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ABSTRACT We propose a CMOS Analog Vector-Matrix Multiplier for Deep Neural Networks, imple-
mented in a standard single-poly 180 nm CMOS technology. The learning weights are stored in ana-
log floating-gate memory cells embedded in current mirrors implementing the multiplication operations.
We experimentally verify the analog storage capability of designed single-poly floating-gate cells, the accu-
racy of the multiplying function of proposed tunable current mirrors, and the effective number of bits of the
analog operation. We perform system-level simulations to show that an analog deep neural network based
on the proposed vector-matrix multiplier can achieve an inference accuracy comparable to digital solutions
with an energy efficiency of 26.4 TOPs/J, a layer latency close to 100 µs and an intrinsically high degree
of parallelism. Our proposed design has also a cost advantage, considering that it can be implemented in a
standard single-poly CMOS process flow.

INDEX TERMS Analog neural network, CMOS, current-mirror, DNN, floating-gate.

I. INTRODUCTION
The increasing requirements of cognitive capabilities in elec-
tronic systems is driving research toward highly efficient
and dense specialized hardware to implement Deep Neural
Networks (DNNs). Migration toward architectures beyond
the Von Neumann paradigm and towards in-memory com-
putation may lead to an improvement in terms of Energy
Efficiency (EE), defined as the ratio of the number of ele-
mentary operations to the energy consumed to perform these
operations, and of throughput, i.e. the number of performed
elementary operations per unit time. In the implementation of
a DNN, the most recurring complex operation is the vector-
matrixmultiplication, i.e. themultiplication of a vector of fea-
tures (e.g. input of a layer) with a matrix of learning weights,
that are constant quantities during the inference phase. The
large number of multi-bit elementary arithmetic operations
performed by the vector-matrix multiplier (VMM) and the
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heavy data exchange between the memory and logic elements
represent the main limiting factors of both EE and throughput
in conventional digital CPU architectures [1]–[4]. The recur-
ring nature of these arithmetic operations can be exploited
by taking advantage of the parallel computing capability of
GPUs [5] and of embedded ASIC accelerators [6], [7]. Par-
allelism in computation and in memory access can be better
exploited through in-memory computing architectures, con-
sisting of a large number of modularized processing elements
distributed in space and operating in parallel, where each
processing element contains both the logic and the memory
to perform the assigned partial processing task.

In this context, analog circuits enable the implementa-
tion of in-memory computing architectures where analog
computations are performed by exploiting fundamental
circuital laws and devices properties. Analog processing
blocks are usually affected by circuit nonidealities such
as noise, non-linearity and process variations. However,
their finite precision can be well tolerated by the inherent
capabilities of neuromorphic networks, which feature high
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FIGURE 1. (a) Architecture of the analog M×N Vector-Matrix-Multiplier based on an array of ‘‘M’’ input cells (in red), a ‘‘M×N’’ matrix of
multiplying cells (in blue) and an array of ‘‘M’’ p-type current-mirrors (in grey). (b) Possible circuital realization of the current-mirrors
implementing the input cells and multiplying cells (multiplier blocks), and of the p-mirror (summation block).

tolerance of functional parameter variations [8] and to limited
precision [9].

In this paper we focus on the design, operation and exper-
imental validation of an analog VMM realized by means of
an array of tunable conversion-factor Current Mirrors (CMs)
based on single-poly floating-gate (FG) cells, as illustrated
in Fig.1. In each tunable CM, the current conversion ratio
Iout/Iin can be interpreted as the weight associated to the
charge stored in the FG. The FG cell is obtained by an n-type
MOSFET (nMOS) and a p-type MOSCAP (pCAP) sharing
an isolated polysilicon-gate. The multiplier is realized in a
standard 180 nm single-poly CMOS technology, by using
devices with 3.3 V nominal voltage domain realized with a
thick gate oxide (∼7 nm), typically required to achieve the
ten-year retention time adequate for a non-volatile memory.

Single-poly FG cells have been designed and fabricated.
In particular, we have experimentally verified the possibility
to program an analog weight with a current conversion ratio
equivalent to a nominal 8-bit integer. We have performed
system-level simulations of trained DNNs, using parallel
VMMs to implement both fully-connected and convolutional
layers. The inference accuracy of the same network operated
either with floating-point precision or with reduced bitwidth
fixed-point precision was compared. This analysis has been
repeated for a simple DNN purposely designed to classify the
MNIST dataset [10], as well as for AlexNet [11] employed
for ImageNet [12] dataset classifications. We have verified
that a reduced bitwidth might allow for comparable inference
accuracy as the original network, with a minimum num-
ber of equivalent bits that is a function of the particular
application (dataset and DNN architecture). Then, we have
selected a 6-bit specification to design an analog CM-based
VMM and have proposed a general design flow applicable to
different CM topologies. We demonstrate with experiments

and simulations the operation and performance of CM-VMM.
The best option exhibits an energy efficiency of 26.4 TOPs/J
and a layer latency of 100 µs. A 100 × 10 VMM has an
area of 0.868 mm2 and a throughput of 19.9 MOPs/s, with
each multiplying cell of the matrix occupying a layout area
of 85.5 µm2.
The remainder of this paper is organized as follows.

In section II we present a discussion on the background of this
work, by reviewing approaches using CMOS analog circuits
to implement neuromorphic building blocks. In section III we
present the CM-VMM basic principle and we introduce its
main figures ofmerit (FOMs). Experimental resultsmeasured
on silicon demonstrators are shown in Section IV, proving the
analog multi-level storage capability of single-poly FG cells.
Measurements on an experimental proof-of-concept of a pro-
grammable CMmultiplier are also shown. Then, in Section V,
four possible implementations of FGCM-VMMare designed
and compared, in order to choose the best CM topology for
the implementation of a FG-cell CM for a given ENOB spec-
ification. Our chosen design is finally benchmarked against
state-of-the-art VMMs in Section VI. The conclusions of the
paper are drawn in Section VII.

II. BACKGROUND
As DNNs are concerned, it has been shown that digital
approaches with fixed-point data representation can provide
comparable classification accuracy to a floating-point com-
putation [13]. In addition, due to the intrinsic resilience of
DNN algorithms to noise and uncertainty [8], data representa-
tion based on a limited number of bits reduces the arithmetic
complexity of processing elements, leading to an improve-
ment of both power consumption and computing time, possi-
bly without losing classification accuracy [9]. In this regard,
different approaches have been proposed, for instance relying
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on reduced bitwidth of the weight [14], of both weights
and activation function [15], or by implementing the entire
network with a limited data precision [16].

As discussed in the introduction, this consideration opened
the opportunity to exploit analog computing circuits in imple-
menting DNN blocks. Several papers have proven the capa-
bility of analog computing elements to achieve an acceptable
trade-off between algorithmic accuracy and numerical preci-
sion. Analog solutions are also suitable to be implemented
with an in-memory circuit architecture [17], [18], avoiding
costly memory access.

In addition, analog data might be stored in an ana-
log non-volatile memory. Innovative non-volatile memory
solutions such as the Resistive Random Access Memo-
ries (RRAMs) have been proposed in the literature for this
tasks, such as oxygen vacancy memory (OxRAM) [19],
conductive bridging memory (CBRAM) [20], and spin-
transfer torque magnetic memory (STT-MRAM) [21]. How-
ever, the intrinsic variability of OxRAMs and CBRAMs
makes them not suitable for very large-scale integration;
on the other hand, despite the high industrial maturity of
STT-MRAMs, they are intrinsically bistable and are therefore
not suitable as analog non-volatile memories, which would
require continuous tuning. In fact, simulations of DNNs
based on RRAMs have been recently proposed [22]–[26], but
the lack of experimental demonstrators suggests that viable
alternatives must be investigated. A worthy option is the
industry-standard double-poly embedded FG memory cells,
which have been proposed for similar applications [27], [28].
In fact, they can rely on the fine tuning of stored charge
(up to 4-bit single transistor memory cells have reached the
market with a tunable 16-level threshold voltage and 10-year
retention time [29]). However, the double-poly process flow
is relatively expensive and the geometry of each single cell
cannot be independently modified by designers, since the
layout of an FG array is generally provided as foundry intel-
lectual property [27], [30], [31]. An interesting option is
to use single-poly embedded non-volatile cells, where the
FG can be realized with a floating polysilicon area among
two planar MOS devices, at the cost of larger area occupa-
tion [18], [32], [33] with respect to the double-poly case.

Different techniques have been proposed to perform
a vector-matrix multiplication in the analog domain:
time-domain approaches [22], [34] and current-mode sum
operation [18], [27], [32], [33], [35]. Current-mode operation
can be implemented by relying on the addition performed
using Kirchhoff’s current law; currents resulting from weight
multiplication of different inputs are added by letting all
currents flow to the same node.

III. CURRENT MIRROR VMM BASIC PRINCIPLE
The basic principle of an analog VMM implemented with
CMs and the representative FOMs used in this paper are
discussed in this section. In subsection III-A, the concept of
CMs with tunable conversion factors used as current multi-
pliers is introduced. A discussion on the VMM operation is

proposed, emphasizing nonidealities in terms of both linearity
and noise immunity level, and their impact on the maximum
achievable accuracy. In subsection III-B, FOMs normally
used for generic analog-to-digital converters (ADCs), such
as the Signal-to-Noise And Distortion ratio (SINAD) and
the Equivalent Number Of Bits (ENOB) are introduced and
matched to the particular VMM design parameters.

A. CURRENT-MIRROR VMM BASIC PRINCIPLE
Fig.1(a) sketches the architecture of an analog current-mode
M×N VMM, with M input currents (Iin,(i) is a generic input,
for i = 1. . .M), M×N weights and multiplying blocks in
the matrix (each element is w(i,j)), and N output currents
(a generic output is Iout,(i,j), for j= 1. . .N). Each input signal
is applied to all the matrix cells in the same row, where the
multiply operation is performed between each row input and
the corresponding weight in the cell, according to

Iout,(i,j) = Iin,(i) × w(i,j). (1)

The output of the column is then obtained by summing over
all terms to implement the scalar product operation

Iout,(j) =
∑M

i
Iout(i,j) =

∑M

i
Iin,(i) × w(i,j). (2)

The VMM basic implementation proposed in this paper is
detailed in Fig.1(b), which show the CM approach where the
current entering in an ‘‘input cell’’ (block in red) is multiplied
by a scaling-factor by a ‘‘multiplying cell’’ (in blue) and pro-
vided as an output current, while all the currents of the same
column are summed at the same circuit node. An additional
p-type CM (in grey) is also added at the top of each column
to provide the Iout,(j) with the appropriate direction.
The storage capability of the multiplying cell associated to

a generic w(i,j) is obtained via a FG cell, implemented by an
nMOS sharing an FG with a pCAP. By relying on specific
programming and erasing schemes, charge can be added to
or removed from the FG. The net charge in the FG results
in a shift 1V th,(i,j) of the threshold voltage determining the
current magnification factor (i.e. the weight). For a given
input current Iin,(i), if the nMOS is operated in the subthresh-
old region, the corresponding output current Iout,(i,j) depends
exponentially on the 1V th,(i,j). Ideally, we have:

Iout,(j) =
M∑
i

Iin,(i) × e
1Vth(i,j)
ηVT (3)

where the exponential represents ideal weight,

wideal(i,j) = e
1Vth(i,j)
ηVT . (4)

Beyond enabling a wide range of variations of the output of
the multiplying operation, sub-threshold operation regime is
also beneficial to reduce power consumption [27], [31], [32],
[35], [36].

Practical CMs do not exhibit the ideal behavior described
by Eq.(3). Indeed, one should note the different VDS of the
input and multiplying cells. The small output resistance of
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short channel devices can thus degrade the linearity. This
weakness can be worsened if devices with poor electro-
statics are used, due to finite pCAP capacitance. An addi-
tional degradation arises if the input current becomes too
low, due to poor transistor saturation when the VDS of
the diode-connected nMOS input cell becomes comparable
with VT. The non-linearity can be described in terms of Total
Harmonic Distortion (THD).

Another root cause of precision degradation comes from
intrinsic noise sources of the devices implementing the CM.
The Signal-to-Noise Ratio (SNR) of the CM output current
increases with the input current, and it inversely depends on
the bandwidth [35]. Furthermore, for short channel devices,
it decreases with the square of the channel length [37].

Provided that in analog circuits both noise and nonlinearity
can severely impact the accuracy of the analog function,
distortion and noise nonidealities are normally considered
together within the Signal-to-Noise And Distortion ratio
(SINAD) [38], which depends on SNR and THD as Eq.(5):

10−
SINAD
10 = 10−

SNR
10 + 10

THD
10 (5)

THD, SNR and SINAD are all expressed in dB and their
definitions are given in Appendix A.

B. FIGURES OF MERIT FOR ANALOG MULTIPLIERS
When DNNs consisting of multiple layers are considered
(e.g. AlexNet [11]), the VMM arrays become the dominant
functional blocks in the system, the main factor determin-
ing total area occupation and power consumption [11]. The
design of an efficient analog VMM then involves different
trade-offs among performance (throughput), EE, computa-
tion accuracy, and area occupation.

To provide a comparison with DNN implemented in dig-
ital architectures, FOMs for analog VMMs are normally
expressed in terms of elementary operations, such as P-bit
(where P is the bit-width) multiplications and additions.
An M×N VMM includes N columns of M-sized multiply-
and-accumulate (MAC) operations as shown in Eq. (2).
We consider a number of M multiplications and M-1 addi-
tions per each MAC, corresponding to a total number of
(2M-1)×N elementary operations in a VMM.

The (2M-1)×N elementary operations are performed in
parallel in a VMM, then the throughput is given by the ratio
of (2M-1)×N to the worst case time Top needed by the CM
multiplier to provide an output current corresponding to the
expected result (within a confidence interval dependent on the
assumed accuracy) in response to an input current step.

The EE is the calculated as the ratio of the (2M−1)×N par-
allel operations to the average energy consumed by the VMM
to perform a vector-matrix multiplication (i.e. the consumed
power integrated over the Top). The energy is extracted using
actual trained weights and it is averaged over a number of
operations, each corresponding to an input array related to an
actual input of the tested database (i.e. test images in case of
MNIST or ImageNet).

The accuracy of an analog VMM can be described by the
SINAD, which can be related to linearity and noise immunity.
In order to enable an intuitive comparison between the preci-
sion of an analog function and its digital counterpart, we can
use the Effective Number of Bits (ENOB) linked to SINAD
as [38]:

ENOB =
SINAD− 1.76

6.02
(6)

FIGURE 2. Contour plot of ENOB as a function of THD and SNR.

Fig.2 depicts a contour plot of the ENOB as defined in
Eq.(6), as a function of SNR and THD. SINAD, and therefore
ENOB, is generally limited by the smaller between SNR
and –THD. This plot is relevant in the choice of design trade-
offs, since in several cases both SNR and THD play a role in
the accuracy of an analog function. In fact, in most cases they
should be balanced up in order to get a fine-grain optimization
of the ENOB. In the definition of the ENOB given by Eq.(6),
it is assumed that a sinusoidal input signal spanning the
full-scale of the ADC input swing is used. Similarly, these
definitions can be adapted to an analog circuit, where SNR
includes all kind of noises which affects the circuit, while
THD accounts for the nonlinear behavior of its transfer func-
tion. For consistency, in our study we use a sine waveform for
the input current spanning between 0 and the target maximum
input current Iin,MAX, also referred to as full-scale (FS) here-
after. When the ENOB characterization is performed for a
unitary weight (i.e. Iout,MAX = Iin,MAX), the FS current levels
as for Iin are also spanned by the Iout waveform. On the other
hand, when the ENOB characterization is performed with a
weight< 1, the resulting peak-to-peak value of the sinusoidal
output current is Iout,MAX = Iin,MAX×w < FS. To account
for this partial sweep of the assumed full-scale of the output,
a ‘‘−log2(w)’’ correction term is added in Eq.(6) to extract
the equivalent full-scale ENOB by a projection.
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FIGURE 3. (a) Write conditions to increase the Vth by means of impact-ionized and channel-hot-electron-injections (IHEI and CHEI,
respectively). (b) Erase conditions to decrease the Vth through impact-ionized hot-hole-injection (IHHI). (c) Experimental ID-VCG-S
transfer-characteristics of the diode-connected input cell (symbol) and output cell at VDS = 400 mV (lines). Simple symmetric current
mirror: (d) experimental and simulated output current as a function of the input current at different weight conditions; (e) experimental
and simulated Error = abs(Iout-wideal×Iin) as extracted from (d); (f) effective number of bits calculated from the error in (e), where
ENOB∗ = log2(FS/(2·max(Error))). W/L(NMOS) = 1 µm / 0.5 µm, A(P-CAP)/A(NMOS) ≈ 49.

IV. EXPERIMENTS ON SINGLE-POLY FG CURRENT
MIRROR VMM
In this section, the electrical characterization of single-poly
FG cells fabricated with UMC 0.18 µm CMOS technology
is discussed. The analog storage capability with a possible
current resolution larger than 8 bits (i.e. Iout,(i,j)/Iin,(i) <

256 −1) is first demonstrated. Then, a simple CM multiplier
implemented with these cells is measured at different stored
weight conditions. A good matching between experiments
and simulations is demonstrated.

With reference to the CM implementation shown
in Fig.1(b), the non-ideal coupling between the pCAP and
the nMOS enhances the asymmetry between the input cell
and the multiplying cell, which is already in place due
to difference in VDS. This asymmetry leads to a linear-
ity degradation, which could be avoided by using a very
large pCAP (so that ApCAP � AnMOS) resulting in an
almost ideal coupling factor, but this cannot be appointed
as a recommended solution for obvious reasons. A better
option to increase the symmetry can be the use of an addi-
tional pCAP in the input cell. In this case, the FG on the
input cell is not used to store data but just for electrostatic
symmetry.

Experimental data for a symmetric CM are reported
in Fig.3. The CM is realized with 0.5 µm long nMOS tran-
sistors sharing the floating poly with a pCAP area 49 times
larger than the nMOS gate area, while the control gate (CG)
is the N-well hosting the pCAP shorted with the P-diffusions
implementing its S/D regions. All transistors have a 3.3V
nominal voltage.

Fig.3(a) and (b) report the voltage levels used for the
program and erase operations, which are both possible by
applying positive voltage pulses on the CG and D terminals,
activating different gate injection phenomena in agreement
with [39]: for a VDS in the range 4.5 V ∼ 6.5 V, at high
VCG−S voltages (>3V) both channel hot electron injection
(CHEI) and impact-ionized hot-electron injection (IHEI) lead
to an increase of the equivalent Vth, while the impact-ionized
hot-hole injection (IHHI) is the dominant mechanism at rel-
atively low VCG−S voltage (e.g. 1V ∼ 1.5V) leading to a
Vth variation in the opposite direction. This means that the
threshold voltage can be moved in both directions without the
need to design complicated circuitry to generate the negative
voltage levels normally needed to reset FG memory cells.
It is important to highlight that this flexibility is possible only
on the multiplying cell, given that in the input cell the CG
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and the D are short-circuited. This issue is not really critical
since the current conversion ratio (i.e. the weight of the CM)
is dependent on the Vth difference between the input and
output cell, thus a possible charge in the input cell FG can
be compensated by offsetting the charge to be added in the
multiplying one.

Measurements for a typical cell are shown in Fig.3(c),
on both the input andmultiplying cell. The ID-VGS (the gate is
the CG, since the FG is not accessible) transfer characteristics
were measured. The input-cell has been measured with the
FG discharged (symbols), while themultiplying-cell has been
characterized at different stored charge conditions (lines).
A possible threshold voltage shift 1Vth larger 500 mV has
been verified, although few hundred of mV are enough to
enable a sufficient conversion factor considering an average
inverse subthreshold slope of 90 mV/dec in the current range
upper-limited by 20 nA (e.g. 1Vth ∼215 mV for a weight
of 256−1, i.e. 8 equivalent bits).

For the same weights as programmed in Fig.3(c), the CM
has been tested by providing an input current swept in the
range 0.2 nA↔ 20 nA. The resulting output current is shown
in Fig.3(d) and post-processed to calculate the error and the
corresponding ENOB in Fig.3(e) and (f), respectively. Similar
data have been extracted from transient noise simulations
performed with UMC 0.18 µm PDK models. The matching
between theoretical data and experiments is quite good. Since
gate current is not implemented in the transistormodels, in the
simulations we have used an ideal pulsed current source to
inject the needed charge in the FG.

FIGURE 4. 2× 1 VMM transfer-function contour plot (IOUT = wA×Iin, A +
wB×Iin,B) for different wA and wB conditions: (a) wA = 0.99, wB = 0.82;
(b) wA = 0.26, wB = 0.25; (c) wA = 0.52, wB = 0.14; (d) wA = 0.12,
wB = 0.44. Simple symmetric CM with: W/L(nMOS) = 1 µm / 0.4 µm,
A(P- CAP)/A(nMOS) ≈ 49.

Finally, Fig.4 demonstrates the operation of a 2 × 1
CM-VMM, implemented with two separated input cells

driving two multiplying cells whose weight is indepen-
dently set to various conditions and whose currents are
summed, by implementing the IOUT = wA×Iin,A+ wB×Iin,B
operation.

V. OPTIMIZATION OF FG CURRENT MIRRORS
After the demonstration of an experimental proof-of-concept
of analog programmable CM multiplier, there is the need
to better understand how to optimize the design of the CM
in order to meet a desired precision specification. We have
selected an ENOB of 6 bit as a reference specification for
the remainder of this study, considering it a good trade-off
between precision and cost of the VMM function (in terms of
silicon area and power consumption). In section VI, by con-
sidering a simple DNN case study trained with the MNIST
database, we have verified that with 6 bits the inference accu-
racy loss is almost negligible compared to higher resolution.
However, the choice of a 6-bit ENOB does not affect the
generality of our analysis.

Input current FS, transistor sizing and CM topology are
design knobs that determine the final performance of the
VMM. Concerning the topology, we have already suggested
the possible improvement provided by a symmetric CM.
In addition, feedback can be also exploited in order to
improve the linearity of the analog multiplier. For instance,
a cascode CM topology relies on two additional transistors
to regulate the VDS of the multiplying cell, by forcing it to
follow the one of the input cell.

FIGURE 5. Schematics of (a) Asymmetric and (b) Symmetric Simple
Current Mirror (ASCM and SSCM, respectively), and of (c) Asymmetric and
(d) Symmetric Cascode Current Mirror (ACCM and SCCM, respectively).

The four topology options reported in Fig.5 have been con-
sidered, consisting in the asymmetric and symmetric versions
of simple CMs ((a) ASCM and (b) SSCM, respectively) and
of cascode CMs ((c) ACCM and (d) SCCM, respectively).
Symmetric and cascode solutions require additional transis-
tors to be implemented. For instance, in a fixed M×N VMM,
there will be M additional pCAPs in the input cell array for a
symmetric solution with respect to the asymmetric one, or
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M×(N+1) additional nMOS transistors for a cascode CM
topology with respect to the simple one. It is important to
highlight that it is not obvious that the additional transistors
required by more complicated topologies will result in a
larger are occupation, if we consider that solutions with a
reduced number of transistors will likely require a different
sizing of the cell in order to compensate for the reduced
linearity performance (for instance a much longer channel
transistor L).

A detailed discussion on the linearity (THD), on the noise
immunity (SNR), and on the resulting ENOB trends as a
function of input current full-scale, supply-voltage VDD, and
transistor sizing, as well as a suggested design flow to prop-
erly set the W and L sizes of CM transistors, can be found in
the Appendix B.

FIGURE 6. Linearity (a) -THD and (c) SNR degradation as a function of
pCAP/nMOS coupling ratio scaling reported for symmetric (solid lines)
and asymmetric (dashed lines), simple (black) and cascode (gray) current
mirrors. Linearity (b) -THD and (d) SNR degradation as a function of the
transistor length scaling, reported for different pCAP/nMOS ratio for each
implementation in order to have similar THD values (∼−41 dB) at
L = 2µm. IMAX×L = 10 nA×µm. Area ratios (pCAP/nMOS): simple
symmetric (25), simple asymmetric (49), cascode symmetric (9), cascode
asymmetric (36).

In Fig.6(a) and (c), THD and SNR were extracted at
the input current FS IMAX value of 5 nA, VDD = 1.5 V,
W/L = 1 µm/2 µm, for different pCAP/nMOS coupling
ratios, for both symmetric and asymmetric versions of both
simple (SSCM and ASCM) and cascode (SCCM and ACCM)
topologies. Symmetric versions show much better linearity
for smaller pCAP/nMOS ratio compared to the asymmetric
counterpart. In addition, SNR depicted in Fig.6(c) is almost
constant for the symmetric solution (∼43 dB) down to the
minimum considered point of pCAP/nMOS area ratio, while
it shows a sudden degradation with reducing pCAP/nMOS
ratio for the asymmetric options. From Fig.6(a) we have
extracted the minimum pCAP/nMOS ratio (with a margin)
which features a THD value of ∼−40 dB for each topology:

49 for ASCM, 36 for ACCM, 25 for SSCM, and 9 for
SCCM. Starting from these 4 conditions, we have plotted
in Fig.6(b) and (d) the THD and SNR degradation with L
scaling. Curves depicted in this plot have been obtained at
fixed normalized input current (with respect to the width-
to-length ratio, i.e. Inorm = I × L/W), basically meaning that
when the L is halved the corresponding current is doubled,
so that the transistor working point is maintained in similar
sub-threshold operating condition (and similar linearity in
case of long channel devices). As regards the THD trends,
both asymmetric options require a longer channel device
compared to the respective symmetric counterparts, despite
a much larger pCAP/nMOS ratio initially selected. Then,
the area advantage of using a symmetric solution is twofold
(i.e. smaller pCAP/nMOS ratio and shorter L), although a
pCAP is needed also in the input cell. In addition, if we
focus on the symmetric options, it can be observed that SSCM
features a small degree of linearity degradation at extremely
short length, while the SCCM features a THD value which
is optimum at LMIN. This result is attributed to the intrinsic
feedback property of the cascode topology, whose action
in enforcing similar VDS to the input and multiplying cell
transistors results in an effective workaround for reduced
output resistance of short-channel devices. As regards the
SNR shown in Fig.6(d), a similar behavior is observed for all
the configurations, with SNR degrading as the L is reduced.
However, one should note that SNR can be independently
adjusted by proportionally increasing the transistor width and
the input operating current (i.e. at fixed IMAX/W) without
impacting the THD (see related discussion in Appendix B).

TABLE 1. Comparison of proposed CM topologies.

In Table 1, the final transistor sizing and occupied areas
of each topology, independently designed in order to meet
a 6-bit ENOB specification (i.e. SNR & –THD > 40 dB,
according to Fig.2) are listed. Asymmetric multiplying cells
occupy from ∼3.8× to ∼6.5× more gate area compared to
the one of symmetric multipliers. In particular, SCCM is the
best solution in terms of ENOB per unit area (with a single
multiplying cell gate area equal to 33.8% and 15.4% the
ones of SSCM and ACCM, respectively), due to the smallest
required coupling ratio and transistor length needed to reach
the ENOB target, despite the fact that such topology needs
additional transistors compared to the simple CM. In case of
a 100 × 10 VMM (i.e. one column array of 100 input cells,
a 100 × 10 multiplying cell matrix, and 10 P-mirror adders)
the advantage of SCCM persists, with an overall gate area
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equal to 33.9% and 15.6% the ones of SSCM and ACCM,
respectively.

FIGURE 7. Layout of a cascode multiplying cell with W = 1 µm,
L = 0.8 µm, pCAP/nMOS area ratio = 9.

The example layout of an SCCM multiplying cell is
depicted in Fig.7. We want to clarify that the overall area on
the layout is much bigger than the one estimated by using the
gate area. This is mainly due to the spacing needed to avoid
the turn-on of PNP and NPN parasitic transistors (e.g. n+
diffusions of the nMOS S/D (emitter) / pwell of the nMOS
(base) / n-well of the pCAP (collector)). In the reported
layout, we have used 2 µm spacing for well-to-well parasitic
bipolar paths, and at least 1 µm spacing for diffusion-to-well
cases. One should however consider that standard design
rules available in the PDK are not intended for such a specific
design, then we can speculate that there is some margin to
scale the overall layout, e.g. after a specific characterization
of any of these paths with dedicated test-structures. Due to
this extra area, the overall layout of a multiplying cell of
the SCCM is 9.7× larger than the one extracted considering
the gate area only (see Table 1). However, the advantage of
symmetric multipliers is still verified, and the best solution,
which is SCCM cell, occupy much less layout area than the
SSCM (−59%) and the ACCM (−132%) multiplying cells.

VI. SYSTEM-LEVEL ASSESSMENT ON ANALOG DNNS
This section is dedicated to a system-level assessment of
DNNs, using MATLAB, in order to link the behavior and the
FOMs of analog VMMs to the system-level performance of a
complete DNN. Two DNNs have been trained and simulated
by relying on two different datasets in order to be used as
test benches. The grey-scale MNIST [10] dataset has been
used to train a purposely designed network (‘‘Net A’’ in the
following) depicted in Fig.8(a), while a subset of classes
from ImageNet [12] has been used to train AlexNet [11],
as sketched in Fig.8(b). The training has been performed by
relying on floating-point data precision.

The designed DNN Net A operates as follow: the input
28 × 28 pixels gray-scale image is filtered by a convolu-
tional layer with 20 filters on 9 × 9 kernels. The extracted
features are then passed to the activation function, which

is a Rectified Linear Unit (ReLU). Then the Maxpooling
layer halves the overall number of coefficients by extracting
the biggest elements in the 2 × 2 submatrices. Processed
features are passed to the transform level, whose coefficients
are trainable, in order to convert the two-dimensional image
into a vector. This vector is the input of the fully-connected
layer, containing 100 nodes with ReLU. The output layer
has 10 nodes and a softmax activation function for the final
10-digits classification.

Details of AlexNet architecture will not be discussed here
since they can be easily found in the literature [11].

When the DNNs are used to perform predictions, with
floating-point precision, we have found an inference accuracy
of 99.8% and 95% for the MNIST and ImageNet datasets,
respectively.

Beyond extracting the inference accuracy for the original
network, we have artificially derived reduced-precision net-
works from Net A and AlexNet. Two approximation cases
were considered, a ‘‘digital’’ and an ‘‘analog’’ version: a) in
the ‘‘digital case’’, floating-point numbers have been replaced
with integers with different number of bits; b) in the ‘‘analog
case’’, floating-point precision has been maintained, but a
white noise has been added to the output of each multipli-
cation based on the assumed SINAD value (and therefore
ENOB), according to the following expression:

yi,j = wi,jxi,j + α
(
FS
2

)
× 10

−SINAD
20 (7)

where α is a random value with a Gaussian distribution of
average zero and standard deviation 1.

The inference error rate of the tested DNNs as a func-
tion of the corresponding SINAD and ENOB is reported
in Fig.8(c) and (d) for the MNIST and ImageNet cases,
respectively. As for the digital case, simulations were run on
the complete validation dataset of 2000 images for MNIST
and almost 1000 images for ImageNet. Instead, for the analog
case, the inference on validation dataset was repeated for
5 times and the mean value of the inference accuracy was
extracted.

The similarity between the inference capability of a ‘‘dig-
ital’’ and of an ‘‘analog’’ network for similar number of bits
and ENOB validates the FOMs used in this study. In addition,
it also confirms that 6 equivalent bits represent a reasonable
value to provide an almost maximum accuracy for MNIST
classification by the Net A, while at least 7 bits would
be required in the case of ImageNet tested with AlexNet.
As a result, we can conclude that the ENOB which must
be targeted when designing an analog VMM is dependent
on the specific DNN architecture and dataset applications,
as expected.

In order to provide a dependable estimation of the energy
efficiency of the designed symmetric cascode current-mirror
VMM, featuring 6 equivalent bits, we have extracted a
100× 10 weight matrix from a trained fully-connected layer
of Net A. The estimation was performed by assuming to
operate the VMM at VDD = 1.5 V, IMAX = 12.5 nA and
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FIGURE 8. (a) Implemented neural network which has been trained for the classification of the MNIST database. (b) AlexNet used to classify
a subset of ImageNet. Comparison of the error rate between ‘‘digital’’ and ‘‘analog’’ approximations is shown for Net A classifying MNIST
(c) and for AlexNet classifying a subset of 50 classes of ImageNet (d).

TABLE 2. Comparison with state-of-art CMOS VMM solutions.

to perform 1990 elementary operations in parallel (100 mul-
tiplications and 99 summations per each of the 10 columns
of the VMM) in a Top close to 100 µs (with a resulting
throughput of 19.9 MOPs/s). The energy has been measured
for 100 different input vectors, resulting in an average energy
efficiency of 26.4 TOPs/J.

Finally, in Table 2 we have benchmarked our proposal
against state-of-art analog VMMs, by selecting the analog

VMMs executing arithmetic operation in either current mode
or time domain, implemented with memristors [22], embed-
ded FG arrays [27], [30], [31], [36], or single poly FG mem-
ories [18], [32], [33]. Both gate and layout areas of a VMM
cell, as well as the energy efficiency, are compared to the other
design solutions. A single VMM multiplying cell occupies a
total gate area of 8.8 µm2, while the estimated layout area
is 85.5 µm2. Although other single-poly FG solutions are

VOLUME 8, 2020 203533



M. Paliy et al.: Analog Vector-Matrix Multiplier Based on Programmable Current Mirrors

implemented with a more scaled 130 nm technology, the area
of our VMM cell is almost one order of magnitude smaller
than other proposals based on a similar process technology.
The 6-bit ENOB precision is lower than other single-poly
multipliers, but similar precision can be matched with a trim-
ming of the design. Compared to the double poly embedded
FG array based multipliers, our solution is much bigger,
but it has to be considered that the counterpart can rely on
the advantages of the double poly and of the more scaled
technology node (55 nm). On the other hand, one should
note that with double poly technologies it is not possible to
modify the geometry of a single cell, thus the optimization
of transistor size aiming at increasing the accuracy of the cell
is not feasible. Another weakness is that the CMOS double
poly process is muchmore expensive than the single poly one.
As regards to the energy efficiency, our multiplier reaches
26.4 TOPs/J, which is better than all the other single-poly
VMM counterparts, but worse than the one proposed in [31]
(55 nm embedded NOR solution) and the one based on
memristors in [22] (only simulations, no experimental data
are provided).

VII. CONCLUSION
We have demonstrated an in-memory analog VMM based on
current mirrors realized in a commercial 180 nmCMOS tech-
nology platform with experiments, circuit-level and system-
level simulations. Single-poly floating-gate memory cells
provide the possibility to implement the in-memory com-
puting approach. FG cell programming/erasing methods and
storing capability have been validated by experimental mea-
surements showing the possibility to set a single poly FG
current mirror with a current scaling factor corresponding
to more than 256 levels (i.e. >8-bit). Measurements on a
symmetric simple current-mirror multiplier resulted to be
well matched to circuit level simulations. With the validated
simulation deck, a design optimization has been performed
for four current mirror topologies, by relying on a proposed
design flow targeting a specific precision. It has been demon-
strated that complex current mirrors such as the cascode
topology feature a better trade-off between ENOB and area
occupancy than the simpler version implemented with a
reduced number of transistors. Furthermore, the electrostatic
symmetry produced by placing a pCAP in both the input and
multiplying cell allows to further reduce the area, allowing the
current mirror multiplier to reach the accuracy specifications
with much smaller transistor sizes. Both MNIST and Ima-
geNet databases have been used as representative examples to
train two DNNs, which are a purposely developed DNN and
the well-known AlexNet, respectively. System-level simula-
tions were performed for both cases, and the inference accu-
racy has been extracted as a function of the assumed ENOB.
We have found that a precision of 6 equivalent bits allows
an almost maximum accuracy in classifying images from the
MNIST database, while ImageNet requires at least 7 bits.
Our CM-VMM reach an energy efficiency of 26.4 TOPs/J,
that is very promising with respect to the state-of-the art of

experimentally tested analog neuromorphic circuits consider-
ing the relatively high precision (ENOB = 6) and small area
occupation of the proposed VMM.

APPENDIX
APPENDIX A: DEFINITIONS OF THD, SNR AND SINAD
Definitions of THD, SNR and SINAD for current waveforms
are given below.

THD = −10 · log10(I
2
SIGNAL/I

2
DISTORTION ) (8)

SNR = 10 · log10(I
2
SIGNAL/I

2
NOISE ) (9)

SINAD = 10 · log10

(
I2SIGNAL

I2NOISE + I
2
DISTORTION

)
(10)

ISIGNAL, IDISTORTION and INOISE are the RMS values of
signal, distortion and noise contributions, extracted by means
of the Fourier Transform of the output waveform in response
to a clean sine waveform provided as an input.

APPENDIX B: THD AND SNR TRENDS AS A FUNCTION OF
DESIGN PARAMETERS
Details of THD and SNR trends as a function of basic design
parameters are discussed in this Appendix. In this analysis
a simple and idealized CM is considered, where both the
input and the multiplying cell are implemented by a nMOS
transistor only; the magnification of the current conversion
ratio (i.e. theweight) is not accountedwith the realistic FG but
by relaying on an ideal weight represented by a DC voltage
generator simulated in series to the gate of the multiplying
transistor. By analyzing simulated trends, we are able to
suggest a consistent design flow which can be applicable also
to more complicated current mirror topologies.

A current sine waveform with a peak-to-peak amplitude
equal to the selected Iin,MAX is applied to the input cell. The
THD and SNR FOMs are computed by post-processing the
waveform of the corresponding output for a variable weight.
In this discussion it will be recurrent the normalization of
the operating current with respect to the width-to-length ratio
(i.e. INORM. = Iin,MAX×L/W), so that the transistor working
point is maintained in similar sub-threshold region conditions
(and similar linearity) when the transistor aspect ratio is
changed.

In Fig.9, simulations were carried out by varying electrical
parameters such as the maximum amplitude of the input
signal Iin,MAX×L, ((a) and (e)), the supply voltage VDD
((b) and (f)), the transistor L ((c) and (g)) and the transistor W
((d) and (h)).

Two different trends can be observed in Fig.9(a) and (e):
first, there is a trade-off between THD and SNR in terms of
Iin,MAX. If the current is increased, the THD curves worsen
and, at currents higher than ∼100 nA, their shape and the
related slopes change as transistors are on the edge between
subthreshold and inversion regions. According to this trend,
it would be recommended to operate the transistors in deep
sub-threshold to increase linearity, although in case of short
channel devices, e.g. L = 0.5 µm, the benefit of reducing
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FIGURE 9. Simple n-type current mirror simulated with an ideal threshold voltage offset to mimic the weight (i.e. FG cell with ideal coupling ratio).
THD and SNR as a function of the normalized input current IMAX×L at VDD = 1.5 V ((a) and (e), respectively), of the supply voltage VDD at constant
IMAX×L = 10 nA×µm ((b) and (f), respectively), of the nMOS transistor length ((c) and (g), respectively) and of the nMOS transistor width
((d) and (h), respectively). Nominal parameters (unless specified differently in the plots): WN = 1 µm, WP = 4×WN, LP = LN = 1 µm.
VDD = 1.5V, Iin,MAX×L/W = 10 nA.

the current is less pronounced considering that the short-
channel effects (SCEs) affect the THD. As an opposite trend,
increasing Iin,MAX is instead beneficial from the SNR point
of view, as shown in Fig.9(e). In addition, even at the same
biasing condition (constant Iin,MAX×L), longer devices fea-
ture higher SNR, as highlighted by the three different curves.

According to Fig.9(b) and Fig.9(f), once the bias point
is set by the operating current, THD and SNR values are
typically not affected by the supply voltage variation. A VDD
dependence can be observed only for short channel devices
featuring a worsening of the THD for an increasing VDD,
and in those cases a low supply voltage should be preferred
in order to save power consumption. We choose a value of
VDD = 1.5 V for the remainder of the analysis.
The analysis based on geometrical parameters, L and W,

were still performed for constant IMAX×L/W, where
W = 1 µm when L is varied, and L = 1 µm when W is
varied. In Fig.9(c) there is a very small length range where the
linearity increases by moving toward longer devices because
of the reduction of SCEs. Furthermore, the curves taken at
10 and 100 nA×µm/µm show a flat THD region in the
longer cases. Here the simulated length is sufficient to screen
any impact of SCEs, and the similar operating points in
subthreshold (guaranteed by the same IMAX×L) result in
similar values for linearity. However, for very low current
levels (i.e., 1 nA×µm/µm), after the initial rise, a flat region

extends only for few µm, i.e. up to ∼3 µm, considering
that beyond this value THD starts to decrease for increasing
length. This is due to the fact that, for long transistors, a nor-
malized current of 1 nA×µm/µm corresponds to a very small
unnormalized current (e.g. 200 pA for L= 5 µm), and at this
current value it corresponds aVDS lower than 4VT which does
not guarantee a proper transistor saturation. However, if we
focus on the 1 ∼ 3 µm range, lower IMAX×L values always
corresponds to a better linearity, in agreement with Fig.9(a).
SNR in Fig.9(g) has a strong increase with increasing L
for short channel devices, although it tends to saturate for
longer values. Finally, when varying W for fixed normalized
currents, linearity is practically independent (Fig.9(d)), while
SNR always increases for an increasing width (Fig.9(h)),
with an almost linear dependence on the square root of the
width.

By taking into account all the plots depicted in Fig.9, as a
conclusion we can assert that there is a certain region in the
design space where THD and SNR can be independently set,
and a possible design flow with the target to reach a given
ENOB can be suggested, as detailed in Fig.10. For instance,
by using one of the curves depicted in Fig.9(a) (e.g. with
at least L = 1 µm to screen SCEs), one could decrease
Iin,MAX×L down to the value which guarantee the specifi-
cation on the linearity (i.e. desired THD). Then, by refer-
ring to Fig.9(c), the length can be scaled down to the value
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FIGURE 10. Proposed design flow of a programmable current mirror.

that does not produce a linearity degradation (still for fixed
Iin,MAX×L).

Both design choices aim at linearity by trading off against
a SNR degradation (see Fig.9(e) and Fig.9(g)). However, the
specification on the SNR can be reached by a final trimming
of W (according to Fig.9(h)) which can be modified – for
fixed normalized current – without impacting the linearity
obtained by previous design choices (see Fig.9(d)).
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