
catalysts

Article

Supported Tris-Triazole Ligands for Batch and
Continuous-Flow Copper-Catalyzed Huisgen
1,3-Dipolar Cycloaddition Reactions

Alessandra Pucci 1, Gianluigi Albano 1,† , Matteo Pollastrini 1 , Antonio Lucci 1,
Marialuigia Colalillo 1, Fabrizio Oliva 1, Claudio Evangelisti 2 , Marcello Marelli 3 ,
Delio Santalucia 1 and Alessandro Mandoli 1,*

1 Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy;
alessandra.pucci91@gmail.com (A.P.); gianluigi.albano@dcci.unipi.it (G.A.); winston.polla@gmail.com (M.P.);
antoniolucci@outlook.it (A.L.); gigiabulla@gmail.com (M.C.); oliva.fab.93@gmail.com (F.O.);
delio.santalucia@phd.unipi.it (D.S.)

2 Istituto di Chimica dei Composti Organometallici (ICCOM), Consiglio Nazionale delle Ricerche (CNR),
Via G. Moruzzi 1, Pisa 56124, Italy; claudio.evangelisti@cnr.it

3 Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC), Consiglio Nazionale delle
Ricerche (CNR) Via G. Fantoli 16/15, Milano 20138, Italy; marcello.marelli@scitec.cnr.it

* Correspondence: alessandro.mandoli@unipi.it; Tel.: +39-050-2219-280
† Present address: Dipartimento di Chimica, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona 4,

Bari 70126, Italy.

Received: 31 March 2020; Accepted: 14 April 2020; Published: 16 April 2020
����������
�������

Abstract: The lack of supported versions of the tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine
(TBTA) ligand, suitable for flow-chemistry applications at scale, prompted us to develop a new route
for the immobilization of such tris-triazole chelating units on highly cross-linked polystyrene resins.
With this aim, the preparation of the known TBTA-type monomer 3 was optimized to develop a
high-yield synthetic sequence, devoid of chromatographic purifications at any stage. Then, bead-type
(P7) and monolithic (M7) functional resins were obtained by the easy and scalable suspension- or
mold-copolymerization of 3 with divinylbenzene. Both types of materials were found to possess
a highly porous morphology and specific surface area in the dry state and could be charged with
substantial amounts of Cu(I) or Cu(II) salts. After treatment of the latter with a proper reducing agent,
the corresponding supported Cu(I) complexes were tested in the copper-catalyzed alkyne-azide
cycloaddition reaction (CuAAC). The immobilized catalysts proved active at room temperature and,
in batch and with catalyst loadings as low as 0.6 mol%, afforded quantitative conversions within 20 h.
Independent of the alkyne structure, extended use of the supported catalyst in flow was also possible.
In the reaction of benzylazide and propargyl alcohol, this allowed a total turnover number larger
than 400 to be reached.

Keywords: supported catalysts; click chemistry; flow chemistry; 1,2,3-triazoles; monoliths; nitrogen
ligands

1. Introduction

Independently disclosed in 2002 by the groups of Meldal and of Fokin and Sharpless [1,2], the
copper-catalyzed azide-alkyne cycloaddition reaction (CuAAC) has become an essential component
of the click-chemistry toolbox [3–5]. Driven by many applications [6,7], the strong interest in CuAAC
stimulated an intense search for improved catalytic systems [3–5,8]. The main goals of these efforts
were the stabilization of the Cu(I) active form and reduction of catalyst loading [9–11], the suppression
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of side-reactions [12], and the lowering of metal contamination in 1,2,3-triazole products. Concerning
the last aim, the immobilization of copper species on insoluble supports is one of the most actively
investigated options [13–16]. Broadly speaking, this task has been pursued by either preparing
nanostructured Cu(0), Cu(I), or Cu(II) (pre)catalysts on insoluble materials, or by anchoring a discrete
Cu(I) or Cu(I) complex to a suitable support.

In principle, with the second choice, an advantage can be produced by the capacity of some
ligands, such as tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine (TBTA, 1 in Figure 1), to stabilize the
catalytically active Cu(I) form and to increase the CuAAC reaction rates [9,10]. In fact, a supported
version of 1 on TentaGelTM resin was developed in 2007 by Chan and Fokin (P2) [17], and made
commercially available a few years later, albeit at a relatively high price (€133.00 for 250 mg with a
0.17 mmol g−1 content of TBTA units) [18]. After loading with [Cu(MeCN)4]PF6, the resulting Cu(I)
complex proved active in the CuAAC of model substrates [19], with a remarkable capacity to work in
both protic and aprotic reaction media and a good stability upon recycling [17].

Catalysts 2020, 10, x FOR PEER REVIEW 2 of 20 

 

Concerning the last aim, the immobilization of copper species on insoluble supports is one of the 
most actively investigated options [13–16]. Broadly speaking, this task has been pursued by either 
preparing nanostructured Cu(0), Cu(I), or Cu(II) (pre)catalysts on insoluble materials, or by 
anchoring a discrete Cu(I) or Cu(I) complex to a suitable support.  

In principle, with the second choice, an advantage can be produced by the capacity of some 
ligands, such as tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine (TBTA, 1 in Figure 1), to stabilize 
the catalytically active Cu(I) form and to increase the CuAAC reaction rates [9,10]. In fact, a supported 
version of 1 on TentaGelTM resin was developed in 2007 by Chan and Fokin (P2) [17], and made 
commercially available a few years later, albeit at a relatively high price (€133.00 for 250 mg with a 
0.17 mmol g-1 content of TBTA units) [18]. After loading with [Cu(MeCN)4]PF6, the resulting Cu(I) 
complex proved active in the CuAAC of model substrates [19], with a remarkable capacity to work 
in both protic and aprotic reaction media and a good stability upon recycling [17].  

Variants of P2 were reported in the following years to include soluble macromolecular analogs 
[20–22] and surface-immobilized TBTA units in microfluidic devices [23]. However, to the best of our 
knowledge, no supported TBTA material suitable for continuous-flow chemistry at a scale of truly 
preparative interest has been described to date (for recent examples of CuAAC in flow with other 
supported catalytic systems, see [13–16,24–32]). 

For this reason, due to our continuing interest in immobilized copper catalysts for selective 
transformations [33–38], we recently tackled the problem of designing a new polymeric TBTA ligand 
fit for use in mini- or meso-fluidic reactors.  

Eventually, these efforts allowed a route for the convenient synthesis of the known TBTA 
monomer 3, as well as the conditions for its immobilization in bead-type or monolithic macroporous 
polystyrene resins, to be established. After charging with Cu(I) or Cu(II) salts, the resulting materials 
proved to be competent catalysts for batch and continuous-flow CuAAC reactions. 

 
Figure 1. Tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine (TBTA) ligand (1), commercial 

supported variant (P2), and TBTA styryl monomer (3). 

2. Results 

2.1. Preparation of the Functional Monomer 3 

The synthesis of the styrene monomer 3 was carried out according to Scheme 1. In brief, 
dipropargylamine (5) was subjected to CuAAC with benzylazide to provide 6, which was 
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Figure 1. Tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine (TBTA) ligand (1), commercial supported
variant (P2), and TBTA styryl monomer (3).

Variants of P2 were reported in the following years to include soluble macromolecular
analogs [20–22] and surface-immobilized TBTA units in microfluidic devices [23]. However, to the best
of our knowledge, no supported TBTA material suitable for continuous-flow chemistry at a scale of
truly preparative interest has been described to date (for recent examples of CuAAC in flow with other
supported catalytic systems, see [13–16,24–32]).

For this reason, due to our continuing interest in immobilized copper catalysts for selective
transformations [33–38], we recently tackled the problem of designing a new polymeric TBTA ligand
fit for use in mini- or meso-fluidic reactors.

Eventually, these efforts allowed a route for the convenient synthesis of the known TBTA monomer
3, as well as the conditions for its immobilization in bead-type or monolithic macroporous polystyrene
resins, to be established. After charging with Cu(I) or Cu(II) salts, the resulting materials proved to be
competent catalysts for batch and continuous-flow CuAAC reactions.

2. Results

2.1. Preparation of the Functional Monomer 3

The synthesis of the styrene monomer 3 was carried out according to Scheme 1. In brief,
dipropargylamine (5) was subjected to CuAAC with benzylazide to provide 6, which was subsequently
alkylated with propargyl bromide to give 4. A second CuAAC step, in this case, with 4-azidomethylstyrene,
led to the TBTA monomer 3 in a high overall yield and without the need for chromatographic purification
in any stage of the synthetic sequence.
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weight). As for other polymeric ligands from this laboratory [34], in spite of its seemingly compact 
surface exhibited by SEM analysis (Figure S2), P7 was found to possess a relatively large specific area 
in the dry state (SBET = 273 m2 g−1, Figure S4).  

Additionally, given the moderate swelling in various aprotic solvents (e.g., 50% in THF), P7 
proved to be an effective absorbent for copper salts. The largest loading (LCu ~ 0.5 mmol g−1) was 
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Scheme 1. Preparation of the TBTA monomer 3. Conditions: (i) benzylazide (2 equiv.), CuSO4 (7 mol%),
sodium l-ascorbate (20 mol%), H2O:CH2Cl2 (1:1), r.t., 7 h; (ii) NaH (1.3 equiv.), THF, then propargyl
bromide in toluene (1.05 equiv.), r.t., 19 h; (iii) 4-azidomethylstyrene (1.0 equiv.), CuSO4 (20 mol%),
sodium l-ascorbate (60 mol%), H2O:CH2Cl2 (1:1), r.t., 19 h.

2.2. Preparation of the Bead-Type Supported Catalysts

For the conversion of 3 into the corresponding functional resin P7, typical suspension polymerization
conditions were adopted (Scheme 2). Gratifyingly, this step also took place with a high efficiency to give
opaque polymer beads ranging from 100 to 300 µm in diameter. After extensive washing and drying,
the material was characterized by elemental analysis, scanning electron microscopy (SEM), FT-IR, and
N2 adsorption measurements (Supporting Information).
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Scheme 2. Preparation of the supported TBTA ligands P7 and M7. Conditions: (i) for P7, technical
DVB (9 equiv.), AIBN (2 wt %), 1-dodecanol/toluene (1:9 v/v), 0.4% poly(vinyl alcohol) in water, 70 ◦C,
20 h; (ii) for M7, technical DVB (9 equiv.), AIBN (2 wt %), 1-dodecanol/toluene (2:1 v/v), 70 ◦C, 24 h.

The determination of nitrogen content by combustion analysis confirmed that >87% of the TBTA
monomer had been incorporated into the resin, to give an actual loading of 0.50 mmol g−1 (28% by
weight). As for other polymeric ligands from this laboratory [34], in spite of its seemingly compact
surface exhibited by SEM analysis (Figure S2), P7 was found to possess a relatively large specific area
in the dry state (SBET = 273 m2 g−1, Figure S4).

Additionally, given the moderate swelling in various aprotic solvents (e.g., 50% in THF), P7
proved to be an effective absorbent for copper salts. The largest loading (LCu ~ 0.5 mmol g−1) was
recorded with CuCl or Cu(OTf)2 dissolved in MeCN and THF, respectively; nonetheless, a useful result
(LCu = 0.17 mmol g−1) was also achieved with the cheaper CuSO4 in THF-H2O (2:1).

2.3. Preparation of the Monolithic Reactors

In order to immobilize TBTA units within monolithic continuous-flow reactors (MCFRs), three
stainless-steel tubular molds (10 or 15 cm length × 4.6 mm internal diameter) were completely filled
with a solution containing 3, DVB (3:DVB = 1:9 mole ratio), and AIBN (2 wt % with respect to the
monomers) in 1-dodecanol/toluene (1:2 v/v). The molds were sealed and kept in an oil bath heated to
70 ◦C for 24 h, to give compact white monolithic resins M7 inside the metal housings. Then, the devices
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were flushed with dry THF for 24 h, whereupon they provided a P ~ 2.5 Kg cm−2 back-pressure at a
ф= 35 µL min−1 flow-rate. Evaporation of the collected eluates under a reduced pressure gave oily
residues that contained only 1-dodecanol and AIBN-related products, as shown by 1H NMR.

For the sake of characterization, one of the resin monoliths was removed from the housing and
subjected to FT-IR, SEM, and N2 adsorption analyses (Supporting Information). While FT-IR did not
show major differences with respect to the analogous resin in beads (Figure S3), M7 was found to
possess a larger specific surface area in the dry state (SBET = 435 m2 g−1, Figure S5) and to swell to
a lesser extent (≤30% in THF or CH2Cl2 ) than P7. In addition, the SEM images of M7 (Figure S2)
showed a more rugged surface, with micrometric-sized groves decorated with ≤0.1 µm resin globules.

Loading of the resin monoliths with the copper salt was performed in flow, by pumping a solution
of Cu(OTf)2 in THF through the remaining devices. After extensive washing with the same solvent,
the iodometric titration of Cu(II) recovered in the eluates confirmed the capacity of the M7 material to
retain an appreciable amount of the metal salt (LCu = 0.18–0.25 mmol g−1). Additionally, at this stage,
the resin contained in one of the devices was expelled from the metal housing to give monolithic chunks
of uniform turquoise shade (Figure 2a). Besides the obvious discoloring, the presence of Cu(OTf)2 in
the recovered material was confirmed by the characteristic Lα,β and Kα lines of Cu and the Kα line of
S in the Energy-Dispersive X-Ray Spectroscopy (EDS) analysis (Supporting Information). Moreover,
mapping the metal content along a cross-section of the monolith with the same technique (Figure 2b
and Figure S7) verified the conclusion drawn above regarding the uniform distribution of copper
within the resin body. The further characterization of M7·Cu(OTf)2 by SEM and N2 adsorption (SBET =

473 m2 g−1, Figure S6) revealed no major changes with respect to the bare M7 resin.
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Figure 2. Appearance of the M7·Cu(OTf)2 monolith (a) and relative intensity of the Lα,β Cu lines,
collected by SEM-EDS analysis along the scanning path A-B shown in the inset (b).

2.4. CuAAC Reactions in Batch

The catalytic properties of supported complexes were initially tested in batch CuAAC runs, carried
out with the bead-type materials P7·CuX1-2 (Table 1).

In the case of P7·CuCl in THF, the material was active in its pristine form and led to quantitative
consumption of the benzylazide substrate in 20 h at room temperature at the substrate to catalyst ratio
of S/C = 10 (Table 1, entry 1). Direct reuse of the resin recovered each time by filtration allowed four
recycle runs, carried out with a progressive increase of S/C up to 50, to be successfully performed
(Table 1, entries 2–5).

By contrast, the Cu(II)-supported complexes P7·Cu(OTf)2 and P7·CuSO4 had to be subjected to
reduction before being used in CuAAC runs. Initial tests, aimed to optimized this stage, showed that
phenylhydrazine in CH2Cl2 and hydroquinone in THF or MeOH were poorly effective in the activation
of P7·Cu(OTf)2 (Table 1, entries 6–8). On the contrary, the exposure of the same supported complex to
sodium l-ascorbate in MeOH/H2O (4:1) afforded a brownish-yellow material with high activity in a
series of consecutive CuAAC runs between benzylazide and propargyl alcohol (Table 1, entries 9–12).
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Table 1. Copper-catalyzed azide-alkyne cycloaddition reaction (CuAAC) runs in batch with P7 loaded
with Cu(I) or Cu(II) salts.
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6 Cu(OTf)2 (10) PH Ph, CH2OH CH2Cl2 <5/21
7 Cu(OTf)2 (20) e - Ph, CH2OH CH2Cl2 19/40
8 Cu(OTf)2 (20) HQ Ph, CH2OH THF <5/<5
9 Cu(OTf)2 (20) e ASC Ph, CH2OH MeOH/THF (4:1) 78/>99
10 Cu(OTf)2 (20) e - Ph, CH2OH MeOH/THF (4:1) 89/>99
11 Cu(OTf)2 (100) e - Ph, CH2OH MeOH/THF (4:1) 50/99
12 Cu(OTf)2 (100) e ASC f Ph, CH2OH MeOH/THF (4:1) 24/>99
13 CuSO4 (167) ASC Ph, CH2OH MeOH/THF (20:1) 52/>99
14 CuSO4 (167) e - Ph, n-Bu MeOH/THF (20:1) <5/57 g

15 CuSO4 (167) h ASC Ph, CH2OH MeOH/THF (20:1) >99/-
16 CuSO4 (167) h ASC Ph, n-Bu MeOH/THF (20:1) 15/93

a Conditions: azide and alkyne (0.2 M each) in the indicated solvent (2.5–10 mL). b In parentheses, the substrate
to catalyst ratio is shown, calculated on the basis of the initial metal loading (LCu). c ASC = sodium l-ascorbate
(8 equiv. vs. Cu) in MeOH/H2O (4:1); HQ = hydroquinone (3 equiv. vs. Cu) in THF; PH = phenylhydrazine (6 equiv.
vs. Cu) in CH2Cl2. d Conversion extent of the azide at 2 h/20 h, determined by GC-MS with n-nonane or m-xylene
as the internal standard. e Supported catalyst from the previous run. f Sodium l-ascorbate (1.2 equiv. vs. Cu) added
to the reaction mixture. g Final conversion after 85 h. h Homogeneous reaction, with 1 mol% of the soluble TBTA
ligand 1 and 5 mol% sodium l-ascorbate.

As long as the same benchmark CuAAC reaction is concerned, P7·CuSO4 reduced with sodium
l-ascorbate in aqueous MeOH also proved to be a remarkably effective catalyst (Table 1, entry 13).
However, when the recovered supported complex was employed for promoting the CuAAC between
benzylazide and 1-hexyne, an appreciably slower reaction was observed (Table 1, entry 14).

Repetition of the last two runs above, by replacing P7 with the soluble TBTA ligand 1 (Table 1,
entries 15 and 16), showed that the catalytic activity of the homogeneous system was higher than
reduced P7·CuSO4 under otherwise identical conditions Even in these experiments, however, 1-hexyne
was found to react at a substantially slower rate than propargyl alcohol.

2.5. CuAAC Reactions in Flow

Initial continuous-flow CuAAC experiments (Table 2) focused on benchmarking the devices
based on the M7·Cu (OTf)2 material. Besides two monolithic reactors of different lengths (10 and
15 cm, respectively), this part of the study included the analogous packed-bed continuous flow reactor
(PCFR). The latter was assembled by filling a stainless steel column (15 cm length × 4.6 mm internal
diameter) with powder obtained by grinding chunks of the M7·Cu(OTf)2 monolith involved in the
characterization measurements discussed above.

The CuAAC runs were carried out by employing a syringe pump, which was used for flushing
the reactor with a solution of the selected reducing agent and then with a solution of internal standard
and equimolar propargyl alcohol and benzylazide.

The examination of different reductants for the Cu(II) metal centers in the MCFR (15 cm) or PCFR
afforded results that closely mirror those already recorded in batch. Indeed, hydroquinone in THF
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turned out to be completely useless (Table 2, entries 1 and 8), while the addition of phenylhydrazine to
the reactant stream proved moderately effective (Table 2, entries 2 and 9). In this latter case, however,
the reaction progress at the reactor outlet was largely incomplete, in spite of the rather low flow-rate
(ф = 0.4 mL h−1) adopted in the run.

Table 2. Continuous-flow CuAAC runs in the monolithic (MCFR) and packed-bed (PCFR) devices
based on reduced M7·Cu(OTf)2.
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1 MCFR (15) HQ THF 5.0 24 0.6 190 <5 -
2 MCFR (15) h PH THF 5.0 24 0.4 280 8 <2
3 MCFR (10) ASC MeOH/THF (4:1) 67 24 1.5 48 >99 34
4 MCFR (10) h (ASC) MeOH/THF (4:1) 16 24 12.0 6 27 74
5 MCFR (10) h (ASC) MeOH/THF (4:1) 16 24 6.0 12 38 52
6 MCFR (10) h (ASC) MeOH/THF (4:1) 47 24 3.0 24 74 51
7 MCFR (10) h (ASC) MeOH/THF (4:1) 77 24 1.5 48 99 34
8 PCFR (15) HQ THF 5.3 24 0.6 205 <5 -
9 PCFR (15) h PH THF 5.3 24 0.4 310 47 4

10 PCFR (15) h ASC MeOH/THF (4:1) 7.2 24 6.0 19 57 70
11 PCFR (15) h (ASC) MeOH/THF (4:1) 6.5 60 3.0 39 >99 60
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a Conditions: benzylazide and propargyl alcohol (0.2 M each) in the indicated solvent (2.5–24 mL). b HQ = before
the CuAAC run, the reactor was flushed with 0.1 M hydroquinone in THF (3 equiv. vs. Cu); PH = phenylhydrazine
(3 equiv. vs. Cu) added to the solution of the reactants; ASC = before the CuAAC run, the reactor was flushed
with 10 mL saturated sodium l-ascorbate (approx. 8 equiv. vs. Cu) in MeOH/H2O (9:1); (ASC) = reactant stream
saturated with sodium l-ascorbate. c Ratio nazide/nCu at the end of the run, calculated on the basis of the initial
metal content in the reactor. d Flow-rate. e Estimated average residence time of the reactants in the catalyst-filled
section. f Conversion extent of the azide shown by GC-MS with n-nonane or m-xylene as the internal standard. g

Space-time yield. h Reactor from the previous run.

On the contrary, good levels of conversion of the azide were attained if sodium l-ascorbate was
used in the preliminary reduction step and then employed for saturating the stream of reactants in
the subsequent CuAAC runs. Under these conditions, the complete consumption of benzylazide was
achieved in a relatively long experiment (S/C = 67) carried out at ф = 1.5 mL h−1 in the MCFR (10 cm)
(Table 2, entry 3). The increase of the flow-rate to 12 mL h−1, followed by its progressive decrease to
the value of the initial run, led to conversion degrees that reflect the average residence time of the
reactants through the catalyst bed (Table 2, entries 3–7).

Similarly, the use of sodium l-ascorbate for reducing the powdered material in the PCFR
considerably improved its catalytic activity with respect to the use of hydroquinone or phenylhydrazine
(Table 2, entries 8 and 9). This allowed 57% conversion to be attained at room temperature and with a
flow-rate as high as ф = 6 mL h−1 (Table 2, entry 10). Further experiments with the PCFR were carried
out at 60 ◦C and with ф = 3 mL h−1. Under these conditions, good to high conversion levels were
recorded in a sequence of five runs (Table 2, entries 11–15).

The next stage of the investigation focused on PCFRs containing the bead-type complex P7·CuSO4

reduced with sodium l-ascorbate. With this aim, sections of PTFE tubing (18 cm × 1.5 mm inner
diameter) were packed with the resin beads (80–85 mg, approx. 14 µmol of copper), to give a set of
identical flow reactors R1–R5. In this case, pumping was effected by a gas-tight syringe, used for the
preliminary flushing of devices with 0.7% sodium l-ascorbate in aqueous MeOH and, after turning of
the catalyst bed to pale-yellow, of the solution of reactants and internal standards.

The testing of R1 and R2 in the benchmark reaction was performed in MeOH-THF (4:1) and
MeOH-H2O (4:1), respectively, with the devices being placed in a glove-bag filled with N2. The two
rather long runs (S/C ~ 350 each) were carried out in parallel with a dual channel syringe pump,
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with simultaneous variation of the flow-rates in the range ф = 0.6-1.8 mL h−1 (Table 3, entries 1
and 3). Because the former solvent mixture turned-out to lead to higher conversion degrees, all of the
subsequent experiments made use of mixtures of MeOH and THF as the reaction medium. Moreover,
instead of keeping the reactors inside the glove-bag, sodium l-ascorbate was added to the reactant
feed, which was pumped at the fixed flow-rate of ф = 0.6 mL h−1.

Table 3. Continuous-flow CuAAC reactions in the PCFRs containing P7·CuSO4 reduced with sodium
l-ascorbate.
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1 h R1 Ph, CH2OH 347 MeOH/THF (4/1) 0.20 0.6–1.8 11–32 88 i 63 -
2 R1 l Ph, CH2OH 178 MeOH/THF (3/2) 0.20 0.6 32 49 64 -

3 h R2 Ph, CH2OH 349 MeOH/H2O (4/1) 0.21 0.6–1.8 11–32 68 i 63 -
4 R2 j Ph, n-Bu 174 MeOH/THF (4/1) 0.20 0.6 32 39 71 138
5 R3 Ph, CH2OH 71 MeOH/THF (4/1) 0.20 0.6 32 91 64 175
6 R3 j Ph, CH2CH2OH 70 MeOH/THF (4/1) 0.20 0.6 32 92 68 -
7 R3 j Ph, Ph 71 MeOH/THF (4/1) 0.21 0.6 32 78 k 80 -
8 R3 j Ph, Ph 73 MeOH/THF (1/1) 0.21 0.6 32 96 82 148
9 R4 Bn, CH(OH)CH3 126 MeOH/THF (4/1) 0.18 0.6 32 83 65 -
10 R4 j Ph, (CH2)4C≡CH 147 MeOH/THF (4/1) 0.21 0.6 32 38 l 131 -
11 R4 j Ph, CH2NHCH2C≡CH 291 MeOH/THF (1/1) 0.42 0.6 32 95 250 -
12 R5 Bn, C(OH)(CH3)2 125 MeOH/THF (4/1) 0.18 0.6 32 90 69 -
13 R5 j Ph, CH2NHCH2C≡CH 141 MeOH/THF (4/1) 0.21 0.6 32 97 125 853
14 R5 j Ph, CH2NHCH2C≡CH 276 MeOH/THF (1/1) 0.42 0.6 32 60 m 249 257

a Conditions: 1 equiv. azide per alkyne group, 1 mol% sodium l-ascorbate, and 15–50 mg each of n-nonane and
biphenyl internal standards, in 5–25 mL of the indicated solvent mixture. b Ratio nazide/nCu at the end of the run,
calculated on the basis of the initial copper content in the reactor (14 µmol). c Flow-rate. d Estimated average
residence time of the reactants in the catalyst-filled section. e Isolated yield after evaporation of the volatiles or
column chromatography. f Space-time yield. g Copper content in the dried crude shown by ICP-OES. h Reactions
carried out in a glove-bag filled with N2. i Conversion extent of the azide shown by GC-MS. j Reactor already used
in the previous run. k The 1,2,3-triazole product precipitates inside the reactor. l As a 1.7:1 mixture of mono- and
bis-triazole products. m As a 3.4:1 mixture of mono- and bis-triazole products.

The reuse of R1 and R2 with the said experimental arrangement showed that both devices were
still active and could promote the CuAAC reaction of benzylazide with propargyl alcohol (Table 3,
entry 2) and 1-hexyne (Table 3, entry 4), respectively, albeit with noticeably reduced activity.

The substrate scope of the continuous-flow CuAAC reaction was explored with the fresh reactors
R3, R4, and R5. In general, the alkyne substrates endowed with an alcohol or amine functional group
(Table 3, entries 5–9 and 11–14) were found to provide much better results than the purely hydrocarbon
derivative 1,7-octadiyne (Table 3, entry 10). Provided that the solvent composition was adjusted to
prevent the precipitation of the corresponding triazole product inside the PCFR, total conversion and
an excellent isolated yield could also be obtained in the case of phenyl-acetylene (Table 3, entries 7
and 8).

In order to evaluate the metal contamination in the CuAAC products, selected dried samples
of the crude triazoles were analyzed by inductively-coupled plasma optical spectroscopy (ICP-OES).
As shown in Table 3, significantly larger amounts of copper were found in the bis-triazole derivative
6 (e.g., 853 ppm, Table 3, entry 13) than in the mono-triazoles from the CuAAC of benzylazide with
propargyl alcohol, 1-hexyne, or phenylacetylene (138–175 ppm, Table 3, entries 4, 5, and 9).

3. Discussion

3.1. Preparation of the TBTA Monomer and Supported Catalysts

Because neither the mechanical properties of the commercial resin P2 (large swelling in most
solvents [17]) nor the published synthetic route for its preparation appeared to satisfy the requirements
of continuous-flow large-scale applications, both aspects had to be addressed in the present study.
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As for the polymer support, a highly cross-linked architecture was selected in order to minimize
clogging problems in flow, due to excessive swelling of the support. Moreover, cost considerations led
to disregard routes based on the grafting of TBTA units on commercial macroporous resins, in favor
of the co-polymerization of the TBTA monomer 3 with technical divinylbenzene (DVB) as a cheap
cross-linking agent.

Even though the preparation of 3 has been reported in the literature [20,21], at the beginning
of this work, we set out to find a more convenient and scalable route for its synthesis. In particular,
the goal was to avoid the use of expensive reagents and multiple chromatographic purification steps
required by the published preparations of the TBTA monomer 3, or its direct precursor 4 [17,20–23].

After exploring alternative routes, a straightforward procedure was identified for converting
dipropargylamine (5) into 3, in three high-yielding steps (Scheme 1). The key point of the whole
sequence was the alkylation of the intermediate 6 with propargyl bromide that, after some optimization
work, was found to proceed much better than anticipated [39]. This allowed 4 to be obtained in a
nearly quantitative yield by simple precipitation of the crude product with water and subsequent
recrystallization from AcOEt. Thanks to the high yield in the initial CuAAC reaction between 5 and
benzylazide, the whole reaction sequence could be scaled-up in an effortless manner to provide 11.5 g
of pure 4.

The subsequent CuAAC reaction between 4 and 4-azidomethylstyrene, followed by the removal
of copper species through aqueous ammonia work-up, afforded the monomer 3 in an essentially
quantitative yield. Because the NMR purity of 3 appeared to be high, the freshly prepared monomer
was used directly in the crude form.

Having achieved the preparation of 3 through a high-yielding and chromatography-free synthetic
sequence, its immobilization in styrene-type resins could be explored. This aim was pursued by following
two alternative routes: (a) The co-polymerization of 3 and DVB in a poly(vinyl alcohol)-stabilized
aqueous suspension, to give resin beads P7, and (b) Fréchet-type co-polymerization of the same
monomers inside stainless-steel tubular molds [40–43], which afforded the monolithic resins M7.

As confirmed by the evidence detailed in the Results section, both approaches proved effective
(>87% yield) towards the goal of high incorporation of the functional monomer in the cross-linked
polymeric network. At the same time, and in spite of the identical co-monomer composition (3:DVB =

10:90), differences were observed in the swelling and morphological properties of the various resins
and in their ability to adsorb Cu(I) or Cu(II) salts. Overall, the swelling ratios of M7 and P7 in THF
(sr = 1.3 and sr = 1.5, respectively) and the SEM images suggest a more rigid polymer architecture for
the monoliths than for the resin beads.

Concerning the specific surface area deduced from N2 adsorption measurements (M7: SBET =

435 m2 g−1; P7: SBET = 273 m2 g−1), the results look somewhat counterintuitive in view of the use
of a larger amount of 1-dodecanol under the mold polymerization conditions. In fact, being a bad
solvent for the growing polystyrene chains, this porogenic agent was expected to reduce SBET as a
consequence of the shift of the porosity distribution towards the macropore domain [44]. Therefore,
the observation of an experimental trend, which is the opposite of the predicted one, points to the
occurrence of additional phenomena, possibly linked to the presence of the aqueous dispersing phase
during the suspension polymerization process.

Both P7 and M7 demonstrated a good to excellent ability to adsorb CuCl or CuX2 salts (X =

OTf or 1/2 SO4) dissolved in suitable solvents. The largest capacity (up to the theoretical value LCu

~ 0.5 mmol g−1 for a Cu(I/II):TBTA=1:1 stoichiometry [17]) was obtained in the uptake of CuCl or
Cu(OTf)2 by P7, from polar aprotic media (MeCN and THF, respectively). Nevertheless, the same
material could be used for adsorbing the cheaper CuSO4 salt, even from a protic THF-H2O (2:1)
solution, albeit with some decrease in the metal uptake (LCu = 0.18 mmol g−1).

Flushing different M7 monoliths with Cu(OTf)2 in THF proved less effective, with a measured
metal adsorption no higher than 50% of the calculated content of TBTA units. By comparing these
results with those obtained with P7, it seems possible to conclude that the swelling extent of the resin
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has a more significant impact on the metal uptake than the bare surface area of the material in the dry
state (see the discussion above).

In any case, visual and SEM examination of M7·Cu(OTf)2 evidenced a very uniform longitudinal
and transverse metal distribution (Figure 2 and Figure S7), demonstrating the good permeability and
lack of preferential flow pathways throughout the whole monolith body.

3.2. Catalysis in Batch and in Flow

Initial runs in batch, with the bead-type resin P7 charged with CuCl, Cu(OTf)2, or CuSO4,
confirmed that the supported complexes were competent catalysts (or pre-catalysts) for the CuAAC.
In particular, a sample of P7·CuCl was able to provide ≥83% final conversion in a sequence of five
benchmark reaction cycles in CH2Cl2 (Table 1, entries 1–5), carried out with a progressive decrease
of the catalyst loading from 10 to 2 mol% (calculated with respect to the initial copper content). In
this regard, it is worth noting that, while the last three runs did not reach full conversion of the azide
substrate, they did not evidence any appreciable drop of the activity of the supported complex.

Because Cu(II) salts are inactive in CuAAC [3], P7·Cu(OTf)2 and P7·CuSO4 were subjected to
reduction before testing. Considering its effectiveness in our previous work with nanostructured
CuAAC catalysts [37], as well as for other Cu(I)-supported systems [35], the use of phenylhydrazine in
CH2Cl2 was initially selected for this purpose. Unfortunately, despite the apparently fast reduction of
the supported Cu(II) sites (as judged from the fading of the azure color of P7·Cu(OTf)2), the resulting
material displayed unsatisfactory activity (Table 1, entries 6 and 7).

Given its successful use in the literature for the reduction of P2·CuCl2 and P2·CuSO4 [17], it came
as a surprise to discover that hydroquinone in THF or MeOH was completely ineffective towards
P7·Cu(OTf)2. In this case, no change of the azure color of the resin beads was observed and the
hydroquinone-treated material did not display any significant CuAAC activity (Table 1, entry 8).

Much to our delight, switching to the use of sodium l-ascorbate in aqueous MeOH eventually
afforded excellent results in a row of four benchmark runs performed with reduced P7·Cu(OTf)2 at S/C
= 20 or S/C = 100 (Table 1, entries 9–12). Although, in this case, some loss of catalytic activity towards
the end of the series is suggested by the conversion values at the intermediate reaction time of 2 h,
such a trend did not preclude the full conversion of azide at the standard 20 h end time of each run.

Sodium l-ascorbate in MeOH was also effective for the reduction of P7·CuSO4 and provided a
supported system endowed with high catalytic activity in the benchmark reaction (Table 1, entry 13).
Nevertheless, recovery of the supported catalyst by filtration and reuse for promoting the CuAAC
between benzylazide and 1-hexyne resulted in a surprisingly sluggish reaction (Table 1, entry 14).
Since control experiments ruled out major oxidative phenomena of Cu(I) or extensive metal leaching
from the resin (vide infra), these findings prompted us to examine the CuAAC of propargyl alcohol
and 1-hexyne in the presence of the soluble catalyst from the TBTA ligand 1 (Table 1, entries 15 and 16).
As expected, both homogeneous-phase reactions proceeded at a higher rate than the corresponding
heterogeneous-phase ones. At the same time, however, a marked influence of the alkyne structure was
observed, even in this case, with 1-hexyne, which was found to react at least six times slower than
propargyl alcohol. By taking into account some literature precedents [39,45], it seems reasonable to
conclude that the hydroxyl group in the latter substrate exerts an accelerating effect on the CuAAC
reaction, possibly through metal-chelation or by the increase of the acidity of the acetylenic proton.

Overall, the results in batch confirmed that the highly cross-linked polystyrene architecture of
P7 was fit for the preparation of TBTA-Cu(I)-supported catalytic systems for the CuAAC. Despite
the moderate swelling and lack of polyethylene side-chains, as in the TentaGelTM-based commercial
ligand P2, the resin beads P7 could be charged with Cu(I) or Cu(II) salts dissolved in either polar
aprotic solvents or mixtures featuring a high volume fraction of protic solvents. Lastly, after reduction
(when necessary) with sodium l-ascorbate, the corresponding P7·Cu(I) materials were demonstrated
to be competent catalysts for CuAAC reactions in media of widely different polarities (from CH2Cl2
to nearly pure MeOH, see Table 1). Considering that all the CuAAC runs were carried out for 20 h
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at room temperature, the specific activity of the various P7·Cu(I) catalysts compares well with that
described for P2·Cu(I) [17].

With the information above in hand, we could turn to the use of supported catalysts in the
continuous-flow reactors. This was initially done for the MCFRs M7·Cu(OTf)2, whose high specific
surface area (SBET = 473 m2 g−1) was deemed advantageous for the intended catalytic applications
in-flow. In this regard, it is worth noting that, especially with the 15 cm-long MFCRs, the flow-rate was
limited to ф ≤ 50–100 µL min−1 by the ensuing back-pressure. Moreover, the longer devices showed a
tendency to occasionally clog. In spite of this, the ability to flush the various reactors with a syringe
pump confirmed that the monolithic bodies obtained under the conditions described in this work were
endowed with a sufficiently large fraction of connected macropores to support the convective flow of
the liquid stream.

Notwithstanding the limitations above, excellent results were obtained with properly reduced
M7·Cu(OTf)2. In fact, while phenylhydrazine or hydroquinone turned out to be essentially useless
in this case (Table 2, entries 1 and 2), resorting to the use of sodium l-ascorbate caused the expected
boost of catalytic activity. Such a reducing agent was employed both as a preliminary flush, in aqueous
MeOH, and then at a very small [46], yet undetermined, saturating concentration, in the MeOH/THF
(4:1) stream of the reactants. Under these conditions, quantitative consumption of the azide at the
reactor outlet was obtained in a relatively long benchmark run (S/C = 67) at ф = 1.5 mL h−1 (Table 2,
entry 3). Interestingly, the flow-rate adopted in the experiment corresponds to an average residence
time (τ) of the reactants in the catalytic monolith body (as estimated by pycnometry) of less than 50 min.

Subsequent tests at higher flow-rates (Table 2, entries 4–6) led to a decrease of the conversion
extent, with a trend that has an obvious relationship with the progressive shortening of τ (Figure 3).
This conclusion is further supported by a final experiment under the initial conditions (S/C = 77 and ф
= 1.5 mL h−1; Table 2, entry 7), where the MCFR proved to still be capable of fully converting the azide
substrate, in spite of its extended usage, up to a total (accumulated) turnover number of TTON = 188.Catalysts 2020, 10, x FOR PEER REVIEW 12 of 20 

 

 
Figure 3. Graphical representation of the relationship between the flow-rate (ф), estimated residence 
time (τ), and conversion degree (Conv. %) for the benchmark CuAAC reaction in the 10 cm-long 
MCFR (for the conditions see Table 2, entries 3–7). 

Similar results were obtained with the reactor packed with the crushed M7∙Cu(OTf)2 monolith. 
In this case, hydroquinone or phenylhydrazine (Table 2, entries 8 and 9) were less effective in 
activating the Cu(II) pre-catalyst than sodium L-ascorbate (Table 2, entry 10). However, even in the 
latter case, the benchmark CuAAC reaction was largely incomplete at the high flow-rate adopted in 
the run (57% conversion at ф = 6 mL h−1). In order to improve this outcome, the influence of the 
reaction temperature was briefly investigated in a series of experiments carried out at 60 °C and with 
ф = 3 mL h−1 (Table 2, entries 11–15). As expected, the combined increase of the temperature and 
reduction of the flow-rate succeeded in improving the conversion degree. At the same time, however, 
these conditions led to some decrease of catalytic activity towards the latest runs, which discouraged 
further pursuit of the approach.  

In this regard, it is worth pointing out that a cursory comparison of the entries 5 and 10 in Table 
2 might give the feeling that the MCFR device (38% conversion and space-time yield of STY = 52 g 
L−1 h−1) was provided with a lower catalytic activity than the PCFR one (57% conversion and STY = 
70 g L−1 h−1, under otherwise identical conditions). However, when the relative copper contents and 
estimated residence times in the two reactors are taken into account (approx. 64 μmol vs. 170 μmol 
and τ = 12 min vs. τ = 19 min, respectively), it is possible to conclude that, similar to other studies 
[47], the monolithic device was actually endowed with higher specific activity than the packed-bed 
one. 

The last part of this investigation involved the PCFRs R1–R5, assembled by dry-packing 
P7∙CuSO4 (80–85 mg, approx. 14 μmol of copper) into PTFE tubing sections. Thanks to the translucent 
properties of PTFE, in this case, the reduction of the Cu(II) sites could be followed visually to confirm 
an essentially instantaneous process when the flush of sodium L-ascorbate in aqueous MeOH reached 
successive portions of the resin beads.  

Initial experiments were designed to benchmark the properties of reduced P7∙CuSO4 in flow. 
With this aim, two PCFRs (R1 and R2; Table 3, entries 1 and 3) were fit to a dual-channel syringe 
pump and the whole apparatus was placed in a glove-bag under N2 to prevent the oxidation of Cu(I) 

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8 9 10 11 12

φ  (ml h-1)

τ 
(m

in
)

0

10

20

30

40

50

60

70

80

90

100
C
on
v

. (
%

)

Figure 3. Graphical representation of the relationship between the flow-rate (ф), estimated residence
time (τ), and conversion degree (Conv. %) for the benchmark CuAAC reaction in the 10 cm-long MCFR
(for the conditions see Table 2, entries 3–7).
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Similar results were obtained with the reactor packed with the crushed M7·Cu(OTf)2 monolith.
In this case, hydroquinone or phenylhydrazine (Table 2, entries 8 and 9) were less effective in activating
the Cu(II) pre-catalyst than sodium l-ascorbate (Table 2, entry 10). However, even in the latter case, the
benchmark CuAAC reaction was largely incomplete at the high flow-rate adopted in the run (57%
conversion at ф = 6 mL h−1). In order to improve this outcome, the influence of the reaction temperature
was briefly investigated in a series of experiments carried out at 60 ◦C and with ф = 3 mL h−1 (Table 2,
entries 11–15). As expected, the combined increase of the temperature and reduction of the flow-rate
succeeded in improving the conversion degree. At the same time, however, these conditions led
to some decrease of catalytic activity towards the latest runs, which discouraged further pursuit of
the approach.

In this regard, it is worth pointing out that a cursory comparison of the entries 5 and 10 in
Table 2 might give the feeling that the MCFR device (38% conversion and space-time yield of STY =

52 g L−1 h−1) was provided with a lower catalytic activity than the PCFR one (57% conversion and
STY = 70 g L−1 h−1, under otherwise identical conditions). However, when the relative copper contents
and estimated residence times in the two reactors are taken into account (approx. 64 µmol vs. 170 µmol
and τ = 12 min vs. τ = 19 min, respectively), it is possible to conclude that, similar to other studies [47],
the monolithic device was actually endowed with higher specific activity than the packed-bed one.

The last part of this investigation involved the PCFRs R1–R5, assembled by dry-packing P7·CuSO4

(80–85 mg, approx. 14 µmol of copper) into PTFE tubing sections. Thanks to the translucent properties
of PTFE, in this case, the reduction of the Cu(II) sites could be followed visually to confirm an essentially
instantaneous process when the flush of sodium l-ascorbate in aqueous MeOH reached successive
portions of the resin beads.

Initial experiments were designed to benchmark the properties of reduced P7·CuSO4 in flow.
With this aim, two PCFRs (R1 and R2; Table 3, entries 1 and 3) were fit to a dual-channel syringe pump
and the whole apparatus was placed in a glove-bag under N2 to prevent the oxidation of Cu(I) sites
by atmospheric O2. While the run in R1 involved the MeOH/THF (4:1) reaction medium, already
employed in batch (see Table 1, entries 9–12), for the reaction in R2, the use of a fully protic MeOH/H2O
(4:1) solvent mixture was explored.

With the adopted set-up, the influence of the flow-rate could be investigated simultaneously in the
two PCFRs (Figure 4). Complete conversion of the azide at the outlet of both devices was observed for
about 4.5 h at ф = 1.2 mL h−1 (around 17 column volumes of feed stream). After that time, the flow-rate
was increased to ф = 1.8 mL h−1, with the applied change, which led to a progressive decrease of the
conversions in the following 3.5 h. Besides the anticipated effect of the shorter residence time at higher
ф, the observed trend was likely to involve some catalyst deactivation phenomena. This conclusion is
substantiated by the observation that switching back to the ф = 1.2 mL h−1 setting caused a significant
improvement of the reaction completeness, but did not restore the initial full conversions. Moreover,
in the following 6 h at ф = 1.2 mL h−1, a further loss of catalytic activity was recorded, which is a
problem that could be partially compensated for by a reduction of the flow-rate to ф = 0.6 mL h−1 in
the final part of the run. Eventually, the trends in the instantaneous output of the reactors led to an
88% and 68% average degree of azide conversion in the cumulatively collected effluents from R1 and
R2, respectively.

In this respect, it is important to note that, while some deactivation is evident for both PCFRs, the
devices retained appreciable catalytic activity up to a time on stream (TOS) of almost 20 h. Moreover,
due to the large S/C involved in the experiments (around 350 for each device), turnover numbers as
high as TON = 304 and TON = 238 could be attained for R1 and R2, respectively.

Given the better performance and apparently lower deactivation rate in the run with R1, all the
subsequent experiments made use of mixtures of MeOH and THF. The flow-rate in these experiments
was kept fixed at ф = 0.6 mL h−1 and, instead of placing the reactors inside the glove-bag, sodium
l-ascorbate (1 mol%) was added to the reactant stream as a more practical measure to prevent catalyst
oxidation by adventitious oxygen.
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Figure 4. Set flow-rate ф (continuous line) and conversion values at the outlet of PCFRs R1 (circles)
and R2 (crosses) as a function of the time on stream; the filled triangle marks a daily break in the
experiment’s course (for the conditions, see Table 3, entries 1 and 3).

The reuse of R1 and R2 under the said conditions showed that both devices were still active and
could promote the CuAAC reaction of benzylazide with propargyl alcohol and 1-hexyne, respectively.
Nevertheless, the conversions determined by GC-MS were lower than in the previous runs and
ultimately translated into moderate isolated yields (49% and 39%, respectively) of the corresponding
triazole products (Table 3, entries 2 and 4).

Further trials with the fresh reactors R3, R4, and R5 aimed to explore the substrate scope (Table 3,
entries 5–14). In general, the best results (83%–97% isolated yields) were recorded with polar alkynes,
i.e., those provided with an alcohol or amine functional group in proximity of the acetylene unit. On
the contrary, under the adopted conditions, 1,7-octadiyne afforded a mixture of mono- and bis-triazole
products in a low overall yield (Table 3, entry 10). Even though a more detailed study will be required
for clarifying this aspect, these results appear to conform to the conclusion drawn for the batch
experiments, about the much reduced reactivity of the purely hydrocarbon substrates under the
CuAAC conditions of this work (see Table 1, entries 13–16).

In the case of phenylacetylene, the precipitation of the corresponding triazole product from the
MeOH/THF (4:1) reaction medium was an additional issue (Table 3, entry 7). However, when the run
was repeated in a THF-enriched mixture, a nearly quantitative yield of the expected triazole product
could be easily obtained (Table 3, entry 8).

Irrespective of the exact composition of the solvent mixture, the continuous-flow CuAAC reaction
between dipropargylamine (5) and benzylazide gave the bis-triazole product 6 in a high isolated yield
(Table 3, entries 11 and 13). However, when the reactor R5 was employed again, in an extended run
with the same reactants, 6 and its mono-triazole analogue were only obtained in a moderate overall
yield (Table 3, entry 14).

In order to shed some light on these latter findings, selected samples of crude triazole products
were evaporated to dryness and assayed by ICP-OES for their copper content. Not unexpectedly,
a significantly larger amount of metal was found in the bis-triazole derivative 6 (853 and 257 ppm,
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Table 3, entries 13 and 14) than in the other (mono-triazole) crudes (138–175 ppm, Table 3, entries 4, 5,
and 9). On this basis, it seems reasonable to conclude that the sudden drop in the catalytic activity of
R5, noted above, must be related to the possibility for the chelating derivative 6 to effectively compete
with the supported TBTA units for Cu(I) complexation. In turn, this resulted in extensive leaching
of the active centers in the initial run and, therefore, to a much faster deactivation of the catalytic
material than in the CuAAC runs, leading to mono-triazole derivatives. Concerning the latter, it is
worth noting that the ≤175 ppm in the dry crude corresponds to <5% of the copper initially loaded in
the flow device. Besides comparing favorably with the leaching levels observed in batch with other
polystyrene-supported multidentate nitrogen ligands [48], these findings explain how TTON values
larger than 400 were accumulated in some of the continuous-flow experiments of this work (e.g., the
series of three runs with R4; Table 3, entries 9–11).

4. Materials and Methods

Solvents and reagents were obtained from Sigma-Aldrich (Milano, Italy) and Carlo Erba reagents
Srl (Milano, Italy).

All the reactions involving water or air-sensitive compounds were carried out under dry N2, in
flame-dried glassware. The solvents for the same reactions were freshly distilled before use from the
proper drying agent [49]. For the CuAAC runs, the commercial solvents were degassed by bubbling
Ar for 5–10 min. If not noted otherwise, the other commercial compounds were used as received.

Benzylazide, 4-azidomethylstyrene, 1, and 6 were prepared by known methods and showed NMR
constants in accordance with the published values [20,50,51].

1H and 13C NMR spectra were recorded as CDCl3 solutions with a Bruker Avance DRX 400
(Bruker BioSpin GmbH, Rheinstetten, Germany) or a Varian Inova 600 spectrometer (Varian Inc., Palo
Alto, CA, USA) and are reported in ppm, with the frequency reference made by setting the residual
not-deuterated solvent (1H) or deuterated solvent (13C) to the recommended values [52].

The structures of the 1,2,3-triazole products were confirmed by comparing their NMR constants
with those reported in the literature [17,51,53–57].

For further experimental details, see the Supporting Information.

4.1. CuAAC in Batch with P7-Supported Catalysts: General Procedure

Catalysis runs in batch were carried out under N2, in Schlenk tubes provided with side glass frits.
In the case of P7·CuCl and reduced P7·Cu(OTf)2, the supported catalyst was directly suspended in the
degassed solution containing the azide (0.5–5 mmol), alkyne (1.0 equiv.), and n-nonane or m-xylene
(0.2 equiv., internal standard) in the selected solvent (2.5–25 mL, [azide] = 0.2 M). The reaction progress
was determined after 2 and 20 h, by a GC-MS analysis of samples taken from the reaction mixture.
Then, the suspension was filtered and the recovered resin beads were washed with the degassed
solvent (3 × 10 mL) and dried in vacuo, before being used in the next run. The combined filtrate and
washings were evaporated under a reduced pressure to give the crude triazole product.

In the case of P7·CuSO4, 0.070 g (0.012 mmol Cu, 0.60 mol%) of the supported complex was
suspended under N2 in degassed MeOH (10 mL) and treated with 0.021 g (0.11 mmol) of sodium
l-ascorbate. The mixture was stirred at r.t. for 15 min, and a degassed solution of the azide (2.0 mmol),
alkyne (2.0 mmol), and n-nonane or m-xylene internal standard in distilled THF (0.5 mL) was then added.
Reaction monitoring, catalyst recovery, and product isolation were carried out as described above.

4.2. CuAAC in Flow: General Procedure

The working-scheme of the devices used for the CuAAC reactions in flow is shown in Figure S1
(Supporting information).

To effect the reduction of the supported Cu(II) sites, the reactor was flushed with degassed MeOH
at ф = 1.2–2.4 mL h−1, followed by a 0.7 wt % solution of sodium l-ascorbate (8 equiv. vs. Cu) in
MeOH/H2O (4:1).
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In a typical catalysis run, 5.0 mmol of azide, 5.0 mmol of alkyne, 0.010 g (0.050 mmol, 1 mol%)
of sodium l-ascorbate, and 0.050 g of n-nonane or m-xylene internal standard were placed in the
reagent/solvent reservoir and dissolved with magnetic stirring in the selected solvent mixture (25 mL
total volume). After bubbling N2 for 5 min, the feed solution was aspirated into the gas-tight syringe
and then infused through the catalytic reactor at ф = 0.6–1.8 mL min−1. The liquid stream at the reactor
outlet was collected for product recovery and GC-MS monitoring of the reaction progress. Upon
exhaustion of the feed solution, the whole device was repeatedly flushed with degassed MeOH/THF
(4:1, at least five column volumes). The washings were combined with the fractions collected in the
course of the run and analyzed by GC-MS. After evaporation in vacuo (35 ◦C, 20 mbar down to 0.1
mbar) to remove the volatiles, the residue was analyzed by 1H NMR and, if required, subjected to flash
chromatography for removing the internal standards and unreacted substrates.

The flow device was employed directly in the next run, unless pale-green discoloring of the
resin was observed (e.g., after some days being idle). In this case, before re-use, the catalyst bed was
subjected to regeneration by flushing with sodium l-ascorbate, as described above.

5. Conclusions

In summary, this paper describes a convenient approach to polystyrene-supported TBTA-Cu(I)
catalysts suitable for continuous-flow CuAAC applications. In our opinion, the main merit of the
synthetic route disclosed herein is the possibility of its easy and affordable scale-up. This advantage
concerns not only the synthesis of the functional monomer 3, but also its covalent immobilization within
the insoluble polymer network through robust radical-copolymerization with cheap divinylbenzene.

Irrespective of the technique and conditions adopted for the purpose, either suspension or
mold-copolymerization, the resulting highly cross-linked resins (P7 and M7, respectively) have been
shown to possess swelling and textural properties that made them fit for applications in batch and in
flow. In this regard, it is worth noting that in several circumstances, P7 and M7 were used in liquid
media with a high volume fraction of MeOH or H2O, which are two thermodynamically bad solvents
for the polystyrene chains. The good results that were nonetheless observed under these conditions
demonstrate the suitability of the macromolecular structure (most likely, the high SBET values) of the
supported ligands developed in this work.

After charging P7 and M7 with Cu(I) or Cu(II) salts (and, in the case of the latter, reduction
with sodium l-ascorbate), the supported complexes showed excellent activity in the copper-catalyzed
Huisgen cycloaddition of azides to polar alkyne substrates. Following an initial screening in batch,
most of these CuAAC reactions were performed in continuous-flow reactors, either of the monolithic
or packed-bed type. In general, good results were obtained with both reactor architectures, with the
monolithic ones showing better specific activity, but also some propensity towards clogging.

The CuAAC runs in batch demonstrated the possibility to reach high conversions at room
temperature, with calculated space-time yields that, in some cases, exceeded 240 g L−1 h−1. Moreover,
at least in the CuAAC processes that led to mono-triazole products, the catalytic flow devices showed
a reasonable durability. In some examples, this allowed accumulated turnover numbers larger than
400 with respect to the amount of copper initially loaded onto the functional resin to be easily attained.

In view of the results summarized above, work is currently aimed at increasing the reactivity of
the less polar alkyne substrates, further reducing metal leaching, and improving the permeability of
the monolithic reactors. Progress in these directions will be reported in due course.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/10/4/434/s1:
Additional experimental details; NMR spectra of 3, 4, 6, and of the 1,2,3-triazole products from the CuAAC runs:
typical GC-MS chromatogram for the benchmark CuAAC reaction; Figure S1: Schematic of the continuous-flow
reactor used in the CuAAC runs; Figure S2: Appearance and SEM images of the resin materials; Figure S3: FT-IR
spectra of P7 and M7; Figure S4: N2 adsorption-desorption isotherms of P7; Figure S5: N2 adsorption-desorption
isotherms of M7; Figure S6: N2 adsorption-desorption isotherms of M7·Cu(OTf)2; Figure S7: EDS spectra and
mapping of the Cu content in M7·Cu(OTf)2.

http://www.mdpi.com/2073-4344/10/4/434/s1
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