
the external-orthogonality (EO) contribution ÔEO

(ia)I ,(bj)J occurs only
in PbE calculations. A detailed derivation for this contribution
in the context of different projection operators can be found in
Ref. 19.

In Ref. 13, the first practical realization of the sTDDFT eigen-
value problem was proposed. There, the response problem is solved
in two steps. First, the so-called uncoupled (denoted as FDEu-
TDDFT in the following), excitation energies and vectors are
obtained by taking only intra-subsystem orbital transitions into
account. This means that only the response of a particular subsystem
is taken into account, while additional environment contributions
and excited-state polarization effects of the environment due to an
excitation are omitted. It is obvious that this step is trivially paral-
lelizable for a large number of subsystems at the same time. In a
next step, the individual FDEu-TDDFT excitation vectors are used
to transform the response problem in Eq. (9) into the space spanned
by the FDEu-TDDFT excitation vectors (for a detailed information
about this procedure, see Ref. 13 for a Hermitian formulation of the
sTDDFT response problem and Ref. 19 for a non-Hermitian for-
mulation). Note that this procedure is only exact if a full uncoupled
excitation space21 is employed. In practice, however, the transfor-
mation is often approximated by including only a small subset of
uncoupled excitation vectors in the transformation. The usage of
the Hermitian formulation of the response problem in the context
of PbE is only an approximation, and the non-Hermitian response
problem should be solved instead.21

C. Diabatization and orbital space selection
within sTDDFT

In Sec. II B, the linear-response TDDFT equations within
a subsystem-based framework are derived. There, no particular

comment concerning the orbital-transition space of a certain sub-
system I was made. In most of the applications of sTDDFT, the
orbital-transition space is determined by the basis set used for
a particular subsystem. If a monomer basis is employed, only
local orbital-transitions and therefore only local excitations are
obtained. If a supermolecular basis set is employed, both LE
and CT excitations can, in principle, be obtained. While PbE
FDEu/FDEc-sTDDFT calculations have been proven to correctly
describe CT excitations (within the accuracy of the exchange–
correlation functional chosen), approximate FDEu/c-sTDDFT fails
to correctly describe CT excitations.19 Note that this holds also
true for the exact NAKE functional, as already observed by
Jacob et al.40

The goal of this work is the calculation of electronic cou-
plings involved in EET and PET phenomena by means of sTDDFT
and PbE, but we will also assess if this calculation is possible with
approximate NAKE functionals. To this end, it is necessary to cor-
rectly describe the diabatic LE and CT states in the preliminary
FDEu-TDDFT step in order to extract meaningful electronic cou-
plings from the subsequent FDEc-TDDFT calculations. We there-
fore introduce three different diabatization procedures acting on
the virtual orbitals in order to define LE and CT orbital transition
subspaces.

Within PbE-sTDDFT (using a supermolecular basis set; tak-
ing all atomic orbitals of the entire system for the linear combina-
tion of the molecular orbitals of each subsystem into account), the
LE and CT excitations are naturally included because the virtual
orbital space of each subsystem contains the supermolecular canon-
ical virtual orbital space.19 A trivial separation scheme for LE and
CT excitations is possible, as proposed in Ref. 19. There, the virtual
supermolecular canonical orbital space was partitioned based on a
modified overlap criterion,

SIaa =∑
ν∈I
∑
μ∈I,J

CI
νaC

I
μaSνμ, (13)

where the sums run over the basis function of subsystem I and the
combined basis functions of I and J, respectively. The orbitals are
assigned to be located on subsystem I based on the value of the
modified overlap, which quantifies how much of the orbital can be
represented by the basis functions of subsystem I. Note that this idea
represents a selection of virtual orbitals rather than a strict diabati-
zation and will therefore be denoted as canonical partitioning in the
following.

A more sophisticated LE/CT separation can be obtained via
our recently proposed virtual-orbital localization procedure.42 This
procedure can be employed to obtain virtual orbitals located on
the particular subsystem or on the environment. This intrinsically
restricts the orbital-transition space in the uncoupled calculation to
be either purely local or CT. The localization procedure is based on
the SPADE algorithm proposed for occupied orbitals in the context
of PbE43 and will be briefly repeated here. First, the virtual orbital
block of the coefficient matrix is orthogonalized,

C̄virt = S
1
2 Cvirt. (14)

Then, the MO overlap matrix is constructed from the AO basis of
subsystem A,
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SA
a,b =∑

ν∈A
C̄ν,aC̄ν,b. (15)

Performing a Singular Value Decomposition (SVD) of SA,

SA
= UAΣAVA, (16)

the localized virtual orbitals can be obtained as

C̃virt = CvirtVA. (17)

Based on the singular value of a given orbital (between 0 and 1),
the orbital is assigned to be located on the particular subsystem
(>0.5) or on the environment subsystem (<0.5). In a next step, it
is ensured that the chosen virtual orbitals diagonalize the embedded
Fock-matrix FA of subsystem A. For this, the Fock matrix is trans-
formed into the space spanned by the chosen virtual coefficients and
diagonalized,

FA
= C̃A,T

virt F
A(Env)C̃A

virt, (18)

λ = CA,T
virt F

ACA
virt, (19)

where λ contains the new orbital energies associated with the local-
ized virtual orbitals. The new virtual orbital coefficients can then
obtained as

CA
virt = C̃virtCA. (20)

Choosing the sets of occupied and virtual orbitals belonging to
a particular subsystem defines the orbital-transition space in the
FDEu-TDDFT calculations (local or CT).

However, due to this additional virtual orbital localization
step, an additional set of coupling matrix contributions needs to
be taken into account. In Ref. 19, an analysis of the external-
orthogonality coupling matrix contributions revealed that these
contributions arise from off-diagonal Lagrange multipliers. In the
case of the Huzinaga projection operator, these have the following
form:

ÔEO
(ia)I ,(jb)J = −F

IJ
ij S

IJ
ab, (21)

where FIJ
ij denotes the occupied–occupied off-diagonal block of the

Fock matrix and SIJab is the virtual–virtual orbital overlap between
subsystem I and J. Due to the fact that the orbitals of two subsys-
tems in PbE are exactly orthogonal if a supermolecular basis set is
employed, SIJab can be rewritten as δIJab. If an additional virtual orbital
localization procedure is performed, a new set of coupling matrix
contributions need to be taken into account corresponding to the
virtual–virtual off-diagonal block of the Fock matrix FIJ

ab between
subsystems I and J. The final contributions to the coupling matrix
due to the usage of localized molecular orbitals are then given as

ÔEO
(ia)I ,(jb)J = FIJ

abδ
IJ
ij

²
ÔEO,virt
(ia)I ,(jb)J

− FIJ
ij δ

IJ
ab

²
ÔEO,occ
(ia)I ,(jb)J

. (22)

In the special case that the inter-subsystem Fock matrix blocks
for occupied and virtual orbitals are zero (diagonal Fock matrix),

ÔEO
(ia)I ,(jb)J is zero and only orbital energy differences as described in

Eq. (10) will enter the response equations.
In contrast to PbE sTDDFT, in approximate sTDDFT, a

monomer basis set is used, which includes only basis functions
associated with atoms of a particular subsystem, and the orbital
transition space is intrinsically enforced to be local, leading to
LE only. A description of CT states has not been possible so
far in that context. Nevertheless, methods have been developed
to describe CT excitations within the approximate sDFT formal-
ism.44–47 Here, a practically motivated approach to incorporate
CT orbital-transitions in the approximate sTDDFT framework is
chosen. In this approach, a regular ground-state sDFT calculation
employing an approximate NAKE functional and a monomer basis
is performed. For CT states, the occupied orbitals of one subsys-
tem are combined with the virtual orbitals located on an environ-
ment subsystem, and the basis set is extended with the basis func-
tions located on the environment subsystem. The newly obtained
orbital space consists of occupied orbitals on one subsystem
and virtual orbitals located on an environment subsystem, which
leads to the appearance of CT excitations in the FDEu-TDDFT
calculation.

As the combined orbital space is not necessarily orthogonal,48

we use a procedure that corrects for the non-orthogonality. In a first
step, we set up a projector that removes occupied contributions from
the newly chosen virtual orbitals,

∣ψ̃a⟩ = (1 −∑
i∈A
∣ψi⟩⟨ψi∣)∣ψa⟩. (23)

The new set of transformed virtual orbitals {ψ̃a} can, in principle,
contain linear dependencies. These need to be removed, and the
orbitals need to be renormalized. The final orbitals and orbital ener-
gies are obtained via diagonalization of the subsystem Fock matrix
transformed into the space of the projected virtual orbitals {ψ̃a}

[similar to Eqs. (18) and (19)].

D. Electronic couplings from sTDA
In this subsection, the general procedure for the evalua-

tion of electronic couplings from the subsystem Tamm–Dancoff-
Approximation (sTDA) is described.17 The aim is to illustrate the
procedure used in Sec. IV for the extraction of electron couplings
from sTDA. Note that, in principle, the extraction of electronic cou-
plings from the sTDDFT formulation of Ref. 13 is also possible.
This has been accomplished via the diagonalization of CI-like 2 × 2
eigenvalue problems,16 which, however, is an approximation. We
illustrate the procedure using two example subsystems A and B.
Nevertheless, a generalization to an arbitrary number of subsystems
is possible.

The workflow is illustrated in Fig. 2. In a first step [Fig. 2 (a)],
one of the diabatization procedures proposed in Sec. II C is used to
separate the virtual orbital spaces from a ground-state embedding
calculation into local and charge transfer. In this way, each orbital
transition i→ a can be classified as local (if a is located on the same
subsystem as i) or charge transfer (if a is located on an environment
subsystem). In a next step, FDEu-TDA calculations for the subsys-
tems and their local and charge-transfer orbital-transitions spaces
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FIG. 2. Schematic illustration of the
coupling procedure: (a) selection of
the virtual orbital space, (b) calculation
of FDEu-TDA excitation energies and
eigenvectors within the chosen orbital-
transition space, (c) setup of the trans-
formation matrix for the coupling pro-
cedure consisting of uncoupled eigen-
vectors belonging to a certain orbital-
transition space on the block-diagonal,
and (d) response matrix transforma-
tion and determination of electronic cou-
plings.

are performed, respectively. In the case of two subsystems, this cor-
responds to a total of four FDEu-TDA calculations (A: LE, A: CT,
B: LE, and B: CT) [Fig. 2(b)]. The resulting excitation energies are
the diabatic excitation energies associated with the orbital-transition
space of a particular subsystem.

Then, the transformation matrix is set up from the uncou-
pled excitation vectors. The matrix U [Fig. 2(c)] is block-diagonal,
and each block contains the uncoupled excitation vectors associ-
ated with the uncoupled excitations determined in the FDEu-TDA
calculations. For the two subsystems, the transformation matrix con-
tains four blocks associated with the subsystem and the particu-
lar orbital-transition space [Fig. 2(c)]. This transformation matrix
U is then used to transform the matrix A [Eq. (10)], which con-
tains all occupied-virtual orbital transitions of the individual sub-
systems Ã = UTAU. This step is denoted as the “coupling” step
or FDEc-TDA because the responses of the individual subsystems
are coupled. The off-diagonal blocks of matrix Ã correspond to the
couplings between excited states previously calculated in the FDEu-
TDA calculations and the diagonal contain the diabatic FDEu-
TDA excitation energies [Fig. 2(d)]. An overview of the different
coupling matrix contributions taken into account in FDEu- and
FDEc-TDA calculations for PbE and approximate NAKE function-
als is shown in Table I. Diagonalizing Ã gives access to coupled
adiabatic excitation energies and excitation vectors. In the case
of PbE with an additional virtual orbital space localization proce-
dure, the exact supermolecular excitation energies are obtained if
the complete uncoupled subspace is used for the transformation
to Ã.

E. Multistate FED–FCD
An alternative approach for the determination of electronic

couplings as shown in Fig. 1 is achieved via the automated multi-
state Fragment Charge Difference (FCD)–Fragment Excitation Dif-
ference (FED) approach.25 It combines the FCD scheme proposed
by Voityuk and Rösch31 and the FED scheme developed by Hsu
et al.49 and can be seen as an extension to the multistate-FCD scheme
proposed by Hsu and co-workers in 2013.32 In the following, the
fundamentals of this approach are recaptured.

All these approaches have in common that they partition the
total system into two fragments/subsystems A/B. In order to extract
electronic couplings, both approaches (FCD and FED) set up a trans-
formation matrix from the adiabatic to the diabatic basis, which is
located on A and B, respectively. In the case of the FED scheme, this
transformation can be obtained via the excitation difference matrix
Δx. The entries are defined as

Δxnm = ∫
r∈B

ρexnm(r)dr − ∫
r∈A

ρexnm(r)dr, (24)

where the excitation density is obtained from the sum of the electron
and hole densities. In the case of CIS/TDA, the excitation density is
defined as50

ρexnm(r) =∑
ij
∑
a
tmia t

n∗
ja ϕi(r)ϕ

∗
j (r) +∑

i
∑
ab

tmia t
n∗
ib ϕa(r)ϕ

∗
b (r). (25)

The CIS/TDA coefficients of states m/n are given as tmia and tnia,
respectively. From Eq. (25), it can be seen that fragment excita-
tion differences between −2 and 2 are obtained. These correspond
to completely localized excitations either on A or B and the eigen-
vectors of Δxnm can be used to transform the adiabatic excitation
energies to a localized diabatic basis and to extract the corresponding
electronic couplings as we will see later.

A similar approach is used in the FCD method, where a
charge difference matrix Δq is used for the diabatization pro-
cedure. The elements of the charge difference matrix Δqnm are
defined as

Δqnm = ∫
r∈D

ρnm(r)dr − ∫
r∈A

ρnm(r)dr, (26)

where ρnm(r) represents the transition density between state n andm.
In the case of n = m, it resembles the state density. Δqnm has extrema
between 2 and −2 for charge transfer states (A+

⋅ B−) and vice
versa.

The multistate FED–FCD25 approach makes use of the FCD
and FED methods to separate LE/CT subspaces for multiple states.
In order to be consistent with Ref. 25, the two matrices Δq and Δx
are multiplied with factors of 1

2 , which leads to extrema between −1
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TABLE I. Coupling matrix contributions taken into account in FDEu- and FDEc-TDA calculations for projection-based embed-
ding (PbE) (canon. refers to the canonical partitioning of the virtual orbital space, as described in Sec. II C and loc. refers
to the virtual orbital localization procedure, as described in Sec. II C) and embedding making use of approximate NAKE
functionals. Mulliken notation is used throughout. The individual coupling matrix contributions are introduced in Eqs. (12) and
(22).

FDEu of A

Coupling matrix contribution K(ia)A ,(jb)A PbE canon. PbE loc. approx. NAKE

(iAaA| jAbA) Eq. (12) ✓ ✓ ✓

(iAaA ∣ fxc(r, r′) ∣ jAbA) ✓ ✓ ✓

(iAjA ∣ aAbA) ✓ ✓ ✓

(iAaA ∣ fkin(r, r′) ∣ jAbA) − (iAaA ∣ f Akin(r, r
′
) ∣ jAbA) X X ✓

FDEc of A and B

Coupling matrix contribution K(ia)A ,(jb)B PbE canon. PbE loc. approx. NAKE

(iAaA|jBbB) ✓ ✓ ✓

(iAaA ∣ fxc(r, r′) ∣ jBbB) ✓ ✓ ✓

(iAjB ∣ aAbB) ✓ ✓ X
(iAaA ∣ fkin(r, r′) ∣ jBbB) X X ✓

ÔEO,occ
(ia)A ,(jb)B = −F

IJ
ij δ

IJ
ab ✓ ✓ X

ÔEO,virt
(ia)A ,(jb)B = F

IJ
abδ

IJ
ij X ✓ X

and 1. In a first step, the LE/CT subspaces are separated via a newly
defined matrix D,

D = (Δq)2
− (Δx)2. (27)

The diagonalization of D leads to eigenvalues between 1 and −1
corresponding to the LE and CT subspaces, respectively,

UT
1 DU1 = D′. (28)

Δq and Δx are then transformed in the space spanned by U1 to
obtain Δq′ and Δx′. Based on the eigenvalues of D′, the states are
assigned to be LE or CT. The corresponding blocks in Δq′ and Δx′
are then diagonalized,

UT
2(CT)Δq

′
CTU2(CT) = Δq

′′, (29)

UT
2(LE)Δx

′
LEU2(LE) = Δx

′′. (30)

From this, the second transformation matrix U2 can be constructed.
U2 contains U2(CT) and U2(LE) on the diagonal and rotates the LE and
CT subspaces separately,

U2 = (
U2(CT) 0

0 U2(LE)
). (31)

The adiabatic excitation energies can then be transformed to the dia-
batic basis via UT

2 UT
1 EU1U2 = H′′, where E contains the adiabatic

excitation energies on the diagonal. The values of Δq′′ and Δx′′ in

the CT and LE subspaces can then be used to divide the individ-
ual CT (CT1: A+B− and CT2: A−B+) and LE (LE1: A∗B and LE2:
B∗A) subspaces even further. The Hamiltonian within each subspace
is required to be diagonal. Therefore, in a last step, a block diago-
nal transformation matrix U3 is set up, which diagonalizes the four
subspaces separately,

UT
3

⎛
⎜
⎜
⎜
⎜
⎜
⎝

H′′CT1 H′′CT1,CT2 H′′CT1,LE1 H′′CT1,LE2

H′′CT2,CT1 H′′CT2 H′′CT2,LE1 H′′CT2,LE2

H′′LE1,CT1 H′′LE1,CT2 H′′LE1 H′′LE1,LE2

H′′LE2,CT1 H′′LE2,CT2 H′′LE2,CT1 H′′LE2

⎞
⎟
⎟
⎟
⎟
⎟
⎠

U3

=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

ϵ′′′CT1 H′′′CT1,CT2 H′′′CT1,LE1 H′′′CT1,LE2

H′′′CT2,CT1 ϵ′′′CT2 H′′′CT2,LE1 H′′′CT2,LE2

H′′′LE1,CT1 H′′′LE1,CT2 ϵ′′′LE1 H′′′LE1,LE2

H′′′LE2,CT1 H′′′LE2,CT2 H′′′LE2,CT1 ϵ′′′LE2

⎞
⎟
⎟
⎟
⎟
⎟
⎠

. (32)

III. COMPUTATIONAL DETAILS
All calculations were performed with a development version of

SERENITY.
51,52 If not stated otherwise, the notation of the functional

combination in the subsystem calculation is given as exchange–
correlation functional (XCFunc)/non-additive XCFunc/NAKE or
projection operator. In the case of TDDFT calculations, the
respective kernel contributions within the adiabatic approxima-
tion are evaluated with the same functionals as the ground-
state potentials. Monomer basis sets are used throughout this
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study in approximate sDFT calculations, and supersystem basis
sets are employed in projection-based embedding (PbE) sDFT
calculations.

For embedding calculations making use of approximate NAKE
functionals, the subsystem densities were relaxed through a Freeze-
and-Thaw (FaT) procedure until the sum of the absolute change in
all density matrix entries was below 10−5. For PbE sDFT calcula-
tions, a top-down embedding procedure39 is used, where orbitals of
each subsystem are relaxed.42,53 Further details concerning function-
als and/or projection operators used in the calculations are given in
each subsection individually.

In Sec. II C, three diabatization approaches in the context of
sDFT have been proposed. These procedures are referred to as (i)
“canonical” when the canonical virtual orbital space of a projection-
based embedding calculation is partitioned, (ii) as “localization”
when the virtual orbital space of a projection-based embedding cal-
culation is additionally localized on the subsystem or on the envi-
ronment subsystem, or (iii) as “approximate” when the occupied
and virtual orbital spaces of different subsystems from a sDFT cal-
culation with an approximate NAKE functional are combined. For
the approximate diabatization scheme, an additional orbital orthog-
onalization step [as described in Eq. (23)] is denoted as “relaxation.”
The general procedure for the calculation of electronic couplings and
diabatic excitation energies in sTDDFT then proceeds, as described
in Sec. II D and depicted in Fig. 2. In the case of PbE calcula-
tions, artificially shifted occupied environment orbitals are removed
from the virtual orbital space of the active subsystem for sTDDFT
calculations.19

The multistate FED–FCD diabatization procedure25 has been
implemented in SERENITY, and the matrices Δq and Δx are con-
structed using Löwdin charges in contrast to the Mulliken charges
used in Ref. 49. All multistate FED–FCD calculations have been per-
formed with supermolecular adiabatic TDA excitation energies and
vectors.

All calculations were performed employing the Resolution of
the Identity (RI) approximation54 for the evaluation of the Coulomb
contribution in DFT and TDDFT55 calculations.

IV. RESULTS AND DISCUSSION
A. Ethylene–tetrafluroethylene

In order to compare and test LE/LE and LE/CT electronic cou-
plings from different sTDA diabatization strategies (Sec. II C) but
also with respect to other diabatization procedures often employed
in the literature,31,49,32,25 the ethylene–tetrafluoroethylene dimer is
chosen as a benchmark system. The structure was taken from Ref. 19
and arranged, as shown in Fig. 3 for varying displacements between
4 Å and 6 Å.

The CAMB3LYP56 exchange–correlation functional contribu-
tion is used throughout for the intra-subsystem exchange corre-
lation. The CAMB3LYP and BLYP57,58 functionals are employed
for the non-additive exchange–correlation contributions, while the
LLP9159 NAKE functional (for approximate sDFT/sTDDFT) or
the “Levelshift” projection operator20 (for PbE-sTDA/sTDDFT) has
been applied in combination with the def2-SVP and the def2-TZVP
basis set.60 In summary, this means that for sTDA employing PbE
(denoted as sTDA-PbE), the CAMB3LYP/CAMB3LYP/Levelshift

FIG. 3. Ethylene–tetrafluoroethylene dimer as taken from Ref. 19. The displace-
ment between the two monomers is illustrated via a black arrow.

functional combination is chosen. For calculations employing
approximate NAKE functionals (denoted as sTDA-NAKE), the
CAMB3LYP/BLYP/LLP91 functional combination is used. Multi-
state FED–FCD calculations were performed using 20 states from
a supermolecular TDA calculation.

1. Diabatic CT excitations
In a first step, we want to compare the diabatic excitation

energies of the π → π∗ CT transition from tetrafluoroethylene to
ethylene for varying inter-subsystem displacements. The three dia-
batization procedures proposed in Sec. II C for sTDDFT/sTDA are
compared among themselves but also with respect to the multi-
state FED–FCD scheme.25 The corresponding excitation energies
for the def2-SVP (a) and def2-TZVP (b) basis set are displayed
in Fig. 4. Furthermore, the Highest Occupied Molecular Orbital
(HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) for
PbE with and without the virtual orbital localization procedure
for the def2-SVP basis set are shown in Fig. 5, which illustrates
the difference between the two diabatization procedures for this
example.

As expected,61 CT excitation energies increase with increas-
ing inter-subsystem displacement. Furthermore, all methods con-
verge to the same excitation energy for larger subsystem dis-
placements for both basis sets. However, the convergence for the
different methods is faster for the smaller def2-SVP basis set. This
convergence behavior is expected and is caused by a decrease
in the differential orbital overlap between orbitals located on the
two subsystems with an increase in the inter-subsystem displace-
ment. It represents an important sanity check for the different
methods.

By comparison of the excitation energies obtained for the
def2-SVP basis set [Fig. 4(a)], only small deviations among the
subsystem-based methods can be observed. Interestingly, exci-
tation energies from the approximate FDEu-TDA method are
almost identical to the PbE localized virtual orbital FDEu-TDA
approach (denoted as “localization” in Fig. 4). By contrast, excitation
energies obtained with the canonical virtual orbital space partition-
ing scheme (denoted as “canonical” in Fig. 4) are slightly shifted
to higher energy for subsystem separations from 4.2 Å to 5.4 Å.
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FIG. 4. FDEu-TDA and multistate FED–FCD excitation energies for the π → π∗ transition from C2F4 to C2H4 in eV for varying displacements of C2F4 ↔C2H4 for the (a)
def2-SVP and (b) def2-TZVP basis set; “localization” uses the additional virtual orbital localization proposed in Sec. II C, “canonical” uses the partitioning of the canonical
virtual orbital space proposed in Ref. 19, and “relaxation” uses an additional orthogonalization approach, as described in Sec. II C (sTDA, NAKE: CAMB3LYP/BLYP/LLP91,
sTDA, PbE: CAMB3LYP/CAMB3LYP/Levelshift, and multistate FCD–FED: CAMB3LYP, 20 states).

In Fig. 4(a), the diabatic excitation energies obtained with the
multistate FCD–FED method are smaller than the subsystem-based
approaches. However, a fast convergence of the different methods
can be observed, and the excitation energies are almost identical
for inter-subsystem separations of 5.2 Å and larger. In the case
of the larger def2-TZVP basis [Fig. 4(b)], more pronounced devi-
ations in the diabatic CT excitation energies are observed, which

can be explained by the larger basis-set size. For the larger basis,
the orthogonality violation of the CT orbital-transition space for
the approximate sTDA method is larger, which leads to deviations
compared to PbE FDEu-TDA with orbital localization. This differ-
ence becomes smaller as soon as the relaxation scheme proposed in
Sec. II C is used. Again, these results justify this conceptually sim-
ple ansatz to obtain CT excitation energies for approximate sTDA

FIG. 5. Orbital isosurface (value = 0.025)
plot of C2F4/C2H4 for a subsystem
displacement of 4 Å obtained with
projection-based embedding (PbE)
and approximate non-additive kinetic
embedding (Approx. NAKE); Approx.
NAKE: CAMB3LYP/BLYP/LLP91;
Approx. NAKE+relaxation: CAMB3LYP/
BLYP/LLP91 with additional orthogo-
nalization approach as described in
Sec. II C; PbE + virt. orbital localization:
CAMB3LYP/CAMB3LYP/Levelshift with
additional virtual orbital localization pro-
cedure as described in Sec. II C; PbE:
CAMB3LYP/CAMB3LYP/Levelshift.
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calculations. In contrast, the canonical selection procedure shows
a discontinuity in the excitation energy for a separation of 4.8 Å,
which is caused by a different number of virtual orbitals selected for
the local and CT transition orbital space compared to distances of
4.6 Å and smaller. This underlines one of the drawbacks associated
with a direct selection of the canonical virtual orbitals as a diabatiza-
tion procedure: These orbitals are often delocalized and change quite
rapidly along a reaction coordinate, which can lead to discontinu-
ous potential–energy curves. Note that this problem is also observed
in the selection of occupied orbitals for active subsystems along
reaction coordinates in ground-state PbE. There, the “even-handed”
selection of orbitals is an important criterion to obtain reason-
able reaction barriers.62,63 By comparison with the multistate FED–
FCD diabatization approach, excitation energies in-between those
of the canonical PbE-sTDA ansatz and the other subsystem-based
methods for subsystem separations between 4 Å and 5 Å can be
observed. However, the excitation energies are in closer agreement
with the canonical PbE-sTDA ansatz than the other diabatization
procedures.

2. LE/LE electronic couplings
Next, we investigate the electronic couplings between LEs

obtained with the different diabatization schemes. For this, the elec-
tronic coupling for the π→ π∗ excitation located on C2F4 and C2H4
for different subsystem separations is compared. The absolute elec-
tronic couplings for different subsystem displacements and basis sets
are shown in Fig. 6. There, it can be seen that all methods, again, con-
verge to the same electronic coupling at larger displacements. Fur-
thermore, the basis set dependence of the LE/LE electronic couplings
is small, and the spread in the results for the same method with the
two basis sets is less than 15 meV. The deviation is increasing with
smaller subsystem separations, and a fast convergence for all meth-
ods to the same coupling values can be observed. For a separation of
5 Å, the largest deviation is already below 1 kcal/mol. Interestingly,
smaller couplings are obtained with the larger def2-TZVP basis for

multistate FED–FCD and PbE sTDA with localization. This can be
caused by a larger differential overlap of the orbitals and there-
fore more pronounced short-range effects. This may also explain
why this trend cannot be observed for the approximate sTDA cou-
plings. In this case, the usage of a non-additive kinetic-energy func-
tional minimizes the overlap between densities and therefore also
orbitals between subsystems.64 However, also a reduction in the
oscillator strengths for the π → π∗ excitations, especially in the
PbE sTDA calculations for the larger def2-TZVP basis, contributes
to the observed trend. The canonical virtual-orbital selection again
shows discontinuities in the electronic-coupling curves. However,
the couplings are in good agreement with the other approaches
shown.

Note that the comparison of the methods used here includes
two reference methods that are exact in the sense that they repro-
duce the supermolecular adiabatic excitation energies. This holds
both for PbE in combination with sTDDFT/sTDA in the full orbital
transition space and for the multistate FED–FCD diabatization pro-
cedure. It should be emphasized that this does not mean that the
diabatic excitation energies and couplings are identical, due to the
non-uniqueness of the diabatization. Additional double logarithmic
plots and analysis of the distant-dependent behavior of the LE/LE
electronic couplings can be found in Sec. S2 of the supplementary
material.

3. LE/CT electronic couplings
In a last step, the electronic coupling between the local π → π∗

excitation on C2H4 (a) and C2F4 (b) with the CT π → π∗ excitation
from C2F4 to C2H4 for the different diabatization schemes are com-
pared. First, only sTDA electronic couplings obtained with PbE are
compared to the multistate FED–FCD scheme. The electronic cou-
plings for the def2-SVP and the def2-TZVP basis set are displayed in
Fig. 7, again for varying inter-subsystem separations. For the hole-
transfer coupling in Fig. 7(a), all curves show an exponential decay
with increasing separation.32 A more detailed analysis of this aspect

FIG. 6. LE/LE electronic couplings
obtained from FDEc-TDA calculations
for the π → π∗ excitations located on
C2F4 and C2H4 for varying separations
between the subsystems; “localization”
uses the additional virtual orbital local-
ization proposed in Sec. II C, “canoni-
cal” uses the partitioning of the canon-
ical virtual orbital space proposed in
Ref. 19, and “relaxation” uses an addi-
tional orthogonalization approach, as
described in Sec. II C (sTDA, NAKE:
CAMB3LYP/BLYP/LLP91, sTDA, PbE:
CAMB3LYP/CAMB3LYP/Levelshift, and
multistate FCD–FED: CAMB3LYP, 20
states).
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can be found in Sec. S2 of the supplementary material. However, the
spread in the electronic coupling is significantly larger than in the
case of the LE/LE electronic couplings (Fig. 6) for both the basis set
dependence and the different methods. Interestingly, almost iden-
tical results are found for the multistate FED–FCD diabatization
approach and the PbE-sTDA calculations with orbital localization
for both basis sets in the entire displacement range. The largest devi-
ation is less than 3 meV (4.0 Å separation, def2-SVP basis set). In
contrast to that, hole-transfer couplings obtained with the canonical
sTDA approach are significantly larger. Nevertheless, the qualita-
tive behavior and basis set dependence are similar, with a slower
decay of the electronic couplings for the larger def2-TZVP basis.
In Fig. 7(b), the electron-transfer couplings are shown. Here, a
large spread in the electronic couplings between the methods and
basis set used can be observed. Especially, the couplings obtained
with the canonical selection of the virtual orbitals differ significantly
from the other methods and show discontinuities in the case of the
larger def2-TZVP basis set. It becomes obvious that a selection of
canonical orbitals is unsuited for the description of electron-transfer
couplings.

In order to compare the electron-transfer couplings for the
multistate FED–FCD and the localized PbE sTDA scheme more
clearly, these were separated from the canonical selection and dis-
played in Fig. 8. For the def2-SVP basis set [Fig. 8(a)], similar
electronic couplings for the multistate FED–FCD and the local-
ized PbE sTDA scheme are obtained at least for separations larger
than 4.8 Å. However, the deviations become larger for short sep-
arations, and for 4 Å, the difference is 56 meV. Enlarging the
basis set [Fig. 8(b)] leads to more pronounced deviations between

the two methods, and no convergence to a common value can be
observed within the displacement range shown. A possible expla-
nation for the difference between the two methods for the descrip-
tion of electron-transfer coupling compared to hole-transfer cou-
pling can be found by analyzing the major coupling contribution
in the subsystem case. The contributions to the electronic cou-
pling for PbE sTDA calculations with localized orbitals are displayed
in Table II. There, the main contribution to the electron-transfer
is caused by the Lagrange multiplier δIJij F

IJ
ab in the inter-subsystem

Fock-matrix block. In the case of a hole-transfer coupling, the major
contributions are caused by the Lagrange multiplier δIJabF

IJ
ij . Both

contributions are directly related to the orbital localization proce-
dure and therefore to the diabatization procedure employed. Due
to the overall more delocalized shape of virtual orbitals, the result-
ing virtual–virtual block in the Fock-matrix depends more strongly
on the unitary transformation. This could be an explanation for the
difference between the multistate FED–FCD diabatization and the
PbE sTDA method with localized orbitals. More details concerning
these discrepancies can be found in Sec. S1 of the supplementary
material.

In the next step, hole- and electron-transfer couplings from
the approximate sTDA procedure are compared to PbE-sTDA
couplings with orbital localization. The comparison is displayed
in Fig. 9. For the electronic couplings from approximate sTDA
in def2-SVP basis without an additional correction (Fig. 9; gray
dashed line), it becomes apparent that the electronic couplings are
heavily underestimated. For PbE-sTDA with orbital localization, it
was already observed that the main contribution to the electronic

FIG. 7. LE/CT electronic couplings obtained from FDEc-TDA calculations for (a) the π → π∗ excitations located on C2H4 and π → π∗ from C2F4 to C2H4 and (b) the π →
π∗ excitations located on C2F4 and π→ π∗ from C2F4 to C2H4 for varying separations between the subsystems; “localization” uses the additional virtual orbital localization
proposed in Sec. II C and “canonical” uses the partitioning of the canonical virtual orbital space proposed in Ref. 19 (sTDA, PbE: CAMB3LYP/CAMB3LYP/Levelshift and
multistate FCD–FED: CAMB3LYP, 20 states).
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FIG. 8. Electron transfer couplings (π→ π∗ excitation located on C2F4 and π→ π∗ from C2F4 to C2H4) for varying separations between the subsystems and basis sets, (a)
def2SVP and (b) def2-TZVP; “localization” uses the additional virtual orbital localization proposed in Sec. II C (sTDA, PbE: CAMB3LYP/CAMB3LYP/Levelshift and multistate
FCD–FED: CAMB3LYP, 20 states).

coupling is caused by inter-subsystem occupied–occupied/virtual–
virtual Fock-matrix block, which represents off-diagonal Lagrange
multipliers arising from the orbital localization procedure.19 By
interpreting the diabatization in the approximate sTDA proce-
dure also as a (non-orthogonal) localization procedure, these off-
diagonal Lagrange multipliers are missing in this approach. We
therefore corrected our model by these missing Lagrange multipli-
ers (SijFab for hole-transfer and SabFij for electron-transfer). How-
ever, it has to be noted that these corrections represent pragmatic
corrections with empirical flavor because the orbitals of differ-
ent subsystems in sDFT with the approximate NAKE functional
are not required to be orthogonal.48 We therefore scale the dif-
ferent Lagrange multipliers and compare the couplings with those
obtained from PbE-sTDA with orbital localization. In addition, the
largest orbital overlap is always subtracted from the scaling factor
in order to correct for non-orthogonality. This means that in the

case of an electron-transfer, the correction is scaled with [ascaling −

max(Sij)]SijFab. The curves for different scaling factors are shown
in Fig. 9. In Fig. 9(a), reasonable agreement for the def2-SVP and
def2-TZVP basis set compared to PbE-sTDA can be observed for
a scaling factor of ascaling = 0.25, while the electronic couplings
obtained from ascaling = 1.0 are overestimated. In the case of hole-
transfer, a reasonable agreement with PbE-sTDA with the def2-SVP
for a scaling factor of ascaling = 1.0 is achieved. However, the situ-
ation changes for the larger def2-TZVP basis. Here also, a qualita-
tively wrong distance dependence of the electronic coupling can be
observed.

It can be seen that the proposed approximate sTDA approach
for the calculation for hole-and electron-transfer coupling is
highly dependent on the basis set and the empirically scaled
factor for the off-diagonal Lagrange multiplier, which effectively
makes this method unsuitable as a general tool. However, we

TABLE II. LE/CT electronic coupling contributions obtained from PbE-sTDA calculations for the π → π∗ excitations located
on C2H4/C2F4 and π→ π∗ from C2F4 to C2H4 (hole-transfer, electron-transfer) for an inter-subsystem separation of 5.0 Å.

Abs. Electronic Coupling/meV

CT(C2F4 → C2H4)/LE(C2H4) CT(C2F4 → C2H4)/LE(C2F4)

Coupling contribution def2-SVP def2-TZVP def2-SVP def2-TZVP

Full [Eq. (12)] 31 30 56 160
Neglection of Eq. (22) 3 4 1 5
Coulomb only 4 1 1 1
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FIG. 9. LE/CT electronic couplings obtained from FDEc-TDA calculations for (a) the π→ π∗ excitations located on C2H4 and π→ π∗ from C2F4 to C2H4 and (b) the π→ π∗
excitations located on C2F4 and π → π∗ from C2F4 to C2H4 for varying separations between the subsystems; “localization” uses the additional virtual-orbital localization
proposed in Sec. II C, “canonical” uses the partitioning of the canonical virtual orbital space proposed in Ref. 19, and “relaxation” uses an additional orthogonalization
approach, as described in Sec. II C (sTDA, NAKE: CAMB3LYP/BLYP/LLP91 and sTDA, PbE: CAMB3LYP/CAMB3LYP/Levelshift).

want to emphasize that this approach seems suitable for the cal-
culation of charge-transfer excitation energies as demonstrated
earlier.

B. Adenine–thymine
In a next step, the adenine–thymine (AT) base pair is used as a

biologically relevant test system for the evaluation of electronic cou-
plings based on sTDA and the multistate FED–FCD scheme. This
example is chosen due to the rich and complex photophysics of DNA
(cf. Refs. 65–69) and therefore represents a realistic model system
to use different diabatization approaches to obtain electronic cou-
plings. The structure used in the following was taken from Ref. 70
and is displayed in Fig. 10.

In Ref. 70, the electronic couplings associated with the two
lowest diabatic excitations located on adenine and thymine and the
lowest CT excitation from adenine to thymine were investigated by
means of MS-CASPT2. In order to compare these couplings to cou-
plings obtained from TDDFT in the TDA, benchmark calculations
of the supersystem were performed employing the CAMB3LYP
and LCBLYP71(μ = 0.33 bohr−1) exchange–correlation functionals.
Excitation energies and oscillator strength (length gauge is chosen
throughout this study) are further compared with respect to CC2
and ADC(2), employing the def2-TZVP basis set and the RI approx-
imation. The CC2 and ADC(2) calculations were performed with
TURBOMOLE V7.4.1.72,73 The results are shown in Table III. For
the excitation energies obtained in Ref. 70, a (10, 10) active space
was chosen so that the MS-CASPT2 results correspond to transitions
predominantly of π → π∗ type. The resulting π → π∗ transitions are

compared in the following. The state assignment in Table III is based
on the predominant contributions. However, especially, the Lb state
is accompanied with additional orbital transitions contributing to
the excitation.

For the adenine–thymine base pair, the CC2 excitation ener-
gies are blue shifted, compared to the ADC(2) results by about
0.08 eV. However, similar oscillator strengths are obtained for both
approaches. By comparison of the ADC(2) and CC2 excitation

FIG. 10. Adenine–thymine DNA base pair taken from Ref. 70.
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TABLE III. Adiabatic excitation energies and oscillator strength (length gauge) for the adenine–thymine base pair, as displayed
in Fig. 10. The def2-TZVP basis set is used, and TDDFT calculations were performed employing the TDA.

Excitation Energy (oscillator strength)/eV (au)

MS-CASPT2 CC2 ADC(2) CAMB3LYP LCBLYP

A(La) 5.58(0.272)a 5.35(0.248) 5.26(0.238) 5.60(0.182)b 5.67(0.300)
A(Lb) 5.25(0.009) 5.19(0.026) 5.62(0.111)b 5.51(0.004)
T(ππ∗) 4.95(0.304)a 5.14(0.131) 5.06(0.147) 5.36(0.134) 5.33(0.157)
A→ T(ππ∗) 5.30(0.160)a 5.59(0.001) 5.52(0.002) 5.18(0.025) 5.90(0.004)

aTaken from Ref. 70.
bA mixing of La and Lb can be observed the assignment is based on the predominant contribution.

energies to the MS-CASPT2 results of Ref. 70, a difficulty arises in
the characterization of the adiabatic excitation mostly located on
adenine. While no assignment for this state was given in Ref. 70, the
state was characterized as La in Ref. 69. Therefore, this characteriza-
tion is adopted in Table III. In the following, the MS-CASPT2 exci-
tation energies and oscillator strengths are compared to the results
obtained with ADC(2) and CC2. The excitation energy of the La
state is larger by 0.23 eV compared to CC2 and by 0.32 eV com-
pared to ADC(2). Nevertheless, a similar oscillator strength can be
observed. In the case of the π → π∗ excitation mostly located on the
thymine, better agreement in the excitation energy compared to CC2
and ADC(2) is obtained, while the oscillator strength differs signif-
icantly. Comparing the lowest CT state from adenine to thymine, a
different ordering compared to CC2 and ADC(2) can be observed.
While the CT state lies energetically between the local excitations on
A and T in the case of the MS-CASPT2 calculations, the CT excita-
tion is shifted to higher energies in the case of CC2 and ADC(2) and
lies approximately 0.3 eV above the La excitation. In Ref. 70, the low-
lying CT state was already discussed and the difference to previous
wavefunction-based calculations74 on the adenine–thymine dimer
was mentioned. In Ref. 74, the CT state was found about 0.4 eV
above the local π → π∗ excited state on adenine and thymine in
the case of EOM-CCSD(T) and about 0.3 eV in the case of ADC(2).
In Ref. 70, it was argued that this deviation arises from differences
in the geometry, especially the stacking distance, of the base pair.
The results shown here for ADC(2) and CC2 confirm the energet-
ical separation of local and CT states observed in Ref. 74 although
the structure of Ref. 70 is used. Here, the CT state is about 0.26 eV
and 0.24 eV, respectively, higher in energy than the local excited
states. Furthermore, a significant difference in the oscillator strength
for the CT transition can be observed. This raises the question if
a larger active space than the one employed in the MS-CASPT2
calculations in Ref. 70 would lead to results closer to the other
methods.

In a next step, the CC2 and ADC(2) excitation energies
and oscillator strength are compared to TDDFT within the TDA
for the CAMB3LYP and LCBLYP(μ = 0.33 bohr−1) exchange–
correlation functional. While the results for LCBLYP compared
to CC2 and ADC(2) show the same energetical order and simi-
lar oscillator strengths, a blue shift in the absolute excitation ener-
gies can be observed. However, the overall good agreement in
the energetic order and the agreement in the oscillator strength

indicates the capability of TDA with the LCBLYP exchange–
correlation functional to give a consistent picture of the vertical
excitation energies compared to CC2 and ADC(2). In contrast,
results obtained with the CAMB3LYP functional lead to a signifi-
cant mixing of the La and Lb states and an energetically low-lying CT
excitation.

Electronic couplings and diabatic excitation energies for this
particular system were obtained in Ref. 70, employing a three-state
model. Here, we compare these results to those obtained with the
diabatization procedures used in Sec. IV A. The results are listed in
Table IV. In Ref. 70, a mixing of the three states was observed, which
required the usage of a three-state model in order to disentangle
these states in the diabatic representation and to extract electronic
couplings. For the TDA calculations performed here, the def2-SVP
and def2-TZVP basis sets in combination with the CAMB3LYP and
LCBLYP exchange–corelation functional were used. As analyzed in
Sec. IV A, the most consistent couplings were obtained using PbE
sTDA in combination with an additional virtual orbital localiza-
tion procedure. This procedure is therefore employed in the fol-
lowing. However, it is computationally the most demanding pro-
cedure of the subsystem-based methods compared in Sec. IV A.
We therefore introduce an approximation in the coupling step. For
this, the inter-subsystem exact exchange is not evaluated, which
should introduce a negligible error due to the fact that electron-
and hole-transfer couplings are predominantly captured by off-
diagonal Lagrange-multipliers caused by the orbital localization of
the occupied and virtual orbital space (Table II). This approx-
imation is achieved by replacing the inter-subsystem exchange–
correlation functional (CAMB3LYP/LCBLYP) with BLYP and is
tested against PbE sTDA calculations without any additional
approximations.

We start by comparing the diabatic excitation energies based
on the multistate FED–FCD diabatization procedure and sTDA. For
all diabatic excitation energies, an expected decrease in excitation
energies with an increase in the basis set can be observed. Almost no
exchange–correlation functional dependence for the diabatic π→ π∗
excitation energies on thymine within a given basis set and dia-
batization procedure is observed. However, the excitation energies
obtained with the subsystem-based approach are constantly shifted
by about +0.12 eV relative to the multistate FED–FCD scheme.
Similar deviations in the diabatic excitation energies can also be
observed for the other local and CT diabatic excitation energies.
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TABLE IV. Electronic couplings and diabatic excitation energies for the adenine–thymine base pair, as displayed in Fig. 10.

Electronic coupling/meV Excitation energy/eV

Method ∣VLa ,T∣ ∣VLb ,T∣ ∣VCT,La ∣ ∣VCT,Lb ∣ |VCT,T| ϵLa (A) ϵLb (A) ϵ(T) ϵCT(A→ T)

MS-CASPT2 (ANO-S) 3 states (from Ref. 70) 96.3 . . . 137 . . . 99.9 5.506 . . . 5.018 5.315
CAMB3LYP/CAMB3LYP/Level. (def2-SVP) 7 7 29 108 51 5.91 5.73 5.68 5.49
CAMB3LYP/BLYP/Level. (def2-SVP) 7 7 25 105 46 5.91 5.73 5.68 5.49
CAMB3LYP/CAMB3LYP/Level. (def2-TZVP) 1 6 5 99 54 5.75 5.69 5.55 5.44
CAMB3LYP/BLYP/Level. (def2-TZVP) 1 6 3 102 48 5.75 5.69 5.55 5.44
Multistate FCD/FED (20 States,def2-SVP) 11 6 38 121 49 5.81 5.65 5.55 5.40
Multistate FCD/FED (20 States,def2-TZVP) 5 5 18 132 52 5.62 5.56 5.35 5.28
LCBLYP/LCBLYP/Level. (def2-SVP) 8 5 10 113 61 5.96 5.73 5.68 6.16
LCBLYP/BLYP/Level. (def2-SVP) 8 5 6 117 55 5.96 5.73 5.68 6.16
LCBLYP/LCBLYP/Level. (def2-TZVP) 2 5 34 99 65 5.81 5.68 5.55 6.10
LCBLYP/BLYP/Level. (def2-TZVP) 2 5 32 103 59 5.81 5.68 5.55 6.10
Multistate FCD/FED (20 States,def2-SVP) 11 5 12 130 60 5.87 5.65 5.56 6.03
Multistate FCD/FED (20 states, def2-TZVP) 3 3 38 134 62 5.68 5.56 5.35 5.91

Interestingly, a clear separation of La and Lb states in the diabatic
basis for both functionals can be observed, while the supermolec-
ular TDA calculation with the CAMB3LYP exchange–correlation
functional leads to a mixing of these states. Overall, only a small
dependence of the local diabatic excitation energies on the func-
tional employed is found. By contrast, a larger difference for the CT
excitation energies is obtained. Here, the results for the long-range
corrected functional LCBLYP are shifted to higher energies. We
now move on to the comparison of electronic couplings obtained
with the sTDA approach in combination with the localization pro-
cedure. It can be seen that the approximation introduced by neglect-
ing exact exchange in the coupling step is justified due to the small
deviations caused by this approximation (a maximum deviation of
9 meV). For the local excitations, only small electronic coupling
values for all procedures are obtained with a maximum value of
11 meV.

This could indicate that the coupling between the La and Lb
located on adenine and the lowest π → π∗ on thymine plays only
a small role in the photophysics of this adenine–thymine stack.
In addition, the electronic couplings are even further lowered by
an increase in the basis set. The situation changes for the LE/CT
couplings. Here, electronic couplings of about 50 meV in the case
of thymine/adenine → thymine are obtained for the CAMB3LYP
functional and about 60 meV for the LCBLYP functional. Simi-
lar values are obtained when changing the basis set or the diaba-
tization procedure. This is in line with the findings in Sec. IV A
(Sec. IV A), where it was already observed that hole-transfer cou-
plings are less sensitive to the diabatization procedure employed.
This situation changes for electron-transfer couplings. These are
dominated by the virtual–virtual off-diagonal Lagrange multipliers
in the Fock-matrix and are therefore more sensitive to the basis
and the diabatization procedure. This can also be observed here.
While the electronic coupling of the Lb transition with the ade-
nine → thymine CT transition is mostly independent of the basis
set, the couplings differ by about 20 meV between the methods.
However, the influence of the exchange–correlation functional is

relatively small. This changes for the La state, where the couplings
decrease significantly for the CAMB3LYP functional with the larger
def2-TZVP basis compared to def2-SVP, but the coupling increases
for the LCBLYP functional. However, the couplings for the differ-
ent diabatization procedures are again similar. Additional electronic
couplings for the stacked DNA base pair for different relative sepa-
rations are depicted in Sec. S3 of the supplementary material for the
LCBLYP exchange–correlation functional.

Finally, we compare the electronic couplings based on the mul-
tistate FED–FCD procedure and sTDA calculations to the electronic
couplings calculated in Ref. 70. As already mentioned in the anal-
ysis of supermolecular excitation energies earlier, no characteriza-
tion of the lowest singlet excitation located on adenine was made
in Ref. 70, and the state assignment used here was based on Ref.
69. Therefore, the same assignment for the diabatic state located
on adenine is used here, and the resulting couplings are shown in
Table IV. By comparison of the electronic couplings for the local
excitations, a large discrepancy can be observed. While the electronic
couplings from sTDA and TDA are almost negligible, a coupling
of 96 meV is obtained from the MS-CASPT2 calculations. Simi-
lar differences can also be observed for the hole-transfer coupling
from adenine to thymine, where the coupling is about twice as large.
The differences are most probably due to the different character of
the lowest–energy transitions of the dimer. A final assessment of
the TDA/sTDA couplings obtained here through comparison to the
MS-CASPT2 data from Ref. 70 thus remains elusive. The compari-
son of our TDA/sTDA results to ADC(2) and CC2 results and that
to the EOM-CCSD(T) results from Ref. 74 show that these methods
all seem to agree as far as the qualitative character of these states is
concerned.

V. CONCLUSIONS
In summary, this paper has shown that subsystem-TDDFT

within the TDA is not only capable of describing LE/LE
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electronic couplings but can also properly incorporate CT excita-
tions (excitons) in the coupling procedure. For this, different dia-
batization procedures within the sTDDFT framework have been
proposed. For sDFT making use of NAKE functionals, a pragmat-
ically motivated approach has been used, which combines occu-
pied and virtual orbitals of different subsystems, opening the way
to include CT excitations in typical approximate sTDDFT calcula-
tion for the first time, while diabatization of the local excitations
is still achieved via basis set restriction. For sDFT and sTDDFT
in the context of projection-based embedding, two diabatization
procedures have been presented. One relies on the selection of
canonical virtual orbitals as already described in Ref. 19, and the
other performs an additional orbital localization procedure of the
virtual orbital space to separate local- and CT excitations.42 By
comparison of these three diabatization approaches, it has been
found that approximate sTDDFT is especially suited for the descrip-
tion of LE/LE electronic couplings with a relatively low computa-
tional cost. Furthermore, a description of diabatic CT excitations
is possible with this variant, but the description of LE/CT cou-
plings is error prone and not recommended. In order to describe
LE/CT couplings, the additional virtual orbital localization proce-
dure for PbE-sTDDFT has shown to be useful and reliable to obtain
smooth diabatic potential energy curves and reasonable electronic
couplings. Furthermore, it was found that the neglection of the
exact exchange contribution in the coupling procedure only leads
to small errors, while savings in the computational time can be
obtained.

Besides proposing these different diabatization schemes, an in-
depth comparison with a recently proposed multistate FED–FCD
ansatz25 has been performed. It was found that both approaches,
although different in their general strategy, lead to similar elec-
tronic couplings in the case of local and hole-transfer couplings. In
addition, a reasonable agreement can be found for electron-transfer
couplings. Especially for strongly interacting subsystems, however,
differences were observed. These could be traced back to off-
diagonal Lagrange multipliers in the virtual–virtual block of the Fock
matrix. They are therefore more sensitive to the diabatization proce-
dure than hole-transfer couplings, which depend on the occupied–
occupied block of the Fock matrix. Furthermore, the approaches
were used to describe electronic couplings for a adenine–thymine
DNA base pair to demonstrate their applicability in biologically rel-
evant systems. Electronic couplings for the π → π∗ diabatic local-
and CT excitations were calculated. Differences occurring for this
example in comparison to earlier work based on MS-CASPT270 were
analyzed in detail based on supermolecular TDA, CC2, and ADC(2)
calculations as well as on previous EOM-CCSD(T) results.74 All
these aforementioned approaches lead to a similar energetic order
and character of the excitations (using an appropriate exchange–
correlation functional in the case of DFT-based approaches),
although a differently stacked structure was used in Ref. 74 for
the EOM-CCSD(T) calculations. However, the MS-CASPT2 results
in Ref. 70 show differences in oscillator strengths and energetic
order, which probably translate into the observed differences for
the electronic couplings and diabatic excitation energies. One pos-
sible reason for this mismatch could be the specific choice made for
the active space in Ref. 70. A direct comparison of the electronic
couplings shown here and calculated in Ref. 70 remains therefore
elusive. However, subsystem-TDA and the multistate FED–FCD

procedure again lead to a good agreement for the calculated elec-
tronic couplings.

Overall, this work extends the range of applicability of sTDDFT
as a useful and versatile tool for the calculation of electronic cou-
plings. While approximate sTDDFT is especially suited and com-
putationally appealing for the description of LE/LE couplings, PbE-
sTDDFT with an additional virtual orbital localization is capable
of describing all couplings shown in Fig. 1 and therefore repre-
sents a complete toolbox. Furthermore, a good overall agreement to
another widely used diabatization procedure, namely, the multistate
FED–FCD approach,25,75–77 has been found, which underlines the
usefulness of both approaches.

SUPPLEMENTARY MATERIAL

See the supplementary material for a comparison of the natural-
transition orbitals (NTOs) for the multistate FED–FCD procedure
and sTDA with virtual orbital localization for tetrafluoroethylene–
ethylene for a separation of 4 Å, logarithmic plots and slopes
for the distance-dependence of the electronic couplings for
tetrafluoroethylene–ethylene, the distance-dependence of the elec-
tronic couplings for the adenine–thymine base pair, and comparison
of multistate FED–FCD procedure and sTDA with virtual orbital
localization in both cases.
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