
Received April 25, 2020, accepted May 4, 2020, date of publication May 12, 2020, date of current version May 27, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2994052

Forming Sequences of Patterns With
Luminous Robots
SHANTANU DAS1, PAOLA FLOCCHINI2, GIUSEPPE PRENCIPE 3, AND NICOLA SANTORO4
1LIS, Aix-Marseille University, Parc Scientifique et Technologique de Luminy, 13009 Marseille, France
2SEECS, University of Ottawa, Ottawa, ON K1N 6N5, Canada
3Dipartimento di Informatica, Università di Pisa, 56127 Pisa, Italy
4School of Computer Science, Carleton University, Ottawa, ON K1S 5B6, Canada

Corresponding author: Giuseppe Prencipe (giuseppe.prencipe@unipi.it)

This work was supported in part by the Progetto, Università di Pisa, Pisa, Italy, under Grant PRA_2018_43, and in part by The Natural
Sciences and Engineering Research Council of Canada through the Discovery Grants Program.

ABSTRACT The extensive studies on computing by a team of identical mobile robots operating in the
plane in Look-Compute-Move cycles have been carried out mainly in the traditionalOBLOT model, where
the robots are silent (have no communication capabilities) and oblivious (in a cycle, they have no memory
previous cycles). To partially overcome the limits of obliviousness and silence while maintaining some of
their advantages, the stronger model of luminous robots, LUMI, has been introduced where the robots,
otherwise oblivious and silent, carry a visible light that can take a number of different colors; a color can be
seen by observing robots, and persists from a cycle to the next. In the study of the computational impact of
lights, an immediate concern has been to understand and determine the additional computational strength of
LUMI overOBLOT . Within this line of investigation, we examine the problem of forming a sequence of
geometric patterns, PATTERNSEQUENCEFORMATION. A complete characterization of the sequences of patterns
formable from a given starting configuration has been determined in the OBLOT model. In this paper,
we study the formation of sequences of patterns in the LUMI model and provide a complete
characterization. The characterization is constructive: our universal protocol forms all formable sequences,
and it does so asynchronously and without rigidity. This characterization explicitly and clearly identifies the
computational strength ofLUMI overOBLOT with respect to the PATTERNSEQUENCEFORMATION problem.
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I. INTRODUCTION
The control and coordination of systems of autonomous
mobile robots operating in continuous spaces has been the
object of intensive investigations in a variety of fields, includ-
ing robotics, control, AI, and distributed computing.

A. FRAMEWORK
Within distributed computing, the robots are seen as mobile
computational entities operating in the Euclidean space in
Look-Compute-Move cycles. During a cycle, a robot obtains
a snapshot of the positions of the other robots, expressed
in its own local coordinate system (Look); using the snap-
shot as an input, it executes an algorithm, the same for all
robots, to determine a destination (Compute); and it moves

The associate editor coordinating the review of this manuscript and

approving it for publication was Yilun Shang .

towards the computed destination (Move); after a cycle,
a robot may be inactive for some time. The main focus has
been on determining the minimal capabilities the robots need
to have to be able to solve a problem, and the extensive
literature has almost exclusively focused on simple computa-
tional entities operating under strong adversarial conditions.
The robots are anonymous (without ids or distinguishable
features), autonomous (without central or external control),
homogeneous (they execute the same program), silent (with-
out explicit means of communication), and oblivious (no rec-
ollection of computations and observations done in previous
cycles).

In this standard model of robots, typically calledOBLOT ,
depending on the activation schedule and timing assumptions,
three main sub-models have been studied in the litera-
ture: the asynchronous model (ASYNC), where no assump-
tions are made on synchronization among the robots’ cycles

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 90577

https://orcid.org/0000-0001-5646-7388
https://orcid.org/0000-0002-2817-3400


S. Das et al.: Forming Sequences of Patterns With Luminous Robots

nor their duration; and the fully synchronous (FSYNC) and
semi-synchronous (SSYNC) models where the robots operate
in synchronous atomic rounds, the only difference being
whether all robots are activated in every round or, sub-
ject to some fairness condition, a possibly different sub-
set is activated in each round. Extensive research has
been carried out to determine, in all three sub-models, the
computational boundaries as well as the impact that factors
such as presence/absence of common coordinate system,
movement rigidity (i.e., being able to always reach the des-
tination), etc., have on computability and complexity (e.g.,
see [3], [6], [14]–[16], [18], [28], [29], [31], and the recent
books and chapters therein [12], [13]). Although this research
is highly theoretical, its influence is sometimes felt in more
practical settings (e.g., see [5], [19], [20], [22], [27] in the
recent literature).

Among all the restricting conditions, being oblivious and
silent are the most limiting constraints for the robots, forcing
them to rely only on movement and observation of the envi-
ronment to coordinate and decide their next step. On the other
hand, both obliviousness and silence are very desirable char-
acteristics, as the former provides a form of self-stabilization,
while the latter allows for applications in environments where
communication is impossible or dangerous.

Recently, to partially overcome the limits of obliviousness
and silence while maintaining some of their advantages, the
stronger model of luminous robots, LUMI, has been intro-
duced where robots, otherwise oblivious and silent, carry a
visible light that can take (a bounded number of) different
colors, can be seen by observing robots, and persists from
cycle to cycle [7], [8].

The availability of visible lights clearly changes the com-
putational power of the robots, which have now the means
for a bounded amount of persistent memory (by coding
information into the colors), and limited communication (by
using the change of colors to transmit a bounded amount
of information to the other robots). The research is now
ongoing to determine the impact that the availability of visible
lights has on the computability power of the robots, and
how lights can be used to overcome additional limitations
(e.g., obstructed visibility). The first crucial result is the
existence of an algorithmic transformation that allows any
semi-synchronous protocol for luminous robots with k colors
to be executed asynchronously with O(k) colors [8]. In other
words, when solving a problem for asynchronous luminous
robots, it suffices to solve it for semi-synchronous ones; the
price to pay is a (small) constant muliplicative factor in the
number of colors. Furthermore, since robots in OBLOT are
luminous robots with k = 1 color, this result implies that
asynchronous luminous robots are at least as powerful as
semi-synchronous traditional robots. Since their introduction,
a large amount of work has been done on luminous robots
([1], [2], [4], [8], [10], [17], [21], [23]–[26], [30]; see [11]
for a recent review). In this paper we continue the investiga-
tion on the computational impact of lights, and examine the
problem of forming a sequence of geometric patterns.

B. FORMING A SEQUENCE OF PATTERNS
The research on the computational aspects of autonomous
mobile robots has in large part focused on the fundamental
class ofGeometric Pattern Formation problems. A geometric
pattern (or simply pattern) P is a set of points in the plane; the
robots form the pattern P at time t if the configuration of the
robots (i.e., the set of their positions) at time t is similar to P
(i.e., coincident with P up to scaling, rotation, translation, and
reflection); a pattern P is formable if there exists an algorithm
that allows the robots to form P within finite time and no
longer move.

Determining which patterns are formable under what con-
ditions has been the subject of extensive studies in a variety of
settings (e.g., see [16], [18], [28], [29], [31]). A crucial role is
played by the notion of symmetricity of a set of points, which
informally measures the amount of symmetries of the set.
Indeed, for a pattern P to be formable, its symmetricity must
divide the one of the starting configuration (i.e. initial place-
ment of the robots in the plane). The obtained results indicate
that, in most settings, the robots can form single arbitrary
geometric patterns in spite of their silence and obliviousness.
In other words, apart from the inevitable limitations due to
symmetry, obliviousness and silence are not limiting factors
to form a single pattern.

The problem of forming more than one pattern in a speci-
fied order is clearly much more difficult due to the oblivious-
ness of the robots. In fact, to be able to correctly transition
from a pattern to the next in the prescribed order, the robots
must create in the environment the mechanism to ‘‘remem-
ber’’ and ‘‘communicate’’.

Let S = 〈S0, S1, . . . , Sm−1〉 be an ordered sequence of
patterns. Forming sequence S requires the robots to form
the infinite periodic sequence S∞ = 〈S0, S1, . . . , Sm−1〉∞,
called coreography; that is, after forming pattern Si, the robots
must form pattern S(i+1)mod m, where the first formed pat-
tern can be any pattern in the sequence [9]. The problem
of determining which coreographies can be formed from a
given initial configuration, the PATTERNSEQUENCEFORMATION

problem, has been studied in the OBLOT model in [9],
where a complete characterization was given for the set of
the sequences formable from the initial configuration 0 by
semi-synchronous robots with rigid movements (i.e., when
moving, a robot always reaches its destination), assuming
chirality (i.e., clockwise orientation). Specifically, the authors
proved that a sequence S of patterns formable from 0 can be
formed by rigid robots in SSYNC only if (R1) the number of
points in each pattern is the same and (R2) no pattern appears
more than once in the sequence.

Since traditional robots without lights are the particular
case of luminous robots with one color, the results proven
in [8] imply that all sequences formable by robots in SSYNC

with rigid movements and chirality can be done by asyn-
chronous luminous robots under the same conditions.

This naturally poses several questions on the sequence of
patterns formable by asynchronous luminous robots vs those
formable by traditional robots. Specifically, are asynchronous
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luminous robots more powerful than traditional robots in
SSYNC? If so, what other sequence of patterns can be formed?
how? can they be formed without rigidity? In this paper,
we provide a complete answer to these questions.

C. CONTRIBUTIONS
We provide a complete characterization of the sequences
of patterns formable by (non-rigid) luminous robots with
chirality, starting from an input configuration 0.
The characterization shows that, in contrast with the case

without lights, the sequences F(0) of patterns that can be
formed do not suffer from restrictions (R1) and (R2); in
fact, formable sequences can contain repeated patterns ( rep-
etitions), and the number of points in the patterns can be
different (contractions). The number of colors needed by the
robots, and used by the algorithm, depends necessarily on
the number of repetitions and contractions in the sequence
of patterns; i.e., it is bounded but not by a constant. Fur-
thermore, unlike the case without lights, the set F(0) of
sequences formable by luminous robots is the same regardless
of (a)synchrony and regardless of rigidity.

The characterization is constructive. We first identify the
sequences that cannot be formed even if the robots are fully
synchronous and rigid; we then provide a universal protocol
that, for any given arbitrary initial configuration 0 and any
given ordered sequence S = 〈S0, . . . , Sm−1〉 of patterns
formable from0, allows the robots to form S starting from0;
furthermore, this is done asynchronously, without requiring
rigidity, and always starting from S0.
This characterization explicitly and clearly identifies the

computational strength of LUMI over OBLOT with
respect to the PATTERNSEQUENCEFORMATION problem.
The paper is organized as follows: in Section II, we intro-

duce some notation and definitions; in Section III, we estab-
lish some basic limitations of the robots as well as a lower
bound on the number of colors to be employed; in Section IV,
we describe an Algorithm to solve the problem and analyze
its correctness; in Section V, we establish bounds on the
number of colors necessary to solve the problem; finally,
in Section VI we draw some conclusions and discuss open
research directions.

II. MODEL AND DEFINITIONS
A. THE MODEL
The system is composed of a team R of mobile entities,
called robots, eachmodelled as a computational unit provided
with its own local memory and capable of performing local
computations.

The robots are placed in a spatial universe, here assumed
to be R2, and they are viewed as points in R2. We assume
that the robots always start from distinct points in the plane,
but during the course of the algorithm multiple robots may
occupy the same point in R2. Each robot has its own local
coordinate system that might not be consistent with that of the
other robots. A robot is endowed with sensorial capabilities

and it observes the world by activating its sensors, which
return a snapshot of the positions of the other robots in its
local coordinate system.

The robots are identical and anonymous: they are indistin-
guishable by their appearance, execute the same protocol, and
do not have distinct identities. The robots are autonomous,
without a central control. The robots are silent, meaning
that a robot cannot directly communicate with another robot
(e.g., using wireless communication). The robots can how-
ever communicate information indirectly, e.g. using specific
movements or using lights, as explained later.

Each robot is endowed with motorial capabilities, and can
freely move in the plane.

At any point in time, a robot is either active or inactive.
When active, a robot executes a Look-Compute-Move (LCM)
cycle. In Look, a robot obtains an instantaneous snapshot of
the positions of all robots (i.e., the set of their coordinates)
expressed in its own coordinate system, which might be
different in different cycles. In Compute, the robot executes
its algorithm, using the snapshot as input; the result of the
computation is a destination point. InMove, the robots moves
toward the computed destination; if the destination is the cur-
rent location, the robot stays still (performs a null movement).
When inactive, a robot is idle. All robots are initially inactive.
The amount of time to complete a cycle is assumed to be
finite.

The algorithm to be executed, with all the functions it uses,
as well as the target to be achieved (in our case, the sequence
of patterns) are the only information persistently available
to a robot. Otherwise, the robots are oblivious: they start
each cycle without any information of past observations and
computations. The local coordinate systems of the robots may
not be consistent with each other, and might differ in different
cycles; however, a robot always sees itself at the origin of the
system and, as in [9], [18], it shares the same chirality (e.g.,
a clockwise orientation of the plane) with all the other robots.

In a move, a robot might always reach its destination,
in which case the move is said to be rigid; alternatively,
the move might stop before reaching its destination, e.g.,
because of limits to its motion energy. In the non-rigid
case, the distance traveled in a move is neither infinite nor
infinitesimally small.More precisely, there exists an (arbitrar-
ily small) constant δ > 0 such that, if the destination point is
closer than δ, the robot will reach it; otherwise, it will move
towards it a distance of at least δ; the quantity δ might not be
known to the robots. In this paper, the proposed algorithms
are able to operate in this more difficult general setting of
non-rigid movements.

With respect to the activation schedule of the robots and
their Look-Compute-Move cycles, the most common models
are the fully-synchronous, the semi-synchronous, and the
asynchronous. In the fully-synchronous (FSYNC) model, the
activations of all robots can be logically divided into global
rounds; in each round, the robots are all activated, obtain
the same snapshot, compute and perform their move. Note
that this is computationally equivalent to a fully synchronized
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system in which all robots are activated simultaneously
and all operations are instantaneous. The semi-synchronous
(SSYNC) model is like the fully-synchronous model where
however not all robots are necessarily activated in each round.
Based on the fairness of the activation scheduler, sub-models
can be obviously defined; it is assumed that every robot
is activated infinitely often. On the opposite side of the
spectrum, in the asynchronous (ASYNC) model, the robots
do not have a common notion of time; they are activated
independently from each other, and the duration of each
Compute, Move and inactivity is finite but unpredictable.
As a consequence, robots perceived in a snapshot might be
performing any operation and, in particular, they might be
moving; moreover, computations might be made based on
obsolete observations. In this paper, the proposed algorithm
is able to operate in this more difficult but more general
model.

A luminous robot r is a robot that, in addition to its capa-
bilities, is endowed with a persistent and externally visible
state variable Light[r], called light, whose values are from
a finite set C of states called colors (including the color
that represents the state when the light is off). Note that
if |C| = 1, then the light is always off; thus, this case
corresponds to the traditional setting of robots without lights.
In this paper, we assume |C| > 1 for (truly) luminous robots.
The value of Light[r] (i.e., its color) can be changed in each
cycle by r at the end of its Compute operation. A light is
externally visible in the sense that its color at time t is visible
to all robots that perform a Look operation at that time; we
assume weak chromatic multiplicity detection: the robots can
distinguish the colors of robots co-located at a point, but not
their number.1 A light is persistent from one computational
cycle to the next; while robot r might be oblivious, forgetting
all other information from previous cycles, the color is not
automatically reset at the end of a cycle.

B. CONFIGURATIONS, SYMMETRIES, AND PATTERNS
Let V be a set of points in the Euclidean plane, size(V ) be the
cardinality of V , and SEC(V ) be the smallest circle enclosing
all the points (refer to Figure 2 for a summary of the used
notation). The set V can be decomposed into a set of concen-
tric circles centred in the centre of SEC(V ), each containing at
least a point of V ; let σ (V ) be their number, and let us denote
them asCirV1 , . . . ,Cir

V
σ (V ), withCir

V
1 being the smallest one;

in the following, when clear from the context, the superscript
will be omitted. As well known, there exists a q ≥ 1 divisor
of size(V ), such that every Cir i can be decomposed into a
set of q-gons; if there is a point at the centre of SEC(V ), this
point is, by definition, a (degenerated) 1-gon. The largest q for
which this holds is called symmetricity of V and denoted by
q(V ) (refer also to examples in Figure 1). The set of points in
each q(V )-gon is called a symmetricity class, or simply class;
we denote by α(V ) the number of classes in V . We extend

1Note that this requirement corresponds to absence of multiplicity detec-
tion if the robots are not luminous.

FIGURE 1. (a) A pattern with symmetricity 3. (b) A pattern with
symmetricity 6. (c) A pattern with symmetricity 1.

FIGURE 2. Summary of notation.

in a natural way the definition of symmetricity also to multi-
sets; in a multiset V̂ , a point of multiplicity k at the centre of
SEC(V̂ ) is, by definition, a (degenerated) k-gon.

For two k-gons A and B placed on two concentric circles
CA and CB, we denote by θ (CA,CB) the clockwise rotational
angle between A and B.

Given a set of distinct colors C = {c1, . . . , ck} and a set of
points V , we define a coloring of V with C any function λ :
V → C . We say that λ is proper when λ(x) = λ(y) iff x and
y belong to the same class of symmetricity in V . We denote
by qc(V , λ) the chromatic symmetricity of V when colored
by λ; in the following, when λ is understood, we use just
qc(V ). We extend in a natural way the definition of chromatic
symmetricity also to multi-sets.

In the following, we will describe the global positions of
the robots using a fixed coordinate system (not available to
the robots); let ri(t) denote the position of ri at time t in this
system.

The configuration of the robots on the plane at time t is the
multi-set 0(t) = {(r(t), λ(r(t))) : r ∈ R} where λ(r(t)) is the
color of robot r at time t; the set of distinct points occupied
by the robots in 0(t) is denoted by L(0(t)). A configuration 0
is said to be central if there is a point at the center of SEC(0),
not-central otherwise; we denote by 0− the configuration
where the robots at the center of SEC(0), if any, are removed.
In the initial configuration 0 = 0(t0), we assume that all
robots occupy distinct positions and that all robots have the
same color, called OFF.
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FIGURE 3. (a) A pattern consisting of two classes. (b) and (c) show the
two possible kind of contractions: in (b), the two classes are contracted
into just one, where all robots occupy distinct positions; in (c) the two
classes are contracted into just one, where points of multiplicity two are
created (the circled dots).

A pattern P is a set of distinct points. A pattern P is said
to be central if there is a point at the center of SEC(P),
non-central otherwise. A pattern Pi is said to be isomorphic
to a pattern Pj, denoted Pi ≡ Pj, if Pj can be obtained by a
combination of translation, rotation and scaling of pattern Pi.
Two patterns that are not isomorphic to each other are said to
be distinct. We will denote the size of a pattern P by size(P),
and denote by P− the pattern where the point at the center of
SEC(P), if any, is removed.
We say that the robots have formed the pattern P at time t

if L(0(t)) ≡ P.
LetS = 〈S0, . . . , Sm−1〉 be an ordered sequence of patterns

with Si 6≡ Si+1. The maximum number of points in the
patterns is called size of the choreography and it is denoted
by size(S) = maxi{size(Si)}. The maximum number of sym-
metricity classes in S is defined as α(S) = maxi{α(Si)}.
Without any loss of generality, let α(S0) = α(S). Given a
pattern P ∈ S, we denote by µ(P) the number of occurrences
of P in S, i.e. ∀P ∈ S, µ(P) = |{Si ∈ S : Si ≡ P}|.
Let µ(S) = maxi{µ(Si)}. We say that the sequence S has
repetitions, if µ(S) > 1; and contractions, if there is P in S
such that α(P) < α(S) (refer to Figure 3). Also, if α(Si) <
α(Si+1), we will say that Si contracts.
A set of luminous robots executing an algorithmA starting

from a configuration 0(t0) is said to form S if in every
possible execution of A from configuration 0(t0), there exist
increasing time instances t ′0, . . . t

′

m−1, with t0 ≤ t ′0 such that
L(0(t ′j )) ≡ Sj.

Given the sequence S = 〈S0, . . . , Sm−1〉, we call
choreography the infinite periodic sequence S∞ =

〈S0, S2, . . . , Sm−1〉∞. We say that a set of robots executing an
algorithm A, starting from configuration 0(t0) performs the
choreography S∞ = 〈S0, S2, . . . , Sm−1〉∞ if they repeatedly
form S.

In the following, for simplicity, with an abuse of notation,
we will refer to a choreography S∞ simply as S.

III. CHARACTERIZATION AND LIMITATIONS
A. BASIC LIMITATIONS
We first establish an obvious basic limitation of pattern-
formation by luminous robots.
Lemma 1: Consider a set of n luminous robots in con-

figuration 0 with chromatic symmetricity qc(0). The robots
cannot form a configuration 0′ where qc(0′)/qc(0) is not an

integer, even inFSYNC, with rigid movements, and regardless
of the number of available colors.

Proof: By contradiction, let A be an algorithm that,
starting from configuration 0, correctly allows the robots to
reach configuration 0′, where qc(0′)/qc(0) is not an integer,
and it does so in all possible executions, regardless of the
local coordinate systems of the robots. For the qc(0) robots
of a class not at the center of SEC(L(0)) chirality induces
a natural cyclical order; for the qc(0) robots of a class at
the center of SEC(L(0)), consider an arbitrary cyclic order.
Consider now a fully synchronous execution of A where the
coordinate system of each robot is a rotation by 2π/qc(0)
of that of the robot before it in the cyclic order of its class.
In every step of such an execution, all the robots in the same
chromatic class of0 will obtain the same chromatic snapshot,
perform the same computation, choose the same new color,
and perform a move which will not change their symmetry;
hence, they will remain in the same chromatic class. It is
possible that two (or more) distinct classes choose the same
color and their movements position them into a symmetric
configuration; however, this will cause the size of the chro-
matic classes to either stay unchanged or to increase by an
integer factor. This means that, in each step t of the execution,
we have qc(0(t−1)) ≥ qc(0(t)) and qc(0(t−1))/qc(0(t)) is
an integer. This will hold also when the robots finally reach
0′ at step t ′. That is, 0(t ′) = 0′ but qc(0)/qc(0(t ′)) is an
integer; a contradiction.

The basic limit to performing a choreography immediately
follows.
Theorem 2: A set of n luminous robots starting from initial

configuration 0 where all robots are in distinct positions and
have the same color, cannot perform a choreography S, if any
of the following holds:

1) size(Si) > n, for some Si ∈ S.
2) q(S−j ) is not a multiple of q(0), for some Sj ∈ S.
3) S contains both central and non-central patterns, q(0) >

1, and α(0) = α(S).
This holds even inFSYNC, with rigid movements, and regard-
less of the number of available colors.

Proof: We consider each condition separately.
(1) This condition trivially holds since size(0) = n robots

cannot occupy more than n distinct positions at any one time.
(2) This condition follows from Lemma 1 observing that,

since in the initial configuration 0 all robots have the same
color, qc(0) = q(0).

(3) Let S contains both central and non-central patterns,
q(0) > 1, and α(0) = α(S). By contradiction, let S be
formable; that is, there is an algorithm A that starting from
0 always correctly performs choreography S in all possible
executions.

By condition (2) of this theorem, for all Si ∈ S, q(S−i ) must
be a multiple of q(0); thus q(S) = maxi {q(S

−

i )} ≥ q(0).
Since α(0) = α(S) by assumption, it follows that size(S) =
α(S)q(S) ≥ α(0)q(0) = size(0). Since, by condition (1) of
this theorem, to be formable S must have size(0) ≥ size(S),
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it follows that size(0) = size(S); that is, there exists a Smax ∈
S such that size(Smax) = size(0).

Consider now a fully synchronous execution of A where
initially the coordinate system of each robot is a rotation by
2π/qc(0) of that of the robot before it in the cyclic order of
its class. By assumption, S contains central and non-central
patterns. Let Sk be the first central pattern formed in this
execution (i.e., all Si with 0 ≤ i < k are non-central),
and let 0k be the configuration when the robots form Sk for
the first time. Since in 0 the robots are in distinct positions
and q(0) > 1, to form 0k at least one robot must move
to the center. In this execution, when a robot moves to the
center, all the robots in the same class will necessarily do the
same (‘‘class collapse’’). It follows that size(Sk ) < size(0).
Continue now the synchronous execution ofAwith all robots
belonging to the same (chromatic) class located in the center
of 0k having the same coordinate system; these robots will,
from this moment on, move as one robot, always taking
the same decision and moving to the same point. In other
words, the number of distinct points occupied by robots in
any subsequent configuration is less than size(0). Recall that
there exists a pattern Smax ∈ S with size(Smax) = size(0)
distinct points; this means that the pattern Smax cannot ever
be formed again, contradicting the correctness of A.

A choreography is feasible from initial configuration 0 if
none of the three forbidden conditions stated in the previous
theorem holds. Let F(0) denotes the class of all feasible
choreographies starting from 0.

Notice that, as a consequence of Theorem 2, unless the
initial configuration is asymmetric or the number of robots
is greater than the number of points in the largest pattern,
feasible choreographies can only be composed of exclusively
non-central patters, or of exclusively central patterns: in the
former case, we will say that S is non-central, and in the latter
that S is central.
For simplicity, in the following, we will use size(0(t)),

q(0(t)), and α(0(t)) to denote size(L(0(t))), q(L(0(t))), and
α(L(0(t))), respectively, and when no ambiguity arises we
will omit the variable t .

IV. THE ALGORITHM
In this section we present an algorithm that, starting from an
arbitrary initial configuration 0, allows the robots to perform
any choreography in F(0) even if the execution is asyn-
chronous and the movements are not rigid. In the following,
for simplicity, we assume α(0) = α(S); the case α(0) >
α(S) is easily handled, as discussed in Section VI.
We will first consider the case when the initial configura-

tion is symmetric (i.e., q(0) > 1); for ease of presentation,
we will introduce in Sections from IV-A to IV-H a solution
that assumes S non-central; in Section IV-I we will describe
how to extend such a solution to handle also the case when S
is central.

The case of asymmetric initial configuration (i.e.,
q(0) = 1), can be solved with a simpler protocol, and will
be described in Section IV-J.

A. SYMMETRIC INITIAL CONFIGURATION
Let the initial configuration 0 be symmetric and S be non-
central; that is, q(0) > 1, and all patterns Si ∈ S are non-
central.

We start with an informal overview of the algorithm for this
case (Algorithm 1).

Algorithm 1 PATTERNSEQUENCE()
SETUP(); %Algorithm 2%
PATTERNIDENTIFICATION(); %Algorithm 3%

If 0 is ready-to-separate or in-separation Then
SEPARATION(); %Algorithm 5%

If 0 is separated or in-rotation Then
ROTATION(); %Algorithm 7%

If 0 is rotated or in-formation Then
FORMATION(); %Algorithm 8%

Whenever the robots have to form the next (initially,
the first) pattern in S, from a global point of view,
the algorithm makes the robots perform two main phases:
a pre-processing phase and an actual formation phase. The
pre-processing phase is articulated into a 2-step process:
• SetUp. A class is elected as leader.
• Pattern Identification. The robots identify the pattern Si
of the sequence that has to be formed.

Initially all the robots are colored OFF. From this initial
configuration, as a preliminary step, a class of robots is
elected as leader in SETUP(): robots in this class assume
a special color that will uniquely identify them from this
moment on. At this point the robots start the actual formation
process.

The first action undertaken by the robots is to ensure
that the next pattern to be formed, say Si, is recogniz-
able during the entire formation process. This is done in
PATTERNIDENTIFICATION() by positioning the leader robots on
a special circle, centered in the SEC of the current config-
uration, and having a special radius that uniquely identi-
fies Si; hence, once all the leader robots reach that circle, their
position enables the other robots to identify Si as the next
pattern to be formed. The algorithm ensures that, while the
leaders move towards that circle, they can understand from
the position and colors of the other robots, the radius they
have to reach.

Next, the algorithm starts the actual formation phase of Si,
that is articulated into a 3-step process:
• Separation. Each class of robots places itself on a dis-
tinct concentric circle centred in the center of SEC .

• Rotation. Each class rotates so that the relative angles of
the pattern to be formed are respected.

• Formation. The robots move to their final destination,
thus forming Si.

In particular, the algorithm now determines which of
these three steps the current configuration of the robots
0 is in. This check is carried out by testing conditions
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ready-to-separate, in-separation, separated, in-rotation,
rotated, and in-formation that will be detailed
in Sections IV-E, IV-G, and IV-H: these tests are carried out
by considering the positions and the colors of the robots.
We will prove that, at each time, at most one of these
conditions can be verified.

To start the actual formation of Si, each class of robots is
first placed on a distinct concentric circle, thus separating
the different classes, and then it is mapped onto a ‘‘target’’
class of Si (SEPARATION()). The robots of every class then start
rotating (one class at the time and never leaving their own
circle) in order to be at the correct relative rotational angle
with respect to their own target class (ROTATION()).
Once all classes, including the one containing the leader

robots, are placed at the correct rotational angle, the robots
start moving, one class at the time, towards their target posi-
tions, forming Si (FORMATION()). As soon as the robots of a
class reach their final destination, they assume a proper color,
assigned by a coloring function defined in Section IV-C; the
last class to be moved in this process is the leader class. Once
the process is completed, it starts again to form the next
pattern S(i+1)mod m.

The difficulties obviously derive from the fact that, in this
endless process, each robot performs all the required oper-
ations in complete asynchrony, without communication or
memory (other than the colors), and its movements can be
interrupted (they are not rigid).

We now proceed with the detailed description and discus-
sion of the PATTERNSEQUENCE algorithm and of its compo-
nents. The algorithm is expressed from a robot’s point of
view, and it is executed, from the start, by a robot every time
it performs the Compute operation.

B. SET UP AND LEADERS IDENTIFICATION
Since the robots agree on chirality, it follows that, in the
initial configuration 0, the robots can compute and agree on a
total ordering of the symmetricity classes of 0. For instance,
one such ordering can be obtained as follows: classes are
ordered from the ones lying on the largest concentric circle
(i.e., the SEC) to the ones on the smallest concentric circle
of 0; if on a concentric circle there is more than one class,
these are ordered according to the angles between them in
the clockwise direction.

As a consequence, one class can always be elected as
leader class. Let IDENTIFYLEADERS(0) denote the procedure
that determines a leader class among those on the SEC .
The set of robots in this class is denoted by Rl , and they
will assume the special color GOLD (see Algorithm 2). Note
that, due to asynchrony, some robots in Rl might become
GOLD while others are not active yet; still, the identification
of Rl is not affected as long as the robots do not move.
Therefore:
Lemma 3: Within finite time from the start of the algo-

rithm, the robots agree on the leaders, and the leaders are
colored GOLD.

Algorithm 2 SETUP()
Requires: 0 is the current configuration.

If All robots’ colors are GOLD and/or OFF Then
Rl := IDENTIFYLEADERS(0);
q = |Rl |;
If All robots in Rl are GOLD Then

Return
Else

If I am in Rl and I am not GOLD Then
Become GOLD.

Else
q = Number of robots having color in {GOLD, GOLD-IN,
GOLD-OUT };
Return

Throughout the lifetime of the system, the leaders can tran-
sition only through color GOLD-OUT or GOLD-IN before
becoming GOLD again. Thus, once the initial set-up has been
completed, the set Rl of leader is always uniquely identifiable
by those colors.

C. COLORS
Before describing and analyzing the core steps of the algo-
rithm, we describe the mechanism to decide the colors used
by the robots. As already mentioned, the GOLD color is used
exclusively by the leader class.

Our algorithm, as will be evident later, always preserves
during its execution the symmetricity classes Q of the initial
configuration0. For each pattern Si, it maps the symmetricity
classesQ to thoseQi of Si (specifying in this way which class
of Si should be formed by which classes of robots). Let τi :
Q → Qi denote such a mapping; notice that this mapping
is not necessarily injective, as α(Si) is possibly smaller than
α(0). To take into account repetitions and contractions in the
sequence, as well as non-rigid movements and asynchrony of
the robots, colors are assigned to classes carefully during the
whole process.

The algorithm uses a set3(Q,S) of coloring functions λi :
Q → C , 0 ≤ i < α(0), where λi specifies which color
the robots of a class should assume when forming Si. Thus,
since α(Si) is possibly smaller than α(0), λi indirectly (i.e.,
in conjunction with τi) specifies which set of colors will be
associated to each symmetricity class of Si once the robots
form Si. Let Ŝi denote the pattern Si colored according to λi,
and let qc(Si) denote its chromatic symmetricity.
The set 3(Q,S), called overall coloring, is chosen so to

have the following properties:
Coloring Properties:
1) If r ′ and r ′′ belong to the same symmetricity class in
0, then ∀i, λi(r ′) = λi(r ′′). That is, robots that initially
belong to the same symmetricity class, will never be
assigned different colors.

2) The number of chromatic symmetricity classes of each
colored pattern is the same and equal to the number

VOLUME 8, 2020 90583



S. Das et al.: Forming Sequences of Patterns With Luminous Robots

FIGURE 4. An example of coloring function (Section IV-C) with one mutant class (the squared robots).

of classes of the initial configuration; i.e., ∀i, qc(Si) =
α(0).

3) For i 6= j, Ŝi 6 ≡ Ŝj.
4) ∀i, j, λ−1i (GOLD) = λ−1j (GOLD). That is, a GOLD robot

is always assigned that color in every pattern of the
sequence.

5) ∀i, the class colored GOLD according to λi is on the SEC
of Si.

6) For i 6= j, Ŝi¬GOLD 6= Ŝj¬GOLD, where Ŝ∗¬GOLD
denotes the colored pattern Ŝ∗ from which the color
GOLD has been removed; if the class colored GOLD
had no other colors in Ŝ∗, then Ŝ∗¬GOLD denotes the
colored pattern Ŝ∗ from which that class has been
removed.

Any overall coloring with such properties, if determinis-
tically identifiable from Q and S, can be employed by our
algorithm. Note that there are many such colorings. Consider,
for example, the overall coloring 3∗(Q,S) defined by the
following process: (i) Assign a distinct color to each class of
Q, with GOLD assigned to the leader class, and MUTANT0 to
an arbitrarily chosen class, calledmutant class; (ii) every class
maintains its originally assigned color in all patterns, except
for the mutant class which assumes a new color MUTANTi at
each repetition of the same pattern (see the example depicted
in Figure 4). This overall coloring clearly satisfies the Col-
oring Properties, and is deterministically identifiable fromQ
and S.
In the following, we denote by 3 = 3(Q,S) the

global coloring employed by the algorithm. As already men-
tioned, the leader class determined in the SETUP step is
assigned colorGOLD by3.Wewill denote byGETCOLORS(Si)
the routine that returns the coloring function λi for Si
according to 3; finally, we will say that a robot is
λi-colored, or simply colored, when colored according
to λi.

In addition to the colors employed by 3, the algorithm
uses some special service colors: WHITE-S, WHITE-R,
WHITE-F, BRONZE, SILVER, PLATINUM, GOLD-IN,
GOLD-OUT, BLACK, as well as OFFwhich is the initial color
of all robots.

D. PATTERN IDENTIFICATION
This step of the algorithm is used to identify the pattern of the
choreography that the robots should form next or are currently
forming (refer to Algorithm 3). To aid in this process, two
tools are used by the algorithm.

Algorithm 3 PATTERNIDENTIFICATION()
Requires: The current configuration.

Rl := set of robots colored GOLD, GOLD-OUT, and
GOLD-IN;
If Color of all robots but those in Rl is OFF Then
P := S0;
SIGNAL(P);

Else
If ∃λi ∈ 3|R \ Rl are colored according to λi \ {GOLD,
GOLD-OUT, GOLD-IN } Then
P := S(i+1) mod m;
SIGNAL(P);

Else
/* A pattern is already under formation */
rad := Radius of SEC(R);
c := Center of SEC(R);
rad ′ := Radius of smallest non-degenerated populated
circle centered in c;
P := Si, 0 ≤ i ≤ m− 1, such that f (Si) · rad ′ = rad ;

Return

The first tool is an injective function f : S 7→ R that
maps each element Si ∈ S into a real number f (Si). The only
requirement on f (Si) is the following: let C be the smallest
populated circle in 0, let Si(C) be the pattern Si scaled so
that its smallest populated circle has the same radius as C, let
SECi(C) be the SEC of Si(C), and let SEC(C) be the largest of
all SECi(C); then, each f (Si) must be greater that the radius
of SEC(C).
This mapping is used to inform the non-leader robots of

the pattern of the sequence, say Si, they are currently forming
or should form. This is done by having the leader robots
positioning themselves so that the smallest non-degenerated
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FIGURE 5. The configuration RATIO(x), where the gray dots represent the
leader robots. The small circle is C (refer to Section IV-D).

populated circle C in 0 has a radius that is 1/f (Si) times the
distance between the leader robots and the center of C (refer
to the example depicted in Figure 5).

Let RATIO(f (Si)) denote the set of configurations with this
property. Since function f (·) is injective, once a configuration
in RATIO(f (Si)) has been created, all robots can uniquely
agree on the pattern Si that is being currently formed. In
particular, observe that, in a configuration of type RATIO(x),
any robot can compute the exact value of x as a ratio of
two distances measured in its own coordinate system. Thus,
even if the robots do not agree on the unit distance, they can
agree on the value of this ratio x. This means that, once the
leaders have positioned themselves appropriately, all robots
understand which pattern should be formed or is already
being formed, regardless of theirmovements provided C is not
changed. Our protocol ensures that C will never be changed.
This general idea is based on one used in [9], where, how-
ever, the movements were rigid and the model SSYNC, while
in this paper the movements are non-rigid and the model
ASYNC.

To position themselves in such a RATIO configuration, the
leaders must know where to go; i.e., they need to know
which pattern should be done next. Furthermore, they should
continue to have this information, despite their obliviousness,
if they are stopped before reaching their destination, due to
non-rigidity. In the algorithm, the leaders obtain this infor-
mation by just observing the set of the non-leader robots;
this is achieved through the second tool of the algorithm: the
coloring function 3. In fact, one of the Coloring Properties
of 3 is that for i 6= j, Ŝi¬GOLD 6= Ŝj¬GOLD; that is,
each pattern Si, once colored according to 3, is different
from all other patterns colored according to 3 even if the
leaders are removed from the patterns. In other words, just
by looking at the non-leader robots, the leaders know what
pattern has just been formed and hence where they should
go so to communicate the identity of the next pattern. Note
that, at the very beginning, after the SETUP, all robots are OFF
while the leaders are GOLD. Also in this case, just by looking
at the non-leader robots, the leaders know the pattern to be
formed, S0, and hence their destination.
Using these two tools, the PATTERNIDENTIFICATION() step

(described in Algorithm 3) determines whether (1) a new
pattern has to be formed or (2) a pattern is already under
formation; in both cases, it identifies the pattern, say P ∈ S.

If P is a new pattern to be formed, using procedure
SIGNAL(P) reported in Algorithm 4, the leaders are first
colored GOLD; then they start moving along their radiuses,
to reach a configuration in RATIO(f (P)). Note that, during
these movements, the leaders temporarily change color to
GOLD-OUT, so that this transition phase can be clearly iden-
tified by all robots. Within finite time, a configuration in
RATIO(f (P)) is formed, signalling to the other robots that
pattern P ∈ S has to be formed, and the leaders change color
back to GOLD. Summarizing:

Algorithm 4 SIGNAL(P)
x := Compute f (P);
c := Center of SEC(R \ Rl);
rad := Radius of smallest non-degenerated populated circle
centered in c;
−→w := half-line from c through my current position;
p := Point on −→w , at distance rad · x from c;
If I am GOLD and I am not at p Then

Become GOLD-OUT;
Move towards p.

Else
If I am GOLD-OUT Then

If I am not at p Then
Move towards p.

Else
Become GOLD.

If All Rl are GOLD and at distance rad · x from c Then
Return

Lemma 4: Starting either from the initial configuration or
from any Si colored according to λi, in finite time the leaders
reach, avoiding any collision, a configuration where they are
at distance f (S(i+1)mod m).

Proof: First of all, note that once a robot turns its color
from OFF to some other color, it will never become OFF
again. Hence, by Lemma 3, within finite time the leader class
Rl is identified, and those robots are colored GOLD.

Let us assume now that, at time t , the robots are either
in the initial configuration (i.e., all robots, but the lead-
ers, are colored OFF); or they form pattern Si ∈ S, with
all robots colored according to λi. As soon as a robot
becomes active after time t , we distinguish the two possible
cases:
1) At time t all robots are OFF (i.e., we are in the initial

configuration, and the robots are about to form S0):
hence, SIGNAL(P) is executed, which places the robots in
a configuration in RATIO(f (S0)). In particular, the only
robots that move are the leaders: they first compute
f (S0); then, they change their color to GOLD-OUT. Once
all leaders are colored GOLD-OUT, they all move radi-
ally at distance rad · f (S0) from c, where c is the center
of SEC(R \ Rl) and rad is the radius of the smallest
non-degenerated populated circle centered in c. Once
they reach such a point, by construction, RATIO(f (S0))
is achieved and the lemma follows.
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2) At time t the robots form pattern Si ∈ S, with all robots
colored according to λi: that is, the robots just completed
the formation of Si, and the next pattern to be formed
is S(i+1)mod m. As soon as a robot becomes active after
time t , it executes SIGNAL(P).
Following the argument of the previous case, the leaders
compute f (S(i+1)mod m), change color to GOLD-OUT,
and they all move radially at distance rad · f (S0) from c.
During these moves, no other robot is allowed to move;
hence, within finite time all leaders will reach p. At this
time, by construction, RATIO(f (S(i+1)mod m)) is achieved
and the lemma follows.

Finally, we note that both Algorithm 2 and 3 are collision
free: in fact, the only robots that are allowed to move are the
leaders, and they move outwards radially starting from the
SEC of the current configuration.
After the leaders reach distance f (·), the non-leader robots

will start forming the next pattern in the sequence within
the circle C, by performing the SEPARATE, ROTATE, and FORM
steps of the algorithm. Finally, if PATTERNIDENTIFICATION()
instead determines that pattern P is already under forma-
tion, the robots will continue with their execution of the
algorithm.

E. SEPARATION
After PATTERNIDENTIFICATION(), the next step of the algorithm
is SEPARATION() (Algorithm 5). The purpose of this step is to
create a configuration where each of the α(0) classes of the
initial configuration is on a distinct concentric circle. This
step uses the control color SILVER and the service color
WHITE-S.

Before describing it and discussing its behaviour and prop-
erties, some useful definitions of properties of a configuration
during the execution of this step are in order.
Definition 5 (Ready-to-Separate): We say that a configu-

ration 0 is ready-to-separate under coloring λi ∈ 3 if the
following two conditions hold:
1) the robots on SEC are GOLD and 0 ∈RATIO(f (Si));
2) the robots not on SEC are either all OFF or they form

Ŝi−1¬GOLD.
Note that the condition that all robots not on SEC
are OFF is satisfied only after the first execution of
PATTERNIDENTIFICATION() (Algorithm 3).
Definition 6 (In-Separation): We say that a configuration

0 is in-separation under coloring λi ∈ 3 if the following
conditions hold:
1) the robots on SEC are GOLD and 0 ∈ RATIO(f (Si));
2) among the robots not on SEC :

a) there is at least a SILVER robot; or
b) there is at least a WHITE-S robot and σ (0) 6= α(0);

or
c) not all robots are WHITE-S and σ (0) = α(0).

Definition 7 (Separated): We say that a configuration 0
is separated under coloring λi ∈ 3 if the following two
conditions hold:

1) the robots on SEC are GOLD and 0 ∈ RATIO(f (Si));
2) the robots not on SEC are all WHITE-S, and σ (0) =
α(0).

The SEPARATION(0) step transforms a ready-to-separate
configuration 0 into a separated configuration 0′ where each
of the α(0) classes of the initial configuration is on a distinct
concentric circle. Let Cir1, . . . ,Cirσ (0) denote the populated
concentric circles of the ready-to-separate 0, with Cir1 being
the smallest one. Informally, starting from i = 1, if Cir i
contains multiple (chromatic) classes, we move one class at
a time, in an ordered fashion, to a slightly smaller concentric
circle, until all classes originally on Cir i have been separated
on different circles. When a class is alone on a circle, it is then
colored WHITE-S; the process is then applied to Cir i+1.
In more detail, the separation is performed by iterating the

strategy described below.
Since at the beginning of the separation process the con-

figuration is not separated yet, there exists at least one circle
that contains multiple classes: let CB be the largest one. Since
the robots agree on a common chirality, the classes on CB
can be totally ordered: let K1, . . . ,Kk be the distinct classes
on CB. Now, all the robots in K1 become SILVER, and no
robot can move as long as there is a non SILVER robot in
K1. In particular, this process is carried out as follows: let q be
symmetricity of the initial configuration (i.e., the number of
GOLD robots); if a robot r ∈ K1 observes at least two classes
on CB and it sees that the number of SILVER robots on CB
is not q, then r colors itself SILVER. After a finite amount
of time, all robots in K1 become SILVER. Once this occurs,
CB contains an integral number k of classes, with k ≥ 2, and
exactly q robots on CB are SILVER (those in K1).
Let CA be the largest populated circle, smaller than CB,

that does not contain any SILVER robot, and let dis be the
distance between CA and CB. Now the algorithm forces all
robots in K1 to move inwards on the circle at distance dis/2
from CB, call it CT . Note that, during their movements, due
to asynchrony and non-rigidity, these SILVER robots will
create circles between CB and CA that contain only SILVER
robots. Routine MOVETOCIR() (Algorithm 6) makes sure that
all SILVER robots reach CT . Once all SILVER robots reach
CT , CT is the only circle that is populated with just SILVER
robots: these robots can now uncolor themselves.

Now CB contains one less class. These operations are
repeated until CB contains only one class; when this happens
this class uncolors itself. The entire process is applied to the
new largest circle that contains multiple classes, until the
configuration is fully separated.
Lemma 8: Starting from a ready-to-separate configuration

0 under coloring λ, within finite time the robots reach a sep-
arated configuration 0′ under coloring λ, such that α(0′) =
σ (0′) = α(0).

Proof: Since 0 is ready-to-separate, then, by definition,
no robot is SILVER or WHITE-S. Any robot observing 0
in its Look operation, will correctly identify the largest circle
C other than SEC (which contains only the GOLD robots);
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FIGURE 6. An example for the separation step of SEPARATION(0) in Algorithm 5. The SEC , where all the GOLD
robots are located, is not shown in the figure.

hence, within finite time, one or more of the robots on C
will independently and asynchronously become WHITE-S
or SILVER (depending on whether on C there is one or

more than one class, respectively). As soon as the first
of these robots changes color, the configuration becomes
in-separation and appears as such to any robot performing its
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Algorithm 5 SEPARATION(0)
Requires: The current configuration 0.

If 0 is ready-to-separate Then
C = largest populated circle other than the SEC ;
If C contains only one class and I am in C Then

Become WHITE-S.
Else
K1, . . . ,Kk = The classes on C ;
If I am in K1 Then

Become SILVER.
If 0 is in-separation Then

If I am SILVER Then
C = The largest circle that contains SILVER robots;
If C contains colored robots Then
CB = C ;

Else
CB = Smallest populated circle, larger thanC , where
there are colored robots;

CA = The largest populated circle, smaller thanCB, that
does not contain SILVER robots; if no such a circle
exists then CA = center of SEC ;
IfC contains q robots andC is halfway betweenCB and
CA Then

Become WHITE-S.
Else

If there are q SILVER robots Then %I should move
to destination if not there already%

MOVETOCIR(CA, CB).
Else
C = largest populated circle where there are colored
robots;
If I am in C and I am colored Then

If C contains only one class Then
Become WHITE-S.

Else
IfThere are no SILVER or all SILVER robots are
on C Then
K1, . . . ,Kk = The distinct classes on C ;
If There are < q SILVER robots and I am in
K1 Then

Become SILVER.

Look operation. Notice that no robot can move during this
time.

From this moment on, the algorithm proceeds as follows.
Let CB be the largest circle with no GOLD robots on it, con-
taining colored robots; let K1, . . . ,Kk be the colored classes
of robots on CB, and let t0 be the first time a robot executes
the SEPARATION(0) process.

1) If k = 1, according to the Algorithm, within finite
time these robots will first become SILVER, and
then WHITE-S, and no robot can move during this
time.

Algorithm 6 MOVETOCIR(CA, CB)
dis := Distance between CA and CB;
CT = Circle of radius dis/2
If I am not on CT Then

Move inwards radially to CT .

2) If k > 1, let CA be the largest circle smaller than CB
with colored robots on it, and CT be the circle halfway
between CB and CA.
a) Within finite time, say at time t1 > t0, all robots in

K1 become SILVER, and no robot moves between
t0 and t1.

b) Within finite time, each SILVER robot will leave
CB, moving radially toward CT (MOVETOCIR(CA,
CB)); during this time no other robot is allowed to
move, hence CB, CA and CT stay invariant. Hence,
within finite time, say at time t2 > t1, all SILVER
robots will be on CT . Note that at this time the
number of chromatic classes is still α(0).

c) Once all SILVER robots are on CT (hence, there
are exactly q robots on it), each SILVER robot
becomes WHITE-S and, within finite time, say at
time t3 > t2, all robots on CT become WHITE-S.

Thus, at time t3, the number of classes on CB decreased
by one. By iterating the above process, within finite
time, say at t4 > t3, between CB and CA there will be
k − 1 circles each containing exactly one class, each
colored WHITE-S (note that at time t4 also CB contains
one class colored WHITE-S).

Finally, by iterating the above argument, the claim follows.

F. TARGETS
Before continuing the description and analysis of the algo-
rithm, some discussion is now required on the mechanism
used to decide where each robot should go to form the next
pattern Si.
As shown in the previous section, procedure SEPARATION()

disassembles the previous configuration (or initially 0) so
that each symmetricity class Q ∈ Q of 0 is in a distinct
concentric circle. Once this is done, the algorithm will start
the assembly of the next pattern.

In this process the algorithm uses the mapping τi : Q →
Qi, where Qi denotes the set of symmetricity classes of Si.
It assigns to each class Q ∈ Q a unique symmetricity class
τi(Q) ∈ Qi of Si, called target class, following the global
ordering of the symmetricity classes of Si (this ordering is
uniquely identified because of the common chirality). In other
words, the mapping τi, called targeting function, specifies
that the goal of the robots of Q should be to move to form
τi(Q). Notice that this mapping, while surjective, is not nec-
essarily injective since α(Si) is possibly smaller than α(0).

Among themany possible targeting functions usable by the
algorithm, we are going to employ the one described in the
following. Let Q = Q1, . . . ,Qa be the a = α(0) classes,
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FIGURE 7. Computation of target classes. (a) The current configuration 0,
with a = 5. (b) The next pattern Si to be formed, with a′ = 4 (colors are
used only to show to which class they belong). Here, φi = 4/4 = 1;
k = dj/1e, for 1 ≤ j ≤ 4 ∗ 1 = 4. Hence, τi (Q1) = 1, τi (Q2) = 2, τi (Q3) = 3,
τi (Q4) = 4. Here, the only extra class is Q5, whose target is Q′4. (c) A
different next pattern Si to be formed, where: a′ = 2; φi = 8/4 = 2;
k = dj/2e, for 1 ≤ j ≤ 2 ∗ 2 = 4. Hence, τi (Q1) = 1, τi (Q2) = 1, τi (Q3) = 2,
τi (Q4) = 2. Also, here the only extra class is Q5, whose target is Q′2.

each on a distinct concentric circle, after SEPARATION(), where
Qj is in a smaller circle than Qj+1 (1 ≤ j < a). Let Q′ =
Q′1, . . . ,Q

′

a′ be the (totally ordered) a′ = α(Si) ≤ a classes
of Si, where Q′k is in the same circle as or in a smaller circle
that Q′k+1 (1 ≤ k ≤ a′). Let φi =

q(Si)
q(0) . Then τi(Qj) = Q′k

where k = min{a′, d j
φi
e}.

In other words, φi classes in 0 are needed to form a single
class in Si. Hence, there are e = a − a′ · φi classes which
are not necessary to form Si; these extra classes will be all
positions on Q′a′ (refer to Figure 7).

G. ROTATION
After SEPARATION(), the next step of the algorithm is
ROTATION(), reported in Algortihm 7: this step begins when
the current configuration 0 is separated under some coloring
λi ∈ 3. By construction, after SEPARATION() the robots on
each of the concentric circlesCir i on0, with 1 ≤ i ≤ σ (0) =
α(0), belong to the same symmetricity class, and on each
Cir i there is exactly one symmetricity class. In the following,
we will use the concepts of targets and targeting function
introduced and defined in the previous section (Section IV-F).

The aim of this phase is to rotate each symmetricity class in
0 so that, if each Qj, 1 ≤ j ≤ a, is projected onto τ (Qj), then
Si would be formed. More specifically, let us first introduce
the following definition (refer to Figure 8):
Definition 9 (Properly Rotated): A properly rotated robot

is defined as follows:
1) All robots on Q1 are properly rotated.
2) Robots on Qj, with j ≤ a′ · φi and (j mod φi) 6= 1, are

properly rotated if they form an angle of θ ′ = 360/q(Si)
degrees with respect to Qj−1.

3) Given Qj, with j ≤ a′ · φi and (j mod φi) = 1, let Q′l =
τ (Qj), and θ ′′ be the clockwise angle between Q′1 and
Q′l . Robots in Qj are properly rotated are all robots in
Qr , r < j, are properly rotated, andQj forms a clockwise
angle of θ ′′ with respect to Q1.

4) Given Qj, with j > a′ · φi, robots in Qj are properly
rotated if all robots in Qr , r < j, are properly rotated,
and Qj form an angle of zero degrees with respect to
Qa′·φi .

We will refer to the angle θ used in 2) and 3) as the proper
rotation angle. We will say that Qj is properly rotated if all
robots on Qj are properly rotated.
This phase uses service colors BRONZE and WHITE-R

to rotate all robots, one class at the time according to their
total order so that, within finite time, all of them are properly
rotated. In particular, by definition, all robots onQ1 are prop-
erly rotated, so they just color themselves WHITE-R. Then,
robots onQ2 color themselvesBRONZE, compute their proper
rotational angle, and rotate so to become properly rotated;
once their rotation process is over, they all color themselves
WHITE-R. And so on, one concentric circle at a time, until
also the robots on SEC (the GOLD robots) rotate, completing
this phase.
Note that the existence of a BRONZE robot in some

Cir l implies that Cir l is under the process of rotation.
When the rotation is completed all robots will become
either WHITE-R (the non leaders) or GOLD (the lead-
ers). This process is denoted by ROTATION(0), and reported
in Algorithm 7, where routine ProperlyRotated()
and ComputeProperRotationAngle() are defined
according to Definition 9.
In the following, we will also make use of the following

definitions:
Definition 10 (In-Rotation): We say that a configuration0

is in-rotation under coloring function λi ∈ 3 if the following
conditions hold:
1) the robots on SEC are GOLD, and 0 ∈ RATIO(f (Si));
2) the robots are on σ (0) = α(0) concentric circles each

containing q robots, the robots in Q1 are all WHITE-R,
and there are robots not WHITE-R (beside the
leaders).

Definition 11 (Rotated): We say that a configuration 0
with coloring function λ is rotated if the following conditions
hold:
1) the robots on SEC are GOLD, and 0 ∈ RATIO(f (S)), for

some Si ∈ S;
2) the robots not on SEC are all WHITE-R, and qc(0, λ) =
σ (0).

3) all robots are properly rotated.
Lemma 12: Starting from a separated configuration0with

coloring function λ, within finite time the robots reach a
rotated configuration 0′ with coloring function λ′ such that
qc(0, λ) = qc(0′, λ′), σ (0) = σ (0′).

Proof: By hypothesis, in 0 there are either WHITE-S or
GOLD robots. By construction, all robots on Q1 are properly
rotated (these robots are on Cir01 ); hence, by Algorithm 7,
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FIGURE 8. Example of properly rotated robots. (a) The next pattern Si to be formed. Here, q(Si ) = 6. (b) The
current separated configuration 0, with q(0) = 3. Hence, φi = 2, and Q′1 = τ (Q1), Q′1 = τ (Q2), Q′2 = τ (Q3),
Q′2 = τ (Q4), Q′3 = τ (Q5), Q′3 = τ (Q6), and there are no extra robots. Q1 is already properly rotated. Robots in Q2
have to rotate of an angle of 360/6 degrees in order to be properly rotated. (c) Q2 after rotation. (d) Now, let δ be
the clockwise angle between Q′1 and Q′2 (see (a)): robots on Q3, to become properly rotated, have to form a
clockwise angle of δ with respect to Q1. (e) Q3 is now properly rotated; Q4 has to rotate of δ with respect to Q2 to
be properly rotated. Same argument applies to Q5 and Q6, that have to rotate of an angle of δ′ (see (a)) with
respect to Q1 and Q2, respectively.

within finite time, say at time t , they all become WHITE-R,
and no other robot is allowed to move until this time.

Now, letCi, 1 < i ≤ σ (0), be the smallest concentric circle
that it is not properly rotated. Also, let t0 ≥ t be the first time
any robot executes the ROTATION(0) process.

1) Within finite time, say at time t1 > t0, all robots on Ci
will become BRONZE, and no robot moves between time
t0 and t1. Thus, at t1, on Ci there are q BRONZE robots.

2) Now, the robots on Ci compute the proper rotation angle
θ , according to Definition 9, and they rotate on Ci of an
angle θ . Within finite time, say at t2 > t1, all robots on
Ci complete their rotation.

3) Finally, within finite time, say at t3 > t2, all robots on
Ci change their color: they become WHITE-R.

Finally, by Definition 9 and by induction on the number of
concentric circles in 0, the lemma follows.

H. FORMATION
In this last phase, the robots start from a separated and rotated
configuration 0; its outcome is to bring the robots in their
correct final positions, so that the next pattern of the sequence,
say Si, is formed.
Let us first compute the positions of the target cir-

cles where the robots have to move to form Si, call them
T1, . . . ,Tσ (Si): these are obtained by mapping the smallest
concentric circle of Si (i.e., the circle where the first class

Q′1 = τi(Q1) resides), onto the smallest concentric circle of
0 (i.e., the one containing Q1), and by scaling consequently
all other concentric circles of Si. Also, let kl be the number of
classes that have to end up on Tl in order to correctly form Si.
Definition 13 (In-Formation): We say that a configuration

0 with coloring function λ is in-formation if the following
conditions hold:
1) the robots on SEC are GOLD, and 0 ∈ RATIO(f (Si)), for

some Si ∈ S;
2) the robots not on SEC are either PLATINUM or

WHITE-R or λ-colored; if a robot is λ-colored, it is on
one of the target circles.

Definition 14 (Formed): We say that a configuration 0
with coloring function λ is formed if 0 = Si, for some Si ∈ S,
and λ = λi.

We say that a target Tl is complete with respect to Si at
time t if the positions of the robots on Tl form CirSil , and they
are correctly colored according to λi. By convention, we will
say that T0 is complete.

By construction, the robots on the smallest concentric cir-
cle in 0, Cir1, are already on T1, i.e. they are on the correct
positions to form Si. The formation process iterates on all
concentric circles in 0, one at the time, from the smallest to
the largest one.

In particular, let us assume that the first j−1 concentric cir-
cles in 0 are complete and that there are no robots below Tj−1
that are not on their final targets; hence, Tj is the first target
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FIGURE 9. An example for the rotation step of ROTATION(0) in Algorithm 7. The GOLD robots are not included in
the figure.

that is not complete. The algorithm, reported in Algorithm 8,
distinguishes the only three possible cases:

1) Between Tj and Tj−1 there are robots whose targets
are not Tj: these robots must move above Tj. In this
case, the class of robots whose target is not Tj and that
is closest to Tj is first colored PLATINUM, and then
moved to a new circle larger than Tj. When this occurs,
the number of classes whose target is not Tj, between Tj
and above Tj−1, decreases; this process is repeated until
this case no longer applies.

2) Between Tj and Tj−1 there are only classes whose target
is Tj: in this case, these robots are moved, one class at
the time, to Tj, using the special PLATINUM color.

3) Between Tj and Tj−1 there are no robots: the class
of robots that is on the smallest circle closest to Tj
whose target is Tj is moved onto Tj, using the special

PLATINUM color. After finite time, this class reaches
Tj, and the number of classes on Tj increases.

Thus, after finite time, all circles in 0 are correctly pro-
cessed, and Si correctly formed.
Lemma 15: Starting from a rotated configuration 0 with

coloring function λ, within finite time the robots reach
a formed configuration 0′ with coloring function λ′ with
respect to S, where S is the next pattern of the sequence to
be formed, such that qc(0, λ) = qc(0′, λ′).

Proof: By definition, right after the rotation process in
0 there are no PLATINUM robots; in particular, all robots
not on SEC are WHITE-R, and those on SEC are GOLD. By
construction, the robots on the smallest concentric circle of
0 are already on their target, T1: within finite time, say at
time t0, they have computed and assumed the color assigned
by routine GETCOLORS(S). Starting from this moment,
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FIGURE 10. An example for the formation step of FORMATION(0) in Algorithm 8. The GOLD robots are not included in the figure.

let Tj, j ≥ 1, be the smallest target circle which is not
complete; i.e., some of the classes that have to be on Tj are
still missing. Also, let us denote by upj the number of classes
between Tj−1 and Tj, including Tj, whose target is not Tj (by
convention, T0 is complete). The algorithm now distinguishes
three cases:
1) upj > 0. In this case, we have that between Tj−1 and Tj

there are robots whose target is not Tj.
a) By construction of routine MOVEFROMTODES()

(Algorithm 9), within finite time the class of robots
(whose target is not Tj) on the largest concentric

circle between Tj−1 and Tj, including Tj, say Cfrom,
starts becoming PLATINUM. Hence, there is a time
t1 > t0 where there are exactly q PLATINUM
robots on Cfrom.

b) At this stage, the goal of the algorithm is to move
above Tj all robots on Cfrom. In particular, all these
robots will be moved to an empty circle Cdes com-
puted as follows.
Let C∗ be the smallest circle populated by non
PLATINUM robots between Tj and Tj+1, including
Tj+1 (note that, at time t1, there are no PLATINUM
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Algorithm 7 ROTATION(0)
If I am in Q1 and I am not WHITE-R Then

Become WHITE-R.
If 0 is in-rotation Then

If 0 contains BRONZE robots Then
C := the circle that contains BRONZE robots;
If I am in C Then

If I am WHITE-S Then
Become BRONZE.

If all robots in C are BRONZE Then
θ := ComputeProperRotationAngle();
If Rotation of BRONZE robots has not been com-
pleted Then

If I am ¬ ProperlyRotated() Then
Rotate(θ).

Else
Become WHITE-R.

Else
If 0 contains WHITE-S robots Then
C := the smallest circle that contains WHITE-S
robots;
If I am in C and I am WHITE-S Then

Become BRONZE.
If Rotation of robots on SEC has not been completed
Then

If All robots not on SEC are WHITE-R Then
If There are GOLD robots on SEC Then

If If I am on SEC and I am GOLD Then
Become WHITE-R.

Else
If I am on SEC Then
θ :=ComputeProperRotationAngle();
Rotate(θ).

Else
If There are robots on SEC that are not GOLD Then

If I am on SEC and I am not GOLD Then
Become GOLD.

robots; hence C∗ is the smallest populated circle
between Tj and Tj+1). Then, Cdes is the circle
halfway between Tj and C∗.
Starting at t1, robots on Cfrom move radially to
Cdes, again by calling routine MOVEFROMTODES().
Within finite time, say at t2 > t1, all PLATINUM
robots will be on Cdes.

c) Once all q PLATINUM robots are on Cdes, they all
become WHITE-F at some time t3 > t2.

Note that, between time t1 and t3 no other robot is
allowed neither to move, hence Cdes stays invariant, nor
to change color. Thus, at time t3, the number of classes
between Tj−1 and Tj whose target is not on Tj (i.e.,
the value of upj), decreases by one.

2) upj = 0 and between Tj and Tj−1 there are only classes
whose target is Tj. In this case, all these robots, one
class at the time, move to Tj. At this point, the proof

Algorithm 8 FORMATION(0)
Requires: The current configuration 0 is either rotated or
in-formation. Also, let S be the next pattern of the sequence
to be formed.

If There are WHITE-R robots on the smallest concentric
circle of 0 Then

If I am on the smallest concentric circle of 0, and I am
WHITE-R Then
Color = Color assigned to robots on the smallest con-
centric circle by routine GETCOLORS(S);
Become Color.

Else
Tj = The smallest target circle which is not complete;
upj = Number of classes between Tj−1 and Tj, including
Tj, whose target is not Tj;
Case upj
• > 0
C∗ = The smallest circle populated by non
PLATINUM robots between Tj and Tj+1, including
Tj+1;
Cdes = Circle halfway between Tj and C∗;
Cfrom = Largest circle between Tj−1 and Tj, includ-
ing Tj, populated by classes whose target is not Tj;
MOVEFROMTODES(Cfrom, Cdes, PLATINUM,
WHITE-F).

• = 0
If There are populated circles between Tj−1 and Tj
Then
Cfrom = Largest populated circle between Tj−1
and Tj;
new_color=Color assigned to robots onCfrom by
routine GETCOLORS(S)
MOVEFROMTODES(Cfrom, Tj, PLATINUM,
new_color).

Else
Cfrom = Smallest circle larger than Tj, populated
by classes whose target is Tj;
If Cfrom is SEC or There is at least one GOLD-IN
Then

MOVEFROMTODES(Cfrom, Tj, GOLD-IN,
GOLD).

Else
new_color= Color assigned to robots on Cfrom
by routine GETCOLORS(S)
MOVEFROMTODES(Cfrom, Tj, PLATINUM,
new_color).

is analogous to the previous case, where Cdes is Tj,
and the color assigned at the end of the movement is
the one assigned by GETCOLORS(S): this is because the
robots have reached their final destination to form S.
Hence, within finite time, one more class with target Tj
reaches Tj.
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Algorithm 9 MOVEFROMTODES(From, Des, MoveColor,
FinalColor)
If I am MoveColor Then

IfThere are qMoveColor robots and I am not onDesThen
Move radially to Des.

If All MoveColor robots are on Des Then
Become FinalColor.

Else
If There are less than q MoveColor robots, and all of them
are on From Then

If I am on From Then Become MoveColor.

3) upj = 0 and all robots whose target is Tj are on cir-
cles larger than Tj. Also in this case, all these robots,
one class at the time, move onto Tj by calling routine
MOVEFROMTODES(); the only difference with the pre-
vious case is that the robots are moving from a larger
circle, Tfrom, to a smaller circle, Tj. Hence, within finite
time, one more class with target Tj reaches Tj.

Hence, by induction, within finite time, the last class to
move is that of the GOLD robots. Once again, this case is
handled by routine MOVEFROMTODES(), where the robots use
the colorGOLD-IN instead ofPLATINUM, andGOLD instead
of the the color assigned byGETCOLORS(S). Therefore, within
finite time all targets become complete. Since, by defini-
tion, a complete target Tl coincides with CirSl , the theorem
follows.

I. 0 SYMMETRIC AND S CENTRAL
Algorithm 1 assumes both q(0) > 1 and S non-central. In the
following, we will briefly outline how to extend it to cover
also the case when q(0) > 1 and S is central.

In this case, by Theorem 2, S is feasible if q(S−i ) is a
multiple of q(0), for all i. Thus, at the beginning, the first
action to do is to move one class to the center c of SEC (note
that, being 0 symmetric, there cannot be any robot at c at the
beginning): this class will assume the special color BLACK.
In more detail, the SETUP() algorithm (Algorithm 2) is

changed as follows: (I) the guard of the first If statement
checks also for the presence ofBLACK robots (All robots’ col-
ors are GOLD and/or OFF and/or BLACK); (II) instead of the
firstReturn statement, routine FIXCENTRAL() (Algorithm 10)
is called. This routine ensures that all robots in the class of 0
closest to c first change their color to BLACK, and then move
to c.

At this point the execution runs following Algorithm 1,
where BLACK robots never move; also, they are never consid-
ered by all the other robots (i.e., it is like they do not exists).
In other words, 0− it is considered instead of 0, and S−i
instead of Si, for all Si ∈ S.

By following the same techniques used in the previ-
ous algorithms, it is easy to see that within finite time
Algorithm 10 moves one class to c: the first class on the
smallest populated circle according to the total ordering of

Algorithm 10 FIXCENTRAL()
Requires: 0 is the current configuration.

If There are robots at c and all BLACK are at c Then Return
If No robot is at c and less than q robots are BLACK Then
K := First class of robots closest to the center c of SEC ;
If I am in K and I am not BLACK Then

Become BLACK.
Else

If I am BLACK and I am not at c Then
Move radially towards c.

the classes. At this point, the BLACK robots will never move
again, and the correctness of the overall solution (that covers
both central and non-central sequences) follows from previ-
ous Lemmas 3–16.

J. ASYMMETRIC INITIAL CONFIGURATION
In case the initial configuration is asymmetric, that is
q(0) = 1, the entire protocol is much simpler. Note that, since
q(0) = 1, each class contains only one robot, and there is a
total order of the classes; hence, the robots can agree on a
unique leader and on a common orientation of SEC , i.e., there
is a common chirality. In the algorithm, the main difference
is that we keep invariant the initial SEC , instead of the
smallest concentric populated circle of the starting configu-
ration. Another difference is that the unique leader uses color
RAINBOW instead of GOLD (and thus RAINBOW-OUT and
RAINBOW-IN instead of GOLD-OUT, GOLD-IN) through-
out the algorithm.

More precisely, there are only three phases: SETUP,
PATTERNIDENTIFICATION and FORMATION (Algorithm 11),
described in the following.

Algorithm 11 ASYMMETRICPATTERNSEQUENCE ()
SETUP(); %Section IV-J(a)%
PATTERNIDENTIFICATION(); %Algorithm 12%
If 0 is in-formation Then

FORMATION(); %Section IV-J(c)%

1) SETUP PHASE
In this phase, if no robot is colored RAINBOW, the first one
in the total order whose removal does not destroy the SEC
becomes RAINBOW.

2) PATTERNIDENTIFICATION PHASE
This phase, described in Algorithms 12 and 13, follows an
idea similar to that described in Section IV-D. The main dif-
ferences with Algorithms 3 and 4 is that rad ′ in Algorithm 12
is computed with respect to the SEC \ {rR}.

3) FORMATION PHASE
In this phase, we have the following three steps:
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Algorithm 12 PATTERNIDENTIFICATION()
Requires: The current configuration.

rR := robot colored {RAINBOW, RAINBOW-OUT,
RAINBOW-IN };
If Color of robots in R \ {rR} is OFF Then
P := S0;
SIGNAL(P);

Else
If ∃λi ∈ 3|R \ {rR} are colored according to
λi\{RAINBOW, RAINBOW-OUT, RAINBOW-IN } Then
P := S(i+1) mod m;
SIGNAL(P);

Else
/* A new pattern is already under construction */
c := Center of SEC(R);
rad := Segment between c and the robot RAINBOW;
rad ′ := Radius of SEC(R \ {rR});
P := Si, 0 ≤ i ≤ m− 1, such that f (Si) · rad ′ = rad

Return

Algorithm 13 SIGNAL(P)
x := Compute f (P);
c := Center of SEC(R \ {rR});
rad := Radius of SEC(R \ {rR});
−→w := half-line from c through my current position;
p := Point on −→w , at distance rad · x from c;
If I am RAINBOW and I am not at p Then

Become RAINBOW-OUT;
Move towards p.

Else
If I am RAINBOW-OUT Then

If I am not at p Then
Move towards p.

Else
Become RAINBOW.

If Rr is at distance r · x from c Then Return

1) SEC(R \ {rR}) is mapped to SEC(S): the first robot on
SEC(R\{rR}) is considered already in its final position,
and thus changes color according to GETCOLORS(S).
At this point, the pattern to be formed is scaled and
rotated accordingly, and the final destination the robots
have to reach in order to correctly form S can be com-
puted.
Now, a one-to-one mapping is established between the
other robots in 0 and the other destinations of the pat-
tern to be formed for which there exists a sequential
scheduling of the movements of the robots onto the
assigned destination, such that the SEC(R \ {rR}) does
not change during each movement. Note that such a
scheduler trivially exists.

2) Each robot, excluding the one colored RAINBOW, one at
the time (according to scheduling associated to the one-
to-one mapping):
a) Becomes PLATINUM;
b) Moves to its destination;
c) Gets the color assigned by GETCOLORS(S).

3) Finally, the only robot that still needs to be placed is
the RAINBOW: it moves to the last available target,
by using RAINBOW-IN color during its movement.
Once it reaches its destination, it becomes RAINBOW.

The correctness of the case with q = 1 follows the same
lines of previous Lemmas 3–15, thus we can conclude that:
Lemma 16: Starting from any asymmetric initial config-

uration 0 (i.e., q(0) = 1), ASYMMETRICPATTERNSEQUENCE
allows the robots to perform any feasible choreography in
F(0).

K. FINAL ALGORITHM
The final algorithm can be easily obtained by merging the
two cases for q(0) = 1 and q(0) > 1. The distinction
between these two cases is trivially done at the starting of the
execution. In any subsequent configuration, it can be done
depending on whether there are GOLD or RAINBOW robots.

By previous Lemmas 3–16, we can conclude that:
Theorem 17: Starting from any initial configuration 0,

the robots can perform any feasible choreography in F(0).

V. LIMITATIONS TO THE NUMBER OF COLORS
Since the focus of this paper is on the characterization of the
setF(0) of sequences of patterns that can be formed by lumi-
nous robots starting from an arbitrary initial configuration 0,
and the feasibility of constructing them, the number of colors
used in the construction has not been a concern. It is however
an important element worth discussing.

Our protocol employs a coloring function3, which assigns
colors to the classes of 0 so that, once those classes are
mapped by our algorithm to the classes of the pattern to
be formed, the Coloring Properties (see Section IV-C) are
guaranteed to hold.

From the point of view of characterization and feasibility,
the choice of3 is irrelevant. However, it has an impact on the
number of colors used by the robots. For example, the func-
tion 3∗ described in Section IV-C, provides the following
upperbound:

c(0) ≤ α(S)+ µ(S)+ O(1) (1)

The immediate question that arises is how many col-
ors are truly necessary to form any sequence S ∈ F(0),
starting from a configuration 0. Note that in the OBLOT
model, where the robots have a single color, it is possi-
ble only to form sequences without repetitions and contrac-
tions [9]. Intuitively, this is because, if two robots move to
occupy the same point performing a contraction, they will
not be able to separate anymore and will thus not be able to
form alternatively patterns with different number of vertices.
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Moreover, the presence of repetitions would not allow the
robots to ‘‘understand’’ which repetition of the same pattern
they are currently forming without an external indication.
Multiple colors are needed to deal with contractions, repe-
titions, as well as with asynchrony. We now establish bounds
on how many colors are actually needed.
Theorem 18: A set of luminous robots starting from ini-

tial configuration 0, cannot perform a choreography S∞ =
〈S0, . . . , Sm−1〉∞ with less than max{α(S)/mini{α(Si)},
α(S)
√
µ(S)} colors. The lower bound holds even if the robots

are fully-synchronous and rigid.
Proof: First of all, the robots need to distinguish

between at least a = α(S) distinct classes, during the exe-
cution of any algorithm. Even if the initial configuration 0 is
such that α(0) > α(S),0 can be contracted to a configuration
containing a = α(S) distinct classes, without any loss.
However, for forming any pattern Si ∈ S with α(Si) < α(S),
after the contraction, the robots from distinct classes must
be distinctly colored before they are contracted to a single
class. Thus at least α(S)/α(Si) colors are needed to perform
this contraction and thus the total number of colors c(0) must
satisfy

c(0) ≥ α(S)/min
i
{α(Si)} (2)

For two patterns Si and Sj, such that i 6= j and Si ≡ Sj,
the coloring λi and λj must be visibly distinguishable by
the robots. With a distinct (ordered) classes and c colors,
it is possible to have ca visibly distinct colorings for patterns
having a classes. This gives the following bound on the total
number of colors

c(0)α(S) ≥ µ(S) = max
i
{µ(Si)} (3)

Combining the above two inequalities we obtain the fol-
lowing lower bound on the number of colors for forming
sequence S ∈ F(0)

c(0) ≥ max
{

α(S)
mini{α(Si)}

, α(S)
√
µ(S)

}
(4)

There is a large gap between the lower bound of (4) and
the upper bound of (1). To narrow this gap, e.g. by identifying
a more efficient coloring or by designing a different pattern
formation protocol, is a very interesting and important open
question.

VI. CONCLUDING REMARKS
In this paper we have characterized the setF(0) of sequences
of patterns that can be formed by luminous robots starting
from an initial configuration 0, showing that F(0) is much
larger than the set of sequences of patterns formable without
lights characterized in [9].

Our characterization is complete and constructive:We have
provided a universal protocol that, for any initial configura-
tion 0 and for any pattern sequence S ∈ F(0), allows the
robots to form S even if asynchronous and with non-rigid
movements.

Note that we have assumed that α(0) = α(S). It is
actually possible that α(0) > α(S); should this be the case,
it suffices to apply a simple pre-processing phase that will
reduce the number of classes to α(S). In more detail, all extra
classes of 0 are moved to the center c of SEC and colored
BLACK, following an approach similar to the one adopted
in Section IV-I to handle central sequences. From now on:
if the next pattern to be formed is central, the BLACK will
occupy c; otherwise, after all other classes have occupied
their final destinations (hence the pattern is formed up to
the robots at c) each of them will choose as destination one
of the points of any other class (e.g., the closest class to c),
and move there. Once the pattern has been formed they will
move back to the center to start the formation of the next
pattern.

There are several interesting open questions. The results
for formation of sequences of patterns without lights estab-
lished in [9], and those with luminous robots established
in this paper have been derived under the assumption that
there is chirality; what happens when there is no chirality ?
What happens when robots may fail? What kind of failures
can be tolerated in forming patterns? Is it possible to have
self-stabilizing algorithms when the robots may start from
any arbitrary color?

As mentioned in the previous section, the determination of
a better upper-bound on the number of colors, through a more
efficient coloring or different pattern formation protocol, is an
immediate and natural open problem.
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