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Abstract: Erosion bacteria are the main degraders of
archaeological wood excavated from waterlogged envi-
ronments. Light microscopy and analytical pyrolysis
coupled with gas chromatography/mass spectrometry
(Py-GC/MS) were exploited to study waterlogged archaeo-
logical wood (Pinus sylvestris L.) at different stages of
bacterial decay. The research explored the biochemical
changes related to erosion bacteria degradation of the
secondary cell wall in the wood cells and the chemical
changes related to abiotic processes induced by the long-
term waterlogged burial environment. Erosion bacteria
were demonstrated by chemical analysis to cause signifi-
cant holocellulose depletion. Detailed analysis of the hol-
ocellulose and lignin pyrolysis products revealed only
minor chemical changes in the residual structure even after
heavy erosion bacteria decay. Chemical changes in the
lignin polymer is associated to enzymatic unlocking of the
lignocellulose to gain access to the holocellulose fraction
of the cell wall. Chemical changes in the holocellulose
fraction are suggested to stem from depolymerisation and
from alterations in the polymermatrix of the residual wood
cell wall structure. Interestingly, a difference was observed
between the sound reference wood and the waterlogged

archaeological wood without erosion bacteria decay,
indicating that long-term exposure in waterlogged envi-
ronments results in partial decay of the holocellulose even
in absence of bacterial activity.
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1 Introduction

Archaeological wooden artefacts, like shipwrecks, built
heritage, and objects of everyday use are in some cases
capable of being preserved for centuries when buried in
anoxic waterlogged environments. Archaeologists recover
remarkable wooden finds from the past from peats, wet-
lands, marine sediments and clay soils where wood is
protected from aggressive wood degrading fungi, insects,
and wood boring mussels. However, archaeological wood
material presents a typical soft and spongy-like surface
layer, although the integrity and physical shape appears
preserved. These striking features are closely related to
bacterial degradation of the secondary cell wall (Björdal
2012). Erosion bacteria decay is the most common form of
decay in waterlogged archaeological wood in near anaer-
obic environments (Björdal et al. 1999; Klaassen 2008). The
decay starts at the wood surface and proceeds slowly in-
wards. The low decay rate entails that the waterlogged
wooden artefacts often feature an evident gradient of decay
from the surface to the core: presence of morphologically
well-preserved wood cells in the inner parts of the wood
material, and of heavily decayed cells in the surface layer
of the same fragment. Detailed morphological studies of
erosion bacteria decay have shown similar decay patterns
in a wide range of different wood species and waterlogged
environments (Björdal et al. 1999; Blanchette et al. 1990;
Huisman et al. 2008; Kim et al. 2000). At the cell wall level,
erosion bacteria preferentially degrade the holocellulose-
rich secondary cell wall, resulting in a remaining fragile
wood skeleton mainly composed of the lignin-rich middle
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lamella and amorphous residual material filling the cell
lumen (Björdal et al. 2000; Kim et al. 1996; Pedersen et al.
2015; Pedersen et al. 2014; Singh et al. 1991). Today the
biochemical pathway for anaerobic wood decay by erosion
bacteria is not fully understood, as the identity of the
specific bacteria has not yet been established. Attempts to
isolate and grow monocultures with traditional microbio-
logical methods have failed (Nilsson et al. 2008a; Nilsson
et al. 2008b; Nilsson et al. 2008c; Schmidt et al. 1995;
Schmidt et al. 1987). Laboratory experiments suggest that
erosion bacteria are facultative anaerobes bacteria
and part of a bacterial consortia (Kretschmar et al. 2008;
Nilsson et al. 2008b). Landy et al. (2008) reported that
erosion bacteria most likely fall within the Cytophaga-
Flavobacterium-Bacteroides sub-group, on the basis of
DNA analysis on sub-cultured bacterial isolates, and of
DNA extracted from erosion bacterial degraded wood.
During decay, erosion bacteria are closely attached to the
wood matrix by multi-enzyme complexes (cellulosomes)
(Björdal et al. 2000; Holt et al. 1983; Singh et al. 1991; Singh
et al. 1990). This is a common energy saving strategy of
anaerobic bacteria (Bayer et al. 2008).

Considering the inadequacy of the identification of
erosion bacteria detailed chemical analysis of the decay
pattern can point to possible biochemical pathways of the
bacteria and likewise give more detailed knowledge on the
chemical composition of the remaining wood material -
something very important for development of proper con-
servation treatments. Chemical imaging techniques are
potentially highly effective for the chemical analysis of
individual cell wall layers in situ (Fackler et al. 2013).
However, only very few studies have focused on water-
logged wood (Čufar et al. 2008; McQueen et al. 2019;
Pedersen et al. 2015; Pedersen et al. 2014), and some are
limited to the mapping of elements derived from inorganic
components within the wood structure (McQueen et al.
2017). Spatially resolved chemical information on ligno-
cellulosic polymers was obtained using confocal Raman
imaging and UV-micro spectrophotometry on waterlogged
archaeological Picea abies (L.) H. Karst. solely decayed by
erosion bacteria. The results showed a high degree of lignin
preservation in the residual wood structure, accompanied
by a significant degradation of polysaccharides (Pedersen
et al. 2015). The residual material from the secondary cell
wall contained lignin, with a strong depletion of carbohy-
drates. Based on the spectral data, the chemical composi-
tion of the lignin resulted similar to the lignin of the
secondary cell wall in sound waterlogged material, indi-
cating that lignin is not affected by the biochemical decay
process of erosion bacteria. However, in morphologically
sound areas (not bacterial degraded) of P. abies, from the

same wood material submerged under (near) anoxic con-
ditions for approximately 400 years, spectral analyses
indicated possible minor abiotic hydrolysis and oxidation
of the lignin polymer (Pedersen 2015; Pedersen et al. 2015;
Pedersen et al. 2014). Abiotic decay of wood inwaterlogged
submerging environments has rarely been studied, but
waterlogged wood with intact micro-morphology has been
found to show signs of slight holocellulose (cellulose and
hemicelluloses) depolymerisation and chemical changes
in the lignin-carbohydrate complex (Borgin et al. 1975;
Gelbrich et al. 2008; Pedersen et al. 2015).

The high spatial resolution of chemical imaging has
improved the knowledge of the chemical composition and
distribution of macromolecules in waterlogged wood.
However, the methods lack high chemical resolution. As
described above, analytical techniques have been widely
used for the chemical characterisation of waterlogged
wood deterioration, but in general the interpretation of the
results are limited, because most studies do not define the
decay type or the degree of degradation prior to analysis
(Pedersen et al. 2013).

Analytical pyrolysis combined with gas chromatog-
raphy andmass spectrometry (Py-GC/MS) has proven to be
a powerful technique for the chemical characterisation of
high molecular weight organic materials in complex
matrices, on the basis of the GC/MS determination of the
qualitative and quantitative profile of pyrolysis products,
which are small volatile molecules produced by thermal
degradation of the sample (Bonaduce et al. 2016; Degano
et al. 2018).

When wood is analysed by Py-GC/MS, selective bond
cleavage of wooden polymers, cellulose, hemicellulose
and lignin, is induced by providing thermal energy to the
sample (Moldoveanu 1998a). This technique has
achieved semi-quantitative results at a complex macro-
molecular level, with a high degree of chemical detail
thanks to detailed analysis of the categorized lignin and
polysaccharides pyrolysis products (Alves et al. 2006;
Fabbri et al. 2001; Łucejko et al. 2018b; Moldoveanu
2010; Tamburini et al. 2014; Zoia et al. 2017).

Analytical pyrolysis (Py-GC/MS) is able to highlight the
chemical changes that occurred both in the lignin and in
the polysaccharides of the wood. It allowed to observe the
depletion and depolymerization of polysaccharides and
side chain shortening, oxidation or demethylation pro-
cesses that occurred in the lignin polymer inwood (Łucejko
et al. 2018b; Romagnoli et al. 2018; Tamburini et al. 2017;
Zoia et al. 2017). Py-GC/MS is also highly sensitive, requires
a small amount of sample (50–100 μg) without any pre-
treatment. Absence of pre-treatment avoids the risks of
chemically altering thewoodpolymers prior to analyses, as
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would be the case if polymer separation by gravimetric
analysis were used. These technical features are highly
desirable in the heritage science field (Degano et al. 2018).
The use of 1,1,1,3,3,3-hexamethyldisilazane (HMDS) as
sylilating agent increases the yield of compounds bearing
OH groups. Furthermore, this derivatizing agent, actively
participating in the pyrolysis process protects the hydroxyl
functionalities present in the pyrolysis products by gener-
ating partially sylilated compounds and by promoting
base-catalysed thermal degradations, such as dehydration
(Fabbri et al. 2001; Fabbri et al. 2002; Fabbri et al. 2003).

This study presents the investigation of the chemical
alteration of lignocellulosic polymers in a waterlogged
archaeological wooden pole of Scots pine affected by
erosion bacteria decay at different levels. The aim of this
work is a contribution to understand and distinguish the
biochemical changes related to erosion bacteria degrada-
tion of the secondary cell wall in the wood cells and the
chemical changes related to abiotic processes induced by
the long-term waterlogged burial environment. This was
accomplished by analysis performed by analytical pyrol-
ysis (Py-GC/MS) of samples with varying degree of erosion
bacteria decay, carefully selected after morphological ex-
amination by aid of light microscope.

2 Materials and methods

2.1 Materials

A waterlogged archaeological pole (∅ = 100 mm) from a well
construction dated to the 17–18th century and made from Scots pine
(Pinus sylvestris L.) was used in this study. The pole was in a very good
state of preservation without any visible dehydration damage or
collapse. The surface layer was soft and spongy, whereas the inner
parts remained hard and seemingly sound. The pole was excavated in
Nibe (Denmark) in the summer of 2010 by the Historical Museum of
Northern Jutland, Denmark, and stored in anoxic water prior to
analysis. The reference dry heartwood material of P. sylvestris came
from of a modern 99-year old sound tree from the Gołąbki Forest
District, near Biskupin (Poland) (Zborowska et al. 2007).

2.2 Light microscopy and retrieval of samples for
chemical analyses

An approximately 2 cm thick disc was sawn from the archaeo-
logical pole. One radial slice was removed by knife and hammer
from the surface towards the centre. The slice was examined by
light microscopy in order to assess that the wood was solely
degraded by erosion bacteria and that areas of different degree of
decay were available for chemical analysis. First, subsamples

(approximately 3 × 3 × 20 mm) were systematically taken along the
length of the slice. From each subsample thin transversal and
longitudinal sections were cut by hand with a double-edged razor
blade and stained with either 0.1% w/v safranin O in 50% ethanol
or 0.1% aniline blue in 50% lactic acid. Finally, the sections were
investigated by light microscopy and polarized light, at magnifi-
cation of up to 630 times.

It was concluded that the wood material fulfilled the experi-
mental demands and from the systematic investigation of the
subsamples three areas were selected with different degree of decay
for chemical analyses. These were: (1) xylem heavily decayed by
erosion bacteria from the outer part of the pole (EB-heavy), (2) un-
decayed xylem from the inner part of the pole (EB-non), and (3) xylem
partly decayed by erosion bacteria located between the surface and
the core (EB-partly). The degree of decay EB heavy, EB-non, EB-partly
are comparable to the classification “total disintegration”, “absent”,
and “moderate”, respectively (Klaassen 2008). The three selected
waterlogged archaeological wood samples and the reference mate-
rial (approximately 0.5 cm3)were oven-dried for 24 h at 40–50 °C, ball
milled (Pulverisette 23, Fritsch GmbH, Germany) and divided into
three replica samples each: Ref1, Ref2, Ref3, EB-heavy1, EB-heavy2,
EB-heavy3, EB-partly1, EB-partly2, EB-partly3, EB-non1, EB-non2,
and EB-non3, thus prepared, they were analysed by analytical
pyrolysis.

2.3 Py-GC/MS

Analytical pyrolysis was performed in the presence of
1,1,1,3,3,3-hexamethyldisilazane (HMDS, chemical purity 99.9%,
Sigma Aldrich Inc., USA). HMDS is a silylating agent for the in situ
thermally assisted derivatisation of pyrolysis products.

Approximately 60 µg of each replica sample were admixed with
3.0 μL of HMDS directly into a stainless steel cup, and placed in the
micro-furnace at a temperature of 550 °C of Multi-Shot Pyrolyzer
EGA/Py-3030D (Frontier Lab) coupledwith a gas chromatograph 6890
(Agilent Technologies, USA), and with a Agilent 5973 Mass Selective
Detector operating in electron impact mode (EI) at 70 eV. The other
instrumental condition of a systemPy(HMDS)-GC/MSwasdescribed in
(Łucejko et al. 2018a).

The pyrolysis products derived from the lignin and hol-
ocellulose were identified by comparing their mass spectra with
spectra reported in the Wiley and NIST08 libraries and in the
literature (Mattonai et al. 2016; McQueen et al. 2017; Tamburini et al.
2016). Automated Mass Spectral Deconvolution and Identification
System software (AMDIS) was used to deconvolute and integrate the
chromatographic peaks using a customised library containing the
mass spectra of 150 compounds. Semi-quantitative calculations
were conducted using chromatographic areas: peak areas were
normalised with respect to the sum of the peak areas of all the
pyrolysis products identified, and the data were averaged and
expressed as percentages. The percentage areas were used to
calculate the relative abundances of wood pyrolysis products
divided into categories (listed in Table 1), based on their chemical
structure as described in Tamburini et al., (Tamburini et al. 2015).
The relative amounts of individual pyrolysis products were aver-
aged for the three replicates analysed for each type of waterlogged
material (EB-non, EB-partly, EB-heavy).
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3 Results and discussion

3.1 Morphological decay pattern

Investigations on the waterlogged wood material by light
microscopy showed a morphological decay pattern typical
for erosion bacteria decay (Björdal et al. 2000; Björdal et al.
1999). Other types of wood decay patterns were not
observed. This indicates that the microbiological decay
solely derived from the activity of erosion bacteria. The
most heavily degraded tracheids were observed in the
exterior parts of the pile (Figure 1c) while sound un-
degraded tracheids were observed in the interior parts
close to the pith (Figure 1a). A mixture of degraded and
sound tracheids were observed in the xylem between the
surface and core (Figure 1b). This shows that the water-
logged wood material contained a gradient of decay from

surface to core, as expected on the basis of previous de-

scriptions of erosion bacteria decay processes in piles

(Klaassen 2008; Macchioni et al. 2013). The decayed tra-

cheids were characterized by an eroded secondary cell

wall, and intact compound middle lamella, and cell cor-

ners. Residual cell wall material was left as an amorphous

substance that reduced the cell lumen region or in some

instances even filled up the whole cell lumen (Figure 1b).

Totally disintegrated xylem consisted of a fragile skeleton

of the compound middle lamella filled up by this residual

material (Figure 1c).
The samples selected for Py-GC/MS chemical analysis

represented three different stages of decay and thereby
three samples with very different material characteristics.
Sample “EB-non” had a morphologically sound xylem
without any erosion bacteria decay signs. This indicates
that any chemical modification observed in “EB-non”

Table : Pyrolysis products obtained by Py(HMDS)-GC/MS of reference pine wood sample assigned into either origin (O): holocellulose (H) or
lignin (L) polymers, and grouped into categories (c): furans (H-f), cyclopentenones (H-c), pyranones (H-p), anhydrosugars (H-a) hydrox-
ybenzenes (H-h), monomers (L-m), short chain (L-s), long chain (L-l), carbonyl (L-c), acids (L-a) and demethoxylated (L-d).

N° Compound O-c N° Compound O-c

 -hydroxymethylfuran (TMS) H-f  ,-dihydroxybenzene (TMS) H-h
 phenol (TMS)  arabinofuranose (TMS) H-a
 -hydroxy--cyclopenten--one (TMS) H-c  -vinylguaiacol (TMS) L-s
 -hydroxymethylfuran (TMS) H-f  E-,-dihydroxy-cyclopent--enone (TMS) H-c
 o-cresol (TMS)  -ethylcatechol (TMS) L-d
 -furancarboxylic acid (TMS) H-f  -hydroxy--(hydroxymethyl) cyclopenta-,-dienone (TMS) H-c
 m-cresol (TMS)  eugenol (TMS) L-l
 -hydroxy--cyclopenten--one (TMS) H-c  ,-dihydroxy--methyl-(H)-pyran--one (TMS) H-p
 p-cresol (TMS)  ,-anydro-beta-D-glucopyranose (TMS at position ) H-a
 -hydroxy-(H)-pyran--one (TMS) H-p  ,-anydro-beta-D-glucopyranose (TMS at position ) H-a
 Z-,-dihydroxy-cyclopent--enone (TMS) H-c  Z-isoeugenol (TMS) L-l
 E-,-dihydroxy-cyclopent--enone (TMS) H-c  vanillin (TMS) L-c
 ,-dihydroxybenzene (TMS) H-h  ,,-trihydroxybenzene (TMS) H-h
 -hydroxy-(H)-pyran--one (TMS) H-p  E-isoeugenol (TMS) L-l
 -hydroxy-H-pyran-(H)-one (TMS) H-p  ,-anydro-D-galactopyranose (TMS) H-a
 -hydroxymethyl--methy--cyclopentenone (TMS) H-c  ,-anydro-D-galactopyranose (TMS) H-a
 -hydroxy--methyl-- cyclopenten--one (TMS) H-c  -hydroxymethyl--hydroxy-,-dihydro-(H)-pyran--one (TMS) H-p
 -methy--hydroxy--cyclopenten--one (TMS) H-c  ,-anydro-D-glucopyranose (TMS at position  and ) H-a
 ,-dihydroxyacetone (TMS)  ,,-trihydroxybenzene (TMS) H-h
 guaiacol (TMS) L-s  acetovanillone (TMS) L-c
 -hydroxy--methyl-(H)-pyran--one (TMS) H-p  -hydroxy benzoic acid (TMS) L-a
 -methyl--hydroxy-(H)-pyran--one (TMS) H-p  ,-anydro-beta-D-glucopyranose (TMS at position  and ) H-a
 -methyl--hydroxymethyl--cyclopentenone (TMS) H-c  ,-anydro-D-galactopyranose (TMS) H-a
 ,-dihydrofuran-,-diol (TMS) H-f  ,,-trihydroxy-H-pyran--one (TMS) H-p
 -hydroxymethyl--furaldehyde (TMS) H-f  ,-anydro-beta-D-glucopyranose (TMS) H-a
 -methylguaiacol (TMS) L-s  ,-anhydro-D-glucopyranose (TMS) H-a
 ,-dihydroxybenzene (TMS) H-h  vanillic acid (TMS) L-a
 -hydroxymethyl-,-dihydropyran--one (TMS) H-p  vanillylpropanol (TMS) L-l
 ,:,-dianhydro-α-D-glucopyranose (TMS) H-a  Z-coniferyl alcohol ( TMS) L-m
 Z-,-dihydroxy-cyclopent--enone (TMS) H-c  coniferylaldehyde (TMS) L-c
 -methylcatechol (TMS) L-d  E-coniferyl alcohol ( TMS) L-m
 -ethylguaiacol (TMS) L-s  ,-dihydroxy cinnamyl alcohol (TMS) L-d
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compared to the reference material is solely due to abiotic
hydrolysis and possible oxidation induced by water,
inorganic ions and organic acids during the long period of
waterlogging. Sample “EB-heavy” contained xylem with
complete degradation of the secondary cell walls, leaving
only a fragile skeleton of the compound middle lamella
and residual material from the degradation of the sec-
ondary cell wall. Sample “EB-partly” contained a mixture
of tracheids with degraded and un-degraded secondary
cell walls. Sample “EB-heavy” and “EB-partly” is thus
expected to contain chemical signatures both from mi-
crobial erosion bacteria decay and from abiotic decay due
the submerging environment.

3.2 Py-GC/MS analysis

3.2.1 Pyrolysis products

Analytical pyrolysis coupled with GC-MS was applied to
the archaeological waterlogged wood samples (“EB-non”,
“EB-partly” and “EB-heavy”) and the reference sample.
The pyrograms for the reference and the waterlogged pole
samples with different degree of decay showed both hol-
ocellulose (cellulose and hemicelluloses) and lignin py-
rolysis products with high abundances (Figure 2). Pyrolysis
profiles of the waterlogged pole showed the same pyrolysis
products as for the reference, but in different relative
amounts. Since the same analytical conditions were used
for all the samples, the different relative abundances ob-
tained were the result of the changes undergone by the

Figure 1: Light microscope cross sections of the waterlogged Pinus
sylvestris pole. (a) Morphological intact secondary cell walls with no
trace of erosion bacteria decay. (b) Intermediate erosion bacteria
decay showing amixture ofmorphologically sound tracheids (S) and
tracheids with secondary cell wall decay leaving an amorphous
residual material in the cell lumen (R). (c) Total secondary cell wall
decay by erosionbacteria, the secondary cell wall of all tracheids are
filled with typical residual material of erosion bacteria (R).

Figure 2: Pyrolysis profiles obtained for sound Pinus sylvestris
(reference) and for thewaterloggedP. sylvestris samples of the outer
heavily decayed xylem (EB-heavy), the partly decayed xylem
(EB-partly), and the inner morphological intact xylem (EB-non).
Numbers refer to pyrolysis product peak listed in Table 1.
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material at the molecular level, which influenced the
relative yields of the pyrolytic processes (Tamburini et al.
2017). In fact, the differences in the relative abundances of
pyrolysis products between the waterlogged samples
(Figure 2), indicating that molecular changes in the ligno-
cellulosic cell wall material is related to the gradient of
decay in the waterlogged wood (Tamburini et al. 2017; Zoia
et al. 2017). A total of 64 pyrolysis products from the
reference material were identified and assigned to either
holocellulose (H) or lignin (L). Table 1 lists the identified
pyrolysis products of sound reference P. sylvestris together
with the assigned category of holocellulose as furans (H-f),
pyrans (H-p), cyclopentenones (H-c), hydroxybenzenes
(H-h) and anhydrosugars (H-a) and lignin as monomers
(L-m), short chain (L-s), long chain (L-l), carbonyl (L-c),
demethylated (L-d) and acids (L-a).

3.2.2 Holocellulose/lignin ratios

The ratio H/L is generally measured by gravimetric
analysis and used for internal comparison of a data set
(Babiński et al. 2019; Giachi et al. 2003; Tamburini et al.
2015). Previous studies have shown that the pyrolytic H/L
ratio also provides a reliable and comparable estimation
(Łucejko et al. 2012). For this reason, the pyrolytic
holocellulose versus lignin ratio (H/L) was calculated as
the ratio between the sum of the peak areas of hol-
ocellulose pyrolysis products (ΣH) and the lignin pyroly-
sis products (ΣL) (Table 2). This index is recognised as a
powerful parameter for determining the extent of degra-
dation of waterlogged wood, which is usually character-
ized by the loss of polysaccharides, therefore an decrease
in H/L is observed when compared with sound unde-
graded wood (Huang et al. 2013; Łucejko et al. 2015;
Łucejko et al. 2012). This semi-quantitative calculations
highlighted that the waterlogged sample “EB-non” had
undergone a loss of holocellulose of about 6% (H/L
2.2 ± 0.2), confirming its very good state of preservation,
whereas the loss of holocellulose for “EB-partly” and
“EB-heavy” was much higher as expected, leading to low

or very low H/L ratios (1.0 ± 0.2 and 0.6 ± 0.1,
respectively).

The lower value of the H/L ratio of waterlogged but
morphological sound wood (“EB-non”, H/L 2.2 ± 0.2)
compared to the reference sound wood (H/L 2.7 ± 0.1)
shows that abiotic degradation of the holocellulose frac-
tion most likely occurred. This indicates presence of
chemical alteration in the lignocellulosic matrix not
accompanied by morphologically altered structure
detectable with light microscopy. The results obtained for
“EB-partly” and “EB-heavy” confirm that erosion bacteria
decay leads to a considerable depletion of carbohydrates,
and that the depletion of holocellulose occurred to a higher
degree in the surface layer of the pole that was heavily
decayed by erosion bacteria (EB-heavy) than in the partly
decayed xylem closer to the pith, which contained a higher
proportion of un-decayed cell wall material (EB-partly).
This is in agreement with results reported in the literature
on chemical alteration induced by erosion bacteria decay
(Pedersen et al. 2013). The H/L ratio gives an overall picture
of carbohydrate depletion and lignin conservation but does
not provide any information on the specific chemical
changes that occurred in the wood polymers. However,
molecular information can be obtained by examining the
relative amounts of categorised pyrolysis products in more
detail.

3.2.3 Changes in the chemical composition of
holocellulose

A limitation of the analytical pyrolysis method is that it
does not permit differentiating the pyrolysis products of
cellulose and hemicelluloses, as the thermal degrada-
tion process form the same pyrolysis products from the
two types of polymers. This means that the method
cannot reveal details of chemical changes observed
specifically in cellulose and hemicelluloses but will refer
to chemical changes occurring in the overall poly-
saccharide (holocellulose) fraction of the wood samples.
Pyrolysis products formed during the thermal degrada-
tion of holocellulose were classified into five categories:
cyclopentenones, furans, pyranones hydroxybenzenes
and anhydrosugars, according to (Moldoveanu 1998a;
Pouwels et al. 1989; Ramirez-Corredores 2013). The sum
of the peak areas assigned to each category (Table 1)
were expressed as a percentage of the total abundance of
holocellulose pyrolysis products in each sample
(Figure 3a).

A comparison of the relative distributions of cat-
egorised holocellulose pyrolysis products shows differ-
ence between the reference pine and waterlogged

Table : Average relative percentage of holocellulose (H) and lignin
(L) pyrolysis products in the analyzed wood material obtained for
three replicas.

Scots pine Sound Waterlogged archaeological wood

Reference EB-non EB-partly EB-heavy

Sum H . ± . . ± . . ± . . ± .
Sum L . ± . . ± . . ± . . ± .
H/L . ± . . ± . . ± . . ± .
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samples, and as expected also within the waterlogged
wood samples with different degree of bacterial decay
(Figure 3a).

In particular, sample “EB-non” that is not attacked by
bacteria and morphologically similar to the reference
sound wood, presents a distribution profile of hol-
ocellulose pyrolysis products different from that of sound
wood. This indicates that certain chemical changes in the
carbohydrate polymers take place due to permanence in
the waterlogged anoxic environment as abiotic decay in
absence of bacterial activity. This is in agreement with the
few available chemical analyses of morphological sound
waterlogged wood performed in earlier studies (Borgin
et al. 1975; Gelbrich et al. 2008; Pedersen et al. 2015).

A notable chemical difference relates to the categories
of anhydrosugars and cyclopentenones. An increase in the
relative abundances of anhydrosugars and decrease in
cyclopentenones can be related to depolymerisation of
polysaccharides (Tamburini et al. 2017). In this case the
relative amount of anhydrosugars is lower in “EB-non”
than in the reference. This indicates a lower amount of low
molecular polysaccharides in “EB-non” than in the refer-
ence. This can be explained by microbial removal of easily
accessible and degradable non-structural carbohydrates

like starch stored in parenchyma cells and maybe also by
removal of depolymerised structural carbohydrates from
the wood structure due to abiotic physical and chemical
processes in the waterlogged burial environment. After
removal of small fragments, oligomers, and monomers the
residual carbohydrates have a lower level of depolymer-
isation, resulting in a lower pyrolysis yield of anhy-
drosugars and higher of cyclopentenones.

Differences in the relative amount of cyclopentenones
and anhydrosugars between the waterlogged wood sam-
ples is related to a higher relative amount of anhydrosugars
(from 21 to 29%) and lower amount of cyclopentenones
(from 46 to 40%) with increase in erosion bacteria decay
(Figure 3a). Levoglucosan is themost abundant compound
found in the group of anhydrosugars (Table 1), and its
abundance can be related to the degree of polymerization
of cellulose. Moldoveanu (1998b) reported that cellulose
with a degree of polymerization (DP) of more than 200
generated about 20% levoglucosan during pyrolysis while
cellulose with DP less than 200 formed 44% more levo-
glucosan. This confirms that erosion bacteria depolymerise
the polysaccharides fraction of the cell wall.

The chemical differences in the pyrolytic profiles of the
holocellulose fractions (Figure 3), are not pronounced
compared to the distinctive anatomical changes in the
material (Figure 1). This is probably due to the fact that
erosion bacteria consume the polysaccharide fraction of
the secondary cell wall without leaving residual sugars
during and after decay as suggested by Pedersen et al.
(2015). The cell wall is either decayed by erosion bacteria or
sound; confirming that erosion bacteria has very close
contact to the cell wall during decay and very effectively
utilise all available sugars. The result thereby suggest that
heavily decayed waterlogged wood contains intact hol-
ocellulose only in the morphologically sound compound
middle lamella that is not degraded by erosion bacteria due
to its high content of lignin.

The distribution profile of anhydrosugars with
different degree of sylilation formed during pyrolysis and
shown in Figure 3b. Three types of silylated anhydrosugars
can be formed depending on the number of OH groups that
have reacted with the silylating agent (HMDS) to create the
corresponding trimethylsilyl ester: monosylilated, dis-
ilylated, or persilylated (three -OTMS groups) (Figure 3b).
The degree of silylation of anhydrosugars gives an indi-
cation of the reactivity of the hydroxyl groups in terms of
their hydrogen exchange with the TMS groups. The reac-
tion is not quantitative due to steric hindrance, but the less
the anhydrosugars are derivatised during pyrolysis, the
tighter the holocellulose polymers are bound in the cell
wall polymer network (Evershed 1993; Fabbri et al. 2003).

Figure 3: Percentage distribution of (a) holocellulose pyrolysis
product grouped into categories, calculated in relation to the total
amount of holocellulose in each sample; (b) anhydrosugars from the
holocellulose pyrolysis products with three different degrees of
sylilation calculated in relation to the total amount of anhydrosugars
in each sample. The values are based on analyses of three replicas
for each sample. Whiskers show the standard deviation of the
replica measurements.
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In the reference wood samples, the disilylated form
prevails. The reference and “EB-non” samples are similar
in the relative distribution of their derivatised anhy-
drosugars. This is in good agreement with the morpho-
logical similarity between the two material types. With
increased erosion bacteria decay (“EB-partly” and
“EB-heavy”), persilylated anhydrosugars become more
abundant while disilylated anhydrosugars decrease. In
“EB-partly” the amount of persilylated anhydrosugars are
almost equal to the amount of disilylated anhydrosugars;
in “EB-heavy” the amount of persilylated anhydrosugars
are higher than the amount of disilylated anhydrosugars.
This can either be explained by a partly unwinding of the
cell wall polymer matrix during decay or by the difference
in ultrastructure of un-decayed cell wall material left in the
decayed wood material. The remaining holocellulose in
“EB-heavy” is located in the primary cell wall of the com-
pound middle lamella, whereas a high portion of the hol-
ocellulose in “EB-non” and “EB-partly” is located in the
secondary cell walls. The cellulose in the primary cell wall
is arranged in thin crossing layers embedded in pectin,
whereas the cellulose and hemicelluloses of the secondary
cell wall are arranged in a highly organised parallel
structure (Abe et al. 2005). It is possible that the less or-
dered structure of the cellulose fibrils - or the higher
amount of pectin present in the primary cell wall - has an
effect in the difference in the relative distribution of sily-
lated anhydrosugars.

3.2.4 Changes in chemical composition of lignin

Gymnosperms such as P. sylvestris contain lignin composed
almost entirely of guaiacyl and small quantities of
p-hydroxyphenyl units. The lignin pyrolysis products were
divided into five categories according to their molecular
structure (Huang et al. 2014; Kawamoto et al. 2008; Kotake
et al. 2013; Kotake et al. 2014; Tamburini et al. 2015): Z- and
E- coniferyl alcoholsmonomers, short side chain guaiacyl
units, long side chain guaiacyl units, oxidised guaiacyl
units with carbonyl and carboxyl functional groups, and
demethylated guaiacyl units (Table 1). Variations between
the relative amounts of these categories in the different
types of wood material were observed (Figure 4a). This
indicates chemical alterations in the lignin polymer.

Chemical changes between sound reference wood and
the morphologically sound waterlogged archaeological
sample (EB-non) suggest abiotic decay as a consequence of
the immersion in the waterlogged environment. The most
pronounced difference in the lignin profile of these two
samples is that the relative abundance of demethylated
units (pyrolysis products) in the waterlogged wood is less
than half of that of the sound wood (Figure 4a). Deme-
thylation of lignin moieties in the waterlogged wood have
been reported previously (Pedersen et al. 2013). This study
shows that 200–300 years of burial in a waterlogged
environment significantly affects the decrease of this
type of functional group in the lignin polymer. The second

Figure 4: Percentage distribution of (a) lignin
pyrolysis products grouped into categories;
(b) selected individual lignin pyrolysis
products. All values calculated in relation to
the total amount of lignin in each sample
and based on analyses of three replicas of
each sample. Whiskers show the standard
deviation of the replicas. TMS-trimethylsilyl
group.
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distinct difference in relative amounts of pyrolysis prod-
ucts between reference sample and “EB-non” is the in-
crease in the number of oxidised units, and the slight
increase in short chain pyrolysis products (Figure 4a).
These changes can suggest that the lignin polymer has
undergone an alteration due to abiotic decay during the
waterlogging period.

Chemical changes between themorphologically sound
waterlogged archaeological sample (EB-non) and water-
logged wood decayed by erosion bacteria (“EB-partly” and
“EB-heavy”) consist of relatively small changes in chemi-
cal composition of lignin compared to the great difference
in the morphology. This indicates that the composition of
the lignin polymer network is only slightly affected by the
action of erosion bacteria. The chemical differences consist
of a slight decrease in demethylated guaiacyl units, a
decrease in coniferyl alcohols monomers, an increase in
long side chain guaiacyl units, and an increase in oxidised
guaiacyl units (Figure 4a). The decrease in the relative
abundance of coniferyl alcohols (Z- and E- monomers) in
the pyrolysis profile is directly related to the increase in the
degree of erosion bacteria decay and is pronounced for
both monomers, whereas the increase in long side chain
units are most pronounced for vanillylpropanol and E-
isoeugenol (Figure 4b). The changes observed in the lignin
polymer indicate an alteration in the propanoid side
chains, probably due to cleavage of the bonds and oxida-
tion of some positions (Zoia et al. 2017) due to the erosion
bacteria activity.

Oxidised guaiacyl units primarily stem from forma-
tion of guaiacyl units containing carbonyl and carboxyl
functionalities in the alkyl side chain at the a-position,
which are conjugated with the aromatic ring (Figure 4b)
(Crestini et al. 2003; Tarabanko et al. 2017).

A slight depolymerisation, demethylation and oxida-
tion of the lignin polymer are, by the design of this study,
linked to erosion bacteria decay. This is a novel finding,
although not surprising, as the erosion bacteria in some
way need to rearrange the cell wall, and thereby the lignin
polymer, to reach the “encapsulated” polymeric carbohy-
drates within the micro fibrils of the cell wall as these are
their essential nutrient. This alteration of lignin was not
reported in Raman imaging investigations (Pedersen et al.
2015). The oxidation induced by bacteria primarily results
in the formation of guaiacyl units containing carbonyl
functionalities in the alkyl side chain, vanillin, acetova-
nillone and coniferylaldehyde (Figure 4b). In particular,
erosion bacteria oxidation leads to the preferential for-
mation of aldehyde functional groups at the γ-position of
the coniferyl alcohol monomers.

4 Conclusions

Combined morphological and chemical investigation of
waterlogged archaeological P. sylvestris gave new insight
to the chemical composition and changes that takes place
during decay by erosion bacteria.

Erosion bacteria cause a massive holocellulose deple-
tion and thereby have a great impact on the quantitative
chemical composition, the morphology and the physical
properties of the wood material. Detailed study of the hol-
ocellulose fraction show, despite the great morphological
changes, onlyminor alterations related to depolymerisation
and hydroxyl bonding capacity. This indicates that the cell
wall is either decayed or intact; the carbohydrate degrada-
tion by erosion bacteria is highly effective in terms of uti-
lisation of all carbohydrate cell wall material.

The study suggest that erosion bacteria induces minor
changes in the lignin structure, which enable them to ac-
cess and efficiently degrade the holocellulose. In addition,
it was observed that solely abiotic chemical changes of
both lignin and holocellulose takes place as a consequence
of long-term exposure in a waterlogged anoxic environ-
ment in wood that is not exposed to bacterial activity.
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