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ABSTRACT: Chiral π-conjugated molecules provide new materials with outstanding features
for current and perspective applications, especially in the field of optoelectronic devices. In
thin films, processes such as charge conduction, light absorption, and emission are governed
not only by the structure of the individual molecules but also by their supramolecular
structures and intermolecular interactions to a large extent. Electronic circular dichroism,
ECD, and its emission counterpart, circularly polarized luminescence, CPL, provide tools for
studying aggregated states and the key properties to be sought for designing innovative
devices. In this review, we shall present a comprehensive coverage of chiroptical properties
measured on thin films of organic π-conjugated molecules. In the first part, we shall discuss
some general concepts of ECD, CPL, and other chiroptical spectroscopies, with a focus on
their applications to thin film samples. In the following, we will overview the existing literature
on chiral π-conjugated systems whose thin films have been characterized by ECD and/or CPL,
as well other chiroptical spectroscopies. Special emphasis will be put on systems with large
dissymmetry factors (gabs and glum) and on the application of ECD and CPL to derive
structural information on aggregated states.
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1. INTRODUCTION

Chirality (from the Greek word χειρ́, “hand”) is the geometric
property of a rigid object of being non-superimposable on its
mirror image.1 In other words, a chiral object is devoid of
improper rotation axes (Sn) and it can exist in two specular
forms, which are commonly called enantiomers in the field of
chemistry. The term chirality was first introduced into science
by Lord Kelvin in 1893,2 although there is evidence as early as
1873 that he used the rather quaint name of “chiroid” to
indicate a molecule that has geometric property of chirality.3

One of the most fascinating features of chirality is that it
exists at various hierarchical levels, from subatomic to universe
scale. For elementary particles, chirality is closely related to the
concept of symmetry breaking: it is well-known, for example,
that neutrinos have only left-handed helicity, allowing them to
violate parity conservation.4 Furthermore, chirality plays a
crucial role at molecular scale: during the evolution of life on
the Earth, Nature selected only a single handedness (a
phenomenon called biomolecular homochirality),5,6 thus a
large number of biomolecules are available in enantiopure
form. Therefore, proteins contain only L-amino acids, nucleic
acids are only made by D-sugars, etc.; however, it is worth
emphasizing that in some cases the less common enantiomers
may also be present in certain natural systems: for example, D-
alanine and D-glutamate are found in the peptidoglycan cell
wall of bacteria.5,6 Chiral supramolecular architectures based
on the self-assembly of enantiopure small molecules or
macromolecules are ubiquitous in the biological systems and
sometimes also reflected at higher level: helix-shaped micro-
organisms such as tobacco mosaic virus (TMV) or Helicobacter
pylori bacterium, and many macroscopic living systems with
spiral elements (e.g., shells in Helix pomatia or horns in Capra
falconeri).7 Some atmospheric phenomena can express chiral
sense: cyclones, for example, spin clockwise in the southern
hemisphere and anticlockwise in the northern hemisphere of
the Earth. Chirality was even found at cosmic scale: spiral
galaxies, which have a 2D-chirality if projected onto a plane,
are intensively studied in astrophysics.8

Since the famous Pasteur’s experiment on the resolution of
tartaric acids of around 170 years ago,9 molecular and
supramolecular chirality has fascinated generations of chemists,
finding many applications from synthesis to spectroscopy. In
polymer chemistry, the control of chirality is of prime

importance, as it is well demonstrated by the dramatically
different properties of isotactic, atactic, and syndiotactic chains
of the very same polymer.10 Although the first chiral π-
conjugated polyene was synthesized in 1967 by Ciardelli et
al.,11 only recently chirality is becoming increasingly important
in the design of π-conjugated systems.
The last decades have seen a tremendous expansion of the

field of plastic or organic electronics, a term referring to
organic compounds and polymers endowed with specific
properties which can be exploited to construct optoelectronic
devices such as organic light-emitting diodes (OLEDs),
organic photovoltaic (OPV) cells, organic field-effect tran-
sistors (OFETs), and so on.12−15 Most of the above
applications make use of organic π-conjugated systems as the
key molecular material.16−18 Organic compounds with more or
less extended π-conjugation19 possess intrinsic electronic
properties (wide and intense optical absorption, fluorescence,
small HOMO−LUMO gap, electron delocalization) which are
mandatory for optoelectronic applications. Furthermore, the
ease of derivatization and functionalization of organic
compounds allows the design of starting materials with facile
processability, in particular toward the fabrication of thin films
with desired structural and morphological characteristics to be
used in active layers of various devices.14 It is well-known that
the emerging physical properties of thin films (e.g., HOMO−
LUMO bandgap, absorption profile, luminescence quantum
yield, charge transport, or magnetism) are strongly dependent
not only on the specific chemical structure of the constituent
organic compounds but also on their organization in the solid
state, spanning several distinct levels of hierarchy, from the
first-order supramolecular arrangement20−22 to the nano/
mesoscale.23,24 This implies that not only the design of the
starting material but also the technique employed in the film
deposition and further processing affect the film characteristics
and must be controlled to obtain optimal performance.25,26

Figure 1 summarizes schematically the deposition methods and
postdeposition processing techniques most commonly encoun-
tered in the literature covered by the present review. There is
nowadays abundant experimental evidence, especially in the
field of organic electronics, that the structural ordering at
various hierarchical levels deeply affects fundamental character-
istics of optoelectronic devices, such as field-effect carrier
mobility or solar power conversion efficiency.27−31 In
particular, a crucial aspect is the possibility of structure
heterogeneity and local polymorphism, which calls for
understanding how the existence of regions with different
degrees of local orders affects physicochemical properties of
thin films.14,23 In fact, during the thin film fabrication process,
the same molecular building block may undergo multiple
competing aggregation pathways, each leading to the formation
and evolution of different aggregated phases (such as
metastable states vs thermodynamically stable ones),32 which
may result in different optoelectronic properties.
The control over the structural organization of π-conjugated

molecules at all hierarchical levels is a crucial step toward the
optimization of electronic devices performance. Substantial
progress in the molecular design of π-conjugated systems has
been made recently, developing several synthetic strategies
which ensure a fine tunability of their physical, chemical, and
electrical properties.12,15−18 The introduction of stereodefinite
chiral elements in the chemical structure of starting materials
can drive them to organize into more or less complex chiral
supramolecular architectures,22,33−35 where a first-order supra-
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molecular chirality of, e.g., a dyad of molecules is transferred to
larger scale chiral morphologies such twisted ribbons, helical
fibers, and so on. The elementary step which governs the
emerging properties of the material is the communication
between proximate molecules or polymer chains in the
aggregated state. In such respect, aggregates of chiral entities
tend to avoid a perfect alignment in favor of a twisted
arrangement, which ultimately affects properties such as
exciton migration and light emission.20,31−33 This is schemati-
cally illustrated in Figure 2 for a π-conjugated polymer
composed of roughly coplanar units, epitomizing many of the
systems we will describe in the following. Ultimately, the use of
chiral nonracemic compounds as starting materials in
optoelectronic devices has multiple impact: it can be used as
a means to control supramolecular ordering, which affects
device performance,36−38 but it also opens the way to a variety
of highly innovative and unique technological applications such

as chiral electrochemical sensors,39 electron spin filtering,40

enantiopure chiral magnets (ECM),41 production or detection
of circularly polarized (CP) light,37 and chiroptical switching in
information technology.37

A multitude of chiral π-conjugated small molecules,
oligomers, and polymers have been developed in the last two
decades based on olefinic, acetylenic, and/or (hetero)aromatic
frameworks variously functionalized. Embedding chirality in π-
conjugated systems can be reached through two main synthetic
approaches: (i) by using chiral moieties directly into the π-
conjugated backbone42 and (ii) by attaching chiral substituents
to the π-conjugated backbone. If a chiral carbon on the main
chain would break the conjugation of π-electrons due to the sp3

hybridization, there are other chiral elements which can
generate chirality directly into the π-conjugated scaffold: axial
chirality, such as 2,2′-substituted-1,1′-binaphthyl-based small
molecules, oligomers, and polymers (1);43 helical chirality, i.e.,
carbohelicenes and heterohelicenes containing a different
number of aromatic rings (2);44 and inherent chirality, e.g.,
due to the curvature in the planar structure of calix[4]arene
systems (3)45 (Figure 3a). A different approach for introducing
chirality consists in decorating the π-conjugated skeleton with
enantiopure substituents, such as carbohydrates (4), α-amino
acids (5), terpenes (6), or many other derivatives from the
chiral pool (Figure 3b).46,47 The possibility to modify side
groups in these systems, while keeping the same π-conjugated
structure, allows for a fine-tuning of optoelectronic properties,
as well as for an increase of their physicochemical stability and
solubility, which is key to improve their processability in
devices fabrication.
Instrumental techniques able to structurally characterize

organic materials in thin films are fundamental for clarifying
the structure−property relationship of active layers for
optoelectronic applications. By far the most important
techniques in this context are microscopy techniques such as
atomic force microscopy (AFM), scanning electron micros-
copy (SEM), and transmission electron microscopy (TEM)
used for the characterization of thin films morphology on the
10−100 nm scale.48 Because aggregation and self-assembly
processes leading to solution and solid-state aggregated forms
occur across multiple length scales, the use of several distinct
techniques is anyway mandatory for a thorough character-
ization.23,24,49 This is especially true when chirality comes into
play: as noticed above, chirality is encountered at different size
scales and this happens also for materials.50,51 In the
hypothetical case of an aggregating chiral polymer, we may

Figure 1. Schematic representation of the most common deposition
methods (a) and postdeposition processes (b) of thin films of π-
conjugated systems investigated by chiroptical methods. The substrate
for deposition may consist of various materials, including glass, quartz,
a transparent electro-active material such as ITO, a layer made of
another organic material, or a silicon wafer.

Figure 2. Three possible limiting orientations of polymer chains packed closely in an aggregate in solution/suspension or in a thin film. An ordered
oblique orientation (c) is made possible using nonracemic chiral materials. Adapted with permission from ref 22. Copyright 2011 John Wiley &
Sons.
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encounter chirality: (a) of its chiral centers (∼1 Å), (b) of the
polymer main chain (∼1 nm), (c) of the first-order
supramolecular packing (∼1−10 nm), (d) of proto-fibrils or
fibrils (∼10−100 nm), (e) of bundles of fibrils (∼100 nm),
and finally (f) of fibers (∼1 μm and above) (Figure 4).
Disclosing how chirality is transferred among the various levels
of hierarchy in biological assemblies and biopolymers,
biomimetic (macro)molecules and synthetic self-assembling
systems is a very active field of research.34,35,51−54

In the characterization of the aggregated states of chiral π-
conjugated systems, including their thin films, electronic
circular dichroism (ECD) carves out an almost unique role
for itself. In fact, the first levels of macromolecular or
supramolecular chirality (b and c in Figure 4) are hardly
reached by microscopy techniques, while ECD and other
chiroptical spectroscopies are specifically sensitive to molec-
ular, macromolecular, and first-order supramolecular chir-
ality.55−57 This is the reason why ECD is the tool of choice for
the investigation of chiral supramolecular assemblies in
solution and, very importantly, as thin films,35,51,52,54 and it
is routinely employed to follow multiple aggregation pathways
and distinguish local polymorphisms.32 This is especially
relevant in the context of π-conjugated systems used for
optoelectronic devices because interchain interactions, to
which ECD is extremely sensitive, are also responsible for
the ultimate device performance.
In this review, we shall provide a comprehensive under-

standing of the chiroptical properties in thin films of chiral π-
conjugated molecules, both in absorption and emission. We
shall discuss some general concepts of ECD spectroscopy
applied to thin film samples, followed by an overview of the
literature on π-conjugated systems characterized by ECD in
thin films. We shall also introduce the bases of the emission
counterpart of ECD, namely CPL spectroscopy, focusing on
the CPL properties of thin films of π-conjugated molecules.
Additionally, we will also discuss the application of other
chiroptical spectroscopies in the same context.

2. CHIROPTICAL SPECTROSCOPIES: SURVEY AND
BASIC CONCEPTS

The term chiroptical spectroscopies designates a family of
spectroscopic techniques, which are based on the interaction
between chiral, nonracemic matter with circularly polarized
(CP) light.58−60 This latter is defined as a radiation whose
electric field vector rotates in time around the direction of
propagation; in right CP light, the electric field rotates
clockwise when viewed by an observer looking toward the
light source, while in left CP light the rotation occurs
anticlockwise. As CP light may be seen as a chiral object, its

Figure 3. Different approaches for introducing chirality in π-
conjugated systems. (a) Chiral structures directly into the π-
conjugated skeleton: 1,1′-binaphthyl derivatives 1 (axial), helicenes
2 (helical), and calix[4]arenes 3 (inherent). (b) Functionalization of
the π-conjugated backbone with chiral substituents: carbohydrates 4,
α-amino acids 5, terpenes 6.

Figure 4. Schematic representation of a hierarchical aggregation process of a chiral polymer encompassing several size scales.
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interaction with the two enantiomers of a chiral substance is
diastereomeric; similarly, the interaction between a single
enantiomer with right or left CP light is diastereomeric. In
resonant regions, i.e., when the energy of the electromagnetic
radiation matches the energy gap of an electronic or vibrational
transition, leading to an absorption or emission band, the
differential interaction will be in general non-negligible and the
difference corresponds to the measured chiroptical signal.
Chiroptical spectroscopies may be classified according to the
frequency or wavelength range of resonance: thus, we have
electronic spectroscopies such as electronic circular dichroism
(ECD) and circularly polarized luminescence (CPL), and
vibrational spectroscopies such as vibrational circular dichroism
(VCD) and Raman optical activity (ROA). In the next
sections, we will provide a brief survey of the basic concepts
behind the chiroptical techniques most relevant to the topic of
this review.
2.1. Electronic Circular Dichroism (ECD)

Electronic circular dichroism (ECD) is defined as the
differential absorption of left-handed (AL) and right-handed
(AR) CP-light, due to its diastereomeric interaction with a
chiral molecule, which occurs in correspondence to electronic
transitions:

= −A AECD L R (1)

The usual range of observation spans the UV above 185 nm to
the visible, possibly extending to the near-infrared (NIR)
region of the electromagnetic spectrum. Less frequently, far-
UV or X-rays can also be considered, mostly in connection
with synchrotron radiation as the light source. Linearly
polarized light can be decomposed into two coherent CP-
beams of opposite polarization, which are differentially
absorbed by a chiral nonracemic sample. ECD is indeed a
differential absorbance, and it should actually be expressed in
absorbance units or A.U. (i.e., a pure number), but for
historical and technical reasons, it is very often measured in
terms of the so-called ellipticity and measured in mdeg. The
conversion between mdeg and A.U. is 1 A.U. = 32982 mdeg.
As for the standard absorbance, the differential absorbance too
depends on the amount of active sample crossed by the
incident beam. To avoid dealing with the explicit dependence
on the sample concentration (or density) and path length, a
useful quantity is the so-called dissymmetry factor gabs, defined
as

=
−

=+( )
g

A A
A

( ) ECD
A Aabs
L R

2
L R

(2)

where A is the absorbance of nonpolarized light (or
equivalently the average of AL and AR). It is worth underlining
that the g-factor (gabs) is ideal to characterize ECD of thin
films: it is a pure number ranging between −2 and +2 (total
absorption of right- and left-handed CP-light, respectively), at
least ideally independent of the film thickness, which is
equivalent to the path length.
The theoretical quantity associated with ECD is called

rotational strength R. For a given electronic transition from the
ground state 0 to an excited state i, the rotational strength Ri is
defined as the scalar or dot product between the electric and
magnetic transition moments (μ0i and mi0, respectively)
produced by the interaction with CP light:

μ= ·R mi i i0 0 (3)

The electric transition dipole describes the extent of transition
charge translation and the magnetic transition dipole the extent
of transition charge rotation upon the electronic excitation.
Each ECD band (a synonym of which is Cotton effect) has an
area proportional to the underlying rotational strength. The
excitation occurs from the first vibrational state (ν = 0) of the
ground electronic state 0 to one or more vibrational states (ν =
0, 1, 2, etc.) of each ith electronic state; thus, an ECD band
may encompass various vibronic transitions and show a
vibrational fine structure. To obtain large ECD signals one
must deal with electronic transitions which are both electric-
and magnetic-dipole allowed, and the two vectors are not
orthogonal. Because A in eq 2 is proportional to |μ0i|

2 and ECD
to Ri, large g-factors may be expected for transitions associated
with relatively large magnetic transition moments.
The most common setup of commercial ECD instruments is

diagrammed in Figure 5. CP-light with alternating left and

right polarization is produced by a photoelastic modulator
(PEM), differentially absorbed by the sample and then
collected by a photomultiplier (PMT). Dealing with thin
films deposited on a surface of glass or quartz or any other
transparent materials, there are two possible orientations: one
with the film facing the light source (indicated as “front face”
in Figure 5), the other with the film facing the detector (“back
face”). As we shall see below (section 2.1.1), the film
orientation may have an impact on the emergent ECD signal.
Some technical issues associated with the nature of ECD as
polarization-modulation spectroscopy will be discussed in the
same section.
Among all chiroptical techniques, ECD spectroscopy is by

far the most popular one; for more than 50 years, it has been
successfully applied for solving problems related to absolute
configuration,55 elucidating conformational aspects56 and
studying supramolecular aggregation of chiral molecules.57

However, thanks to the growing interest in the development of
organic semiconductors with high gabs values, ECD spectros-
copy is also finding increasing applications in the chiroptical
characterization of thin films of chiral π-conjugated systems. In

Figure 5. Typical setup of commercial ECD instruments. Legend: S,
light source (Xe arc lamp); M, monochromator; PEM, photoelastic
modulator; PMT, photomultiplier (detector). Two different orienta-
tions are possible for a thin film deposited on a surface, indicated as
front and back faces. In some instruments, the monochromator has
the effect of fully polarizing the exiting light, otherwise a linear
polarizer is placed between M and PEM.
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fact, although normally measured on liquid samples (especially
solutions), it can also be measured on solid-state samples such
as thin films, powders, microcrystalline pellets, etc. These latter
cases may however provide different contributions to the
observed signals as explained in section 2.1.1.
ECD spectroscopy is said to be a means of looking at the

stereochemistry of the molecule through the eyes of the
chromophore(s). In fact, at least one chromophoric group
must be present to observe a non-negligible ECD spectrum;
the chromophore is the moiety responsible for the resonance
with light in the UV−vis region, that is, it is the molecular
portion on which the observable electronic transitions are
mostly localized. Focusing on π-conjugated molecules, we can
recognize three different situations. In the first case, the π-
conjugated system is twisted and thus it is inherently chiral, as
it happens for helicenes and similar compounds (Figure 3a,
top-left). In this case, the twisting or bending of the conjugated
framework allows for both relatively large μ0i and mi0, and gabs
values up to 10−2 can be observed.
In the second and most common case, the π-conjugated

system is planar or relatively flat. Extended planar conjugation
is optimal for getting strong electric-dipole allowed transitions,
i.e., large |μ0i|. In some cases, it can also imply large magnetic
dipole character, |mi0|, but for symmetry reasons, the dot
product between them, which is necessary for nonvanishing
rotational strength, is zero. In the relatively common case of
very elongated (rod-like) chromophores (see for example red
fragments in Figure 3b), π−π* transitions are electric-dipole
allowed and magnetic-dipole forbidden, which leads a fortiori
to zero rotational strength. This selection rule breaks down
when the chromophore is part of a larger chiral entity. For
example, this may be realized by a chiral moiety, added as a
pendant to the aromatic core (Figure 3b), which acts as
perturber to the chromophore. Still, for such a construct, the
dot product (in eq 3) is likely to remain small, thus generating
relatively weak ECD signals and small gabs values, which hardly
exceed 10−4. It is intuitive that, the more remote is the element
of chirality from the aromatic core and the more flexible is the
pendant, the weaker will be the ECD signals.
Finally, a third case exists when two or more aromatic cores

come in proximity in a chiral arrangement, either by covalent
linkage or by noncovalent association. The first possibility is
encountered, for example, in biaryls and calixarenes (Figure
3a). Here, the origin of ECD signals may be different from the
two previous cases: even if the various π−π* transitions per se
are only electric-dipole allowed, at a distance each one
generates an oscillating magnetic field which couples with
the electric dipole allied to the transition centered on the
neighboring chromophore(s), thus producing a rotational
strength, typically associated with gabs values around 10−3. This
phenomenon is known as exciton coupling and, apart from
being well-known and extensively explored for single
molecules, it has a tremendous impact on the ECD properties
of chiral π-conjugated molecules in condensed phases. The
principle of exciton coupling is illustrated in Figure 6 for a
series of representative simple models. The through-space
interaction between the transition dipole moments (TDMs) of
two or more chromophores causes a mutual perturbation of
excited states. The effect is typically observed for (but not
restricted to) identical chromophores, for which it assumes the
name of degenerate exciton coupling.61 In this case, the
otherwise degenerate excited states are split in a high-energy
state and a low-energy state, whose TDMs are the in-phase and

out-of-phase combinations of the chromophore TDMs.62

Simple geometrical arguments suggest that when a dimer is
arranged face-to-face, such as in a so-called H-aggregate, only
the high-energy state retains its UV activity (bright state) while
the low-energy state is dark; thus, the absorption band appears
blue-shifted with respect to the monomer band. Vice versa,
when a dimer is arranged head-to-tail, such as in a so-called J-
aggregate, the low-energy state is bright and the high-energy
state dark, thus a red-shifted absorption band is observed
(Figure 6). The typical signatures of so-called H-aggregates
and J-aggregates were first theorized by Kasha and others in
the 1960s.62 To introduce chirality into a dimeric model, one
must add a discrete twist between the constituent chromo-
phores. If so, the split excited states also acquire non-negligible
magnetic transition moments and, according to eq 3, become
CD-active. Exciton coupling theory predicts for a twisted
dimeric system a bisignate ECD spectrum, commonly called an
exciton couplet, which consists of two bands of opposite sign
and similar amplitude (or integral) whose crossover point

Figure 6. Illustration of the exciton coupling mechanism for idealized
models. (a) Absorption and ECD spectra estimated for achiral dimers
with H-type and J-type geometry, and for a twisted dimer, trimer, and
pentamer with positive chirality. The double arrows show the
direction of the TDMs within the chromophores, indicated by the
orange rectangles; the dashed vertical lines the position of the
monomer absorption band. The spectra are normalized per monomer.
(b) Energy level diagrams showing UV- and CD-active transitions for
H-type, J-type, and twisted dimers. The separation between exciton-
split levels is called Davydov splitting.
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occurs near the chromophore absorption maximum. The
details of exciton-coupled ECD spectra can be quantitatively
predicted based on the geometrical arrangement and
spectroscopic properties of the chromophores. Moreover, the
sign of the couplet is related to the absolute angle of twist
between the TDMs and hence to the absolute configuration or
handedness of the molecular or supramolecular system. The
exciton chirality rule states that if the TDMs are arranged in a
right-handed fashion (as in Figure 6), that is, one must
conceptually rotate clockwise the TDM in the front to put it
onto the TDM in the back, this will generate a positive exciton
couplet, that is, with a positive long-wavelength branch and a
negative short-wavelength branch. In a first approximation,
exciton couplings are additive. Thus, in a model trimer, one
will observe the two couplings between units 1−2 and 2−3,
named first-neighbor couplings, which equal that observed for
the dimer, plus the extra coupling between units 1−3 (Figure
6). Similar concepts apply to a pentamer as well as to any
larger, conceptually infinite, chiral stack, for which the dimer
represents the minimal model. The intensity of exciton
coupling depends on the cosine of the twist angle between
interacting TDMs as well on the inverse square distance.
Therefore, in a chiral stack the ECD signal is dominated by the
exciton coupling between the first neighbors, although long-
range couplings may also contribute substantially.
A deeper discussion on the consequences of exciton

coupling on aggregate spectra of π-conjugated compounds
will be provided below (section 2.1.3). For the moment, we
will illustrate the concept taking as example a molecule
composed of a π-conjugated backbone with chiral pendants
(like those in Figure 3b) associated with a strong electric-
dipole allowed π−π* transition in the near UV or the visible
portion of the spectrum. When the molecule is isolated from
its congeners, as it occurs in diluted solutions of “good”
solvents, the transition will be associated with a single weak
ECD band (Cotton effect) with intensity of the order of a few
mdeg and gabs around 10−4 or less (Figure 7).63 As said above,
this is due to the remote chiral perturbation exerted by the
pendant on the aromatic core. However, when several such

molecules come in close contact, for example in the form of a
solution aggregate or in a thin film, exciton coupling occurs,
which, depending on the geometry of the aggregate, may
produce much stronger and characteristic ECD signals. In an
helically packing of flat molecules, an ECD couplet is expected
in correspondence with the π−π* transition, which, especially
for high degrees of helical order, may easily exceed intensities
of 100 mdeg and gabs of 10

−2 (Figure 7).63 Moreover, as said
above, the sign of the couplet reflects immediately, and
exclusively, the handedness of the supramolecular chirality,
depending in a specific way on the reciprocal geometry
between the various chromophores in the aggregate. The
situation depicted above occurs repeatedly in aggregated
phases of chiral π-conjugated polymers. The exact shape of
aggregated ECD spectra is complicated by several factors, for
example, combination of degenerate and nondegenerate
exciton couplings, vibronic coupling, coexistence of multiple
species, occurrence of diverse chiroptical phenomena such as
circular differential scattering, and so on, and may deviate from
the idealized ECD exciton couplet depicted in Figure 6. Still,
the appearance itself of strong and structured ECD signals
furnishes immediate evidence of the formation, structure, and
evolution of the supramolecular species (see section 2.1.3).
In the example just discussed, we assumed that the polymer

has a loose conformation in its molecularly dissolved state, that
is, there is no strongly preferred intrachain chirality. This is in
fact the case of poly(p-phenyleneethynylene) (PPE), where
phenyl rings are connected through triple-bond rotors;
rigidification and planarization occur only as consequence to
aggregation. A different but also commonly encountered
situation is when a more effective conjugation along the
polymer chain favors a more ordered helical arrangement even
for the molecularly dissolved polymer, which attains a well-
defined intrachain chirality. This is, for instance, the case of
chiral polyacetylenes. Here, the major π−π* transition in the
UV region is both electric-dipole and magnetic-dipole allowed
and is usually associated with a monosignate ECD band with
gabs up to 10

−3; the sign of this ECD band is correlated with the
helicity of the twisted cis-polyene chain (Figure 8). In this case

Figure 7. Aggregated ECD spectra of a chiral copolymer with poly(p-phenyleneethynylene) (PPE) skeleton 7 appended with glucose moieties, in
solution and as thin film. In solution (a), aggregation is promoted by nonsolvent addition (methanol added to chloroform). The solution aggregate
mimics the solid-state one (b), as demonstrated by consistent ECD spectra. Adapted with permission from ref 63. Copyright 2012 American
Chemical Society.
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too, however, aggregation is expected to produce significant
changes in the ECD spectra. When the polymer chains are
packed together in a helical supramolecular structure, either in
a solution aggregate or in the solid state, the polyene chain
twist is likely to be preserved at large extent, however, different
chains will now communicate through the exciton coupling
mechanism and the overall ECD response will arise from a
combination of intrachain and interchain mechanisms. Because
this latter is usually associated with stronger ECD bands (gabs
≈ 5 × 10−3 to 10−2), ECD couplets will again be detected in
correspondence with the π−π* transition, whose sign
correlates with the supramolecular chirality (Figure 8).
2.1.1. ECD Spectroscopy of Anisotropic Samples. In

general, the measurement of ECD properties in thin films is
more complex than in isotropic solution samples. This is
mainly due to the interference of macroscopic anisotropies
often present in the solid state, i.e., linear dichroism (LD) and
linear birefringence (LB), especially when coupled with the
nonideal characteristics of spectropolarimeter optics, providing
a significant contribution to the measured ECD spectrum.
Therefore, the crude ECD signal of a solid-state sample such as
a thin film measured with a benchtop spectropolarimeter is the
sum of various contributions.
The most common theoretical model used to account for

and to disentangle the ECD signal in anisotropic solid-state
samples (thus including thin films) was first developed by
Shindo et al.:65,66 it is based on the Mueller matrix
analysis,67−69 a very powerful and versatile method for
understanding the physical meaning of signals in polarization
spectroscopy. Here, we shall omit the complete mathematical
treatment of the model, showing only the most significant
results for our purpose. According to this theory, the leading
terms of the ECD signal recorded for anisotropic solid samples
are specified by the following equation:

˜ ˜

˜
˜

θ θ α

θ θ

≈ + · − ·

+ − +

+ − − +P P a

CD CD
1
2

(LD LB LD LB )
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( ) sin 2 ( LB cos 2 LB sin 2 )x y
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2 2
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where CDiso is the intrinsic isotropic component of circular
dichroism which is independent of sample orientation; LD and
LB are, respectively, the x−y linear dichroism and linear

birefringence, while LD′ and LB′ indicate the linear dichroism
and linear birefringence measured along the bisectors of x−y
axes (i.e., with a + 45° shift). The angle θ describes sample
rotation around the optical axis; α is related to the residual
birefringence of the photoelastic modulator (PEM) of the
spectropolarimeter, used for generating circularly polarized
radiation; a is the azimuth angle of the photomultiplier with
respect to the vertical axis, while Px

2 and Py
2 are associated with

the transmittance of the detector in the x and y directions,
perpendicular to the optical axis.
The first term of eq 4, i.e., CDiso, represents the electronic

circular dichroism of the sample accounted for by eq 3, by the
dot product of electric and magnetic transition dipole
moments. Therefore, this term reflects the molecular and/or
supramolecular chirality of the sample. Because it is a scalar
product, this contribution is necessarily isotropic, i.e., it is
independent of the sample orientation with respect to the
instrumental optical axis (by its rotation or flipping). When
dealing with oriented samples, nonzero rotational strength may
also arise from the combination of an electric transition
moment with a quadrupole transition moment;58 this latter
term averages to zero for isotropic samples, which applies not
only to solution samples but also to solid-state samples devoid
of a preferred orientation, for example, microcrystalline
samples dispersed in an inert salt pellet or nonstretched thin
films.70

The second term of eq 4, i.e., 1/2 (LD′·LB − LD·LB′), is
due to the interference between the macroscopic anisotropies
of the sample, i.e., linear dichroism and linear birefringence,
and arises only when the main axes of these two quantities are
not aligned with each other. It must be stressed that this term
is completely independent of instrumental faults (such as
imperfections or misalignment of the optical components) and
of the intrinsic technical limitation of polarization-modulation
instruments. Although in the past it was indicated in different
ways (such as apparent CD71 or pseudo CD72), here we shall
call it simply LDLB. It is important to highlight that this
contribution is not an artifact, because it represents a real,
perfectly reproducible differential absorption of left and right
CP-light. It is invariant upon sample rotation around the
optical axis of the spectropolarimeter, but it inverts the sign by
sample flipping. In fact, a simple procedure for ascertaining the
importance of the LDLB term is to rotate the sample by 180°
around the vertical axis (flipping). If we consider the flipping as

Figure 8. ECD spectra of a chiral copolymer with polyacetylene skeleton 8 appended with moieties containing the TEMPO radical, in solution and
as thin film. In solution (a), the ECD response is associated with the intrachain chirality of the twisted cis-polyene skeleton: left-handed chirality
generates a negative monosignate ECD band. In the thin film (b), the ECD response is dominated by interchain couplings: a positive
supramolecular chirality generates a positive ECD couplet (bisignate band). The vertical scales reflect the ratio between measured gabs. Adapted
with permission from ref 64. Copyright 2007 John Wiley and Sons.
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a rotation around the y-axis (or equivalently the x-axis), this
operation leaves CD, LD, and LB unaltered, but LD′ and LB′
invert their sign and the same does the second term in eq 4. In
case this term is negligible, CDobs will be similar for the original
and for the flipped sample, while if the LDLB term is sizable,
the overall CDobs may differ a lot for the original and the
flipped sample. In extreme cases, a sign reversal is observed
upon flipping which may be referred to as nonreciprocal ECD
or polarity reversal of ellipticity.73 This phenomenon is
schematically illustrated in Figure 9. From a theoretical

viewpoint, this situation corresponds to an apparent violation
of time reversal symmetry and Lorentz reciprocity. An
experimental proof of the importance of the LDLB term may
be gained by measuring ECD spectra of achiral samples
associated with sizable macroscopic anisotropies, for example,
a dye dispersed in a stretched transparent polymer film. Figure
10 shows the example of the azo-compound Congo Red 9
dispersed in a stretched poly(vinyl alcohol) (PVA) film,
reported by Shindo and co-workers.74,75 This achiral sample
exhibits intense ECD signals in correspondence with the dye
absorption bands between 300 and 600 nm, which completely
invert their sign upon sample flipping. By applying Mueller
matrix theory, it could be demonstrated that these signals are
only apparent CD (i.e., the LDLB term),76 leading to the first
clear-cut experimental evidence of the LDLB effect on thin film
samples.
The third and fourth terms of eq 4, i.e., (−LD cos 2θ + LD′

sin 2θ) sin α and (P2x−P2y) sin 2a (−LB cos 2θ + LB′ sin 2θ),
are largely related to the limited technical possibility of the
spectropolarimeter to realize perfect ECD measurements
because of its construction based on the polarization-
modulation technique.65,66,77 The third term is associated
with the residual static birefringence of the PEM, α. Although
used to produce CP-light, for most of the time, the PEM
generates only elliptically polarized light, i.e., with a residual
linear polarization, which by interaction with the macroscopic
anisotropies of the sample (global LD and/or global LB) can
provide spurious signals. The fourth term is associated with the

characteristics of the photomultiplier as a planar polarizer and
can be minimized by adjusting its azimuth angle a. Differently
from LDLB, these terms have definitely to be considered
artifacts, for example because they would provide different
results when measuring the spectrum of the same sample on
different instruments. However, they both depend on the value
of θ angle; a simple rotation of sample about the optical axis
allows one to reveal the presence of these artifacts and, at least
in principle, by averaging the ECD spectra over θ these terms
would cancel. A further source of artifacts comes from the first-
harmonic response of the lock-in amplifier, the device used to
transduce the electronic signal. The amount of artifact
emerging from a spectropolarimeter can be simply evaluated
by measuring an air baseline to check it is flat over a broad
wavelength range, and its drift lies within the manufacturer
specifications. Additionally, selected achiral samples, including
anisotropic ones, should be measured to guarantee they
generate zero-ECD signals. A proper maintenance of
spectropolarimeters is mandatory to ensure the quality of
recorded signals. This is especially important in the context
covered by the present review because the mentioned three
sources of artifacts do combine with macroscopic anisotropies
such as LD and LB normally encountered in thin film samples,
generating spurious signals and/or altering spectral shapes, for
instance, easily affecting gabs values. Although these instru-
mental checks may be common practice in most laboratories,
they are almost never reported in the literature. Therefore, the
reader should keep in mind that published data about, e.g., gabs
values, may be potentially affected by instrumental artifacts.
There is a great interest in isolating the CDiso term from the

experimental ECD spectrum because it provides useful
information on the (supra)molecular chirality of chromo-
phores in the solid state. Some homemade spectropolarimeters
have been designed and constructed with the aim of obtaining
all the elements of the Mueller matrix.78−81 In 2001, Kuroda et
al. built the universal chiroptical spectrophotometer (UCS-1: J-
800 KCM) instrument, able to obtain artifact-free ECD spectra
of solid-state samples by recording simultaneously circular
dichroism (CD), circular birefringence (CB), linear dichroism
(LD), and linear birefringence (LB).74 On the contrary, the
evaluation of LDLB contribution has almost always been

Figure 9. Illustration of polarity inversion of ellipticity for ECD
measurement in thin films. When in eq 4 the LDLB term ≫ CDiso,
CDobs is fully reversed upon flipping the sample by 180° around the
vertical axis. We call “front” side measurement that with a forward
illumination, and “back” side measurement that with a backward
illumination.

Figure 10. ECD spectrum recorded for the front side (blue line) and
back side (red line) of achiral Congo Red dye 9 dispersed in a highly
stretched poly(vinyl alcohol) (PVA) thin film. Adapted with
permission from ref 74. Copyright 2001 American Institute of Physics.
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neglected in experimental ECD measurements. Actually, a
remarkable LDLB term (i.e., at least 1 order of magnitude
larger than CDiso) can cause an almost complete inversion of
the ECD signal upon sample flipping (Figure 9); this behavior
is very appealing because it allows one to obtain opposite
chiroptical properties with one chiral material, simply by
considering the two different faces of the same film. On the
other hand, it may introduce severe unwanted artifacts in ECD
measurements of thin films. This fact is very relevant to the
present review, because many thin films of π-conjugated
systems do display such an odd behavior.
2.1.2. ECD Imaging. In standard ECD spectroscopy, i.e.,

performed by means of a benchtop spectropolarimeter, the
samples (including thin films) are generally sampled on a wide
area (about 1 cm of diameter), thus providing only average
chiroptical properties, mediated over a relatively large volume
or surface. However, if one could investigate the ECD
properties of individual local domains of submillimeter scale
and below, this would provide very useful information on the
structural organization at a specific level of hierarchy. Such a
piece of information might be employed, among other things,
to develop more rational and successful protocols for obtaining
more homogeneous thin films with desired properties, which
will be used as active layers for the fabrication of efficient
devices with specific optoelectronic features. Microscopy
techniques are ideal to characterize film morphology down
to the 10−100 nm scale, but they can hardly provide insight
into the supramolecular organization of the molecules, that is,
what happens at the 1−10 nm scale. A very appealing solution
is the fusion between these two levels of analysis: ECD,
providing geometrical information on chiral supramolecular
aggregates with no spatial resolution, and microscopy, which
instead gives spatially resolved images at microscopic level
without insights into the first level of hierarchy of aggregation.
The idea of an ECD microscope was first developed in 1982

by Maestre and Katz, based on the modification of a Cary 60
CD spectropolarimeter coupled with a standard Zeiss micro-
scope.82 Although it was used for spatially resolved ECD
measurements of biological samples,83−85 later on, Shindo et
al. casted serious doubts on the original results;76 similarly to
standard ECD spectroscopy, the signals arising from
anisotropic solid-state samples could be affected by spurious
contributions, well accounted for and disentangled by applying
the aforementioned Mueller matrix approach, contributions
which must be evaluated and possibly eliminated. Interestingly,
Kahr and co-workers in 2003 built a new microscope for ECD
imaging of heterogeneous anisotropic media based on a
different approach: in order to be independent of all the
intrinsic technical limitations of polarization-modulation
instruments, they removed the PEM and opted for a
mechanical modulation of CP-light, obtained by rotating a
linear polarizer with respect to a quarter wave plate,
continuously tuned by tilting to the operating wavelength;
furthermore, this comparatively slow technique allowed to add
a charge-coupled device (CCD) camera as detector, thus
achieving ECD images.86 This microscope was successfully
used for the chiroptical investigation of many anisotropic
samples, including enantiomorphous domains in biaxial
crystals of 1,8-dihydroxyanthraquinone,86 LiKSO4 crystals
dyed with π-conjugated guests,87 and rhythmic phthalic acid
precipitates;88 however, in some cases (e.g., polycrystalline D-
sorbitol spherulites), they still found persistent parasitic
contributions due to sample heterogeneity encountered along

the light propagation direction.89 However, other techniques
able to perform ECD imaging measurements have been more
recently developed based on two-photon fluorescence (TPF)
scanning confocal microscopy,90 scanning near-field optical
microscopy (SNOM),91,92 or synchrotron radiation (SR)
circular dichroism.
In fact, the highly collimated SR of Diamond Light Source

B23 beamline93−95 recently allowed for the development of a
new technique for ECD imaging of thin films, named CDi.96,97

In contrast with all the above-mentioned ECD-microscopy
methods, CDi is based on the collection of local ECD spectra
for each spot of a selected grid array area, mapped with a
motorized XY stage having spatial resolution up to ∼0.01 mm2.
Local ECD spectra can then be processed into 2D color maps
showing the ECD intensity at a fixed wavelength vs x−y
coordinate (Figure 11): the final result is similar to that of

other ECD-microscopy methods, but taking full advantage of
the complete circular polarization of SR light and attaining the
lowest limit of quantitation with maximum accuracy of ECD
signals.

2.1.3. Structural Information from Aggregate ECD
Spectra. For the reasons explained in section 2.1, ECD
spectroscopy is the major spectroscopic technique for
investigating chiral supramolecular aggregates of conjugated
molecules in several states of the matter, which can
complement microscopy techniques, while pushing the detail
of insight into the molecular and supramolecular scale in a
rather unique manner.21,32,33,35,52,57,98

The kind of structural information provided by analysis of
ECD spectra of chiral supramolecular species varies a lot from
system to system and depends crucially on the nature of the
investigated species. The general discussion provided in the
present paragraph applies to any kind of oligo/polymeric or
aggregated species, either in the solid state or in solution;

Figure 11. ECD imaging of thin films performed with the highly
collimated synchrotron radiation of Diamond Light Source B23
beamline (CDi technique): example of 2D color maps of ECD
intensity vs x−y coordinate (red/yellow/blue hues), performed by
mapping a 30 × 30 grid array area of 0.2 mm step size with a beam
diameter of 0.2 mm. Adapted with permission from ref 97. Copyright
2019 Centre National de la Recherche Scientifique (CNRS) and The
Royal Society of Chemistry.
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actually, most of the quali/quantitative interpretation of ECD
spectra of macromolecular or supramolecular species refer to
spectra measured in solution. They may concern covalent
oligo/polymers folded into helical structures, solution
aggregates of chiral oligo/polymers, chiral supramolecular
assemblies of discrete molecules, and so on. In many cases,
foldings, aggregates, and assemblies observed in solution are
taken as model of corresponding solid-state structures. For that
reason, the general discussion will be substantiated by several
specific examples in section 3, although they do not strictly
concern thin-film ECD spectra, but very often their solution
analogues.
The most encountered case in the field of chiral π-

conjugated molecules consists of molecules composed of a
planar, or possibly planar, π-conjugated backbone appended
with chiral groups, discussed in section 2.1 and exemplified in
Figure 7. We already observed that in such situation the chiral
supramolecular aggregate has very often a characteristic
chiroptical footprint, which is stronger (in terms of gabs) and
more structured than the one of the nonaggregated species. In
the context of ECD spectroscopy, such a footprint is referred
to as aggregate ECD spectrum to point out its specific source
and distinctive properties. Thus, the first and most immediate
information one may extract from aggregate ECD spectra is the
formation of a chiral supramolecular structure,52 characterized
by a degree of helical order which can be semiquantitatively
inferred from the observed gabs. In solution, the formation of
aggregates can be observed directly after dissolution and
mixing or be promoted by addition of a “non-solvent” or while
cooling in variable-temperature measurements, and the
emergence of aggregated ECD signals reveals the occurrence
and extent of aggregation and may be used to follow the
aggregation process in real time or “in-line”. In the form of thin
films, aggregation occurs normally during the deposition
process and/or may be influenced by postdeposition processes
such as solvent or thermal annealing; usually, ECD measure-
ment is run “off-line”. Still, the appearance and intensity of
ECD spectra reveals the degree of helical order reached in the
solid state. Rotation and/or flipping of the thin film
additionally provide an estimation of macroscopic anisotropies
such as LD and LB (see section 2.1.1), while ECD imaging
offers information on the distribution of chiral assemblies
along the film surface (see section 2.1.2).
In solution, aggregate formation may be triggered by several

factors such as concentration, titration, solvent variation,
temperature, pH, etc., which lend themselves for a continuous
monitoring of aggregation; many external stimuli may be
varied directly in the cell or cuvette used for ECD
measurements, thus the kinetics and thermodynamics of
aggregation can be followed quantitatively in real time. One
of the most successful application of ECD spectroscopy of
chiral supramolecular species has been in revealing and
investigating multiple aggregation pathways, for example,
identifying thermodynamically vs kinetically controlled pro-
cesses and metastable aggregation states.32,51 The added value
of ECD with respect to its nonpolarized counterpart lies in the
augmented sensitivity of chiroptical spectroscopies to molec-
ular and supramolecular structures; different aggregate species
may have similar UV−vis spectra but very different ECD
spectra and, very notably, the onset of the aggregate ECD
signal may occur in a different aggregation stage than the
aggregate absorption signal (for example, nucleation vs
prenuclei formation). If so, melting curves and binding

isotherms constructed from ECD and UV data may differ,
providing selective information on the aggregation process.99

Because of the “off-line” character of thin films ECD
measurements, much quantitative information on the processes
leading to aggregate formation and evolution is unfortunately
lost. Still, it is perfectly feasible to measure ECD spectra on
thin films obtained by different deposition techniques, e.g.,
drop casting vs spin-coating, before and after solvent or
thermal annealing, at different annealing intervals, and so on.
Thus, distinct solid-state aggregates associated with different
ECD profiles may easily be evidenced, for example, kinetically
entrapped species vs thermodynamically stable ones. Some-
times, films from the same chemical sample prepared in
different conditions may show or not show ECD variation and
even ECD sign reversal upon flipping because of the LDLB
effect.
An exclusive capability of chiroptical spectroscopies is their

sensitivity to the absolute stereostructure. If chiral molecules
arrange into helical supramolecular structures, the handedness
(left or right) of the helix may be revealed only by a chiroptical
technique such as ECD.100,101 Chiral morphologies such as
twisted ribbons or helical fibers detected by microscopy
techniques (AFM, SEM, and TEM) refer to objects on the
10−100 nm scale.34,35,51,52,54,100,102 ECD spectra, on the other
hand, are dominated by first-neighbor effects, thus they sense
the chirality at the very first level of supramolecular hierarchy,
around 1 nm scale or so, as already mentioned in the
Introduction (see Figure 4). It must be stressed that the
handedness observed at different levels of hierarchy, though
correlated, does not necessarily need to be the same. In other
words, a left-handed first-order supramolecular stack may wrap,
forming right-handed fibers, and vice versa;35,52,54,103 the
correlation depends on the ratio between the first-order helix
pitch and diameter (Figure 12).104,105

Another caveat must be thrust against the very common
belief that a positive ECD band or couplet is necessarily
associated with a right-handed helical supramolecular stack.
That this is in fact a misbelief easily demonstrated by thinking
of the two most outstanding helical structures: right-handed
protein α-helix is associated with a negative ECD couplet in
the peptide π−π* region, while right-handed DNA B-form is

Figure 12. Self-assembly of right-handed helical objects with large (a)
and small (b) pitch/diameter ratio into larger helical objects with left-
handed (a) and right-handed (b) helicity, respectively.
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associated with a positive ECD couplet in the long-wavelength
nucleobase π−π* region. The conundrum is solved by
observing that one must consider not the structural helicity
but rather the helical arrangement between electric transition
dipole moments (TDMs). If we imagine a vertical helical stack
of π-conjugated molecules whose TDMs are arranged radially
to the helix and perpendicular to the axis, like in a spiral
staircase, the ECD response will be dominated by exciton
coupling mechanism, and a right-handed helix is always
associated with a positive ECD couplet, and vice versa (Figure
13a); this is due to the exciton chirality rule (section 2.1). If

the vertical stack is composed of molecules whose TDMs are
oriented tangentially to the helix and at an angle to the vertical
axis, the situation is much less clear-cut and a slight rotation
around the axis may in principle invert the ECD (Figure 13b).
The former geometry corresponds to a twisted H-type
aggregate, while the latter to a twisted J-type aggregate,
which is more prone to provide apparent violations of the
exciton chirality rule.106 Luckily enough, this latter situation is

much less frequent than the former one for most π-conjugated
molecules described in this review. A correct qualitative
application of the exciton chirality method requires looking at
the TDMs from a defined viewpoint;107 only so, for a chiral
stack it holds that a positive helicity of electric transition dipoles
(TDMs) is associated with a positive exciton coupling and vice
versa. Because applications of this kind, namely the assessment
of supramolecular or macromolecular helicity from ECD
spectra, are countless in the literature, we will not provide
specific examples here or in section 3.
Semiquantitative structure predictions are possible from the

analysis of ECD spectra only upon assuming a minimal
theoretical model. As discussed above, aggregated ECD spectra
of conjugated chromophores assembled in helical super-
structures may be assumed to stem chiefly from the exciton
coupling mechanism.61 Exciton theory has been formulated for
multichromophoric arrays since the 1960s by DeVoe and
Hug,108−110 and applied to cylindrical aggregates by Knoester
and co-workers.111,112 Exciton-coupled absorption and ECD
spectra depend on the distance and relative orientation
between the chromophoric units (better said, between their
electric TDMs).61 Hence, at least for ordered supramolecular
assemblies, a straightforward analysis of (chiro)optical spectra
may yield information on the supramolecular structures in
terms of interchromophoric geometry, within a point-dipole
approximation for the interacting TDMs.113−116 Such
approach hardly leads to accurate values, e.g., of distances
and twisting angles for at least two reasons: first, the point-
dipole approximation is very inaccurate for closely packed
extended π-conjugated chromophores because the conjugation
length is of the same size, or even exceeds, the distance
between nearby chromophores;117 second, aggregated (chiro)-
optical spectra of π-conjugated systems very often display
distinctive vibronic progressions in both absorption and ECD
curves which strongly alter their shape (Figure 14),118 due to
the strong coupling between electronic and vibrational
transitions (exciton−phonon coupling) typical of these
systems. The first issue may be solved by a more proper
description of the electronic transitions by means of transition
charges or full transition densities.119−122 The second issue
requires an explicit treatment of electronic-vibrational
coupling. When vibrational progression is not a major feature
of absorption and ECD spectra, the electronic-only excitonic
Hamiltonian needs to be solved for a given aggregate
geometry, which provides a quantitative simulation of
aggregated ECD spectra.123−126 For weak electronic-vibra-
tional couplings,127,128 it is sufficient to consider localized
vibronic excitons instead of electronic excitons, accounting for
the fact that the local electronic excitation on a single
chromophore relaxes through a local nuclear motion.129 For
intermediate or strong couplings, which is in fact the most
common case for aggregated π-conjugated systems, it is
advisible to further include in the excitonic Hamiltonian the
terms necessary to describe the coupling between the vibronic
excitation occurring on one chromophore and vibrational
modes of its neighbors (so-called two-particle states); a single
effective vibrational mode is considered, with phenomenolog-
ically or theoretically derived frequency. This latter approach,
developed by Spano and co-workers,130 achieves an accurate
prediction of aggregated absorption and ECD band-
shapes.120,131,132 The three approaches described above
necessarily require idealized and ordered supramolecular
structures, still they may provide detailed structural informa-

Figure 13. Right-handed helical assemblies of chromophores with
different orientations of their TDMs (represented by the red sticks),
either along the radial (column a) or tangential direction (column b),
each seen by two different views. The bottom drawings highlight the
(a) positive and (b) negative exciton chirality between the TDMs of
first-neighbor chromophores.
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tion, because superstructure parameters such as handedness,
interchromophoric distances, torsion angles, and so on, can be
systematically varied to search for the best agreement with
experimental spectra; in more sophisticated treatments, the
aggregate geometry is sampled by molecular mechanics (MM)
or molecular dynamics (MD).124,133−135 From a more
theoretical viewpoint, these approaches provide information
on various features, such as the assignment of exciton-split
states, extent of exciton delocalization, exciton transfer
dynamics, importance of long-range couplings and of energy
disorder.123,132,136

Any excitonic description of a supramolecular system is
based on the so-called independent systems approximation
(ISA),108 which formally requires a ground-state separation
between the constituent units, and excited-state mixing
modeled only by the through-space coupling of TDMs, thus
neglecting, for instance, charge-transfer states. A full quantum-
mechanics (QM) description of a supramolecular system
would be in principle devoid of any approximation. QM
calculations of ECD spectra have a long history and are
nowadays routine in many fields of research,137,138 especially
employing time-dependent density functional theory (TD-
DFT).139 However, a full-QM description of a “real” aggregate
of π-conjugated systems is still unfeasible, but two solutions are
possible. In the last few years, an intermediate approach is
becoming increasingly popular, based on an exciton decom-
position of multichromophoric systems, whereby each
chromophore is treated by QM methods, in particular TD-
DFT, thus corresponding to a subsystem or fragmentation
formulation of TD-DFT theory.140−142 The method may easily
take into account the effect of environment and is applicable to
the prediction of ECD and CPL spectra of medium-to-large
sized systems. Alternatively, for true full-QM calculations, one
may resort to a simplified model usually constituted by a small
number of monomers, often limited to those necessary to
capture the closest-neighbor interactions. This simplification
does not necessarily imply poor accuracy: good to excellent
agreement between calculated and experimental aggregate
ECD spectra may be observed (Figure 14), which is a
necessary condition to make these full-QM approaches useful
for a wide scope. Possible applications are multiple: accurate
determination of helical handedness, including validation of
exciton-based qualitative approaches;143−145 structural assess-
ments by employing multiple geometries, obtained by

systematic variations or MD sampling;118,146−154 interpretation
of aggregate ECD spectra, for example, disentangling intra-
chain vs interchain mechanisms118,155,156 or monomer chirality
vs supramolecular chirality;157 role of short-range vs long-range
couplings;126,156 visualization of electron−hole pair den-
sities.158 Furthermore, full QM calculations of vibronic spectra
are feasible with the inclusion of multiple vibrational
modes.118,147,155 Finally, and very importantly, the effect of
environment may be modeled accurately.119

2.1.4. Apparent ECD from Chiral Nematic Liquid
Crystals. In our literature survey, the reader will encounter
many examples of thin film ECD spectra measured on liquid
crystal (LC) samples. In fact, it is known that, among other
possibilities, thermotropic liquid crystals may assume a chiral
phase known as chiral nematic (N*-LC) or cholesteric.159,160

The two terms are exchangeable with the former being
recommended nowadays. In the systematic literature overview
in sections 3 and 4, we will use both terms according to the
nomenclature adopted in the papers under review.
The nematic mesophase is characterized by a uniaxial

orientation of molecules, with their main axes oriented parallel
to an axis, called director. In the chiral nematic mesophase, the
director is not fixed but rotates around a twist axis (Figure
15a). A complete 360° rotation of the director around the twist
axis defines the cholesteric pitch p.159,160 According to Bragg’s
theory of reflection, a cholesteric phase reflects light with
wavelength λ0 = np, where n is the (wavelength dependent)
refractive index. Because cholesteric phases have a defined
handedness, they will reflect preferentially CP light of one
sense. A right-handed cholesteric phase will reflect selectively
right CP light and transmit selectively left CP light. This
unbalance of left vs right CP light intensity would determine an
artif icial positive ECD band in the region of the cholesteric
pitch-band λ0 (Figure 15b).

161 It must be underlined that such
a phenomenon has nothing to do with the natural optical
activity discussed so far;162 it is related to differential reflection,
rather than to absorption, although they are both collected as
differential transmission; it is an effect of a chiral medium as a
whole rather than to single molecules (either molecularly
dispersed or in an aggregated state). We will refer to this kind
of optical activity in several ways, such as apparent, nonlocal,
extrinsic, and extensive, according to the terminology adopted in
the literature, although some of the terms are not fully
satisfying. Apparent ECD may be confused with the

Figure 14. (a) Top: model oligothiophene dimer Tn2 (n = 1−4) showing definition of structural parameters r and θ; bottom: structure of poly[3,4-
bis((S)-2-methylbutoxy)thiophene] (PBMBT, 10). (b) Calculated vibronic ECD spectra for dimer T132 at varying torsion angles θ (r = 5 Å). (c)
Comparison between the experimental aggregated ECD spectrum of PBMBT (10) and calculated spectrum for T132 with r = 5 Å and θ = 15 deg,
red-shifted. Adapted from ref 118. Copyright 2016 The Royal Society of Chemistry.
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contribution to CDobs other than the CDiso; nonlocal is also
unfortunate because aggregate ECD spectra are often due to
nonlocal effects, such as long-range exciton coupling. We will
often stress, however, that such apparent ECD is due to the
cholesteric ordering, which is a long-range phenomenon in the
sense that the cholesteric pitches are normally of the order of
hundreds of nanometers, therefore it refers to a mesoscale
property. On the contrary, exciton couplings are strong among
nearest neighbors, and even when they are observed over long
coherence lengths they extend over tens of nanometers.
Most significant is the term extensive, which refers to the fact

that in these samples gabs and glum (see below) values may
depend on the path length, unlike with ordinary samples,
where gabs and glum should be independent of the thickness of
the film, and for this reason they must be defined an intensive
property.
The theories which underpin the apparent optical activity of

N*-LC are due to Good and Karaly163 and De Vries164 and are
valid for optically transparent nonresonant energy regions.
Extensions to resonant regions, where absorption occurs, was
provided by Prasad and co-workers,165,166 Sackmann and co-
workers,167,168 Mason and co-workers,169 and more recently
Ou and Chen.170 In the present context, the absorbing species
is a π-conjugated system from which a chiral nematic phase
may be obtained in various ways: the π-conjugated system is
chiral and forms itself a N*-LC phase; it is achiral and

nonmesogenic and embedded in a N*-LC phase; it is an
achiral mesogen and forms a N*-LC phase by doping with a
chiral dopant. The most commonly encountered π-conjugated
systems with such properties are oligo- and poly(fluorene)s
(see section 3.3.4). In any case, we will be interested in the
ECD bands associated with the π-conjugated system electronic
transitions, not with the cholesteric pitch-band occurring at λ0,
which is associated with Bragg reflection, although the two
phenomena are intertwined as they are both due to the long-
range cholesteric ordering.171 The relation between the
dissymmetry g-factor of the apparent ECD band due to an
achiral dye (i.e., not intrinsically polarized) occurring at
frequency νj, the cholesteric pitch p of the chiral nematic
medium with linear birefringence Δn0, and frequency ν0 = c/λ0
is169
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We use the prime (′) to stress the difference between the
above dissymmetry factor and the one allied with natural
optical activity. In the ECD spectrum, one would observe a
giant band around the wavelength λ0, often exceeding the full
scale of commercial ECD instruments, with positive sign for
right-handed N*-LC, plus the ECD bands due to the dye
electronic transitions at λj = c/νj, whose sign is dictated by
whether the transition frequency νj > or < ν0. It is clear that
this ECD band is only indirectly related to the molecular
chirality. On the other hand, large values of apparent g′abs may
be reached in this manner.171 The apparent ECD depends on
the film thickness in a complex way, which can be
modeled.170,171

Apart from the extrinsic terms, there are other factors which
may contribute to the collected differential transmission from
N*-LC. One is the coupling between linear anisotropies (LD
and LB) typical of the nematic phase;172,173 they also combine
with instrumental imperfections yielding large artifacts.71 The
other one is circular differential scattering (CDS), which will
be more in detail discussed below (section 2.2.1), a
phenomenon which may be especially important in spectral
regions far both from absorption bands and the pitch-band.174

Finally, we wish to highlight a very recent contribution by
Campbell, Fuchter, and others, who argued that ECD spectra
associated with cholesteric orderings are entirely due to natural
optical activity, unless they are globally aligned. This can only
be achieved through the effect of a unidirectional action, for
example, by casting the chiral mesogen onto a rubbed
alignment layer. The authors found evidence that large
chiroptical effects may be associated with a double twist
cylinder blue phase, that is, a phase made up of twisted
polymer chains that form linear fibrils, parallel to the film
surface, which organize into cylinders that pack perpendicular
to one another in the bulk solid phase.175

2.2. Circularly Polarized Luminescence (CPL)

Circularly polarized photoluminescence, more simply known
as circularly polarized luminescence (CPL) or circularly
polarized emission (CPE), is defined as the difference between
the emission of left-handed (IL) and right-handed (IR) CP-light
observed for a nonracemic chiral system after photoexcitation
with nonpolarized light:

= −I ICPL L R (6)

Figure 15. (a) Sketch of a right-handed cholesteric liquid crystal with
definition of the twist and director axes. The (conceptual) layers are
represented by blue disks and the mesogens by prolate objects. (b)
Selective reflection and transmission of CP light from a cholesteric
slab. Notice that the reflected light preserves its handedness, contrary
to what would happen with a mirror.
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Because of the difficulty of measuring absolute emission
intensities, the extent of CPL is more conveniently expressed
in terms of the luminescence dissymmetry factor glum, which is
defined as

=
−

=+( )
g

I I

I

( ) CPL
I Ilum

L R

2

1
2

L R

(7)

where I is the total emission intensity (i.e., the sum of IL and
IR). Interestingly, the factor

1/2 is present in eq 7 to make the
definition of glum consistent with that of the corresponding
dissymmetry factor gabs described for ECD: it is a pure number
ranging between −2 and +2, which corresponds to a total
emission of right- and left-handed CP-light, respectively. To
emphasize the role of the nature of electronic transitions
generating a CPL signal, for an electronic transition i → j glum
is often approximated through the following equation:

μ
θ≅ μg

m
4 cos

ij

ij

mlum ,

(8)

where μij and mij are, respectively, the electric and magnetic
transition dipole moment vectors, while θμ,m is the angle
between them.176,177 From eq 8, it becomes evident that high
glum values can be obtained for magnetic dipole-allowed and
electric dipole-forbidden transitions.
While ECD provides useful information on chiral systems at

their ground state, CPL spectroscopy is a powerful tool for
elucidating both conformational and configurational properties
of chiral structures in their electronic excited states.176−178

According to Kasha’s rule,179 emission normally occurs from
the lowest-lying excited state to the ground state (S1 → S0
transition). Therefore, the large majority of CPL spectra
feature a single band possibly associated with a vibrational fine
structure due to the transition from the first vibrational state (ν
= 0) of S1 to one or more vibrational states (usually restricted
to ν = 0, 1) of S0. More seldom is a second band due to an
anti-Kasha S2 → S0 transition detected. Unless sizable
structural rearrangements occur in the excited state, including
the formation of an excimer, the CPL spectrum parallels the
first (longest wavelength) ECD band both in sign and
dissymmetry factor (meaning that glum ≈ gabs). This is,
however, often not true for thin film samples and more in
general aggregated states, where emission occurs from low-
energy traps reached after exciton migration.22 Although the
earliest measurements of circularly polarized photolumines-
cence were reported by Samoilov et al. about 70 years ago,180

for a long time CPL spectroscopy has been less known and
employed than its absorption counterpart. The combined
requirement of emissive electronic transitions with marked
magnetic dipole character is met for some intraconfigurational
f → f transitions of lanthanide ions, and indeed some chiral
Ln(III) complexes provide extraordinary glum values up to and
sometimes above unity.181 This justifies the relative popularity
of CPL spectroscopy in lanthanide chemistry. In general, for
organic molecules glum hardly exceeds 10−2.182 This is
especially true for π-conjugated molecules whose electronic
transitions have strong electric-dipole character. However, the
self-assembly of π-conjugated molecules into chiral aggregated
structures may increase glum values up to more than 1 order of
magnitude183,184 despite the above-mentioned issue of
fluorescence quenching which can restrict their use as efficient

CPL active materials. More in general, the design of chiral
systems with high glum values is desirable due to their potential
applications in asymmetric photosynthesis,185−187 biomolecu-
lar sensing,188,189 information technology,190−193 and chiral
optoelectronics,37,194 hence in recent years CPL spectroscopy
has been receiving considerable interest.195,196

Commercial CPL instruments have become available only
recently, therefore most CPL instruments operating worldwide
are homemade.178,197 An instrumental setup suitable for
recording CPL spectra of thin films is shown in the upper
part of Figure 16. The film is illuminated with a

monochromatic source, possibly a LED or a laser, or a
polychromatic lamp coupled with a monochromator, often
with 180° geometry. The radiation emitted from the chiral
sample goes through a PEM followed by a 45° linear polarizer,
not shown in the figure for simplicity; in this way, the two
opposite circular polarizations are separated in time. The
wavelength selection is realized by a diffraction grating (G) or
a prism and collected by a photomultiplier tube (PMT). An
alternative setup, introduced more recently for CPL micros-
copy,198,199 makes use of a dichroic mirror (DM) which yields
a final 0° geometry, as shown in the bottom part of Figure 16.
Some technical aspects about CPL measurements are
discussed in the next section.

2.2.1. Artifacts in CPL Measurements Applied to Thin
Films. In CPL spectroscopy, special care should be taken to
avoid the occurrence of false signals; the circularly polarized
component of the emitted light is most often 2−3 orders of
magnitude lower than the total emission intensity, therefore
the true CPL can be easily covered by parasitic signals.
Similar to what was previously described for ECD

spectroscopy, also for CPL the most relevant source of
artifacts comes from the linear polarization of emitted light,
interfering with the unavoidable stray birefringence of the
photoelastic modulator (PEM). Another source of artifacts is
the second harmonic response of the lock-in amplifier. Without

Figure 16. (a) Typical setup of CPL instruments (side view). Legend:
S, monochromatic light source (LED or laser, placed at 180°); PEM,
photoelastic modulator (coupled with a 45° linear polarizer, not
shown for simplicity); G, diffraction grating; PMT, photomultiplier
(detector). (b) Alternative 0° setup (top view) based on the
wavelength-selective reflection by a dichroic mirror (DM), which
reflects the high energy (UV) exciting light but is transparent to the
low energy light emitted by the sample.
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resorting to more complex instrumentation for a complete
investigation of the Mueller matrix, on commercial CPL
instruments sample anisotropies can be recognized, quantified,
and possibly corrected by rotating and flipping the sample with
respect to the instrumental optical axis, i.e., with the same
procedure described above for ECD.
Regrettably, in CPL spectroscopy, there is a further very

relevant source of linear polarization due to the phenomenon
called photoselection, which was first recognized by Steinberg
and Gafni.200 This phenomenon occurs when the irradiated
moiety does not undergo full rotational reorientation in the
time lapse between absorption and emission, thus preserving
part of the polarization of the exciting radiation. The origin of
photoselection artifacts was investigated in the field of the
related technique called fluorescence detected circular
dichroism (FDCD, vide infra) by Tinoco et al.,201 while in
CPL it was described by Shindo et al.202,203 and Dekkers et
al.204 Photoselection is strictly related to the geometry and the
polarization of the exciting radiation with respect to the
detection optics. In isotropic samples, this effect should be null,
using a 0° or 180° geometry between excitation and detection
with an unpolarized exciting light, or a 90° geometry in the
case of an exciting light linearly polarized in the direction of
the emission detection;204,205 alternatively, for this purpose, it
is also possible to opt for so-called “magic angle” instrumental
configurations.201 More recently, Harada and co-workers
developed an analytical procedure, based on the Stokes−
Mueller matrix method approach, for extracting the true CPL
signal in the presence of parasitic artifacts due to linear
polarization;206 this study opened the way to the development,
in 2016, of a solid-state dedicated CPL instrument (CPL-
200CD) able to obtain artifact-free CPL spectra of optically
anisotropic samples.207 The coupling between macroscopic
linear anisotropies such as linearly polarized emission and
linear birefringence may give rise to an apparent CPL signal
similar to what happens for ECD. In the extreme cases,
nonreciprocal CP light emission may be observed, that is, a
sign reversal of CPL spectrum by collecting emitted light from
the two faces of a thin film. The first observation of this
phenomenon has been reported very recently.208

A further artificial contribution to the experimental CPL
signal is often present when ECD and CPL bands partially
overlap: in this case, the emitted left- and right-handed CP-
light may be differently absorbed by the sample itself before
reaching the detector;197 however, corrections for successfully
removing this artifact have been proposed.209,210 In addition, it
is worth recalling that in many cases the luminescence of
organic chromophores can be seriously quenched by
aggregation, which also reflects in CPL and may require
collecting and averaging over many spectra acquisitions.
Another form of spectral overlap which is very likely to
occur in thin films is between CPL and circular differential
scattering (CDS) of radiation (also named circular intensity
differential scattering, CIDS). It has been recognized since
1983 that differential scattering of CP light can provide very
large contribution to ECD spectra of samples whose absorbing
entities approach in size ∼1/20 of the incident wavelength.211

As noticed above, in thin films of polymers cast from solutions,
it is rather common to observe nanometric and even larger
structures which, in the case of chiral polymers, can also retain
macroscopic chirality such as twisted nanoribbons or helical
nanofibers. In fact, ECD spectra of conjugated chiral polymers
in aggregated forms, either in solution or thin films, often

exhibit a typical tailing toward the longer wavelength edge due
to circular differential scattering.212 Because of the wavelength
overlap, CPL is even more severely affected than ECD by CDS
contributions,213 which in extreme cases may lead to sign-
reversal of the emergent CPL upon increasing the film
thickness.214 Unexpected and pronounced dependence of
glum of thin films on the film thickness had been observed
before, but only very recently the phenomenon has been
rationalized in terms of CDS by Fuchter and co-workers after
excluding all other possible sources of artifacts by Mueller
matrix ellipsometry.214

In summary, the measurement of CPL properties in thin
films of chiral systems is much more difficult than of ECD;
extreme care is necessary for obtaining the true CPL signal due
to the many sources of spurious signals described above. Only
the reproducibility of the data recorded on different thin film
samples, and above all the mirror-image of CPL spectra
obtained for the two enantiomers, may rule out the occurrence
of any artifact. Other common practices to test the proper
functioning of CPL instruments is the measurement of achiral
fluorescent samples, which must yield zero-CPL signals, and of
CPL calibration standards.215 While many published papers on
CPL of thin films do report the spectra for the two
enantiomers and discuss reproducibility at some extent, prior
instrumental tests are almost never discussed. As already
mentioned above for ECD spectra, one of the undesired
consequences of the lack of this kind of data is that the
accuracy of reported glum values cannot be independently
evaluated by the reader. This is very important for CPL, where
the quest for large glum values toward the ideal maximum of ±2
is a major motivation of research.

2.2.2. Structural Information from Aggregate CPL
Spectra. While ECD spectroscopy furnishes information on
the (absolute) stereostructure of molecules and more complex
systems in their ground states, CPL senses and furnishes
information on the excited-state geometry. CPL spectra of
organic compounds consist often of a single band allied with
the emission from the lowest-energy excited state. In the most
common situation, the S1 → S0 CPL band has the same sign of
the longest-wavelength ECD band and the respective gabs and
glum are comparable too. This is in general a good indication
that the ground-state and the first excited-state structures are
similar, no sizable structural rearrangement occurs in the
excited state before emission, and excited-state phenomena like
intra/intermolecular excimer formation or electron transfer do
not occur.178,182,216 Such ideal behavior is easily removed in
aggregated states because of several exclusive processes such as
aggregation-induced emission, intermolecular excimer forma-
tion, geometry-dependent generation of dark or bright
excitons, and so on, which make in fact this spectroscopy
very well suited for the study of supramolecular assem-
blies.54,183,184

Because of their intrinsically complex nature, straightforward
spectra-to-structure relationships are generally precluded for
aggregated CPL spectra. General protocols to predict CPL
properties of chiral organic molecules are nowadays available
with full-QM methods,178,217 whose necessary prerequisite is
an excited-state optimization. Therefore, these approaches are
directly applicable only to relatively small and simple systems
such as, among π-conjugated systems, helicenes and
biaryls.217−221 Otherwise, full-QM calculations of CPL spectra
are still too computationally costly for complex systems such as
oligo/polymers, supramolecular aggregates, and assemblies,
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especially in thin films. Similar to the strategy discussed above
for ECD calculations, one may resort to simulate CPL spectra
for suitable molecular models such as a small portion of a
macromolecular chain.218,221 Still, it must be stressed that
several computational protocols described above for the
efficient simulation of aggregated ECD spectra are also viable
for CPL: they include the subsystem formulation of TD-DFT
by Shiraogawa, Mennucci and co-workers,141,142 and the
exciton treatment by Spano and co-workers including the
vibronic-vibrational coupling.131,222,223 These latter works in
particular have demonstrated how bandwidth analysis of
aggregate CPL spectra is a source of information on the
exciton delocalization (coherence) of supramolecular assem-
blies.
2.2.3. Apparent CPL from Chiral Nematic Liquid

Crystals. It has been known for a long time that chiral nematic
(or cholesteric) liquid crystals may exhibit strongly circularly
polarized emission of light.224 Similar to that explained above
for ECD (section 2.1.4), CPL spectra of N*-LC are not due to
preferential emission of one CP light component over the
other, but they are again an apparent phenomenon. When light
absorption and emission occurs at a specific site within a slab
of a cholesteric, this radiation will be again subjected to
preferential circular reflection during its travel inside the slab,
becoming circularly polarized or varying its circular polar-
ization. Thus, the CPL instrument will collect a signal which is
exclusively or largely due to the differential reflection of the
N*-LC, that is, it is due to a chiral medium effect. In analogy to
ECD, we shall call it nonlocal, extrinsic, and extensive. In parallel
to what we said about ECD, glum values may be thickness-
dependent for N*-LC films, and they may reach extraordinary
values approaching the theoretical limit of ±2. The term
nonlocal refers here to the fact that the circular polarization of
the emitted light is allied with the anisotropy of the cholesteric
mesophase and is only marginally related to the polarization of
the emitted light at the site of emission.
On the basis of De Vries’ theory for selective reflection of

CP light by N*-LC,164 first Stegemeyer and co-workers and
then Chen and co-workers, formulated a theory for CPL valid
for spectral region outside the cholesteric pitch-band.224−226

Depending on the geometry of the CPL measurement, the
impact of the N*-LC nature of the medium can be different.
With reference to Figure 16, in a 180° geometry, the light will
go through the whole film thickness: it can be either the high-
energy exciting radiation or the lower energy one due to
luminescence. On the contrary with 0° geometry, the
penetration of the exciting radiation into the film depends
on its transparency at that wavelength, which means that not
necessarily the whole film thickness is responsible for the CPL
(be it true or apparent) phenomenon. The experimental
picture which emerges from several studies of N*-LC is the
existence of two different regimes.213,214,227 At small film
thicknesses (say roughly <100 nm), CPL is dominated by the
intrinsic emission of CP light from local sites; at large film
thicknesses (say roughly >100 nm), CPL is dominated by the
extrinsic effect of the chiral medium. These latter are, in turn,
typically extensive effects, hence the associated g′lum is
thickness-dependent (the prime (′) is here used in analogy
with g′abs). Apart from film thickness, temperature is another
key factor to control the chiroptical response of thin films of
mesogens, not only because one deals with thermotropic
materials but also because thermal annealing is a necessary
preliminary step, without which the N*-LC state cannot be

reached.228,229 We shall see that chiral oligo- and poly-
(fluorene)s are especially prone to exhibiting this kind of
exceptionally intense CPL signals (section 4.2). It must be
stressed that in order to appreciate strong g′lum, relatively thick
films must be employed (100−1000 nm), which naturally
poses a question of scattering effects. In particular, it has been
suggested that CDS can contribute directly to strong nonlocal
CPL signals.213,214

2.3. Vibrational Optical Activity

The term vibrational optical activity (VOA) encompasses a
family of chiroptical techniques based on the interaction
between CP-light and nonracemic chiral molecules which
promotes vibrational transitions. The main representatives of
this family are Raman optical activity (ROA) and vibrational
circular dichroism (VCD), corresponding respectively to
circular polarization of vibrational Raman scattering intensities
and circular dichroism of infrared radiation.58,230,231 Of these,
VCD has been applied sporadically to characterize thin films of
π-conjugated systems. VCD is defined exactly in the same way
as ECD, that is, as the difference between the absorption of
left-handed (AL) and right-handed (AR) CP-light but in the
infrared (IR) region of the electromagnetic spectrum. This is a
powerful technique for the study of chiral substances in
solution, especially because it does not require the presence of
chromophoric units.60,231 Its application to solid samples is
relatively less popular with respect to ECD.232,233 The main
source of artifacts in VCD signals of solid sample is LB, which
can be eliminated by using polarization modulation with two
PEMs, which is available for some commercial instruments.
The reasons why VOA is underexploited in the context of thin
films of π-conjugated systems must be sought in the fact that
these latter samples are naturally best suited for ECD analysis,
due to the intrinsic presence of strong chromophores coupled
with the higher versatility and faster measurement of ECD with
respect to VOA, as well as for the most immediate
interpretation of aggregated ECD spectra (for instance, in
terms of supramolecular helicity) when compared to VCD
spectra. Still, combined use of ECD and VOA spectroscopies
may uncover structural details for π-conjugated systems in
their aggregated states which are not accessible by each single
technique.126 Interestingly enough, the LDLB phenomenon
has been described both experimentally and theoretically for
VCD too.234,235 It is worth mentioning that several proteins
show VCD signals with largely enhanced intensity in their fibril
form, including amyloid fibrils.236−238

From a theoretical viewpoint, a complete prediction of VCD
spectra requires ab initio normal mode calculations,60,231

which, similarly to other full-QM techniques described above,
pose a limit to the molecular size. Furthermore, VCD and
ROA are extremely sensitive to the molecular conformation,
meaning that a thorough conformational sampling is
compulsory before any spectral simulation. When tackling
large and complex systems such as π-conjugated oligo/
polymers and aggregates, one must therefore resort to
considering appropriate models.148,239−248 On the other
hand, fragmentation and correlation schemes are available for
VCD too.249,250 In particular, a series of vibrational oscillators
arranged in an ordered helical packing and allied with a
dominant normal mode (typically, a CO or a CN
stretching) may be analyzed through an exciton-like treat-
ment.126,251−255 The aforementioned phenomenon of en-
hanced VCD in protein fibrils has been successfully modeled
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by means of vibrational exciton coupling theory, demonstrating
that the source of the enhancement lies in the formation of
ordered stacks of protein β-sheet planes.256,257

ROA is a powerful technique with extreme structural
sensitivity,58 which has been thoroughly employed to
characterize biomacromolecules, especially proteins.258 It has
been only rarely applied to π-conjugated systems and, to the
best of our knowledge, never to measure their thin films.259,260

The main disadvantage of ROA lies in its intrinsically weak
signals. When the chiral sample has measurable absorption and
ECD bands in the range of ROA excitation (normally 532
nm), the ROA signal may be increased through the resonance
effect (resonance ROA, RROA), and further enhancement
occurs from the scattering of chiral supramolecular aggregates
(aggregation induced resonance ROA, AIRROA).261,262 This
latter technique is very promising for the study of aggregation
phenomena and supramolecular systems. AIRROA has been
applied by Kaczor and Baranska and co-workers to study
carotenoid assemblies in solution, whereby it demonstrated
strong sensitivity to the nature of the supramolecular
species.262−266

2.4. Other Chiroptical Spectroscopies

Mueller matrix polarimetry (MMP), also known as Mueller
matrix ellipsometry (MME), is a powerful technique for the
characterization of anisotropic materials.267 It consists in the
measurement of all the elements of the 4 × 4 Jones−Mueller
matrix which fully describe the interaction between a sample
and the incident radiation. The transmission Mueller matrix of
a chiral sample contains elements associated with the
quantities CD, LD, LB, CB, LD′, and LB′ (defined in section
2.1.1). As explained in section 2.1.1, simultaneous measure-
ment of the first four quantities is necessary to extract the
CDiso from a CDobs signal measured on an anisotropic
sample.74,78−81 Similar arguments apply to CPL.206 In fact,
most application of MMP on thin films of π-conjugated
systems have the specifying aim of addressing and excluding
the presence of artifacts in CD and CPL signals.268−270 On the
other hand, MMP lends itself as an advanced characterization
tool for thin films, able to provide information on sample
anisotropies and on the source of chiroptical signals,213

including the evaluation of the LDLB effect.73,214 An example
of Mueller matrix element spectra will be presented in section
3.1.1.
In section 2.2.1, we explained that circular differential

scattering (CDS) is a possible source of artifacts in ECD
spectra and especially CPL spectra of samples containing large-
size chiral entities, i.e., approaching the wavelength of incident
radiation. However, CDS may also itself provide structural
information on chiral supramolecular assemblies. Although it is
especially significant for cholesteric phases of liquid crystals,174

it has been used in the characterization of polymer fibrils.212

Moreover, this phenomenon may be used to generate and
modulate emitted CP light.214,271 Other useful chiroptical
techniques to be employed for cholesteric liquid crystals are
circular differential transmission and circular selective
reflection, because these samples may generate ECD signals
falling outside the usual measurement range of commercial
spectropolarimeters.174,213,228,229,272,273

Ellipsometry has been used to reveal the formation of
cholesteric stacks in thin films of oligofluorenes bearing chiral
alkyl side chains at the 9-position. Surface anchoring on
polyimide-treated fused silica substrate determines extraordi-

nary large ECD, up to 12000 mdeg and CPL, which also led to
the fabrication of a CP-OLED, that remained for over a decade
the record CP-electroluminescent device.228,229 The same
fluorene monomer afforded a copolymer with benzothiadia-
zole, leading to a cholesteric phase with very remarkable
differential reflection of CP-light.273

Fluorescence detected circular dichroism (FDCD) is a
technique related to both ECD and CPL: it measures the
differential absorption of CP light, detecting not the trans-
mitted light but the emitted light at a single wavelength upon
excitation at scanned wavelength. It is the chiroptical
counterpart of fluorescence excitation spectroscopy, while
CPL is the chiroptical counterpart of fluorescence emission
spectroscopy. It is very sensitive to interchromophoric
interactions274 and thus it lends itself for the study of π-
conjugated materials in aggregated states, as demonstrated
recently.275 In this report, Lakhwani and co-workers
demonstrated that the comparison between ECD and FDCD
spectra may unveil if the quantum yield of an emissive chiral
aggregate is sensitive to the circular polarization of excitation.
To the best of our knowledge, FDCD has never been applied
to thin films of π-conjugated systems.
Second harmonic generation circular dichroism (SHG-CD)

is the nonlinear analogue of ECD. Upon irradiation of a chiral
surface (usually a thin film or a monolayer) with CP light of
frequency ω, the intensity of the second-harmonic (2ω) light,
either transmitted or reflected, can be different for left- and
right-CP excitation.276 Chiroptical phenomena are enhanced in
nonlinear processes by orders of magnitude, thus SHG-CD is
able to probe the structure of chiral surfaces with high
sensitivity. SHG-CD has been applied to diverse materials such
as plasmonic nanostructures and metamaterials,277 biomole-
cules,278 small molecules, and polymers as monolayers or thin
films.279−282 In sections 3 and 5.2, we will summarize some
applications on purely organic systems, relevant for the present
review. It is worth mentioning that chiral materials, being
inherently noncentrosymmetric, are naturally good candidates
for nonlinear optics (NLO)283 because noncentrosymmetry is
a necessary requirement for the appearance of second-order
nonlinear optical processes, to be achieved both at the
molecular and supramolecular level.276 NLO phenomena of
chiral materials which do not involve the interaction with CP
light will not be covered by the present review.
ECD spectroelectrochemistry is a useful technique for the

characterization of chiral electroactive materials as it allows
following the evolution of ECD spectra upon electrochemical
processes. To the best of our knowledge, it has been applied so
far to thin films of an inherently chiral 3,3′-bithianaphthene.284
Finally, we shortly mention other chiroptical techniques with

possible future applications in the context covered by the
present review, such as hyper-Rayleigh scattering,285 circular
differential reflectance (reflectance CD),272,286 transient
circular dichroism (TrCD) spectroscopy,287−289 and single-
molecule fluorescence-excited CD.290

As we deal with natural optical activity and not with
magneto-optical phenomena, we will overlook magnetic
circular dichroism (MCD) and magneto-chiral dichroism
(MChD), which are based, respectively, on the interaction
between linearly polarized and nonpolarized light with achiral
or chiral systems subjected to a magnetic field.58,291,292 Both
techniques have been employed for the characterization of π-
conjugated systems, especially metalloporphyrin and metal-
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lophthalocyanine derivatives, including a few measurements on
thin films.293−301

Circularly polarized electroluminescence (CP-EL) is strictly
correlated with CPL. In “standard” CPL, excitation occurs via
irradiation, hence it should be properly referred to as circularly
polarized photoluminescence and consequently abbreviated as
CP-PL, which is only rarely met in the literature. In
electroluminescence, on the contrary, excitation from ground
to excited states is promoted by application of an electric field.
If the relaxation process is radiative, for a chiral nonracemic
molecule or aggregate, it can produce CP light; this
phenomenon is therefore dubbed CP-EL. Its importance lies
in the fact that it represents the physical principle under the
development of CP-OLED devices.194 In strict analogy to glum
for CPL, one may define the electroluminescent asymmetry
factor gEL for CP-EL. In our literature survey on CPL of π-
conjugated systems (section 4), we will compare some gEL to
the corresponding glum values for the same specific system.

3. ECD PROPERTIES IN THIN FILMS OF
π-CONJUGATED SYSTEMS: LITERATURE
OVERVIEW

The growing interest of ECD spectroscopy in the character-
ization of thin films of chiral π-conjugated systems is confirmed
by the exponentially increasing number of research articles
related to this topic. Although a complete overview of the
existing literature is far from trivial due to the variety of factors
affecting ECD properties, in this section we shall try to
organize it as a function of the molecular size: first we shall
analyze thin films of π-conjugated small molecules (or at least
bearing π-conjugated units), neat or dispersed in a matrix; then
we shall focus on larger π-conjugated molecular systems (e.g.,
macrocycles or dendrimers); finally, we shall consider thin
films of π-conjugated oligomers and polymers, emphasizing
their most important classes. Then, we will also briefly focus on
the application of ECD imaging techniques to study local
supramolecular structures in thin films of π-conjugated
systems. We will cover in the present review organic
compounds, thus excluding systems where metal ions play a
key structural or spectroscopic role (e.g., coordination
polymers and metal organic frameworks) and biomacromole-
cules such as nucleic acids, although they contain π-conjugated
units.
According to eq 4, here we shall distinguish between

samples showing exclusively CDiso and samples with a
significant LDLB contribution. Unfortunately, the wide
literature on this topic does not always display the due care
in the measurement of ECD spectra and often the simple
experiment of sample flipping to reveal LDLB is not reported.
For this reason, in many cases described below, we cannot be
sure that one deals with CDiso, ruling out linear anisotropies
effects. We will especially highlight systems providing strong
chiroptical responses, i.e., high values of gabs and glum. Finally,
we will emphasize structure-to-spectra relationships, focusing
our attention on the kind of structural information one may
derive from thin film ECD, CPL, and other chiroptical spectra.

3.1. ECD in Thin Films of π-Conjugated Small Molecules

Because the ECD properties of many classes of π-conjugated
small molecules have been intensively studied in thin films, it
may be useful here to distinguish them between species with
molecular chirality (directly into the π-conjugated scaffold or
in substituents attached to it) and achiral π-conjugated systems

able to generate induced ECD signal as thin films in specific
conditions.

3.1.1. ECD in Thin Films of Chiral π-Conjugated Small
Molecules. The chiroptical properties of several classes of
small molecules with a chiral π-conjugated scaffold were
investigated in thin films: helicenes and analogues (helical
chirality), 2,2′-substituted-1,1′-binaphthyl-based compounds
(axial chirality), and calix[4]arene derivatives or bowl-shaped
molecules (inherent chirality).
In 1999, Katz et al. described the synthesis and resolution of

[6]helicenebisquinone derivative 11, which was spectroscopi-
cally characterized both in solution and in solid state.302 In
particular, thin films of (−)-11 prepared by spin-coating from a
10−3 M solution in octane revealed quite intense ECD signals,
with maximum gabs values of 1.2 × 10−2 at 252 nm and −9.8 ×
10−3 at 350 nm (Figure 17), attributable to the supramolecular

organization into helical columnar aggregates, in which
molecules are stacked along their helix axes. A very similar
ECD profile, although with lower signals (gabs

max = 7.5 × 10−3

at 240 nm), was obtained in Langmuir−Blodgett films of
11,303 which instead have also shown a remarkable nonlinear
optical activity in SHG-CD measurements.304 In both cases,
the authors excluded the presence of artifacts by measuring
ECD spectra at different rotation angles (through successive
30° increments), but no test of sample flipping was reported.
In the same year, Miyashita and colleagues reported the
preparation of Langmuir−Blodgett thin films for a set of
optically active 1,12-dimethylbenzo[c]phenanthrene-5,8-dia-
mides; the study revealed that a cyclic diamide structure is
essential for obtaining stable monolayers, with good chiroptical
properties.305,306

A renewed interest in the chiroptical properties of helical π-
conjugated molecules as thin films has emerged in the last few
years. Among these systems, a central role is played by 1-
aza[6]helicene (12, Figure 18), intensively studied by
Campbell and Fuchter as chiral semiconductor for the
development of CP-light detectors307 and emitters.308 At
first, they focused the attention on the neat material; thin films

Figure 17. ECD spectrum of the enantiopure [6]helicenebisquinone
(−)-11 as thin film prepared by spin-coating from a 10−3 M solution
in n-octane. Adapted with permission from ref 302. Copyright 1999
American Chemical Society.
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prepared by spin-coating from a 15 mg/mL toluene solution of
12 and thermally annealed (30 min at 110 °C) revealed ECD
spectra with a single strong band at around 350 nm.307 An
organic circularly polarized field effect transistor (CP-OFET)
was constructed using 12 in the semiconductive active layer
(Figure 19); when (+)-12 was employed, the device showed a

response to right-handed CP light, while when (−)-12 was
employed, the OFET responded to right-handed CP light. The
authors then investigated the ECD properties of 12 as blended
into a poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT)
matrix: in addition to the signal at 350 nm related to the
helicene chromophore, here an intense band at around 450 nm
corresponding to the absorption of achiral F8BT was found.
Interestingly, the strength of this induced ECD signal increased
with the amount of chiral additive: for samples with only 7 wt
% of (+)-12, the gabs at 450 nm was 3.0 × 10−2, while it
reached the very large value of 2.0 × 10−1 for blends with 53 wt
% of (+)-12 (Figure 18).308 Very recently, a more detailed
investigation on spin-casted samples of F8BT blended with 10
wt % of (+)-12 was performed; if freshly prepared films
showed only weak ECD (which is characteristic of neat 1-
aza[6]helicene), after thermal annealing a significant increase

of ECD bands was found, with maximum gabs value of 0.86 (at
490 nm); interestingly enough, the occurrence of LDLB and
other artifact contributions was ruled out by observing no
changes in the ECD spectrum upon sample rotation and
flipping.214 Because samples were annealed above the F8BT
glass transition temperature, making the polymer backbone
more flexible and the 1-aza[6]helicene more mobile within the
blend, the authors hypothesized that F8BT chains became
twisted with a preferential handedness depending on the
helicity of 12. The same system exhibited peculiar CPL spectra
including a thickness-dependent sign reversal of CPL signal, as
will be discussed in section 4.2, which was attributed to circular
differential scattering (CDS, see section 2.2.1).
Recently, Crassous and collaborators studied in detail the

chiroptical properties of thin films of several helicene-type
molecules. In 2016, they reported the synthesis of biaryl
derivative 13 in enantiopure form (Figure 20a) and the

characterization of thin films prepared by pulsed laser
deposition (PLD) technique.309 The obtained samples were
homogeneous, with no birefringent domains or microscopic
defects and with a very smooth surface (a roughness of about 2
nm was measured by AFM analysis), while their ECD spectra
were found to be very similar to the one observed in solution.
Therefore, the authors hypothesized that the solid-state ECD
response arose from the single helical molecules rather than
from chiral intermolecular interactions between neighboring
molecules in the films.
In a following work, they analyzed spin-coated thin films of

the naphthalimide end-capped [6]helicene 14 in both
enantiopure forms (Figure 20b), as neat material and in
blend with a poly(3-hexylthiophene) (P3HT) matrix, for the
development of organic photovoltaic devices.310 The ECD
spectrum of neat (+)-14 showed quite a complex profile,
consisting in a negative band at around 310 nm and a set of
positive bands with maxima at around 360, 420, and 445 nm. A
very similar shape was then observed in the ECD spectrum of
(+)-14/P3HT blend, with no induced signals corresponding
with the P3HT transitions; this excluded any chiral supra-
molecular organization of the achiral polymer due to the
presence of the enantiopure additive 14. Very recently,
Crassous and colleagues shifted their attention on the
electrochemistry of carbo[n]helicenes (n = 5,6,7), investigating

Figure 18. ECD spectra of F8BT doped with 7 wt % of enantiopure
(+)-1-aza[6]helicene (+)-12 (blue line) or 53 wt % of (+)-12 (red
line) as thin films prepared by spin-coating. Adapted with permission
from ref 308. Copyright 2013 John Wiley and Sons.

Figure 19. Scheme of the CP light-detecting OFET constructed by
Fuchter and co-workers,307 in which the active organic semiconductor
material is (+)-12 or (−)-12.

Figure 20. Chemical structure of some helicene-type molecules
recently investigated as thin films by Crassous and collaborators: (a)
helical dibenzo[c]acridine 13, (b) naphthalimide end-capped [6]-
helicene 14.
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absorbance and ECD spectra of layers obtained by anodic
electrodeposition technique.311

Because of the relatively small molecular size and the
reduced flexibility typical of helicene-like systems, they have
been the subject of much theoretical work aimed at
reproducing and interpreting ECD spectra.138 Although in
most cases, solution ECD spectra are investigated, these
studies are relevant for the present review because the
chiroptical response of helicene-like and other intrinsically
chiral systems is mainly of a molecular, rather than supra-
molecular, origin. Autschbach and co-workers309,312,313 and
other groups217 have applied in particular TD-DFT calcu-
lations to carbohelicenes and, notably, to metallohelicenes (not
covered by the present review).314 Grimme and co-workers
have developed fast computational procedures such as
simplified TD-DFT (sTD-DFT) and simplified Tamm−
Dancoff approximation (sTDA) which allow calculations on
medium-size systems up to [16]helicene.315−317 Santoro and
co-workers have simulated vibronic ECD spectra of several
hexahelicene derivatives.219 In all of the cases above, single
molecules have been considered in the calculations, which
were able to reproduce ECD spectra with great accuracy even
for fine details.
A very singular work concerning one-dimensional fibril films

formation of oxymethylene[4]helicene small oligomers at the
liquid−solid interface was reported in 2015 by the Yamaguchi’s
group:318 a pseudoenantiomeric mixture of the (P)-pentamer
and (M)-hexamer in trifluoromethylbenzene as solvent, after
cooling at 5 °C for 180 min, self-assembled into hetero-
aggregates to give a fibril film on the quartz cell surface. If the
removed liquid phase showed only weak ECD signals (no sign
of heteroaggregation in solution), the one-dimensional film
exhibited quite strong Cotton effects. In a following paper, the
same authors described a similar phenomenon for a
pseudoenantiomeric 1:1 mixture of the (M)-tetramer of an
ethynyl[4]helicene with C16 terminal groups 15 and the (P)-
pentamer of an ethynyl[4]helicene having trimethylsilyl
terminal groups 16: in toluene solution, it self-assembled
into heterodouble-helices, which are able to form lyotropic
liquid crystal gels at high concentrations; on evaporating the
solvent after drop casting, a long-range anisotropic structural
film was obtained (Figure 21), showing broad negative and
positive Cotton effects at 300−400 and 400−450 nm,
respectively.319

In 2018, Iimura et al. reported a detailed investigation on the
helically distorted [1,1′-bibenzo[c]phenanthrene]-2,2′-diol
(HEBPOL): thanks to the amphiphilic character arising from
the presence of both hydrophobic aromatic rings and
hydrophilic −OH groups, it is able to form stable layers at
the air−water interface, which were transferred to solid
substrates by Langmuir−Blodgett technique; the ECD proper-
ties of the obtained films were then investigated and compared
with those of spin-coated samples.320 Very recently, Stary ́ and
co-workers studied the ECD properties of highly enantioen-
riched 3-methoxycarbonyl, 3-carboxy, and 3-hydroxymethyl
derivatives of dibenzo[6]helicene as Langmuir−Blodgett films,
discussing the impact of molecular chirality and chemical
nature of the polar group (i.e., ester vs carboxyl vs hydroxyl)
on the self-assembly at the air−water interface.321
Although 1,1′-binaphthyl derivatives (and other similar

biaryl compounds with axial chirality) have represented a
milestone in the field of solution ECD measurements
(especially for conformational analysis),56 for a long time the
chiroptical investigation of their thin films was only little
considered; some papers describing second-harmonic gener-
ation circular dichroism (SHG-CD) experiments of enantio-
pure 1,1′-bi-2-naphthol (BINOL) monolayers at the air/quartz
surface were published in 1994 by Hicks and co-work-
ers,279,322,323 while in 2005 a similar SHG-CD study was
performed by Conboy et al. on Langmuir−Blodgett−Schaefer
thin films of (S)- and (R)-BINOL.324 However, in the last 10
years, the ECD study of 1,1′-binaphthyl derivatives in thin
films gained considerable interest.
In 2009, Guy et al. investigated the pulsed laser deposition

(PLD) technique to obtain highly isotropic thin films of 2′-
methylene-bridged 1,1′-binaphthol, studying the impact of the
laser fluence on the ECD spectrum;325 in particular, the
authors excluded the occurrence of artifacts verifying the film
isotropy, as confirmed by negligible variations of the ECD
signals for measurements at different sample orientations. Thin
film ECD spectra showed moderate to pronounced deviations
from the solution spectrum, which depended on the laser
fluence and was attributed to intermolecular effects made
possible in the solid state between densely packed molecules.
The investigation was then extended through a more
systematic study performed on a large set of chiral binaphthol
derivatives.326 A combination of experiments and single-
molecule theoretical studies of many photophysical properties
(including ECD) was described for spin-coated thin films of

Figure 21. Chemical structure of ethynyl[4]helicene-based tetramer (M)-15 and pentamer (P)-16 studied by Yamaguchi’s group and schematic
representation of the heterodouble-helices, lyotropic liquid crystal gels, and long-range anisotropic structural films formation. Adapted with
permission from ref 319. Copyright 2019 American Chemical Society.
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6,6′-dibromo-2,2′-bis(octyloxy)-1,1′-binaphthyl.327 The ECD
properties in thin films of 1,1′-binaphthyl systems bearing
other π-conjugated substituents have also been reported,
including perylene328 and pyrene units,329 naphthalene diimide
derivatives,330 donor−acceptor-type groups,331 and bridged
terephthalonitrile portions.332 In these works, the 1,1′-
binaphthyl acts as a chiral scaffold which dictates the geometry
between the π-conjugated substituents, allowing one to
investigate the response of various properties.
The synthesis and spectroscopic characterization of several

azobenzene-containing enantiopure 1,1′-binaphthyl derivatives
has been reported by Kawamoto and colleagues.333,334

Interestingly, these compounds exhibited a trans−cis photo-
isomerization of azobenzene moiety in spin-coated thin films,
resulting in significant changes of both absorbance and ECD
intensities (up to 100 mdeg μm−1) at selected wavelengths,
together with a substantial modification of the molecular
orientation. In particular, the evolution of the signals associated
with the 1,1′-binaphthyl moiety was attributed to changes in
the dihedral angle between naphthalene rings. A different
example of biaryl-based chiroptical switches in thin films was
developed by Putala et al., consisting in the 10,10′-bi(naphtho-
[2,3-b]pyran) derivative (R)-17; after irradiation with UV light
at 313 nm for 1 h, a clear increase of ECD intensity was found
for samples of (R)-17 dispersed in polystyrene films (about
100 mdeg at 308 nm), fully reversible after heating at 70 °C for
8 min (Figure 22).335 In this case, the changes are allied with a
chemical transformation rather than a conformational rear-
rangement.

Imai and Fujiki’s groups gave the most important
contribution to the understanding of chiroptical properties of
1,1′-binaphthyl-based small molecules in the solid state (Figure
23). They first studied the 2,2′-dialkoxy-substituted derivatives
18−20 dispersed in KBr and KCl matrices and in poly(methyl
methacrylate) (PMMA) thin films, exhibiting ECD bands
below 380 nm with maximum gabs values up to ±2 ×
10−3.336,337 Solid-state ECD spectra were consistent with those
measured in solution as well as with that estimated with single-
molecule TD-DFT calculations. This observation let the
authors conclude that all the spectra result from the
intramolecular exciton coupling between the naphthalene
rings rather than from intermolecular couplings between

distinct molecules. If binaphthyl-crown ether-bispyrene 21
showed lower ECD signals (|gabs

max| = 5.9 × 10−5 at 343 nm) as
a blend in PMMA films,338 a clear improvement was found for
1,1′-binaphthyl-containing hydrogen phosphate 22 and
phosphoramidite 23; in particular, films of their dispersions
in an achiral myo-inositol-containing polyurethane revealed
stronger ECD signals (gabs

max = 1.9 × 10−3 at 326 nm for (R)-
22 and 2.7 × 10−3 at 331 nm for (R)-23) compared to the
corresponding samples in a PMMA matrix (gabs

max = 1.5 × 10−3

at 325 nm for (R)-22 and 1.3 × 10−3 at 325 nm for (R)-23).339

The authors then extended their chiroptical investigations to
the biaryl-based hydrogen phosphates 24−25 and the
triphenylsilyl-containing 1,1′-binaphthyl 26−27,340,341 and
more recently also to chiral rotatable oligonaphthyl derivatives,
in order to obtain a shift of the ECD signals to longer
wavelengths.342 By comparing in particular the 1,1′- and 2,2′-
binaphthyl compounds 22 and 24, the authors stressed how
these analogues displayed substantially different ECD spectra
although the estimated dihedral angles between naphthalene
rings were similar. This is not surprising because the reciprocal
orientation between the relevant TDMs is obviously different
in the two cases. Interestingly, in these works, ECD spectra
were recorded at eight different rotation angles θ (i.e., by
successive 45° increments) in order to exclude the presence of
artifacts; however, no ECD measurements upon sample
flipping were reported. Unusually high dissymmetry gabs values
(±6.5 × 10−2 at 342 nm) were instead found for drop-casted
films of helical nanostructures consisting of an enantiopure
anionic 1,1′-binaphthyl system connected to an achiral cationic
tetraphenylethylene (TPE) derivative.343 In 2019, the same
group described remarkable aggregation-induced ECD signals
in both solution and spin-coated thin films of chiral binaphthyl
dyes bearing TPE units.344

Very recently, Kartouzian and co-workers reported an
interesting work on the circular dichroism, in the ultraviolet
and visible regions, of BINOL as thin film prepared by
evaporation on the glass substrate under high vacuum; in
particular, looking for a polarity reversal of ellipticity (PRE)
effect (which is in fact related to the LDLB term according to
our nomenclature), ECD spectra were recorded for both front
and back side, as well as upon sample rotation, at different
times from thin film preparation.73 If the freshly prepared film
of (R)-BINOL showed only true circular dichroism, with a
positive band in the range 300−340 nm and a negative signal
between 340 and 360 nm, below room temperature, the
sample underwent a slow structural phase transition into a
smectic mesophase with focal conic domains of radial
symmetry seen by cross-polarization microscopy, characterized
by the progressive appearance of an LDLB contribution at the
low energy absorption band (until almost complete sign
inversion upon sample flipping, observed in 3 days after film
preparation). The time evolution of thin-film ECD spectra of
BINOL is displayed in Figure 24. Further investigations were
then performed on SHG-CD experiments,345,346 showing that
the films are also optically active in the nonlinear regime. By
analyzing the various terms associated with ECD of anisotropic
samples, the authors speculated if the PRE effect could be due
to what we call the LDLB term (eq 4 in section 2.1.1). They
however concluded that the observed PRE cannot not be
explained by this term because the radial symmetry associated
cannot cause large enough LD and LB.73 In the interpretation
of a similar phenomenon for oligothiophenes, however, Di Bari
and co-workers stressed that the occurrence of locally

Figure 22. Reversible chiroptical switch of the biaryl derivative (R)-
17 dispersed in polystyrene thin films developed by Putala et al.
Adapted with permission from ref 335. Copyright 2010 Centre
National de la Recherche Scientifique (CNRS) and The Royal Society
of Chemistry.
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anisotropic and birefringent domains, for which the LDLB
term is consistent from one domain to another, leads to an
overall strong LDLB term, even if the average LD and LB
quantities may be negligible (see discussion in section
3.3.5).347,348 A different interpretation might involve CDS,
which provides an apparent major contribution to the ECD
spectra of aged samples reported by Kartouzian and co-
workers, which are defined as milky and white by eye.73

The ECD properties in thin films of π-conjugated systems
with inherent chirality have been poorly investigated to date.

The studies mainly focused on molecular recognition experi-
ments at the air/water interface for Langmuir−Blodgett layers
of calix[4]arene derivatives349−351 and Langmuir−Schaf̈er films
of calix[4]pyrroles.352 However, in 2016, Yamamura et al.
reported an interesting work of chiroptical switching in thin
films of an inherently chiral bowl-shaped molecule caused by a
crystalline/liquid crystalline phase transition.353

As described above, chirality can be more easily introduced
in π-conjugated small molecules by functionalization with
enantiopure substituents available from natural sources,

Figure 23. Chemical structure of the 1,1′-binaphthyl-based small molecules 18−27 whose chiroptical properties in thin film dispersions were
investigated by Imai and Fujiki’s groups.

Figure 24. ECD spectra of BINOL measured in EtOH solution (a) and as thin film at various time intervals after deposition on glass windows
(borosilicate optical glass, BK7) with “front” and “back” illumination (see Figure 9 in section 2.1.1 for definition). Adapted with permission from
ref 73. Copyright 2019 John Wiley and Sons.
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especially α-amino acid derivatives and chiral alkyl groups.
Many of these systems have been intensively investigated as
thin films through spectroscopic and microscopic techniques,
including ECD.
In 1992, Ikeda and collaborators described the first

application of ECD spectroscopy to thin films of aromatic
compounds decorated with α-amino acids derivatives, i.e.,
Langmuir−Blodgett layers of N-stearoyl-L-lysyl-L-1-naphthyla-
lanine methylester; in particular, the authors found different
Cotton effects for X-type and Y-type films, i.e., with molecules
organized into a head-to-tail or a head-to-head structure,
respectively.354 A similar study was then performed on the
octadecylesters of many aromatic enantiopure α-amino
acids.355,356 ECD measurements have been also used by
Liu’s group to characterize the Langmuir−Blodgett films of
1,3,5-trimesyl-tri-L-glutamic acid hexaester (TMGE), which
can assemble into nanoribbons357 or hexagonal nanotubes358

depending on the experimental conditions and, more recently,
Langmuir−Blodgett layers of N,N′-bis(octadecyl)-(L/D)-(an-
thracene-9-carboxamido)-glutamic diamide, which was found
arranged in H-aggregates at the air/water interface.359 In 2006,
Faul and colleagues described instead the synthesis and
characterization of liquid-crystalline ionically self-assembled
materials, obtained by complexation of an anionic PDI with
cationic L-lysine-based chiral surfactants; the properties of spin-
casted films were investigated by a variety of techniques,
including ECD spectroscopy.360

In the last few years, others π-conjugated small molecules
with α-amino acids derivatives have been investigated in thin
films, focusing on their chiroptical properties much more than
in the past: a pyrene-functionalized L-glutamide dye dispersed
in a polystyrene matrix,361 cyclic-dipeptide-functionalized
naphthalenediimides,362 poly(ethylene-co-vinylacetate) thin
films incorporating pyrene-functionalized didodecyl-L/D-gluta-
mide,363 and TPE derivatives containing one L-leucine methyl
ester moiety,364 two L-leucine methyl ester groups,365 or one/
two L-valine methyl ester attachments.366 In particular, Schiek
et al. provided a detailed phenomenological study on the ECD
effects for spin-coated thin films of the L-prolinol-containing
squaraines 28−29 (Figure 25), as neat material and in
fullerene blends; all the ECD spectra showed two main
bands, one (between 500 and 600 nm) related to H-aggregates
and the other (centerd at around 750 nm) due to J-aggregates,
with strong dissymmetry gabs factor values: up to −2.5 × 10−2

for 28 and −6.6 × 10−2 for 29.367 Interestingly enough,

solution aggregates promoted by standard solvophobicity
experiments (addition of the “non-solvent” acetonitrile to
chloroform solutions) displayed only the H-type signature (gabs
up to 4 × 10−2) but not the J-type one. In all cases, the
aggregate ECD spectra were of exciton-coupled type, although
very distorted from symmetric exciton couplets. This is
possibly due to a combination of intrachain and interchain
effects, namely the formation of helical supramolecular
packings between intrinsically twisted squaraine units. The
richness of ECD patterns observed in various conditions
(solution with different solvent mixtures, solid state after
different annealing procedures, neat samples or blends) were
consistent with the existence of multiple aggregated species.367

In a following paper, the same authors discovered the
outstanding gabs value of +0.75 for thin film samples of
squaraine 29 prepared by spin-coating from chloroform
solution and thermally annealed at 180 °C for 90 min.269 It
was stressed that this value outstands most literature gabs values
for compounds devoid of mesoscopic ordering. Very recently,
squaraine 28 was blended with a conventional fullerene
acceptor (phenyl-C61-butyric acid methyl ester, PCBM) in a
2:3 mass ratio to act as photoactive layer in a conventional bulk
heterojunction photodiode; however, in order to characterize
its (chiro)optical properties, thin films were also prepared on
glass substrates with the same parameters used for devices,
showing maximum gabs value (at 545 nm) of +0.08 and −0.09
for the (R,R)- and (S,S)-enantiomer, respectively.270 The
origin of these giant ECD signals was accurately probed by
complete determination of all the Mueller matrix elements,
which excluded any occurrence of pseudo CD effects
originating from cross-terms between linear dichroism and
linear birefringence (i.e., LDLB contribution) as well as other
artifacts due to mesoscopic structural ordering effects. The
optical spectra corresponding to the Mueller matrix elements
measured for the thin film of squaraine 29 are shown in Figure
26. They display the typical symmetrical (or antisymmetrical,
upon sign reversal) appearance with respect to the diagonal. In
this case, the circular anisotropies (CD and CB) were orders of
magnitude stronger than the linear anisotropies (LD and LB).
This was in coincidence with the microscopic inspections,
which did not reveal linear morphologies or birefringent
domains for the films. The exceptionally strong recorded ECD
signal, whose ellipticity exceeded 1°, was thus validated; LDLB
contributions were further excluded by sample flipping. Finally,
the aforementioned exceptional value of gabs = +0.75 value was
estimated by a linear regression upon varying the film thickness
and after a correction accounting for reflection losses.269 It
should be noticed that although this latter procedure is
legitimate, it is not commonly followed; the vast majority of
the absorbance data present in the literature are not corrected
for reflection losses and are consequently overestimated, which
leads in turn to an underestimation of gabs factors. In the case
reported by Schiek and co-workers, this correction has the
effect of very remarkably rising gabs.
Many enantiopure alkyl-based groups have been used as

source of chirality in π-conjugated small molecules, whose
chiroptical properties were then investigated in thin films:
branched chains such as sec-butyl,368 2-methyl-1-butyl,369−371

3,7-dimethyl-1-octyl,372,373 4,8-dimethyl-1-nonyl374 or β-citro-
nellyl,375 and (poly)cyclic moieties including cyclohexyl376 or
cholesteryl377−379 derivatives. Fujimori and co-workers have
investigated the spontaneous growth of helical fibers of
amphiphilic diamide380 or triamide381 derivatives, containing

Figure 25. Chemical structure of the L-prolinol-containing squaraines
28−29 studied by Schiek et al., exhibiting giant ECD signals in spin-
coated thin films after thermal annealing.
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long-chain hydrocarbons with asymmetric centers (such as 12-
hydroxystearyl or 12-hydroxyoctadecyl chains): as confirmed
by SEM, TEM, and AFM microscopy techniques, homoge-
neous helical fibers were formed in spin-cast films, which
exhibited strong Cotton effects in the ECD spectra.
Furthermore, a moderate LDLB contribution was very recently
reported for drop-casted thin films of a π-conjugated
chromophore, consisting in a rigid amide linkage core with a
cholesterol moiety at one end and two long aliphatic chains at
the other; in fact, some perfectly reproducible changes in the
ECD profile were found only upon sample flipping, with a

dissymmetry factor gabs value of −(1.92 ± 0.063) × 10−3 at 415
nm.382

Perylene diimides (PDIs, also known as perylene bisimides
or PBIs) substituted with stereodefined chiral pendants are a
very common structural motif in the construction of chiral
supramolecular assemblies, developed especially by Würthner
and co-workers.383,384 ECD is a tool of choice for the
characterization of these systems because the strong electric-
dipole allowed transitions of the perylene chromophore, in
combination with the typical staircase arrangement (promoted
by π−π stacking) observed in the supramolecular assemblies,

Figure 26. Mueller matrix spectroscopy of squaraine 29 as thin film annealed at 180 °C with 20 nm film thickness. The magnitude of matrix
elements is in units of radian. Reproduced from ref 269. Creative Commons Attribution 4.0 International License, 2018 Springer Nature.

Figure 27. (a) ECD spectra of 30 in aqueous solution at various concentrations (2.5 × 10−6 to 5 × 10−5 M) and room temperature. (b) ECD
spectra of film of 30 cast from water (blue line) and methanol (red line). (c) Models of aggregates of 30 with opposite helicities. The white stick
indicates the direction of the TDM for the major π−π* transition of PDI, observed around 525 nm. A right-handed helix is allied with a positive
chirality between TDMs of neighboring dyes and generates a positive ECD exciton couplet. Adapted with permission from ref 385. Copyright 2015
John Wiley and Sons.
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often generates intense exciton-coupled ECD spectra.
Aggregate absorption and ECD spectra of PDIs show a
characteristic vibronic pattern where four different vibronic
transitions are usually apparent (from 0−0 to 0−3) around
500 nm, resulting from the coupling of the lowest-energy
electronic transition with a “breathing” normal mode of the
perylene ring with frequency ∼1400 cm−1. Because of the large
excitonic splitting observed, ECD exciton couplets remain fully
recognizable in these spectra, and their sign can be
immediately correlated with the supramolecular helicity: a
positive couplet corresponds to a right-handed staircase-like
arrangement, and vice versa. A prototypical case of PDI
derivative aggregating in solution and as thin film has been
described by Echue et al. concerning N,N′-bis[2-(trimethy-
lammonium)-3-(phenyl)propyl]perylene diimide (30, Figure
27).385 This compound easily undergoes aggregation in various
solvents, including water, controlled by concentration and
temperature. At 2.5 × 10−6 M concentration in water, the
system is ECD-silent (Figure 27a); in this situation, the dye is
molecularly dispersed in solution, and its ECD is very weak
because the chiral pendant exerts a remote chiral perturbation
on the π−π* transitions of the PDI chromophore (see
discussion in section 2.1). If the concentration is raised to 5 ×
10−5 M, aggregation occurs, as witnessed by the appearance of
moderately intense bisignate ECD spectra, allied to exciton
coupling involving two or more PDI moieties (Figure 27a).
The spectrum features positive extrema at 575 and 540 nm,
and negative extrema at 510 and 485 nm, corresponding
respectively to the positive and negative branch of an exciton
couplet with vibronic pattern. This ECD signal is strongly
diminished by raising the temperature to 85 °C, which
destroys the aggregates. Films cast from DMSO and water gave
ECD spectra consistent with those observed in aqueous
solution (Figure 27b); in both cases, positive exciton couplets,
with positive extrema at 570 and 535 nm and negative ones at
495 and 480 nm, are indicative of a right-handed supra-
molecular arrangement (Figure 27c). Interestingly enough,
however, films cast from methanol displayed a negative and
less intense couplet, with negative extrema at 590 and 555 nm
and positive ones at 505 and 445 nm, demonstrating the
formation of left-handed and possibly looser helical assembly
(Figure 27b,c). The authors proposed that casting the film
from methanol, a low boiling-point solvent, promotes the
formation of aggregates through a kinetically controlled

pathway, while aggregates observed in solutions and in films
casted from higher boiling solvents would reach the
thermodynamically stable situation.
The correlation between the sign of ECD and supra-

molecular helicity has been exploited also for other PDI
derivatives, including the noteworthy case reported by Roche
et al.,372 which will be further discussed in sections 3.3.3 and
3.4. This qualitative expectation has been substantiated by
various theoretical studies, mostly based on the exciton
approach, devoted to PDIs and structurally related com-
pounds.122,136,386,387 Not surprisingly, these studies have
demonstrated that a subtle change in the interchromophoric
geometry may have a large impact on exciton-coupled ECD
spectra, thus witnessing the pronounced structure dependence
of chiroptical signals.
Very interesting among PDI derivatives is the case of the

chiral N,N′-bis(1-phenylethyl)perylene-3,4,9,10-tetracarboxylic
diimide 31 described by Oh et al., where supramolecular
organization played a fundamental role in the development of
chiroptical features: the gabs values recorded for drop-casted
layers of self-assembled nanowires of (S,S)-31 (fabricated by a
solution-processed bilayer method) were almost 1 order of
magnitude larger than thin films obtained through high-
vacuum evaporation, in which molecules assumed a different
organization (Figure 28).388 Although SEM and TEM images
of the nanowires did not evidence any twisted or helical
morphology, the crystal structure of (S,S)-31 clearly displayed
a supramolecular chiral arrangement (Figure 28). The
nanowire layers of (S,S)-31 were also successfully incorporated
as chiral semiconductor in CP-light detectors. The same chiral
perylene diimide 31 was then incorporated by Imai and
Nishikawa’s groups as blends in PMMA and polyurethane
(myo-IPU) spin-coated thin films, showing maximum |gabs|
values of 3.1 × 10−4 (at 553 nm) and 2.9 × 10−4 (at 551 nm),
respectively.389 Very recently, the same authors extended their
investigation to PMMA blends of other structurally related
perylene diimides, having 1-naphthylethyl and 2-naphthylethyl
chiral groups.390 In both cases, ECD spectra recorded as thin
films and KBr pellets were consistent, and were explained as
due to intermolecular exciton couplings in the solid state.
Although stereodefined alkyl chains are the most common

source of chirality in PDI derivatives, in 2020, Jiao and
collaborators studied the chiroptical properties in solution and
Langmuir−Blodgett thin films of two PDI systems with axial or

Figure 28. (a) Dissymmetry factor gabs spectra recorded by Oh et al. for the enantiopure chiral perylene diimide (S,S)-31 as thin films obtained
through high-vacuum evaporation (blue line) and as layers of self-assembled nanowires (red line). (b) SEM image of nanowires of (S,S)-31 (up)
and crystal structure determined by X-ray diffractometry (down). Adapted with permission from ref 388. Copyright 2017 John Wiley and Sons.
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inherent chirality. In particular, the strong ECD signal obtained
in thin film samples indicated the successful chirality transfer
from a molecularly chiral component to supramolecular
chirality by molecular self-assembly on the air/water inter-
face.391

At the end of this section, we would like to mention a very
broad family of compounds which would be categorized as
“small molecules” in our classification because of their
molecular size in the monomeric form. We refer to discoid-
like compounds based on the 1,3,5-trisubstituted benzene
skeleton, developed especially by Meijer, Palmans, and co-
workers.392−396 Some of the mostly commonly encountered
structural motifs (32−39) are summarized in Figure 29. The
central benzene core is substituted in a C3-symmetric fashion
by three arms typically containing other aromatic units,
hydrogen-bonding moieties such as amide and urea groups,
and chiral alkyl chains as pendants. These systems tend to form
highly ordered supramolecular stacks with defined helicity
(Figure 30), which often exhibit chirality amplification
phenomena such as “majority rules” and “sergeant-and-
soldiers” effects.393−397 The ECD signals associated with the
stacks are usually not exceptionally intense. In fact, a perfect
columnar stack of achiral objects with 3-fold and higher
symmetry is expected to generate negligible exciton-coupled
ECD.57 An essential role must therefore be played by intrinsic
monomer chirality, that is, the fact that each monomeric unit
depicted in Figure 29 assumes a chiral conformation in the
assemblies where the aryl-substituents bonds are tilted in a
concerted way (Figure 30). This expectation has been
corroborated by X-ray structural evidence398 and by QM
predictions of the geometry and ECD spectra of columnar
assemblies.50,126,133,134,144,399,400 To the best of our knowledge,
no thin film ECD measurements have been reported for this
important class of self-assembling systems.
3.1.2. ECD in Thin Films of Achiral π-Conjugated

Small Molecules. In addition to all the above-described chiral
systems, several cases of achiral π-conjugated small molecules
exhibiting circular dichroism in thin films have been described
in the literature: layers of achiral compounds prepared at the
air/water interface by Langmuir techniques, films of achiral
chromophores dispersed in cholesteric liquid crystals or other

chiral media, and also a few examples of achiral π-conjugated
small molecules dispersed in an achiral polymeric matrix.
These ECD signals can be due to a substantial CDiso reflecting
the supramolecular chirality of the π-conjugated system; under
specific conditions of symmetry breaking, chiral assemblies can
be generated by achiral molecules. However, we shall show
below that in some cases the presence of a remarkable LDLB
contribution has been verified, or at least hypothesized.
The spontaneous breaking of symmetry for achiral molecules

in Langmuir−Blodgett films was first reported almost 25 years
ago; the air/water interface is a two-dimensionally confined
environment, where chiral supramolecular architectures may
originate from achiral molecules by interfacial molecular
interactions.401 The first example for achiral π-conjugated
small molecules was reported only in 2004 by Liu et al.:402

Langmuir−Blodgett thin films of the aniline-containing
barbituric acid derivative 40 revealed a significant Cotton
effect between 400 and 500 nm in the ECD spectrum. Artifacts
were excluded by measuring spectra at different rotation angles
(although not upon sample flipping); furthermore, AFM
measurements on the films (Figure 31, right) revealed the
presence of spiral nanoarchitectures, confirming that the
recorded signals were a true circular dichroism. However,
samples fabricated in different batches revealed ECD spectra
with opposite sign; the spontaneous symmetry breaking of 40
may occur in both directions, generating stochastically
clockwise or anticlockwise spirals (Figure 31, left). The same
authors then extended their study by analyzing Langmuir−
Blodgett films of hydrogen-bonded complex of 40 with
melamine.403

The air/water interfacial self-assembly into chiral architec-
tures of many achiral amphiphilic π-conjugated molecules has
been investigated: azophenols,404 coumarins,405 or styrylqui-
noxalines406 bearing long alkyl chains, oligo(p-phenylene)-
based rods with poly(propylene oxide) coils,407 and also
partially fluorinated phenyl and naphthylcarbamates408 or ring-
fused pyrazines.409 In most of these works, the authenticity of
the ECD signals of thin film samples was checked; although
artifacts were found after collecting ECD spectra at different
rotation angles (typically with a step of 10 degrees), they were
eliminated by simply averaging all the recorded spectra, or in

Figure 29. Typical skeletons of discoid C3-symmetric monomers 32−39 described by Meijer and co-workers and other groups which self-assemble
into helical columnar stacks.
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some cases by measuring the ECD spectrum under a
continuous sample rotation.
Although chiroptical properties of chiral nematic (better

known as cholesteric) liquid crystals have been well-known for
a long time, until the beginning of the 1970s, only a few works
reported experimental ECD spectra of thin film samples,
mainly related to cholesteryl esters (e.g., acetate, palmitate,
benzoate, or cinnamate) and their mixtures.165,166,410 The
theories which underpin the optical activity of dyes dispersed
in N*-LC have been summarized in section 2.1.4. In 1971,
Saeva et al. described the first case of induced circular
dichroism for thin films of solutions of achiral π-conjugated
molecules in a cholesteric mesophase: the ECD spectrum of N-
(p-methoxybenzylidene)-p-butylaniline (MBBA, 41) as thin
film dissolved in cholesteryl chloride/cholesteryl nonaoate
28:72 (wt %) mixture (right-handed cholesteric liquid crystal),
in addition to the positive signal at 500−600 nm related to the

cholesteric pitch band, revealed a negative band between 390
and 220 nm corresponding to the absorption of the π-
conjugated system (Figure 32).411 Interestingly, in a
cholesteric mesophase with opposite helicity (i.e., left-handed),
the induced ECD of aniline 41 changed its sign while it
disappeared when the cholesteric environment was converted
into a nematic mesophase by means of an electric field. The
same authors then extended this study, showing a similar
behavior for other achiral π-conjugated molecules, e.g., mono-
and disubstituted benzene derivatives412 or dibenzofused
aromatics.413,414 The ECD activity induced in solute electronic
transitions by the chiral liquid-crystalline solvent is referred to
as liquid-crystal-induced CD (LCICD). LCICD has been
observed only in the presence of macroscopic helical structures
typical of cholesteric mesophases; however, the sign of LCICD
depends not only on the macroscopic helix handedness but
also on the direction of the solute TDMs. In fact, the sign of
LCICD offers an indirect way of assessing the polarization of
TDMs in aromatic chromophores.412,415 Induced ECD bands
were also reported for achiral solutes in thin films of lyotropic
cholesteric mesophases, based on polypeptides like poly-γ-
benzyl-L-416,417 and D-glutamate418 or poly-γ-methyl-D-gluta-
mate.419

In a systematic work performed on pyrene and anthracene,
Saeva et al. found that sign and intensity of LCICD signals
were dependent on many factors (pitch of cholesteric helix,
temperature, texture of cholesteric matrix, and partly solute
concentration),415 which seemed to be in agreement with the
above-mentioned theoretical studies. Therefore, the LCICD of
these samples has been widely accepted as an expression of an
induced optical activity of achiral π-conjugated molecules
dissolved in a chiral nematic mesophase. However, some
authors casted serious doubts on this assumption. Nordeń et
al.420,421 and Jensen et al.67 first focused on the technical limits
of commercially available spectropolarimeters in the inves-
tigation of circular dichroism phenomena of liquid crystals and
similar oriented systems due to parasitic ECD signals arising
from the combination of the unavoidable stray birefringence of
the PEM with the macroscopic anisotropies (i.e., LD and LB)
of thin film samples. In addition, in 1985, Shindo and Ohmi
applied the Mueller matrix theory to analyze the induced ECD
observed for thin films of achiral dyes dissolved in a cholesteric
mesophase, concluding that these signals are only apparent CD
(i.e., LDLB term, according to our nomenclature), due to a
large number of linearly birefringent and linearly dichroic thin
layers helically arranged.71

Thin films of achiral aromatic compounds dispersed in other
enantiopure matrices exhibiting induced Cotton effects have
also been described. I’Haya et al. studied in detail the
chiroptical properties of many π-conjugated dyes in
acetylcellulose422 and cellulose diacetate423 thin films:
surprisingly, very strong ECD signals were found in
correspondence with the π−π* transition of the achiral dye.
Although the exact mechanism of this phenomenon was
unknown to the authors, they hypothesized that the aromatic
dye is confined in a cage formed by folded chains of the
cellulose matrix through electrostatic interactions. By simply
measuring ECD spectra at three different rotation angles, Saeva
and colleagues revealed that the Cotton effect observed for
thin films of achiral 1,1′-diethyl-2,2′-cyanine iodide dye in
ethyl cellulose was actually affected by significant artifacts,
arising from the interaction of polarization-modulation instru-
ments with the large LD of the J-aggregates in the sample;

Figure 30. Representation of the helical columnar stack (b−d)
formed by a C3-symmetric discoid molecule (a), such as 32, described
by Meijer and co-workers. The isolated molecule or monomer (a) is
intrinsically chiral due to the out-of-plane torsion of each amide
moiety. This creates a helical network of hydrogen bonds (d, purple
dotted lines), six per monomer, which holds together the supra-
molecular assembly. The light green spheres (in a−c, omitted in d)
indicate the alkyl moieties R* in Figure 29.
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however, from the average ECD spectrum, the authors found a
modest CD signal (gabs

max of 9.7 × 10−4 at 572 nm), which they
dubbed “real ellipticity” and attributed to a chiral arrangement
of cyanine molecules in the J-aggregates.424 In 1988, Ritcey
and Gray investigated the induced circular dichroism of the
Congo Red dye (9, Figure 10 in section 2.1.1) bound to
regenerated cellulose in highly swollen gel films; interestingly,
the band disappeared when films were dried under uniaxial
stress, suggesting that the induced ECD was not simply due to
the association of 9 with the chiral centers of cellulose chains
but to a chiral supramolecular architecture of dye molecules.425

More recently, Liu et al. described the loading of the 3,3′-

disulfopropyl-9-methylselenacarbocyanine dye into layer-by-
layer assembled poly(L-glutamic acid)/poly(allylamine hydro-
chloride) films; in addition to a negative ECD band at 210−
220 nm, due to the right-handed α-helix structure of poly(L-
glutamic acid), the ECD spectrum revealed a strong, positive
induced couplet CD with crossover at 491 nm, i.e.,
corresponding to the achiral dye absorption.426 This latter
was attributed to the exciton coupling in helical H-aggregates
of dye molecules. Interestingly, a reversible chiroptical
switching was found for the induced ECD bands; the induced
chirality of the cyanine could be wiped off in the presence of
HCl gas and fully recovered by treatment with water vapor. In
2019, Molinari and co-workers reported instead weak ECD
signals for transparent films of silk fibroin doped with the
achiral rhodamine dye: a negative exciton couplet centered at
546 nm was found, due to the oblique head-to-tail J-dimers of
rhodamine molecules originating from the chirality of silk
fibroin matrix.427

Shindo and colleagues casted serious doubts on the
authenticity of the induced ECD recorded for the above-
described samples, especially the Congo Red 9 in regenerated
cellulose swollen films studied by Ritcey and Gray;425 the
simple measurement of ECD spectra at different rotation
angles θ around the optical axis does not rule out the existence
of contributions different from CDiso.

76,428 For this purpose,
they prepared a thin film of the achiral azo-compound Congo
Red 9 dispersed in achiral poly(vinyl alcohol) (PVA) and
stretched in order to make it macroscopically anisotropic,
which surprisingly exhibited intense ECD signals; in particular,
if no significant changes in the spectrum were found by sample
rotation,428 a complete inversion of the ECD sign was
observed upon sample flipping (Figure 10 in section
2.1.1).74,75 Because both PVA and Congo Red molecules
were optically inactive by themselves, the authors excluded a
possible organization into magic chiral domains inducing true
ECD (i.e., CDiso) in the films, thus attributing a central role to
the macroscopic anisotropies (LD and LB) of the sample;428

by applying Mueller matrix theory, they concluded that these

Figure 31. Left: ECD spectra of Langmuir−Blodgett thin films of the achiral barbituric acid derivative 40 fabricated in two different batches (blue
and red line, respectively). Right: AFM images of Langmuir−Blodgett films of 40 deposited at various surface pressures at 20 °C (a) and (b) 7
mN/m, (c) 20 mN/m, and (d) 30 mN/m after inflection point. Adapted with permission from ref 402. Copyright 2004 American Chemical
Society.

Figure 32. ECD spectrum of thin films of N-(p-methoxybenzylidene)-
p-butylaniline (41) dissolved in cholesteryl chloride/cholesteryl
nonaoate 28:72 (wt %), a right-handed cholesteric mesophase (blue
line); cholesteryl chloride/cholesteryl nonaoate 91:9 (wt %), a left-
handed cholesteric mesophase (red line). Adapted with permission
from ref 411. Copyright 1971 American Chemical Society.
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signals are only apparent CD (i.e., LDLB term).76 As discussed
in section 2.1.1, this fundamental study led to the first
experimental evidence of the LDLB effect on thin film samples.
In 2013, Tomita and co-workers studied the chiroptical

properties of a double-layered metamaterial sample, consisting
of a thin film of glucose (i.e., transparent chiral molecule)
deposited on top of a rhodamine layer (i.e., absorptive achiral
dye), which surprisingly revealed weak ECD signals which
inverted in sign upon flipping.429 The authors observe the
similarity of this polarity reversal of ellipticity with the
magneto-optical effect and demonstrated that it can be at
least qualitatively accounted for by a simple model. The
glucose layer was described as a transparent medium with
circular birefringence, and the rhodamine layer as achiral (with
identical refraction indexes for left and right CP light) but
endowed with a resonance peak at 540 nm. The authors
produced numerical calculations for the ellipticity produced
when light passes through the two layers either from glucose
into rhodamine, or vice versa, and demonstrated that this
simple model accounts for the observed sign reversal. This
effect is obviously reminiscent of LDLB effect, although neither
the glucose nor the rhodamine layer should be endowed with
linear anisotropies. Thus, the meta-chiral interface between an
achiral layer (rhodamine) and a chiral medium (glucose)
results in a virtual “magnetic field” for light, thus mimicking a
magneto-optical effect even in the absence of a magnetic field.
More recently, Kartouzian and collaborators studied the
induced ECD properties of spin-coated thin films of achiral
rhodamine dye in the presence of 1,1′-bi-2-naphthol as chiral
modifier, differing strongly and nonlinearly in strength by
changing the angular speed of coating process or BINOL
relative concentration.430 Two concomitant mechanisms were
described, contributing to these induced ECD signals: (i) a
direct interaction of the chiral modifier with isolated achiral
dye molecules, via a perturbation of the dipole transition
moments; (ii) when achiral dyes aggregate, the chiral modifier
yields a chiral bias giving inherently chiral and optically active
dye aggregates. These are again the two mechanisms discussed
above for LCICD. In the case of rhodamine/1,1′-bi-2-naphthol
mixtures, the relative importance of the two mechanisms is
modulated by the ratio of the two components, giving rise to
three distinct regimes characterized by different induced ECD
profiles and their dependence on the molar ratio. Interestingly,
the attention in ECD properties of thin films of achiral π-
conjugated dyes triggered by the presence of transparent chiral
molecules is growing in the last few years.431,432 In particular,
in 2020, Hegmann and co-workers reported a detailed
microscopy and spectroscopy investigation (including ECD
studies) for thin films of semicrystalline helical nanofilaments
formed by achiral bent-core liquid crystal π-conjugated
molecules and axially chiral binaphthyl-based additives as
guest molecules.433

However, a few examples of achiral π-conjugated small
molecules dispersed in an achiral matrix showing ECD
properties in thin films have also been reported in the
literature. In 2000, Spitz et al. proved the spontaneous and
enantioselective generation of chiral J-aggregates from achiral
5,5′,6,6′-tetrachlorobenzimidacarbocyanine dye by embedding
them into PVA thin films and measuring ECD signals; possible
contributions of linear dichroism and linear birefringence to
the experimental ECD signal were excluded by measurements
at different rotation angles as well as by careful comparison
with ECD spectra of plain PVA thin films.434 The observed

symmetry breaking was stochastic, in the sense that in a large
number of independently aggregated samples, a 50% chance of
either left or right supramolecular chirality is observed. CPL-
induced chirality in thin films of achiral π-conjugated systems
(bearing azobenzene435 or stilbene436 moieties) dissolved in
nematic liquid crystals was demonstrated by Choi and
collaborators; depending on irradiation with left- or right-
handed CP-light at 365 nm, the spin-coated samples revealed
ECD profiles of opposite sign. Interestingly, the authors
simulated the ECD spectrum of isolated π-conjugated systems
in a twisted conformation by using the DeVoe coupled
oscillator calculation approach. A similar CP-light-induced
chirality was also found in thin films of achiral hydrogen-
bonded complexes of azobenzene and melamine derivatives,437

triarylamine-based achiral compounds,438 as well as in samples
of organogels based on an achiral small molecule azobenzene
gelator.439 This latter is thought to acquire a twisted
conformation in the gel form consistent with the one observed
in the crystal, as confirmed by TD-DFT calculations of ECD
spectra.

3.2. ECD in Thin Films of Large π-Conjugated Molecular
Systems

Thin film samples of larger π-conjugated molecular systems
such as macrocycles and dendrimers, i.e., with intermediate
sizes between small molecules and oligo/polymers, have been
intensively studied by spectroscopic techniques including
ECD.
Among π-conjugated macrocycles, porphyrin and phthalo-

cyanine derivatives received wide attention.440 In the area
covered by the present review, it is interesting to notice that
only a few papers focused the attention on chiral systems
where porphyrins are covalently linked to a chiral moiety, i.e.,
bearing alkyl branched chains,441−443 carbohydrates,444 amino
acid derivatives,445 cholesteryl,446 or 1,1′-binaphthyl447,448
moieties as substituents. Most researchers investigated instead
the ECD properties in thin films of achiral porphyrin and
phthalocyanine interacting with transparent chiral polymeric
matrices, or at the air/water interface (Langmuir techniques)
or under the action of vortex flows (spin-coating technique), in
developing supramolecular chiral architectures. All these
studies exploit the extraordinary tendency of porphyrins
toward aggregation promoted by π-stacking, the most studied
systems in this field being the derivatives of 5,10,15,20-
tetraphenylporphyrin (TPP, 43, Figure 33), especially with
peripheral charged groups (e.g., tetrakis(4-sulfonatophenyl)-
porphyrin, TPPS, 44, Figure 33). ECD spectra of porphyrin
aggregates have been the subject of a great deal of
investigations, with special attention to the phenomena of
symmetry-breaking, spontaneous resolution, vortex effects, and
so on.116,449−452 ECD spectra of chiral bis- and multiporphyrin
systems (either covalently linked or noncovalently interacting)
usually show strong bisignate signals in the region of the
intense electric-dipole allowed Soret transitions around 500
nm and weaker signals in correspondence with Q bands
between 600 and 700 nm. It must be stressed that the Soret
transition cannot be described as a linear electric transition
dipole but rather by a combination of two orthogonal and
(quasi)degenerate transition dipoles. Still, ECD spectra of
exciton-coupled bis- and multiporphyrin systems are often
accounted for by standard exciton-based reasoning.453 For
example, the ECD spectrum of solution aggregates of a
oligo(p-phenylenevinylene)-appended tetraphenylporphyrin
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(49) displays a positive exciton couplet in the Soret region,
with positive maximum at 468 nm and negative minimum at
424 nm (Figure 34a).454 The ECD signature was interpreted
with the formation of a J-type aggregate driven by π-stacking.
The formation of such aggregates was promoted by the use of
an apolar solvent such as methylcyclohexane (MCH) and was
controlled by temperature. However, strongly interacting
porphyrins easily generate complex ECD signals which deviate
from common exciton couplets455,456 because at stacking
distances (≤4 Å) encountered in porphyrin aggregates, the
point-dipole approximation breaks down. This is illustrated in
Figure 34b for the solution aggregate of an anilide-(p-
phenylenevinylene)-derivatized tetraphenylporphyrin (50),

which displays a complex pattern of bands in the Soret region
with alternating sign −/+/−/+ from long to short wavelengths
(extrema at 427, 405, 390, and 377 nm).454 In such a case, the
amide moieties provide extra sites for hydrogen bonding,
possibly yielding supramolecular aggregates with more strongly
interacting porphyrin rings. In addition, qualitative exciton
predictions on porphyrin aggregates are also hampered by the
fact that the observed chiral porphyrin assemblies often
consists of thousands closely packed units,457,458 thus first-
neighbors approximation breaks down. Only the assumption of
relatively simple stacked assemblies makes exciton calculations
feasible and with structure-predictive value.125,148 In any case,
because of the intensity of the Cotton effects in the Soret
region, the appearance of bisignate ECD signals offers an
immediate and sensitive proof of the formation of chiral
porphyrin aggregates.
Although not explicitly covered by the present review, we

would like to mention that DNA is one of the most employed
matrices for inducing chirality of achiral molecules, thanks to
the ability to bind various chromophores including porphyr-
ins.459 Very significant is the case of achiral 5,10,15,20-
tetrakis(4-N-methylpyridyl)porphine (TMPyP, 48, Figure 33),
which generates induced ECD signals around 450 nm upon
intercalation into DNA thin films;460 in particular, the DNA/
48 complex system was intensively studied as pH-sensitive
reversible chiroptical switch by alternate exposure to HCl and
NH3 vapors.

461,462 Remarkable ECD signals were also found in
thin films of several achiral porphyrins covalently or not-
covalently incorporated to other biopolymers, including
poly(L-glutamic acid),463 chitosan,464 and chitosan−methyl-
cellulose.465

As described above, the air/water interface is a 2D-confined
space where the spontaneous breaking of symmetry of achiral
molecules may happen through intermolecular interfacial
interactions. There are only few papers describing the ECD
properties for Langmuir−Blodgett films of achiral porphyrin
and phthalocyanine derivatives466 because in most cases they
unfortunately exhibited negligible signals.467,468 On the
contrary, the use of Langmuir−Schaefer technique has been
much more successful. Starting from 2003, Liu et al. described
the fabrication of complex monolayers between the anionic
tetrakis(4-sulfonatophenyl)porphyrin (TPPS, 44, Figure 33)
and some amphiphiles through the Langmuir−Schaefer
method, in which TPPS rings spontaneously assembled into
chiral J-aggregates responsible for strong ECD signal (whose

Figure 33. Structures of thoroughly investigated self-assembling
porphyrin and phthalocyanine derivatives. Legend: OEP,
2,3,7,8,12,13,17,18-octaethylporphine (42); TPP, 5,10,15,20-tetra-
phenylporphine (43); TPPS, 5,10,15,20-tetrakis(4-sulfonatophenyl)-
porphine (44); TPPOMe, 5,10,15,20-tetrakis(4-methoxyphenyl)-
porphine (45); ZnPc, zinc 2,3,9,10,16,17,23,24-octakis(octyloxy)-
phthaloxyanine (46); SiPc, silicon 2,3,9,10,16,17,23,24-
octakis(octyloxy)phthaloxyanine dihydroxide (47); TMPyP,
5,10,15,20-tetrakis(4-N-methylpyridyl)porphine (48).

Figure 34. ECD spectra of (p-phenylenevinylene)-appended porphyrins 49 and 50 as solution aggregates formed in MCH. The aggregate ECD
spectrum of the oligo(p-phenylenevinylene) derivative 49 shows a positive ECD couplet in the Soret region between 400 and 500 nm, while that of
the anilide derivative 50 displays multiple bands indicative of strongly interacting porphyrins (due to hydrogen bonding between amide moieties).
Adapted with permission from ref 454. Copyright 2007 American Chemical Society.
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authenticity was assessed by collecting spectra at different
rotation angles) between 450 and 500 nm (Figure 35a).469−471

As expected, the sign of ECD bands of 44 mixed with achiral
amphiphiles appeared randomly distributed for samples
fabricated in different batches because the spontaneous
symmetry breaking occurs stochastically in both directions,
with equal chance to form right- and left-handed J-aggregates.
This balance can be broken only in the presence of
enantiopure chiral systems, such as by using long-chain
derivatives of tryptophan472 or glutamic acid473 as amphiphiles.
Furthermore, the impact of the polarity of the macrocycle474

and of the post-fabrication annealing475 on the ECD response
of these Langmuir−Schaefer layers has also been studied. More
recently, Langmuir−Schaefer layers of chiral assemblies of

achiral porphyrins such as octaethylporphine (OEP, 42, Figure
33) were also fabricated in absence of amphiphilic species
(Figure 35b), showing a general increase of ECD signals upon
thermal annealing;475,476 in particular, for a silicon-phthalo-
cyanine dihydroxide derivative (SiPc, 47, Figure 33), non-
covalent chiral assemblies can be converted into covalently
bonded structures under heating at 180 °C (Figure 35c),
together with a stronger Cotton effect detection, thus
suggesting a more efficient exciton coupling between the
covalently linked phthalocyanine chromophores.477 Liu and
collaborators also investigated the chiroptical features for
Langmuir−Schaefer thin films of supramolecular chiral nano-
tubes of cinnamoyl-terminated bolaamphiphiles induced by the
presence of achiral porphyrins such as TMPyP (48) (Figure
35d).478 As further confirmation that ECD signals were due to
a substantial CDiso, in all of these samples, the presence of
spiral supramolecular structures was clearly revealed by AFM
measurements; however, as argued in section 2.1.3, ECD-
detected and microscopy-detected chirality refer to different
levels of hierarchy which are not necessarily correlated.
It must be stressed that in all the above cited works, Liu and

colleagues use the following procedure434 to verify whether the
measured ECD signals report what they define “genuine
chirality”. Knowing that LD-related artifacts depend on the
angle of rotation of the sample around the optical axis (see the
third term depending on sin α in eq 4, section 2.1.1), they
considered the difference of intensity between the maximum
and minimum ECD value, namely the couplet amplitude, and
measured this amplitude for 36 ECD spectra obtained upon
rotating the sample in steps of 10° around the optical axis
(Figure 36). Second, they collected ECD spectra by
continuously rotating the sample during the measurement. It
is expected that if the sample has genuine chirality, the two
methods would give the same result. In most cases, the couplet
amplitude varied substantially upon sample rotation (Figure
36); this means that LD contributions to the measured ECD
signals are sizable.475,476 In the presence of evident linear
dichroism, averaging over different sample rotations may not
be sufficient for extracting what we call CDiso. As shown in eq
4, section 2.1.1, this procedure allows one to take into account
and eliminate the coupling between macroscopic anisotropies
(i.e., LD) and PEM imperfections, while the other contribu-

Figure 35. Illustration of representative supramolecular assemblies of
porphyrins and phthalocyanines obtained by Liu and co-workers by
various techniques. (a) Aggregates of 44 (represented by green
squares) and cetyltrimethylammonium bromide as amphiphile (tailed
yellow ovals) formed in Langmuir−Schaefer films. Adapted with
permission from ref 470. Copyright 2004 American Chemical Society.
(b) Chiral aggregation of 42 (purple with colored arms) promoted by
low pH and chloride ions (green spheres). Adapted with permission
from ref 476. Copyright 2008 John Wiley and Sons. (c) Assembly and
polymerization of 47 (green squares) after condensation of Si−OH
groups into Si−O−Si (yellow bonds between purple squares) under
heating. Adapted with permission from ref 477. Copyright 2007
American Chemical Society. (d) Assembly of 48 (yellow squares with
red crosses indicating the positive charges) on the surface of a chiral
nanotube (violet) formed by self-assembling of a cinnamoyl-
terminated bolaamphiphile. Adapted with permission from ref 478.
Copyright 2011 PCCP Owner Societies.

Figure 36. (a) Illustration of the setup employed by Liu and colleagues for the measurement of ECD spectra upon rotation of the film around the
optical axis, i.e., by varying angle θ. (b) Angle dependence of the ECD amplitude (blue squares) and the background (red dots) of the ECD spectra
of a Langmuir−Schaefer film of 42. The film was turned around the optical axis in steps of θ = 10°. (c) ECD spectrum measured by continuous
rotation of the sample; the couplet amplitude is ≈305 mdeg (indicated by the horizontal dotted line in b). Adapted with permission from ref 476.
Copyright 2008 John Wiley and Sons.
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tions to CDobs, which are invariant to sample rotation, are not
affected or canceled.
A vortex is a well-known example of macroscopic

chirality,479 and thus a possible origin of symmetry breaking;
achiral molecules can form helical macroscopic architectures in
solution upon rotary stirring, with a left- or right-handed
helicity depending on the spinning direction.480,481 In this case
too, much work has been done in solution, notably by the
groups of Ribo,́ Purrello, and Monsu ̀ Scolaro.450−452 The
transformation of macroscopic spinning chirality into a stable
solid-state chirality was first reported in 2004 by Aida and
collaborators; spin-coated thin films of achiral dendritic zinc
porphyrin 51 and 52 (prepared from 5.0 × 10−3 M solutions in
chloroform and benzene, respectively) revealed significant
ECD signals between 400 and 470 nm. Surprisingly, mirror-
image ECD spectra were obtained depending on the clockwise
or counterclockwise spinning direction (Figure 37). In both
cases, ECD intensities hardly changed by sample rotation
around the optical axis, while no measurements upon sample
flipping were performed.482 Drop-casted films of the same
samples did not show any definite ECD signal.
Although the authors initially attributed the above-described

chiroptical activity to the supramolecular helical arrangement
of individual nanofibers of porphyrins, in a following paper483

they demonstrated that the effect is actually due to the

macroscopic helical organization of thin layers of aligned
porphyrin nanofibers. It was verified by studying the ECD
response of dip-coated thin films of 52 (prepared from a ∼10−4
M benzene solution), where the porphyrin nanofibers oriented
preferentially along the dipping direction. Two such films were
then overlapped at various tilt angles ϕ (Figure 38). When the
films were overlapped with their dipping directions at ϕ =
+45°, the shape of ECD spectrum was identical to that
observed for spin-coated samples of 52 upon clockwise
spinning direction, while by overlapping them at ϕ = −45° a
mirror-image ECD spectrum was recorded, matching with the
one of spin-coated films of 52 prepared upon counterclockwise
direction. At ϕ = 0° or 90°, little optical activity was detected.
Therefore, this expedient revealed that the ECD signals found
for the spin-coated thin films of achiral dendritic porphyrin 51
and 52 were actually due not to the CDiso, but to contributions
from macroscopic anisotropies. Interestingly, this ±45° shift is
the essence of the LDLB contribution to ECD spectra of
anisotropic samples, as will be more extensively discussed
below (section 3.3.3).
By a complete determination of the Mueller matrix elements,

it is easier to assign the recorded ECD signals to the specific
dichroic terms and to disentangle the LDLB contribution or a
genuine CDiso. For this purpose, in 2008, Arteaga, Ribo,́ and
co-workers applied phase-modulated ellipsometry (PME) for

Figure 37. ECD spectra of the achiral dendritic zinc porphyrin 51 (a) and 52 (b) as thin films prepared by spin-coating of a 5.0 × 10−3 M solution
(in chloroform and benzene, respectively) upon clockwise (blue line) and counterclockwise (red line) spinning direction. Adapted with permission
from ref 482. Copyright 2004 John Wiley and Sons.
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studying thin films of the achiral 5-phenyl-10,15,20-tris(4-
sulfonatophenyl)porphyrin prepared by drop casting of their J-
aggregates solutions (in turn obtained upon vortex-stirring, in
clockwise or counterclockwise direction, of freshly prepared
aqueous solutions).268,484 Surprisingly, the PME analysis
revealed a dominant CDiso contribution of the ECD signals,
with only weak LD, LD′, LB, and LB′ terms; these results are
thus in apparent disagreement with the above-described
conclusions of Aida,483 although it must be stressed that
they are related to quite different porphyrin compounds
(analog of 44 vs 51 and 52). In the authors’ opinion, it was not
clear if the spinning vortex actually led to dichroic signals due
to a large LDLB for Aida’s systems; only advanced ECD
methods specifically adapted to the complete evaluation of
Mueller matrix elements in strongly oriented samples would
clarify the question, but unfortunately no further studies were
reported on this topic.
Furthermore, the ECD properties of thin films of achiral

porphyrin and phthalocyanine aggregates dispersed in
inorganic485 and polymeric matrix486 have been little
investigated to date, probably owing to the difficulty of
identifying the different contributions of the dichroic signals.
However, very recently, thin films of chiral composite
nanostructures, based on the supramolecular self-assembly of
achiral porphyrins with chiral amphiphilic glutamate deriva-
tives, were also investigated by chiroptical spectroscopies,
studying a possible application as macroscopic enantioselective
recognition systems.487

Thin films of other π-conjugated macrocycles have received
less attention in the literature, with only a few papers
concerning optically active systems with chiral moieties directly
into the π-conjugated backbone (1,1′-binaphthyl groups)488 or
as substituents (enantiopure alkyl chains).489 However, very
recently, Zheng and co-workers reported the synthesis of
achiral TPE triangular macrocycles with three crown ether
rings, exhibiting induced ECD signals as drop-casted thin films
in the presence of an enantiopure chiral acid (mandelic, 2-
chloromandelic or camphorsulfonic) as additive, with gabs
factors up to 4.5 × 10−4.490

In addition to the above-mentioned porphyrin derivatives of
Aida et al. containing dendritic portions,482 in the last few
years, thin films of π-conjugated-based dendrimers have
attracted a growing interest in the field of chiroptical
properties. Oriol and co-workers reported in 2010 the first
example of chiroptical switching for dendritic systems;
poly(propyleneimine) (PPI) dendrimers functionalized with
photochromic azobenzene units containing enantiopure sec-
butyloxy chains showed different ECD response depending on
the extent of thermal annealing as well as on the irradiation
with left- or right-handed CP-light at 488 nm.491 Liu et al.
examined by ECD spectroscopy the self-assembly at the air/
water interface of L-glutamate-based dendrons bearing
aromatic492 or azobenzene units.493 More recently, optically
active π-conjugated dendrimers bearing cyclotriphospha-
zene,494 cyclotriveratrylene,495 and [2.2]paracyclophane496 as
the central core were also investigated. The authenticity of
ECD signals was verified only by measurements at different
rotation angles θ (no ECD test upon sample flipping were
performed). In most cases, the organization into helical
morphologies or supramolecular architectures was proved by
AFM or X-ray diffraction (XRD) analysis.

3.3. ECD in Thin Films of π-Conjugated Oligomers and
Polymers

Among all chiral π-conjugated systems, oligomers and
polymers have been the most intensively studied through
ECD spectroscopy. There is a large amount of literature
describing their chiroptical investigation in solution, where the
chirality can be expressed principally in two different ways, i.e.,
by adopting a chiral conformation due to strong intrachain
interactions or by organization into chiral supramolecular
aggregates by means of efficient intermolecular interactions.
Here we shall instead focus the attention on their ECD

measurements in thin film samples, which recently gained
considerable interest as evidenced by the large number of
papers on this topic. In particular, it may be useful to
distinguish them in two main classes: species (including oligo/
polypeptides, polyamides, polyolefins, polymethacrylates, and
polyacrylates) with π-conjugated groups in side chains and
systems with a π-conjugated backbone (polyacetylenes and
polydiacetylenes, poly(p-phenylene)s and their derivatives,
oligo/polyfluorenes, and oligo/polythiophenes).

3.3.1. ECD in Thin Films of Oligo/Polymers with π-
Conjugated Groups in Side Chains. Polypeptides are the
oldest class of compounds intensively studied in thin film
samples by ECD spectroscopy,497 which was employed for
obtaining structural information in the solid state. Here, we
will briefly discuss only oligo- and polypeptides with π-
conjugated moieties in side chains, which have been
investigated only more recently. In 1991, Sasaki et al. described
the solid-state inversion of helicity in thin films of poly(β-(p-
chlorobenzyl)-L-aspartate) and poly(β-(p-methylbenzyl)-L-as-
partate) prepared by drop casting from a CHCl3 solution: an
inversion of the ECD band at 230 nm was observed for both
samples after thermal annealing at 180−220 °C, thus revealing
an irreversible transition from a right-handed α-helix to a left-
handed ω-helix (further confirmed by X-ray diffraction
analysis).498 Cho and co-workers reported a comparison of
the ECD properties for drop-casted films and Langmuir−
Blodgett layers of poly(γ-benzyl-L-glutamate)/poly(propylene
oxide)499 and of poly(γ-benzyl-L-glutamate)/poly(ethylene
oxide)/poly(γ-benzyl-L-glutamate)500 block copolymers, show-

Figure 38. ECD spectra of two overlapping dip-coated thin films of
the achiral porphyrin 52 (prepared from a ∼10−4 M C6H6 solution,
with the porphyrin nanofibers preferentially oriented along the
dipping direction) at different dihedral angle ϕ: +45° (blue line),
−45° (red line). Adapted with permission from ref 483. Copyright
2007 John Wiley and Sons.
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ing different degrees of orientation depending on the length of
polyether blocks. Structural properties of drop-casted thin films
of poly(L-glutamic acid) derivatives with aromatic501 and
azobenzene502 groups as side-chain chromophores, as well as
poly(L-glutamine)s bearing pyrene chromophores in the side
chains,503 have also been studied through ECD.
Optically active polyamides 53−54 having 2-hydroxyphen-

yl504,505 and 2,4-dihydroxyphenyl506 moieties in the side chains
as π-conjugated chromophores (Figure 39) were investigated

in detail by Saigo et al.; synthesized by ring-opening
polyaddition reaction of, respectively, (−)-anti head-to-head
coumarin504,505 and umbelliferone dimer506 with diamines,
their organization in drop-casted thin films was largely
elucidated by comparison of their ECD spectra with those of
the corresponding model diamides. The consistence between
the ECD spectra of some of the polymers 53 and of the
respective dimer suggests a local origin for the ECD spectrum
of the polymer, which is compatible with a random
conformation in the film state. Interestingly, almost all the
polymers gave homogeneous and optically isotropic samples,
with ECD profiles invariant to rotation around the optical axis.
Syndiotactic polystyrene (s-PS) is a polyolefin with a

complex polymorphism, consisting of four different crystal
forms (denoted as α, β, γ, and δ).507,508 In particular, the
crystalline δ phase is racemic, with polymer chains organized in
an equal number of left- and right-handed helices, thus
resulting in the absence of ECD signals; however, the δ-phase
of s-PS is also nanoporous, characterized by cavities capable of
rapidly and selectively absorbing guest molecules of suitable
molecular size.509,510 In 2007, Guerra and co-workers reported
the first application of s-PS thin films for chiral sensing; after
exposure to the vapors of several enantiopure small molecules
(in particular carvone 55), spin-coated samples of δ-form s-PS
revealed intense ECD signals in the range 190−250 nm, i.e.,
corresponding to the π−π* transition of racemic s-PS, which
were preserved with the same intensity also after complete
removal of the chiral guest by supercritical CO2 extraction
(Figure 40).511 The occurrence of induced ECD signals in thin
films of s-PS was investigated more in detail in a following
paper, showing the impact of many parameters: solvent and
concentration of the starting solution, spinning rate, enantio-
meric excess of 55, and postpreparation thermal treatments.512

The increase of induced ECD after thermal transition into the
trans-planar crystalline α-phase (at ∼200 °C) suggested that
the chiral memory was not associated with the individual
molecular helices (as for the δ-phase at room temperature) but
to the formation of nonracemic supramolecular structures.513

More recently, a surprisingly intense ECD response was found
after completely exchanging enantiopure carvone for the
achiral chromophoric azulene as the guest.514,515

The first chiroptical study of thin films of polymethacrylates
having photoswitchable π-conjugated groups in side chains was
reported in 1996 by Feringa et al.516 Chiral polymer 56,
obtained by attaching the inherently dissymmetric 2-hydroxy-
9-(7′-methyl-1′,2′,3′,4′-tetrahydrophenanthrene-4′-ylidene)-
9H-thioxanthene unit to a polymethacrylate system through a
suitable alkyl spacer, after irradiation with UV light at 300 nm
showed a significant decrease of ECD signal in drop-casted
samples, attributable to the partial isomerization of the
dissymmetric unit from P-trans to M-cis form (Figure 41).

Interestingly, the photomodulation of ECD properties in
films of polymethacrylates bearing azobenzene groups in their
side chains has received a larger interest in the literature, in
particular by Angiolini and colleagues. In 2002, they described
an unexpected chiroptical switching for spin-coated thin films
of methacrylic homopolymers 57−58, having a trans-
azobenzene chromophore linked to the macromolecular
backbone through a chiral pyrrolidine bridge (Figure 42);
after irradiation with left-handed CP-light at 488 nm, a clear
inversion of ECD was found for both samples (perfectly mirror
images spectra were obtained in the case of 57), fully reversible
after irradiation with the opposite right-handed CP-light.517

The ECD spectra featured an asymmetric couplet, which was

Figure 39. General structure of the optically active polyamides
investigated by Saigo et al., having 2-hydroxyphenyl (53) and 2,4-
dihydroxyphenyl moieties (54) as chromophores in the side chains. Figure 40. ECD spectrum of thin films of the δ-phase of s-PS,

prepared by spin-coating of a 0.25 wt % chloroform solution, recorded
after few minutes of exposure to the vapors of (S)-55 (blue line) and
(R)-55 (red line). Adapted with permission from ref 511. Copyright
2007 American Chemical Society.

Figure 41. Photoisomerization of the dissymmetric unit of
polymethacrylate 56 from P-trans to M-cis form after irradiation
with UV light at 300 nm proposed by Feringa et al.516
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interpreted as the superposition of a bisignate band, due to the
exciton coupling between helical azobenzene moieties, and a
monosignate band, due to conformationally less-ordered
polymeric fragments. The authors noticed, very correctly,
that the ECD data alone did not allow them to establish the
handedness of the helix but only that the irradiation with CP
light provoked an inversion of the prevailing handedness of the
polymer structure, or at least boosted a statistical net excess of
polymer chain sections with inverted helical sense. Further
studies were then performed on the same systems, focused on
the effects of increase in the total irradiation fluence of CP-
light518 and of exposure to a saturated HCl atmosphere;519

moreover, they also evaluated the impact of progressively
distancing the chiral photochromic repeating units of 58 along
the polymer backbone by copolymerization with an isosteric
and isopolar achiral monomer.520 Although the mechanism
responsible for the chiroptical switching of these systems was
not completely clear, a model based on the rearrangement of
helical aggregates of side chain azobenzene chromophores due
to their trans/cis photoisomerization appeared realistic to the
authors.521 In this latter study, the authors excluded LD and
LB contributions to the measured ECD signals by sample
rotation and displacement.
Many other azobenzene-functionalized polymethacrylates

have been investigated, bearing several enantiopure groups in
the side chains as source of chirality: pyrrolidine,522,523

prolinol,524 hydroxysuccinimide525 or (+)-L-lactate526 bridges,
as well as cholesteryl527 and branched alkyl528−532 substituents.
Most of them revealed a liquid crystal behavior, with a
supramolecular order (and chiroptical properties) very
sensitive to temperature and light irradiation processes.528−531

Furthermore, some examples of achiral polymethacrylates
liquid crystals with azobenzene533−538 or azo-binaphthyl539

chromophores showing induced ECD only after CP-light
irradiation were also described; in particular, CP-light-induced
supramolecular chirality was also testified via SHG-CD
measurements in thin films of the achiral azobenzene
polymethacrylate poly(DR1M).540 Instead, Laleveé and
collaborators recently reported strong chiroptical activity for
thin films of achiral polymethacrylates synthesized by free
radical polymerization (FRP) in the presence of enantiopure 3-
methyl-4-aza[6]helicene as high-performance visible light
photoinitiator.541

Bobrovsky and co-workers instead focused their attention on
the chiroptical response of thin films of azobenzene-function-

alized polyacrylates: chiral systems having cholesteryl542,543 or
branched alkyl544,545 moieties in the side chains, studied as
neat materials, and achiral systems in blend with a chiral
photochromic dopant.546−548

In addition to the above-described systems, the ECD
properties of other classes of chiral oligo/polymers with π-
conjugated groups in the side chains were examined in thin
films, although they received a limited attention in the
literature: poly(olefin sulfone)s,549,550 polymethacrylamides,551

poly(methacrylate-acrylamide)s,552 poly(vinyl alcohol)-polya-
crylamide hydrogels,553 poly(urea-urethane)s,554,555 poly-
(dibenzofulvene)s,556,557 poly(N-vinylcarbazole)s,558 epoxy-
based polymers,559 chitosan,560 hyaluronic acid,561 and xerogel
derivatives.562

Quite independently of the specific nature of the main chain
and of the appended chromophores, oligo/polymers belonging
to the group described in this section lend themselves for a
description of their chiroptical properties based on the exciton
approach. In fact, these oligo/polymers tend to adopt a helical
conformation of the main chain whereby the appended
chromophores occupy the outer position, thus yielding a
helically ordered pattern of TDMs. Once a structure for a more
or less extended polymer is generated by conformational
sampling, i.e., by MM or MD procedures, ECD spectra can be
simulated within the ISA by solving the excitonic Hamiltonian
or by quantitative exciton calculations with the DeVoe
coupled-oscillator or related methods. These approaches
have been applied to several kinds of polymers appended
with π-conjugated chromophores: polystyrenes,110 naphthyl-
substituted polyanilines and polyacrylamides,551,563 perylene-
substituted polyisocyanopeptides (Figure 43),564 and pyrroli-
dine-based organogels with various aromatic pendants.565−567

Switching to QM calculations, ECD spectra of reasonably large
systems have been simulated using so-called semiempirical
methods based on the neglect of differential overlap (NDO)
approximation, such as ZINDO/S (Zerner’s intermediate
NDO). These methods, although very approximate, have
been largely employed in the past for calculating ECD of
aromatic compounds.568 In the present context, ZINDO
calculations have been run for azobenzene-substituted
polyamides569 and polymethacrylates145 and for fluorenyl-
substituted polyacrylates.150 Provided that these methods are
able to reproduce aggregate ECD spectra, the information they
deliver is multiple: demonstrate that the observed ECD are
effectively dominated by the exciton coupling between
chromophoric moieties, assign or confirm the handedness of
the first-order supramolecular helicity, and substantiate the
helical structures obtained by the conformational sampling
procedures.

3.3.2. ECD in Thin Films of Polyacetylenes and
Polydiacetylenes. A large number of oligomers and polymers
with π-conjugated backbone have been reported to give
significant ECD in thin films, including polyaramides,570

polyazoureas,571 polyisocyanides,280,572,573 poly(N-
sulfonylamidine)s,574 polyazulenes and polybiazulenes,575

perylene diimide (PDI) polymers,576 thieno[3,2-b]-
thiophene577,578 and thieno[3,4-b]thiophene-based sys-
tems,579,580 poly(9,9′-bifluorenylidene)s,581 polycarbazoles,582

polypyrroles,583,584 and polyanilines.585−597

Below, we shall emphasize the most important classes of
these π-conjugated systems: (i) polyacetylenes and poly-
diacetylenes; (ii) oligo/poly(p-phenylene)s and their deriva-
tives, i.e., oligo/poly(p-phenylenevinylene)s and oligo/poly(p-

Figure 42. Chemical structure of the optically active methacrylic
homopolymers 57−58, having a trans-azobenzene chromophore
linked to the macromolecular backbone through a chiral pyrrolidine
bridge, studied by Angiolini and colleagues.
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phenyleneethynylene)s; (iii) oligo/polyfluorenes and related
copolymers; (iv) oligo/polythiophenes and related copoly-
mers.
Polyacetylenes are the oldest class of chiral π-conjugated

polymers synthesized in the literature, with the polymerization
of optically active 4-methyl-1-hexyne described in 1967 by
Ciardelli and co-workers.11 Nevertheless, the interest in ECD
properties of thin films of chiral polyacetylenes has only
recently increased thanks to the contributions of Masuda and
collaborators, who studied the impact of several chiral
substituents on the helical organization in drop-casted samples:
stable organic radicals (i.e., TEMPO and PROXYL)64 and 9H-
carbazole rings bearing alkyl598 or amino acid derivatives such
as 60 (Figure 44).599 The two latter systems revealed ECD
spectra similar to the ones measured in solution, while the
situation of the former system is more interesting. In the
absence of chromophoric substituents, the ECD signal
observed for chiral polyacetylenes around 320−340 nm is
associated with the intrinsically chiral polymeric chains600 and
immediately reports its chirality; a positive band corresponds
to right-handed polyacetylene chain (Figure 44). Masuda’s
polyacetylenes with TEMPO and PROXYL pendants such as
8, devoid of chromophoric substituents, showed a single
negative ECD band at 340 nm and gabs = 9 × 10−4 in solution,
due to an intrachain mechanism related to a left-handed
polyacetylene chain (see Figure 8 in section 2.1). The signal
became a positive couplet in thin films, with extrema at 360
and 310 nm and gabs = 5 × 10−3 (measured at 310 nm). The

authors observed correctly that such difference would be due
to aggregation occurring in the solid state, most likely to
interchain exciton coupling. In this case, however, the
dependence of the chiroptical response upon sample rotation
and flipping was not investigated.
Tsuchihara et al. reported intriguing results on the

chiroptical control of spin-casted thin films of chiral poly-
(phenylacetylene),601−603 poly(diphenylacetylene),604 and
poly(N-propargylcarbamate),605 depending on the extent of
solvent and thermal annealing. In particular, the poly-
(phenylacetylene) 62 showed a rapid and reversible ECD
inversion upon exposure to suitable solvent vapors; freshly
prepared spin-casted films of 62 from 4 wt % Et2NH solution
revealed a negative band at 370 nm (gabs = −0.95 × 10−3),
which changed sign after exposure for 1 min to acetone vapor
(gabs = 1.71 × 10−3); by further exposure to methanol vapor,
the ECD spectrum was reversed again (gabs = −1.39 × 10−3), in
good agreement with the original one (Figure 45a).603 A
similar ECD sign inversion was found for the same system after
heating at 110 °C for 1 min (Figure 45b).602 The authors
explained this rapid chiroptical inversion through a direct
helix−helix transition, possibly promoted by hydrogen bonding
between the polymer and protic solvent vapors, without any
intermediate random-coil phase; furthermore, linear aniso-
tropies artifacts were excluded, although merely by comparing
ECD measurements at two different rotation angles θ (0 and
90°). In 2011, Tang and co-workers reported strong Cotton
effects in spin-coated thin films of poly(diphenylacetylene)s
having enantiopure menthyl pendant groups, associated with
the helicity of the polyacetylene chains,606 while more recently,

Figure 43. Perylene-appended polyisocyanopeptide 59 adopting a
helical conformation of the polyisocyanide chain (inner purple helix),
yielding a helically ordered pattern (“helter-skelter”) of perylene dyes
(red blocks) contained in the side chains. The first two transitions of
the perylene chromophores, whose TDMs are indicated by the double
arrows, were considered in exciton calculations. Adapted with
permission from ref 564. Copyright 2009 John Wiley and Sons.

Figure 44. ECD spectrum of amino acid-appended polyacetylene 60
measured in CHCl3 solution. The spectrum is preserved over a
temperature range 0−55 °C. The positive ECD band is related to a
right-handed main chain arrangement, as displayed by the molecular
mechanics model optimized with MMFF force field for the 18-mer of
the truncated model 61. Adapted with permission from ref 600.
Copyright 2010 American Chemical Society.
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Kwak and Aoki’s groups synthesized an optically active
poly(diphenylacetylene) functionalized with bulky chiral silane
pendant moieties, which exhibited very similar chiroptical
properties in both solution and spin-coated thin film
samples.607 Chiral composite thin films, obtained by dissolving
a poly(diphenylacetylene) with chiral camphorsulfonic acid
derivatives pendant groups and an achiral fluorescent
naphthalensulphonamide derivative into a PMMA chloroform
solution and casting it onto glass plates, were investigated by
Deng and colleagues.271 Very recently, the same research
group also described ECD spectra for thin films of electrospun
chiral nanofibers obtained from optically active helical
substituted polyacetylenes.608

From the viewpoint of theoretical analysis of ECD spectra,
poly(phenylacetylene) derivatives are comparable to oligo/
polymers with π-conjugated groups in side chains discussed in
section 3.3.1 because the chiroptical response tends to be
dominated by the aromatic pendants rather than by the
polyacetylene chain. ECD spectra of helical poly-
(phenylacetylene)s are typically composed of a couplet-like
feature in the region between 300 and 410 nm, flanked by a
weaker band of opposite sign around 430−450 nm (Figure
45). Exciton-coupled ECD spectra have been calculated by the
exciton theory for poly(phenylacetylene) appended with
galvinoxyl groups.124 More recently, Fernańdez, Freire, and
co-workers demonstrated that ECD spectra of various
poly(phenylacetylene)s 63 with diverse helical arrangements
can be simulated by TD-DFT by using dodecamers as
models.260,609 The studied polymers have known secondary
structure,610 which was used as starting geometry for molecular
mechanics optimizations of 28-mers. Starting from these latter
ones, geometries for the dodecamers were obtained and
sampled by varying selected dihedral angles, which were then
submitted to TD-DFT calculations to search for the best
agreement with experimental spectra (Figure 46). Such
approach allows the prediction of the handedness of the
helical conformation adopted by poly(phenylacetylene)s from

their ECD spectra, the estimation of the most relevant
geometrical parameters, as well as the understanding of the
origin of the observed ECD bands. In the mentioned case,
molecular orbital analysis revealed that the first ECD band
observed around 400 nm is due to the HOMO−LUMO
transition localized on the polyacetylene backbone, rather than
on the aromatic pendants. This corresponds to the
a forement ioned ECD band observed for po ly -
(phenylacetylene)s at 320−340 nm (Figure 44). It must be
stressed that the comparison between calculated and
experimental ECD normally concerns measurements in
solution rather than as solid-state thin films. This fact does
not diminish the importance and the predictive power of the
computational studies we refer to in this review, because, as
already stressed before, many ordered supramolecular
structures observed in solution are retained at large extent in
the solid state. This is certainly the case for the mentioned
poly(phenylacetylene)s because of the large consistency
between the structural parameters estimated by ECD solution
spectra and those detected for solid-state monolayers by AFM
(Figure 47).609,610

Yashima, Maeda, and co-workers have studied extensively
the response of achiral polyacetylenes and poly-
(phenylacetylene)s to the interaction with several different
chiral analytes, inducing a chiroptical response in the polymer
ECD signals; the topic has been recently reviewed.611 The
basic idea is illustrated in Figure 48 for poly(phenylacetylene)s
and some of the polymers employed in the approach are
shown in Figure 49. The achiral stereoregular polymer,
originally in cis/s-trans conformation, adopts a helical
conformation upon noncovalent interaction with a number
of chiral analytes. In the presence of an enantiopure analyte, a
one-handed helical conformation is preferentially induced. The
formation of the host−guest complex is revealed by the
insurgence of an induced ECD signal associated with the
polymer backbone, while the preferential handedness is
reported by the ECD sign. In particular, for poly-

Figure 45. (a) ECD spectra of 62 as spin-casted film from a 4 wt % Et2NH solution recorded: for a freshly prepared sample (blue line), after
exposure of 1 min to acetone vapors (red line), and after further exposure of 1 min to methanol vapor (green line). Adapted with permission from
ref 603. Copyright 2009 American Chemical Society. (b) ECD spectra of 62 as spin-casted film from 4 wt % Et2NH solution recorded: for a freshly
prepared sample (blue line); after annealing at 110 °C for 1 min (red line). Adapted with permission from ref 602. Copyright 2008 American
Chemical Society.
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(phenylacetylene)s, a right-handed helicity is associated with a
positive band around 440 nm. The consistency between the
analyte absolute configuration and the sign of the induced
ECD allows one to predict the absolute configuration of
unknown samples using this supramolecular approach. To that
end, a series of polyacetylenes appended with several different
functional groups have been designed for specific chiral target
analytes.611 Some examples include poly((4-carboxyphenyl)-
acetylene) 64a for the recognition of chiral amines, amino-
alcohols, and amino acids;612−614 poly((4-aminophenyl)-
acetylene) 64c for carboxylic acids;615 poly((4-
dihydroxyborophenyl)acetylene) 64b for carbohydrates and

steroids;616 and many others (Figure 49). Moreover, such
systems display several interesting properties typical of chiral
dynamic supramolecular systems100 such as “sergeant-and-
soldiers” and “majority rule” effects617 and chiral memo-
ry.618,619 Although some of the supramolecular systems formed
by polyacetylenes and poly(phenylacetylene)s 64 have the
tendency to form stable gels,611 only a few reports concerned
thin film chiroptical characterization. Poly((4-carboxyphenyl)-
acetylene) 64a, through acid−base complexation with
enantiopure amines or amino alcohols, exhibited induced
ECD signals in drop-casted samples from DMSO solutio-
n;612,613a small amount of water played a critical role in the
formation of ion-pair species, which is essential for the helicity
induction.620 More recently, for the same poly((4-
carboxyphenyl)acetylene) 64a, Maeda et al. discovered that
the macromolecular helicity induced by small chiral guests in
water can be retained by the alternative deposition of achiral
polyelectrolytes with opposite charges (such as poly-
(allylamine) hydrochloride or poly(acrylic acid) sodium salt),
resulting in optically active multilayer thin films with a
controlled helicity.621

An elegant approach was described by Akagi et al., consisting
in the synthesis of a helical polyacetylene through polymer-
ization in a cholesteric mesophase, obtained by adding the
enantiopure 1,1′-binaphthol derivative 65 as chiral dopant to a
nematic liquid crystal; in addition to a clear Cotton effect allied
with the π−π* transition of polymer chains, thin films showed
helical fibrillar morphologies by SEM analysis.622,623 More
recently, (S)- and (R)-65 were used as additives to induce
helical structures in racemic disubstituted polyacetylene 66
with liquid crystalline properties (Figure 50), thus resulting in
intense ECD signals both in solution and in thin films. A clear-
cut difference was observed between the liquid and solid
samples of pure (S)- and (R)-66, because the former ECD
spectra were monosignate and associated with smaller gabs, and
the latter were bisignate and associated with larger gabs,
reaching values of 1.7 × 10−1 for (R)-66 and −1.3 × 10−1 at
459 nm for (S)-66 around 450 nm. The authors then explained

Figure 46. (a) Example of poly(phenylacetylene) 63 studied by
Fernańdez et al. (b) Main structural parameters explored in the
conformational and spectroscopic investigation; the values shown are
those adopted in the structure for the dodecamer submitted to TD-
DFT calculations. (c) Comparison between the ECD spectrum
calculated at CAM-B3LYP/3-21G level for the dodecamer (scaled
and red-shifted) and the experimental spectrum recorded for the
polymer in chloroform. Adapted with permission from ref 609.
Copyright 2018 John Wiley and Sons.

Figure 47. (a) AFM image of a monolayer of poly(phenylacetylene)
63 displaying the helical arrangement of the polymer chain with a
pitch of 3.8 nm and inclination of 40°. (b) Molecular model deduced
from AFM experiments, which served as starting point for the
calculations shown in Figure 46. Adapted with permission from ref
610. Copyright 2016 American Chemical Society.
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solution ECD spectra as due to the intrachain helicity of the
polyene main chains and solid state ECD spectra as due the
interchain exciton coupling between helical stacks of the
polymer main chains. When racemic 66 was doped with (S)-
and (R)-65, bisignate ECD spectra were again obtained with
maximum gabs values of −4.2 × 10−2 at 449 nm for (R)-65/
(rac)-66 and 6.1 × 10−2 at 459 nm for (S)-65/(rac)-66. This
would suggest a similar supramolecular organization for (R)-66
and (S)-65/(rac)-66 (or for the other pair of samples),
although in the presence of different kinds of stereodefinite

elements of chirality.624 Teraguchi and collaborators described
the polymerization of achiral 4-dodecyloxy-3,5-bis-
(hydroxymethyl)phenylacetylene with an achiral catalytic
system, giving the corresponding racemic helical polyacetylene
with no ECD signals; interestingly, a helix-sense-selective
photodegradation of the racemic polymer was achieved by
irradiation with circularly polarized light, leaving unchanged
the polyacetylene with opposite helicity, which instead showed
strong ECD bands in thin films.625

Contrary to poly(phenylacetylene)s, very little has been
reported on the chiroptical properties of poly(diacetylene)s
(PDAs) thin films with enantiopure chiral moieties; only Ando
and colleagues studied a few samples having a chiral
methylbenzylurethane group in the side chain.626 However,
helical structures in PDA films were more frequently obtained
by polymerization of achiral diacetylene derivatives in the
presence of CP-light, via a magnetochiral anisotropy
mechanism, or at the air/water interface. Iwamoto et al.
described the photopolymerization of 10,12-tricosadiy-
noic627,628 and 10,12-pentacosadiynoic acids629,630 as thin
films prepared by high-vacuum deposition, with CP-light at
314 nm; for each polydiacetylene, the ECD spectra revealed
opposite sign of the obtained chiral polymers depending on the
handedness of CP-light. More recently, Zou and co-workers
reported similar ECD features for the enantioselective

Figure 48. Illustration of induction of helical conformation in an achiral poly(phenylacetylene) by noncovalent interaction with a chiral compound.
The preferential handedness assumed by the polymer backbone is revealed by means of induced ECD in the 300−450 nm region. Adapted with
permission from ref 611. Creative Commons Attribution 4.0 International License, 2017 Springer Nature.

Figure 49. Some of the poly(phenylacetylene)s 64a−f studied by
Yashima, Maeda, and co-workers for their interactions with various
chiral analytes.

Figure 50. Schematic representation proposed by Akagi et al. for the chiral induction of racemic polyacetylene 66 into a cholesteric mesophase with
strong ECD signals in the presence of enantiopure 65 as additive. Adapted with permission from ref 624. Copyright 2012 American Chemical
Society.
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polymerization of diacetylene derivatives, achieved in the
liquid crystal phase by application of linearly polarized light
under parallel or antiparallel magnetic field.631 An alternative
approach was first developed by Liu, consisting in the
photopolymerization of Langmuir and Langmuir−Blodgett
layers of 10,12-tricosadiynoic acid; because each monomeric
unit acts cooperatively in the interfacial polymerization at the
air/water interface, a small prevalence of helical sense in the
starting unit may yield to macroscopic helicity; as usual, the
spontaneous symmetry breaking occurred in both directions,
with ECD spectra of opposite sign for samples fabricated in
different batches.632 Interestingly, the chirality of these
polydiacetylene layers was further confirmed by Iwamoto et
al. via SHG-CD measurements.633 A similar approach was then
extended to diacetylene monomers bearing azobenzene634−637

or bisazobenzene638 groups, gemini-type amphiphilic diacety-
lenes linked through L-lysine derivatives,639 and achiral
hydrogen-bonded complex of amphiphilic diacetylenes with
melamine.640

3.3.3. ECD in Thin Films of Oligo/Poly(p-phenylene)s
(PPPs), (p-Phenylenevinylene)s (PPVs), and (p-
Phenyleneethynylene)s (PPEs). The large interest in the
chiroptical properties of oligo/poly(p-phenylene)s and related
compounds is allied with the easy introduction of chiral
stereodefinite alkyl and alkyloxy chains as substituents of
phenylene units, which lead to structurally well-defined and
solution-processable systems.
In 1998, Scherf et al. investigated the aggregation-induced

circular dichroism effects for the enantiopure poly(2,5-bis[(S)-
2-methylbutoxy]-1,4-phenylene); thin films obtained by drop
casting from a chloroform solution revealed a strong negative
ECD band centered at 345 nm, with gabs = −1.05 × 10−2.641

This short communication contains several characteristic
elements of the aggregation behavior of PPPs, PPVs, and
PPEs found in the remaining literature we cover in the present
section. The formation of solution aggregates was promoted by
the addition of a “poor” solvent (methanol) to solutions of a
“good” solvent (chloroform). The absorption spectra did not
show a significant change upon aggregation, suggesting that the
polymer chains do not undergo sizable conformational changes
upon aggregation, e.g., by varying the twist angle between
adjacent phenylene subunits. Conversely, the ECD spectrum
was weak and nonstructured for the molecularly dissolved
polymer in chloroform but became much stronger and
bisignate for the aggregated polymer, either in solution or as
thin film. Aggregated solution ECD spectra were consistent
with those observed for thin films except for some red-shift and
a smaller gabs (−4.7 × 10−3 at most). The collected evidence
pointed at the intermolecular aggregation of single polymer
chains, yielding a chiral supramolecular structure.641 In a
following paper, the authors studied in detail the chiroptical
response for thin films of the same π-conjugated polymer
depending on thickness and deposition technique: in
particular, spin-coated samples revealed the same ECD profile
as the solution aggregates but with stronger signals (gabs values
up to −0.06), while Langmuir−Blodgett layers showed
negligible ECD;642 however, no further investigations on the
origin of these large gabs values were performed.
Yamamoto and co-workers described the uncommon ECD

properties of poly(p-phenylene)-type polymer 67, constituted
of C2 chiral 9,10-dihydrophenanthrene repeating units; drop-
casted thin films (thickness = 0.32 μm) from CHCl3 solution
showed very large ECD signals in the range 350−450 nm, with

maximum value of about 6°/μm at 410 nm (Figure 51);643 the
authors attributed the origin of this strong ECD effect to the
molecularly stacked structure observed by X-ray diffraction
analysis.644

More recently, helical assemblies with high dissymmetry
factors in solution and thin films were described by Akagi and
collaborators for cationic chiral poly(p-phenylene) derivatives
68 and 69 (Figure 52a), having alkyl substituents with both
asymmetric centers and quaternary ammonium moieties,
enforced by anionic π-conjugated molecules as counterions.645

Polymers 68 and 69 exhibited ECD spectra in solution of
methanol with multiple bands (Figure 52b), allied with the
aromatic chromophores, and maximum gabs around 2 to 3 ×
10−4. The ECD spectra suggested the presence of the axial
chirality between the neighboring phenylene rings in the
polymer main chain, that is, of an intrachain helicity, whose
handedness is obviously dictated by the chiral side chains. The
presence of multiple ECD signals is due to the concomitance
of several transitions with different polarization. The sign of
the ECD couplets in the 200−260 nm region, due to
transitions polarized transverse to the polymer main axis, was
used to establish the main chain helicity, which was right-
handed for (R,R)-68 (Figure 52d). Conversely, the ECD band
around 340 nm, due to the collective transition polarized along
the polymer main axis, was monosignate for 68 and negligible
for 69. The situation changed completely upon addition of a
proper counterion, such as the sulfonate-substituted naph-
thalene derivative 70. In the long-wavelength region of the
absorption spectrum, a new absorption band appeared at 350
nm, suggesting polymer aggregation; correspondingly, a strong
bisignate band with extrema at 340 and 370 nm emerged in the
ECD spectrum with gabs of 3.5 × 10−3 for 68·70 (Figure 52b)
and 2.7 × 10−2 for 69·70 (in both cases for the band around
340 nm). The new Cotton effects were interpreted as due to
the exciton coupling between the π-conjugated main chains of
the polymers; the couplet sign suggested that the supra-
molecular helices are left-handed for 68·70 (Figure 52e,f) and
right-handed for 69·70. Films cast from aqueous solutions of

Figure 51. ECD spectrum of the poly(p-phenylene)-type polymer 67
as thin film (thickness = 0.32 μm) obtained by drop casting of a
CHCl3 solution. Adapted with permission from ref 644. Copyright
2007 John Wiley and Sons.
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68·70 displayed ECD spectra consistent with solution
aggregates (Figure 52c) and were also CPL-active; SEM
images showed entangled morphologies but without clear-cut
helicity. Overall, the analysis demonstrated how the careful
interpretation of ECD spectra provides detailed information on
the combination of intrachain and interchain mechanisms.645

Agaki also investigated the chiroptical properties of poly(m-
phenylene)s bearing enantiopure alkyl groups in side chains; in
particular, freshly prepared drop-casted samples showed ECD
bands with substantially increased intensities compared to
solution, suggesting that the intrachain helical π-stacking
typical of poly(m-phenylene) systems is favored by the self-
assembly in the film state.646

The first ECD investigations in thin films of poly(p-
phenylenevinylene)s (PPVs) were reported by Meijer et al.
(Figure 53). In 1997, they described the chiroptical properties
of poly(2,5-bis[(S)-2-methylbutoxy]-1,4-phenylenevinylene)
(71); in particular, thin films obtained by spin-coating of a
chloroform solution exhibited ECD signals very similar to
those observed for the solution aggregates, with maximum
dissymmetry factor gabs value of −6 × 10−3 at 502 nm.647

Aggregated ECD spectra demonstrated the typical solvato-
chromism and thermochromism and were assigned to chiral

supramolecular assemblies with a moderate degree of order. In
a following paper, the chiroptical behavior of this polymer was
compared with that of a poly(2,5-bis[(S)-2-methylbutoxy]-1,4-
phenylenevinylene)-co-(2,5-bis[(±)-3,7-dimethyloctyloxy]-1,4-
phenylenevinylene) copolymer 72, showing instead maximum
gabs of −5.1 × 10−3 at 572 nm.648 In 1999, the same authors
studied a set of random copolymers 73a−k, having the
symmetric 2,5-bis[(S)-2-methylbutoxy]-1,4-phenylenevinylene
(BMB-PPV) unit (with two chiral pendants) and the

Figure 52. (a) Chemical structures of cationic poly(p-phenylene)s 68 and 69 and of sulfonate-substituted naphthalene 70 reported by Akagi and
co-workers. (b) ECD spectra of (R,R)-68 in methanol and of (R,R)-68/70 (1:4 mixture) in water at 20 °C. (c) ECD spectrum of thin film of
(R,R)-68/70 (1:4 mixture) cast from water. (d) Models of the hierarchical chiral assembly of (R,R)-68. The yellow ribbons represent twisted π-
conjugated backbones of the polymer with right-handed helicity. (f,g) Left-handed helices representing the π-stacked supramolecular structure
adopted by π-stacked polymer chains. Adapted with permission from ref 645. Copyright 2015 American Chemical Society.

Figure 53. Chemical structures of poly(p-phenylenevinylene)s
(PPVs) 71−73 investigated in thin films by ECD spectroscopy,
reported by Meijer, Janssen, and co-workers.
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asymmetric 2-methyl-5-[(S)-2-methylbutoxy]-1,4-phenylenevi-
nylene (MMB-PPV) unit (with one chiral and one methyl
pendant) in different ratios. Interestingly, a clear impact of the
substitution pattern regioregularity was found for samples
(∼100 nm of thickness) prepared by spin-casting from
chloroform/o-dichlorobenzene solutions; if the regioregular
BMB-PPV homopolymer 73k showed strong ECD signals (gabs
= 2.8 × 10−3 at 425 nm), a dramatic decrease was observed by
increasing the fraction of asymmetric units with only one chiral
pendant, and the gabs value dropped to 1.1 × 10−4 (at 425 nm)
for the MMB-PPV homopolymer 73a.649 In 2000, Janssen and
co-workers studied instead the ECD of spin-coated samples of
a random PPV copolymer bearing enantiopure (S)-2-
methylbutoxy and racemic 3,7-dimethyloctyloxy chains.209

Most of the PPVs described by Meijer, Janssen, and co-
workers (Figure 53) displayed also CPL spectra as thin films,
therefore they will be also accounted for in a later section
(4.2).
A very interesting work was proposed by Swager and co-

workers, which described a facile control of the chiral packing
in spin-casted thin films of the chiral polymer 74: samples
prepared from a chloroform solution revealed, after 30 min of
annealing at 45 °C under CHCl3 vapor, a strong negative ECD
couplet (with maximum gabs values of −1.6 × 10−3 at 474 nm
and 1.9 × 10−3 at 375 nm); freshly prepared samples from 1,2-
dichloroethane solution showed a positive ECD couplet
(maximum gabs values of 9.8 × 10−3 at 487 nm and −6.1 ×
10−3 at 369 nm), suggesting an opposite helical organization
(Figure 54).650 The analysis of aggregate ECD spectra of PPVs
is often based on qualitative exciton arguments; because the
PPV chain is relatively rigid and substantially planar,
vibrational fine structures are not apparent in ECD spectra,
hence ECD couplets are easily taken as the signature of exciton
coupling between polymer chains packed in helical stacks
(Figure 54), where the major electronic transition is long-axis
polarized. The ECD of several other oligo/poly(p-phenyl-
enevinylene) derivatives have been investigated as thin films,
fabricated with different deposition techniques including spin-
coating,651 Langmuir−Blodgett,652 Langmuir−Schaefer,653 or
electrostatic self-assembly.654 More recently, Jayakannan et al.
reported a detailed investigation on the solution and solid state
self-assembly of a family of structurally related chiral oligo(p-

phenylenevinylene)s, differing in the number of alkyl carbon
atoms in the tails; interestingly, most of them exhibited a
liquid-crystalline behavior, and a perfect correlation of the
cholesteric structure (observed under polarized light micro-
scope) with the helical supramolecular structures (identified by
ECD spectroscopy) was established in thin film samples.655

MacLachlan and co-workers described instead the polymer-
ization of achiral poly(p-phenylenevinylene) in the pores of
chiral nematic mesoporous organosilica; interestingly, water-
soaked films of the resulting composite material exhibited a
negative ECD signal at 430 nm due to the left-handed helical
structure adopted by PPV chains within the host matrix.656

The ECD of all the above-described poly(p-phenyl-
enevinylene) samples were not checked for the contribution
of macroscopic anisotropies, therefore the reader is expected to
assume that they can be attributed to an isotropic origin (CDiso
≈ CDobs). However, Meijer et al. in 2007 characterized the
behavior of the achiral oligomer 75, whose self-assembling was
achieved in various conditions. First, aggregation was
promoted by slow cooling from 363 to 293 K in nonstirred
solutions, yielding a monosignate negative ECD spectrum with
gabs ≈ −5 × 10−3. It was argued that oligo(p-
phenylenevinylene)s like 75 formed fibers in solution which
aligned under the effect of convective flows due to temperature
differences in the cuvette, thus leading to observable linear
dichroism (LD). The authors thus suggested that CDobs might
be due to the combination of the sample LD with the
instrument imperfection, e.g., with an artifact associated with
the third term in eq 4 in section 2.1.1. Second, the presence of
possible vortex effects was explored by stirring previously
cooled samples with clockwise or counterclockwise spinning
direction. In this way, intense and bisignate ECD signals were
obtained whose sign depended on the spinning direction.
Rather than being associated with spontaneous symmetry
breaking due to vortex effects, the appearance of ECD signals
was due to the presence of a remarkable LDLB contribu-
tion.657 The authors observed that the ECD spectra caused by
vortex effects were very different, both in shape and intensity,
from those associated with the convective flow and the LD-
related artifacts. Similarly to the study of Aida and
collaborators performed on the achiral zinc porphyrin 52,483

mentioned in section 3.2, the authors explained the origin of

Figure 54. (a,b) ECD spectra of polymer 74 as thin film prepared by spin-casting: from a chloroform solution before (blue line) and after 30 min of
annealing at 45 °C under CHCl3 vapor (red line); from a 1,2-dichloroethane (DCE) solution without any annealing (green line). (c) Suggested
model for the supramolecular assembly observed in DCE-cast film, emphasizing positive chirality between stacked PPV chains. Adapted with
permission from ref 650. Copyright 2005 American Chemical Society.
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the vortex effect by studying the chiroptical response of two
overlapping aligned films of 75 (each of them linearly dichroic
and linearly birefringent) depending on the dihedral angle ϕ;
ECD signals of opposite signs were obtained with ϕ = +45° or
−45°, respectively, while when the two films were overlapped
at ϕ = +90°, a negligible ECD was found (Figure 55).657 The

ECD spectra for the films tilted at ±45° were very similar to
those obtained after stirring the cooled solutions. Therefore,
this experiment, together with that of Aida and collabo-
rators,483 showed well how the LDLB effect may arise from a
large number of linearly birefringent and linearly dichroic thin
layers helically overlapped. Different to the report by Aida and
co-workers,483 however, Meijer et al. discussed explicitly the
contribution of LDLB term to the emergent ECD signal.657 In
particular, they stressed how the first layer provides LB while
the second layer provides LD′ (or LD at 45°), or vice versa,
thus generating a sizable second term (LD′·LB−LD·LB′) in eq
4, section 2.1.1. The order between the two layers with respect
to the direction of light propagation or the sense of the 45°
rotation determines the sign of the LDLB term.
Compound 75 belongs to a series of oligo(p-

phenylenevinylene)s (OPVs) with self-complementary binding
motifs developed by Meijer and co-workers. The underlying
strategy behind the design of these systems assures first the
formation of hydrogen bonded dimers, then the formation of
noncovalent supramolecular helical polymers mediated by π-
stacking in apolar solvents.99,658,659 These systems have been
mostly investigated as solution aggregates rather than in thin
films, but they are very relevant for the present review because
they often exhibit multiple aggregation pathways (pathway
complexity) for which the use of ECD is regarded as the key
technique.32 Figure 56 illustrates the concept for OPV 76,

whose aggregation behavior was revealed by variable temper-
ature and stopped-flow UV−vis and ECD experiments. There
is much added value in the use of ECD spectroscopy in the
investigation of the nucleation−elongation growth mechanism
for OPVs and related systems: (a) only ECD can probe the
helicity of the supramolecular assemblies; (b) the intensity of
ECD signal reflects the degree of helical order reached in the
aggregates; (c) the evolution of UV−vis and ECD spectra
upon aggregation may be allied to different steps, for instance,
UV−vis aggregation bands may appear at early stages of
aggregation while the insurgence of aggregate ECD bands may
require the formation of more mature nuclei with well-defined
helical twist.32,99 A similar behavior, concerning the existence
of multiple aggregation pathways revealed by the parallel use of
UV−vis and ECD variable-temperature experiments, has been
evidenced for the already mentioned case of chiral PDI
derivatives (section 3.1.1).372 Because of their importance,
OPVs have been investigated theoretically by various
groups.129,131,132,223 In particular, Spano and co-workers
focused on OPV 76 and were able to demonstrate that
aggregate ECD spectra reflect long-range exciton couplings
between the OPV chromophores by enhancing the nearest-
neighbor couplings. Moreover, quite unexpectedly, they found
that the exciton-coupled ECD signature is almost unaffected by
energetic disorder and exciton-vibrational coupling, making it
very easy to extract the desired structural information from
aggregate ECD spectra with a simplified theoretical treat-
ment.132

Poly(p-phenylene-ethynylene)s (PPEs) are a thoroughly
exploited class of π-conjugated polymers for their attractive
optical, structural, and electronic properties for which they
have gained the designation of “molecular wires”.660,661 The
supramolecular organization of PPEs has been widely

Figure 55. ECD spectra of two overlapping aligned films of achiral
oligo(p-phenylenevinylene) 75 recorded by Meijer et al. at various
dihedral angles ϕ: +45° (blue line), −45° (red line), and +90°
(dashed black line). Adapted with permission from ref 657. Copyright
2007 John Wiley and Sons.

Figure 56. Pathway complexity in the supramolecular polymerization
of chiral OPV 76. ECD measurement in solution under kinetic and
thermodynamic control reveal two different aggregation modes with
opposite helicity (metastable, P-type, and stable, M-type helices).
Adapted with permission from ref 32. Copyright 2014 American
Chemical Society.
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investigated, especially in relation to their photophysical
properties which emerge in the aggregated state. In fact, in
the molecularly dispersed ground state, there is almost free
rotation around the phenyl-ethynyl bonds which is reduced
upon aggregation; moreover, planarization is also observed in
the excited state.661,662 In particular, it is well accepted that the
evolution of the UV−vis absorption envelope upon aggrega-
tion is a combination of both intrachain and interchain effects,
namely planarization and excitonic communication.663−665 It is
expected that the same factors are responsible for aggregated
ECD spectra of chiral PPEs, as suggested by the cartoon in
Figure 7 (section 2.1), which are dominated by the exciton
coupling between helically arranged PPE rods and often
display a pronounced and very characteristic vibrational
pattern.63,96,666−673 The rich literature just mentioned mainly
concerns the supramolecular organization of chiral PPEs in the
form of solution aggregates; depending on the adopted
experimental conditions, PPEs can easily follow different
aggregation pathways, giving structurally different chiral
superstructures. However, thin films of chiral PPEs have also
been widely characterized by chiroptical spectroscopies. The
first chiroptical investigation of PPEs as thin films was reported
by Scherf et al.; drop-casted samples from CHCl3 solution of
the enantiopure poly(2,5-bis[(S)-2-methylbutoxy]-1,4-phenyl-
eneethynylene) exhibited a maximum gabs value of ∼0.001 at
476 nm,666 while for thin films of the chiral poly(2,5-bis[(S)-
3,7-dimethyloctyl]-1,4-phenyleneethynylene), prepared under
the same conditions, a gabs value of 1.3 × 10−2 (at 432 nm) was
found.667 In 2002, Neher and Bunz studied the statistical
copolymers 77a−c, containing the enantiopure 2,5-bis[(S)-3,7-
dimethyloctyl]-p-phenyleneethynylene and the racemic 2,5-
bis[(rac)-2-ethylhexyl]-p-phenyleneethynylene units in differ-
ent ratios; surprisingly, spin-casted films from CHCl3 solution
of the copolymers 77b and 77c, after thermal annealing for 30
s at 160 °C (just below their liquid crystal/isotropic transition)
and for other 2 h at 140 °C, revealed the very large gabs values
(at 432 nm) of −0.292 and −0.378, respectively (Figure 57);
furthermore, any contribution to these signals different from
CDiso (LDLB or artifacts) was excluded because all of the ECD
measurements upon sample rotation and flipping were
reproducible with an error <10%.674 The chiral supramolecular
assembly occurring under thermal annealing was thus

responsible for the extraordinary chiroptical properties of
77b−c, although for the authors it was not clear if these
properties were caused by conformational effects of a single π-
conjugated chain (the aforementioned intrachain mechanism)
or by electronic interactions between many chains (which
represents an interchain mechanism). They excluded that
exciton coupling between polymeric chains would be
responsible for the observed bisignate ECD spectra by
stressing the consistency between these latter and CPL spectra,
which were monosignate. However, biaryl systems where the
most red-shifted transitions are excitonically coupled unavoid-
ably yield bisignate ECD spectra and monosignate CPL
spectra, these latter caused by the emission from the lowest-
lying exciton-split level.675 More recently, Liang and colleagues
observed large gabs values (up to 0.117) for thermally annealed
thin films of oligo(p-phenyleneethynylene)s having enantio-
pure (−)-trans-myrtanyl groups as side chains.676

Not only alkyl moieties (branched or cyclic) have been used
a s en an t i opu r e s i d e ch a i n s o f o l i g o /po l y (p -
phenyleneethynylene)s and similar systems, but also carbohy-
drates677,678 and α-amino acids.679 In particular, Di Bari and
co-workers described in 2006 the first example of poly(1,4-
phenyleneethynylene) functionalized with chiral α-amino acid
pendants: polymer 78, having N-tert-BOC-L-phenylalanine
units linked to phenylene rings by six carbon atoms alkoxy
chains.670 The ECD spectrum of 78 as drop-casted thin films
from chloroform solution showed two main bands, centered at
428 nm (positive) and 488 nm (negative), with gabs factor
values up to about 10−3. In a following paper, the authors
investigated the chiroptical properties for chiral polymers 79a−
c, having natural α-amino acid methyl esters in the side chains,
as thin films prepared by drop casting of a CH2Cl2 or 60:40
CH2Cl2/Et2O solution: 79a (functionalized with L-leucine
methyl esters) showed maximum gabs value of 9.3 × 10−3 at
490 nm; 79b (bearing L-phenylalanine methyl esters) exhibited
a gabs factor of 1.3 × 10−3 at 495 nm; 79c (containing L-valine
methyl ester groups) revealed an ECD spectrum with
maximum gabs value of −2.5 × 10−3.671 Recently, a deeper
investigation on the polymer 79a was performed, focusing on
the comparison of the ECD response for freshly prepared and
annealed thin film samples obtained by drop casting or spin-
coating of a CHCl3 solution; from a disordered state with

Figure 57. ECD spectrum of copolymer 77c as thin film obtained by spin-casting of a CHCl3 solution, recorded after annealing at 160 °C for 30 s
and other 2 h at 140 °C. Adapted with permission from ref 674. Copyright 2002 American Chemical Society.

Chemical Reviews pubs.acs.org/CR Review

https://dx.doi.org/10.1021/acs.chemrev.0c00195
Chem. Rev. 2020, 120, 10145−10243

10189

https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00195?fig=fig57&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00195?fig=fig57&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00195?fig=fig57&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00195?fig=fig57&ref=pdf
pubs.acs.org/CR?ref=pdf
https://dx.doi.org/10.1021/acs.chemrev.0c00195?ref=pdf


negligible ECD (observed only for freshly prepared spin-
coated films), 79a assumed the thermodynamic aggregation
state with strong ECD signals (found in both spin-coated
samples after prolonged annealing and freshly prepared drop-
casted films) passing through an intermediate metastable state
showing a different ECD profile (recorded in spin-coated films
after short annealing).96 For all of the above-described samples
of poly(p-phenyleneethynylene)s 78 and 79a−c (Figure 58),

the LDLB and artifacts were excluded by repeating the ECD
measurements not only upon rotation around the optical axis
but also upon sample flipping. The same research group has
also investigated both solution and thin film aggregation of two
β-D-glucose-substituted phenyleneethynylenes, i.e., an alternate
copolymer (compound 7 in Figure 7, section 2.1) and a
homooligomer; in particular, ECD spectroscopy gave in-
formation about their extent and modes of aggregation.63 In all
of these latter examples, aggregate ECD spectra observed in
solution, after “nonsolvent” addition to solutions in “good”
solvents, were largely consistent with thin film ECD spectra.
This observation corroborates the well-established hypothesis
that solution aggregates mimic solid state aggregates at the f irst
levels of hierarchy of their supramolecular organization. The
spectral evidence collected by Di Bari and co-workers and by
other authors on PPE derivatives points at an essentially
excitonic origin of their aggregated ECD spectra. The bisignate
signal around 400 nm, together with its vibrational fine
structure (Figure 7), has been explained on a qualitative or
semiquantitative ground according to vibronic exciton-coupled
ECD theory and used to draw conclusions on the probable
aggregate structure.63,668,670,671,673 It is worth mentioning that,
with respect to other classes of polymers of paramount
importance such as poly(p-phenylenevinylene)s, polyfluorenes,
and polythiophenes, more refined theoretical investigations of
aggregate ECD spectra of poly(p-phenyleneethynylene)s are
scarce in the literature. However, Painelli, Thomas, and co-
workers studied in detail the supramolecular assemblies of 1,4-
bis(phenylethynyl)benzene derivatives appended with α-amino
acidic moieties and reproduced their ECD spectra by applying
quantitative exciton-coupled calculations to model deca-
mers.680 Although these simplified systems do not lead to
aggregate ECD spectra showing the characteristic vibronic
patterns of PPEs, they are expected to capture the essence of
electronic exciton coupling between proximate phenylenee-
thynylene moieties.

3.3.4. ECD in Thin Films of Oligo/Polyfluorenes and
Related Copolymers. Oligo/polyfluorenes681 are among the
most investigated classes of π-conjugated systems as thin films;
depending on the substituents at position 9 of fluorene
moieties, these molecules may exhibit a liquid crystalline
behavior which allows for exceptional chiroptical properties,
both in absorption and emission. Therefore, their chiroptical
response is largely due to the selective reflection of CP light by
N*-LC phases, a mechanism explained in section 2.1.4 which
must be distinguished from natural optical activity.
In 2000, Oda and colleagues reported the first ECD study

for thin films of liquid crystalline chiral polyfluorenes, including
spin-coated samples (∼100 nm of thickness) of poly(9,9-
bis[(S)-3,7-dimethyloctyl]-2,7-fluorene) 80; if pristine samples
showed only weak ECD signals, the chiroptical properties
improved drastically after thermal annealing in the liquid
crystalline state (i.e., at 200 °C for ∼3 h), reaching a gabs value
of −5.0 × 10−2 at 403 nm.682 The ECD spectra featured a
complex signal in the region between 300 and 500 nm, with
three bands of alternating sign (−/+/− for (S,S)-80). The
couplet-like feature with extrema at 360 and 405 nm
corresponds to the main transition of the poly(fluorene)
chromophore which is polarized along the same direction of
the polymer chain (Figure 59). Although not explicitly

discussed by the authors, the long-wavelength band at 425
nm is likely due to circular differential scattering (vide infra).
In a following paper, the same sample was subjected to a more
prolonged annealing in the liquid crystalline state (14 h at 200
°C); very large ECD signals were obtained, which even
exceeded the full scale of the spectropolarimeter, resulting in a
maximum |gabs| > 0.15 (the precise value could not be
determined accurately).683

Meijer et al. in 2003 investigated in detail the origin of the
exceptionally high dissymmetry factor gabs value observed in
thin films of 80 by collecting ECD spectra of spin-coated
samples of different thickness (fabricated from toluene
solutions with different concentration) annealed at 150 °C
for 2 h; the gabs at 403 nm varied unexpectedly over 3 orders of

Figure 58. Chemical structure of the optically active poly(p-
phenyleneethynylene)s 78−79, functionalized with α-amino acid
derivatives in the side chains, studied by Di Bari and co-workers.

Figure 59. ECD spectrum recorded by Oda and colleagues for
thermally annealed (200 °C for ∼3 h) spin-coated thin films (∼100
nm of thickness) of poly(9,9-bis[(S)-3,7-dimethyloctyl]-2,7-fluorene)
80. Adapted with permission from ref 682. Copyright 2000 Elsevier.
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magnitude for thickness ranging from 30 to 400 nm, with a
maximum value close to −1 (Figure 60a).72 Because
dissymmetry factors gabs are an intrinsic property of the
materials, thus independent (at least in theory) of the film
thickness, the authors hypothesized the existence of a large
pseudo circular dichroism (i.e., LDLB term, according to our
nomenclature). However, no experimental evidence confirm-
ing that hypothesis was reported, such as the determination of
Mueller matrix elements, or more simply the measurement of
ECD spectrum upon sample rotation and flipping. They
excluded a sizable contribution from the selective reflection of
CP light. More recently, Meskers and co-workers observed that
the gabs value for freshly prepared spin-coated samples of 80
was essentially independent of the film thickness (in the range
50−290 nm), with a value of ∼3.0 × 10−4 at 400 nm (Figure
60b).684 Therefore, while pristine thin films of chiral
polyfluorene 80 (prepared by spin-coating from a good
solvent) showed a moderate chiroptical response, attributable
to a CDiso arising from the supramolecular helical arrangement
of individual π-conjugated chains, after thermal annealing in

the liquid crystalline state, this term was covered by an
apparent ECD contribution, due to the rearrangement into
helically overlapped layers of aligned polymer chains
(cholesteric organization), which resulted in exceptionally
large ECD signals (see section 2.1.4). Concomitantly then, the
dissymmetry factor gabs evolves from being an intensive
property (not depending on the film thickness, as it is
customary) to being an extensive property (depending on the
film thickness). Interestingly, the crossover between these two
different behaviors of 80 was also theoretically investigated by
using the exciton theory for the first-order supramolecular
aggregates with short correlation length, and the DeVries
theory, which accounts for the chiroptical properties of
cholesteric liquid crystals, i.e., objects with a long-order
correlation length.171 Another spurious contribution to the
ECD spectra of 80 and its analogues72,682−684 may come from
circular differential scattering (CDS). These spectra show in
fact a long-wavelength tailing which is a typical manifestation
of CDS (Figure 59).174 In turn, this latter phenomenon has
been recently invoked as the reason for the dependence on the

Figure 60. (a) Up: dissymmetry factor gabs values at 403 nm recorded for thermally annealed (150 °C for 2 h) thin films of chiral polyfluorene 80,
prepared by spin-coating from a toluene solution, as a function of the film thickness. Down: representative ECD spectrum recorded for a thin film
sample with thickness = 1.1 × 102 nm. Adapted with permission from ref 72. Copyright 2003 John Wiley and Sons. (b) Up: dissymmetry factor gabs
values at 400 nm recorded for pristine thin films of chiral polyfluorene 80, prepared by spin-coating from a CHCl3 solution, as a function of the film
thickness. Down: representative ECD spectrum recorded for a thin film sample with thickness = 2.3 × 102 nm. Adapted with permission from ref
684. Copyright 2009 American Chemical Society.
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film thickness of ECD and especially CPL spectra of the blends
between a poly(9,9-dioctylfluorene-co-benzothiadiazole) and
1-aza[6]helicene,214 as described elsewhere (sections 3.1.1 and
4.2). Interestingly enough, ECD spectra of freshly prepared
spin-coated films of 80 did not manifest the long-wavelength
tailing.684 However, the selective reflection of CP light by N*-
LC may be itself the source for ECD tailing effects (vide
infra).228,229

Other optically active alkyl-substituted polyfluorenes showed
a chiroptical behavior similar to 80. Spin-coated thin films of
poly(9,9-bis[(S)-2-methyloctyl]-2,7-fluorene) 81 from a 0.02
M THF solution revealed only weak ECD signals as pristine
samples (maximum gabs = 8.1 × 10−4 at 399 nm), while after
thermal annealing for ∼3 h at 200 °C an intense bisignate ECD
signal appeared, with a negative band at 412 nm (gabs = −0.18)
and a positive band at 385 nm (gabs = 0.06).685 Scherf and
Neher characterized several liquid crystalline polyfluorenes,
including poly(9,9-bis[(S)-2-methylbutyl]-2,7-fluorene) 82
and poly(9,9-bis[(R)-2-ethylhexyl]-2,7-fluorene) 83; by pro-
longed thermal annealing in the liquid crystalline state (for ∼5
h at 200 °C), ECD signals exceeding the spectropolarimeter
full scale were again found (|gabs

max| > 0.15).146 These latter
spectra also displayed a long-wavelength tailing, probably
originated by CDS; the authors recognized that ECD profiles
deviated from symmetrical ECD couplets, as well as the
contribution of scattering to their optical spectra. Then they
concluded that the low-energy ECD band was not due to an
inherent property of the chiral polymers but rather to
nonabsorption-related ECD effects caused by light scattering
of the liquid crystalline, anisotropic polymer films. Nakano et
al. studied neomenthyl-functionalized polyfluorenes; in partic-
ular, the alternating copolymer 84 having chiral 9-neomenthyl-
9-n-pentyl-fluoren-2,7-diyl and achiral 9,9-bis-n-octyl-fluoren-
2,7-diyl units showed gabs factor maximum value of 2.6 × 10−2

at 393 nm in drop-casted films after 48 h at 160 °C.686

Moreover, polyfluorene 85 with 3-((S)-2-methylbutyl)-
propanoate chains as chiral pendant was characterized in
spin-coated thin films as neat material143 and as aggregates
blended with racemic limonene687 (Figure 61). Very recently,

Huang and co-workers instead developed a set of aryl-
substituted polyfluorenes, as ultrastable supramolecular self-
encapsulated wide-bandgap semiconductors for electrolumi-
nescent devices; in particular, ECD spectra of thin films casted
from toluene solution confirmed that self-assembled gelation
structure of the polymers exhibited a helical organization.688

Chen et al. studied the chiroptical activity of several liquid
crystalline chiral oligofluorenes (in particular nonafluorenes),
bearing (S)-3,7-dimethyloctyl and (S)-2-methylbutyl chains as
substituents, in spin-casted thin films.228,229 Although pristine
samples (with approximately 90 nm of thickness) exhibited
significant ECD, suggesting the presence of chiral local
assemblies (i.e., CDiso contribution), a right-handed cholesteric
structure was found for the annealed films, responsible for an
increase in ECD signals of about 1 order of magnitude
(reasonably due to a larger LDLB term). Another effect of
annealing on the ECD spectra was the insurgence or
enhancement of the long-wavelength tailing. The authors
additionally employed ellipsometry and selective reflection
measurements for the characterization of their samples and
demonstrated that differential reflection of CP light is another
possible source of these ECD tailing effects in addition to
CDS.
π-Conjugated copolymers bearing fluorene chiral units were

also investigated as thin films by ECD spectroscopy. In 2008,
Schenning and Meijer compared the chiroptical properties of
80 with those of copolymers having 9,9-bis[(S)-3,7-dimethy-
loctyl]-2,7-fluorene unit alternated to benzothiadiazole (86) or
dithienylbenzothiadiazole moieties; only after annealing for 2 h
at 150 °C all the samples (prepared by spin-coating from
THF/chlorobenzene or CHCl3/chlorobenzene solutions)
exhibited strong ECD signals.689 Moreover, the dependence
of ECD on the polymer length was also investigated by
analyzing spin-coated films of different fractions separated by
preparative size-exclusion chromatography (SEC); the largest
ECD signals were recorded for each polymer at intermediate
length, indicating the presence of an optimal molecular weight
for the supramolecular chiral organization. Similar to the
behavior of the analogous homopolymer 80, a nonlinear
dependence was observed between gabs values and film
thickness for 86, a phenomenon which was related to
supramolecular order on scale larger than the first-order
supramolecular organization. In particular, the authors
observed that the long-wavelength tailing, in a spectral region
where no absorption is present, might be possibly explained by
selective scattering, i.e., CDS, or differential reflection of CP
light. Further studies on the ECD properties of copolymer 86
were then performed by Di Nuzzo, Meijer, Meskers, et al.,
within their investigation of its electroluminescent properties
to be exploited in OLEDs. A sharp dependence of ECD signals
was again observed in spin-coated samples of 86 on the
annealing time and the film thickness, showing a maximum
dissymmetry gabs value of −0.8 (Figure 62).213 The authors
aimed at exploring nonlocal effects, typical of cholesteric liquid
crystals, to obtain strong CPL (see section 4.2). They
discussed the possible role of several effects: circular
differential transmission of left and right CP light, circular
differential scattering (CDS), and linear dichroism and
birefringence. Circular differential transmission of left and
right CP light was found to be non-negligible in regions far
from the absorption bands, that is, even above 1000 nm,
revealing the contribution of CDS. In addition to noticing
sizable LD and LB, the authors observed that a fixed relation
between the sign and direction of LD and LB would contribute
to the observed ECD through what we refer to as the LDLB
term. Even more interestingly, they noticed that such a fixed
relation might easily be realized in individual cholesteric
domains, yielding a net contribution to the ECD in case these
domains are sufficiently large. A later set of accurate

Figure 61. Chemical structure of the most investigated optically
active alkyl-substituted polyfluorenes 81−85 with strong ECD signals
in thermally annealed thin films.
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measurements of LD, circular differential transmission and
circular selective reflection on the same samples of 86
corroborated the previous evidence.273 Thus, it was definitely
concluded that the exceptional ECD spectra with nonlinear
dependence on the film thickness are associated with the long-
range cholesteric ordering.

The behavior just described for poly(fluorene)s and
fluorene/benzothiadiazole copolymers has been observed in a
very consistent manner for several fluorene-based copolymers
incorporating other kinds of π-conjugated units (Figure 63). A
very interesting chiroptical study was reported by Meskers and
co-workers on spin-casted films of poly(9,9-bis[(S)-3,7-
dimethyloctyl]-2,7-fluorene-alt-dithienylbenzothiadiazole) 87;
ECD properties were investigated in detail as a function of the
thickness of polymer layer in order to construct a photovoltaic
cell sensitive to the circular polarization of the incoming
light.690 This compound exhibited strong ECD spectra after
thin film annealing, similar to other fluorene-based cholesteric
liquid crystals mentioned above; in this case too, gabs was
dependent on the film thickness. Choi et al. found that
poly(9,9-bis[(S)-3,7-dimethyloctyl]-2,7-fluorene-alt-1,4-phe-
nylene) 88 and poly(9,9-bis[(S)-3,7-dimethyloctyl]-2,7-fluo-
rene-alt-2,5-thiophene) 89 copolymers showed high ECD
activity in pristine thin films (i.e., without any thermal
annealing), due to a substantial CDiso that has been
hypothesized to arise from the intrachain chirality adopted
by the π-conjugated chains.691 However, ellipsometry measure-
ments performed later on the phenylene compound 88
revealed the existence of a supramolecular helical arrangement
between individual π-conjugated chains responsible for a true
circular dichroism.692 In 2018, Meijer and collaborators
reported a versatile method to significantly increase (5−10
times) the gabs values for annealed thin films of copolymers
having 9,9-bis[(S)-3,7-dimethyloctyl]-2,7-fluorenes alternated
to 3,6-diphenyl-1,4-diketopyrrolo[3,4-c]pyrrole units 90a−c;
small amounts (2−6 wt %) of achiral polyethylene
monoalcohol (PEM−OH) were added as plasticizer and
were able to enhance the mobility of the polymer chains in

Figure 62. Dissymmetry factor gabs spectrum of copolymer 86 as thin
film (400 nm of thickness) obtained by spin-coating of a toluene
solution, recorded after thermal annealing at 240 °C for 15 min.
Adapted with permission from ref 213. Copyright 2017 American
Chemical Society.

Figure 63. Chemical structure of chiral fluorene-based copolymers 87−91, incorporating several kinds of π-conjugated units, investigated by ECD
spectroscopy in thin films.
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the liquid crystalline state, thus amplifying the experimental
ECD signal associated with the cholesteric phase. The
nonlinear increase of gabs as a function of the fraction of the
plasticizer is a typical chirality amplification phenomenon;
furthermore, gabs was found to depend on the film thickness at
different extents for the polymer alone or in the presence of the
plasticizer (Figure 64).693 This indicates a synergistic effect of
PEM−OH and film thickness to achieve high gabs values in the
annealed films. Linear dichroism spectra confirmed the
absence of artifacts due to anisotropy in the ECD signals.
Very recently, Meijer and co-workers investigated the
structure−chiroptical property relationship of a family of
poly(9,9-dialkylfluorene-alt-2,5-dialkoxyphenyl) copolymers
91a−d with achiral n-octyl or stereodefinite 3,7-dimethyloctyl
chains in spin-coated thin films, by varying the location and
configuration, (S) or (R), of chiral and achiral side chains in
the repeating units.227 Irrespective of the alkyl chain
substituents on the dialkoxyphenyl unit, the n-octyl side chains
on fluorene unit tended to crystallize, impeding a cholesteric
liquid crystalline organization and thus resulting in low
chiroptical properties. Instead, enantiopure (S)- or (R)-3,7-
dimethyl-1-octyl side chains on the fluorene unit were essential
for yielding a cholesteric liquid crystalline phase, giving
consequently strong gabs values which varied nonlinearly with
the film thickness.227

The ECD properties of fluorene-based copolymers bearing
other chiral substituents were also investigated, including
poly(fluorene vinylene)s with alkyl branched chains694 and
neomenthyl groups,695 and poly(fluorene-arene)s with 3-((S)-
2-methylbutyl)propanoate moieties.696 Interestingly, in this
latter study, the authors correlated five different quantities
(dissymmetry factor gabs, glass transition temperature, polymer
molar mass, theoretical tightness, theoretical helical inversion
energy) through radar graphs. It was argued that the largest
area in the diagram would provide a measure of polymer
chirality. It is also worth observing that aggregate ECD and
CPL spectra of poly(fluorene vinylene)s with alkyl branched
chains strongly resemble those of PPEs,694 therefore they
might be similarly interpreted by considering interchain
exciton interactions including vibronic effects. Furthermore,
Chen and Huang reported the synthesis and chiroptical

investigation of a set of copolymers with achiral 9,9-dioctyl-2,7-
fluorene and enantiopure (S)- or (R)-2,2′-bis(octyloxy)-1,1′-
binaphthyl units in different ratios; the ECD measurements in
thin films revealed that R- and S-chirality of the individual
binaphthyl units was transferred to the whole π-conjugated
backbone.697 Very recently, Lenzer and co-workers performed
a detailed study on the poly(9,9-bis[(S)-3,7-dimethyloctyl]-
2,7-fluorene)-co-(p-phenylene) copolymer, showing a strong
negative ECD signal (with maximum at 380 nm) in spin-
coated thin films, due to the formation of a cholesteric
organization of π-conjugated chains already at room temper-
ature; chiroptical signals were further enhanced after annealing
in the temperature window 80−120 °C.288 Very notably, the
authors recorded broadband transient circular dichroism
(TrCD) spectroscopy in the UV−vis range to characterize
their sample. This technique measures the time evolution of
the ECD spectrum over a period of ∼100 ps after excitation,
offering information on the dynamics of conformational or
supramolecular order rearrangements. Finally, there are some
examples of achiral oligo/polyfluorenes showing ECD in thin
films, supposedly due to CDiso, which reflects a supramolecular
chirality induced under specific conditions: addition of an
enantiopure additive (small molecule289,698 or polymer699) or
irradiation with CP-light.149,700−702 Among them, it is worth
mentioning the very recent paper of Oum and co-workers; a
strong ECD response, with signal values up to 800 mdeg at
490 nm, was found for thin films of achiral poly(9,9-
dioctylfluorene-co-benzothiadiazole) (F8BT) in the presence
of enantiopure 2,2′-dimethoxy-1,1′-binaphthalene as addi-
tive.289 Interestingly, ultrafast broadband transient CD spec-
troscopy (TrCD) was also employed in order to study the
dynamics of supramolecular chirality, demonstrating transient
chiral discrimination on the femtosecond time scale.
It is important to stress a crucial structural difference

between poly(2,7-fluorene)s and other well-investigated classes
of π-conjugated polymers such as PPVs, PPEs, and
polythiophenes, namely the fact that free rotation among
fluorene units is hampered by ortho interactions. Therefore,
chiral poly(2,7-fluorene)s tend to assume a well-determined
twisted conformation, especially in aggregated states,703 which
contributes to the chiroptical response.146,702 Theoretical

Figure 64. (a) Measured gabs at ECD maximum of polymer 90a as a function of weight percentage of polyethylene monoalcohol (PEM−OH) used
as plasticizer. (b) Thickness dependence of gabs for annealed thin films of polymer 90a without and with (8 wt %) PEM−OH. Error bars indicate
the thickness distribution on different parts of the film. Adapted with permission from ref 693. Copyright 2018 American Chemical Society.
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simulations of ECD spectra associated with intrachain effects
are more affordable than for interchain effects. In fact, several
studies have been published in recent years where ECD and
CPL spectra of poly(2,7-fluorene)s or other fluorene-
containing polymers have been calculated at full-QM level
for suitable small models (dimers or trimers); often, the
structures of these latter were obtained by conformational
searches or by systematic variation of interchromophoric
angles, thus offering a tool for an accurate structural
prediction.146,149,151,153,697,704,705 As an example, we will
discuss the recent results by Akcelrud and co-workers on
polyfluorene 85 with 3-((S)-2-methylbutyl)propanoate as
pendants (Figure 61).143,696 Thin films of this homopolymer
were obtained by spin-coating from 10:1 chloroform/
chlorobenzene solutions and thermally annealed from room
temperature to 200 °C in an argon atmosphere. By varying the
sample concentrations (5−40 mg mL−1), the film thickness
varied from 0.015 to 0.41 μm, retaining an almost linear
relationship between the ECD intensity and the thickness. The
ECD intensity varied also with the annealing temperature,
gradually increasing between room temperature and 100 °C,
stabilizing at 150 °C, and then decreasing drastically between
150 and 200 °C. The results demonstrate that the most
ordered conformation for 85 is reached between 100 and 150
°C, in accord with the octyl-substituted homopolymer.143 To
gain further insight into the conformation adopted by the
polymer chain in the films, tetramer models were generated
with opposite main-chain helicity (Figure 65, top) and their
ECD spectra calculated by TD-DFT. The two optimized
structures had twist angles of ∼40° between fluorene planes
and, due to their diasteromeric nature, different calculated free
energy (3.5 kJ/mol). However, the crucial evidence in favor of
the predominance of the right-handed structure came from the
calculated ECD spectrum (Figure 65, bottom).143 We wish to
stress that such right-handed helicity generates an ECD
spectrum with dominant negative sign or a negative couplet-
like feature. This fact reinforces the warning against naive
correlations between ECD sign and supramolecular or
macromolecular helicity (see section 2.1.3).
3.3.5. ECD in Thin Films of Oligo/Polythiophenes and

Related Copolymers. Among all π-conjugated systems,
regioregular polythiophenes (PTs) represent perhaps the
most successful family of conductive polymers used for
optoelectronic applications.706,707 Not surprisingly, chiral
oligo/polythiophene derivatives are also most frequently
investigated as thin films by ECD spectroscopy. In particular,
chirality can be introduced following two different approaches:
(i) by attaching enantiopure substituents to each thiophene
ring of the π-conjugated backbone; this is, in particular, the
case o f po ly(3- a lky l th iophene)s and po ly(3 ,4 -
dialkoxythiophene)s; (ii) by attaching chiral groups only in
some well-defined positions (often at α-positions of terminal
thiophene rings), an approach viable only for oligothiophene
systems.
The first ECD study of thin films of poly(3-alkylthiophene)s

was reported on regioregular head-to-tail poly[3-(2-[(S)-2-
methylbutoxy]ethyl)thiophene] 92 by Meijer and colleagues.
Similar to that described above for other π-conjugated
polymers, the authors first studied the effect of solvatochrom-
ism by using different solvent mixtures between a “good”
solvent (chloroform) and a “poor” solvent (methanol). ECD
spectra in chloroform were negligible, while addition of
methanol led to the onset of a couplet-like feature in the

region between 350 and 650 nm, whose first band is composed
of three maxima. Subsequent experimental and theoretical
evidence (vide infra) would demonstrate that the three
maxima are associated with a vibronic progression. Thus, the
couplet is the result of exciton coupling between polythio-
phene chains including vibrational/electronic coupling. Then,
the authors measured ECD spectra of thin films. At room
temperature, both drop-casted and spin-coated samples from
CHCl3 solution showed gabs of about −2.0 × 10−3 at 600 nm, 1
order of magnitude lower than those recorded for solution
aggregates in CHCl3/CH3OH mixtures.708 The vibrational fine
structure is also less pronounced in the solid state.
Interestingly, after thermal treatment at ∼160 °C, spin-coated
thin films of 92 exhibited mirror-image ECD spectra
depending on the cooling rate; the same chiroptical response
of pristine samples was obtained upon slow cooling (10 °C/
min), while an ECD spectrum of opposite sign was recorded
for samples cooled instantaneously (Figure 66).709 Langmuir−
Blodgett thin films of polythiophene 92 were also investigated

Figure 65. Top: possible conformations adopted by homopolymer 85
with opposite helicities and corresponding model tetramers geometry-
optimized with DFT. Bottom: experimental thin-film ECD spectrum
of 85 compared with TD-DFT calculated rotational strengths for the
model tetramers. A positive rotational strength entails a positive ECD
band and vice versa. Adapted with permission from ref 143. Copyright
2013 American Chemical Society.
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via SHG-CD experiments, which pointed at a near
centrosymmetric arrangement of the repeating units in the
helical polymer structure.281

The regioregularity of chiral poly(3-alkylthiophene)s has a
large impact on their supramolecular organization in the solid
state, thus affecting also the ECD properties in thin films. This
aspect was first described by Guillerez and co-workers: drop-
casted samples of regiorandom poly[3-((S)-3,7-
dimethyloctyl)thiophene] showed weaker ECD signals than
films of the corresponding regioregular head-to-tail polymer,
presumably because the ECD is representative of the small
regioregular ordered parts (responsible for the supramolecular
chirality) present in the regiorandom chains.710 The influence
of regioregularity on the chiroptical properties of chiral poly(3-
alkylthiophene)s as thin films was more intensively studied by
Koeckelberghs and co-workers (Figure 67). In 2008, they
investigated the influence of substitution pattern in poly(3-
alkoxythiophene)s by comparing regioregular head-to-tail
(HT) and head-to-head/tail-to-tail (HH-TT) poly[3-((S)-3,7-
dimethyloctyloxy)thiophene]s 93 in spin-coated samples; both
of them showed a bisignate Cotton effect at around 550 nm,
but the HH-TT-coupled polythiophene exhibited an additional
monosignate band at 678 nm.711 The authors reasoned that
the bisignate band is due to exciton coupling between polymer
chains, while the monosignate band would arise from a
collective excitation of the helical aggregate composed of
multiple polymer strands.711−713 The same explanation had
been previously provided for a similar (chiro)optical feature

found in aggregate absorption and ECD spectra of PPEs;670,674

however, other findings suggested that these latter are
adequately explained in terms of exciton coupling between
the vibronic excitation.63,668,671 For PTs, there is cogent
theoretical evidence that aggregated ECD spectra arise from
the same mechanism, as explained in detail below. Interest-
ingly, increased signals (but with similar shapes) were found in
ECD spectra of poly(3-alkoxythiophene)s not only upon
thermal annealing (1 min at 220 °C) but also by increasing the
film thickness; in addition to the true circular dichroism due to
supramolecular chirality, the authors hypothesized the
existence of a pseudo circular dichroism contribution (i.e.,
LDLB term). More recently, they studied a set of thermally
annealed (180 °C for 1 min) spin-coated samples of poly[3-
((S)-3,7-dimethyloctylthio)thiophene]s 94 with different
regioregularity; interestingly, the strongest gabs values were
not found for the most regioregular polymer, but for the one
with a small amount of defects, thus indicating that some
molecular disorder may facilitate the aggregation into chiral
architectures.712 In this case, although the ECD spectra for
each polymer were not collected at different sample
orientations (rotation and/or flipping), the authors ruled out
the existence of contributions different from CDiso because no
thickness dependence of gabs values was observed.

713

Meskers and co-workers reported a similar trend in thin
films of regioregular poly[3-((S)-3,7-dimethyloctyl)-
thiophene], prepared by spin-coating from chloroform
solutions of different concentration; the gabs value at 600 nm

Figure 66. ECD spectrum of polythiophene 92 as thin film fabricated by spin-coating of a CHCl3 solution, recorded after thermal annealing at 160
°C, followed by slow cooling (blue line) or fast cooling (red line) to room temperature. Adapted with permission from ref 709. Copyright 1995
John Wiley and Sons.

Figure 67. Chiral poly(3-alkylthiophene)s studied by Koeckelberghs and co-workers as thin films: head-to-tail (HT) and head-to-head/tail-to-tail
(HH-TT) poly[3-((S)-3,7-dimethyloctyloxy)thiophene]s 93 and poly[3-((S)-3,7-dimethyloctylthio)thiophene]s 94 with different regioregularity.

Chemical Reviews pubs.acs.org/CR Review

https://dx.doi.org/10.1021/acs.chemrev.0c00195
Chem. Rev. 2020, 120, 10145−10243

10196

https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00195?fig=fig66&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00195?fig=fig66&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00195?fig=fig66&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00195?fig=fig66&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00195?fig=fig67&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00195?fig=fig67&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00195?fig=fig67&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00195?fig=fig67&ref=pdf
pubs.acs.org/CR?ref=pdf
https://dx.doi.org/10.1021/acs.chemrev.0c00195?ref=pdf


was essentially independent of the thickness (in the range 50−
500 nm), oscillating between 3.0 × 10−3 and 4.0 × 10−3,
attributed to a substantial intrinsic circular dichroism (i.e., CDiso,
according to our nomenclature).714 Chiroptical properties of
poly[3-((S)-3,7-dimethyloctyl)thiophene]s with different re-
gioregularity percentage were then studied by Koeckelberghs
et al., comparing freshly prepared vs thermally annealed (1 min
at 100 °C) spin-coated thin films from chloroform solution.715

Before annealing, i.e., under kinetic conditions (with polymer
chains trapped in a not-optimized structure), no differences
were found depending on the regioregularity percentage. After
thermal annealing a more thermodynamically stable organ-
ization was reached and the crystallinity of polymer films
increased, as well as their chiroptical expression; however,
similarly to their previous work on poly[3-((S)-3,7-
dimethyloctylthio)thiophene]s,712 the highest gabs was not
found for the 100% regioregular polymer, thus confirming that
some disorder may facilitate the aggregation into chiral
architectures. However, it is also worth to emphasize that
Koeckelberghs et al. found SHG-CD effects in spin-coated thin
films of highly regioregular (irregularities <2%) of poly[3-((S)-
3,7-dimethyloctyl)thiophene]s.716

Furthermore, it has been reported that both solvent curing
and thermal annealing can promote intense ECD signals in
thin films of regioregular poly(3-alkylthiophene)s. Koeck-
elberghs et al. observed important differences in the chiroptical
response of drop-casted films of regioregular poly[3-(4-
alkoxyphenyl)thiophene]s depending on the evaporation rate
of the solvent,717 while for spin-coated samples of chiral
amphiphilic 3-alkylthiophene block copolymers, they found a
sharp increase of the gabs values (at least 1 order of magnitude)
after thermal annealing.718 In particular, the amphiphilic
copolymer 95, bearing hydrophobic 3-[(S)-3,7-dimethyloctyl]-
thiophene and hydrophilic 3-[6-(diethylamino)hexyl]-
thiophene units, exhibited the impressive gabs value of 0.14
(at 550 nm) in spin-coated films from THF solution after
thermal annealing for 1 min at 90 °C followed by slow cooling
(2 °C min−1) to 25 °C (Figure 68).718 The origin of these
unusually large ECD signals was found in a pseudo circular
dichroism effect (i.e., LDLB term) similar to what observed for
polyfluorene 80 by Meijer and collaborators;72 because 95
showed liquid crystalline properties at 90 °C, during thermal
annealing the molecules could rearrange into helically
overlapped layers of aligned copolymer chains, considered
responsible for the chiroptical effect. Independently of the
origin of the ECD signals, ECD spectra of block copolymers
were vital for establishing the propensity to aggregate of
distinct polymer blocks, and for proposing adequate
aggregation models.718

Catellani, Abbate, and co-workers investigated solution and
solid-state aggregates of several regioregular poly(3-
alkylthiophene)s with optically active substituents.719,720

Interestingly enough, by applying exciton theory formulas in
combination with X-ray geometrical data, they were able to
extract very reasonable estimates of interchain twist angles
from the measured gabs values. Later on, the same group
studied the impact of solvent dipping for improving the ECD
response in spin-coated films of chiral poly(3-alkylthiophene)s,
highlighting the impact of the film preparation procedure on
the packing of the side chains and the planarity of the main
chains.719,721 Very recently, Swager and co-workers studied the
ECD properties in thin films of chiral poly(3-alkylsulfone)-
thiophenes with main-chain helicity to explore a possible

application in magneto-optic devices: interestingly, freshly
prepared spin-coated samples revealed a helically ordered
supramolecular structure, very similar to the solution phase
one; instead, after thermal annealing at 150 °C a totally
different ECD response was found, arising from a chiral
structure with opposite helicity which is thermodynamically
favored.722 It is important to stress that the ECD spectra of
chiral PTs with main-chain helicity are very different from
those of most common PTs, which are substantially planar and
exhibit instead supramolecular (or interchain) chirality.
Although they exhibit bisignate ECD spectra between 450
and 600 nm, this is not a signature of interchain exciton
coupling but of an intrachain mechanism.723 As discussed
below, it is in fact possible to distinguish between these two
chiroptical signatures.
The interest in the ECD properties of thin films of poly(3,4-

dialkoxythiophene)s was more limited. In 2000, Janssen and
co-workers reported the synthesis and characterization of
enantiopure poly[3,4-bis((S)-2-methylbutoxy)thiophene]
(PBMBT, 10). This is a seminal study where the chiroptical
properties of chiral PTs were thoroughly investigated upon
aggregate formation, and eventually a sound hypothesis on
their origin was offered. The authors measured the ECD
spectra of spin-casted samples from chloroform solution which
showed a strong bisignate Cotton effect with a well-defined
vibronic structure with positive extrema at 597 and 545 nm
and negative ones at 520 and 485 nm, exhibiting maximum
dissymmetry factor gabs value of 7.0 × 10−3 at 597 nm (Figure
69).114

This latter spectrum exemplifies well the general behavior of
chiral poly(3,4-dialkoxythiophene)s in aggregated states.
Aggregate ECD spectra of such systems are in fact dominated
by an exciton couplet feature in the region between 450 and
650 nm allied to the first electric-dipole allowed π−π*
transition of the PT core. As in the case of thin films of 10,
many ECD couplets display a typical, more or less pronounced,
vibronic structure, although couplets with faint or missing

Figure 68. ECD spectrum of the chiral amphiphilic 3-alkylthiophene
block copolymer 95 as thin film obtained by spin-coating of a THF
solution, recorded before (blue line) and after thermal annealing for 1
min at 90 °C followed by slow cooling (2 °C min−1) to room
temperature (red line). Adapted with permission from ref 718.
Copyright 2013 The Royal Society of Chemistry.
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vibronic structures are also encountered.118 In their
fundamental study, Meijer, Janssen, and co-workers analyzed
in detail the vibronic ECD spectra of PBMBT (10), as a
prototypical chiral PT, to draw information on the leading
conformation assumed by the polythiophene chains and on
their packing of polythiophene chains into chiral aggregates.114

Aggregation of 10 was promoted in solution by use of solvent/
nonsolvent mixtures (methanol/water) or by lowering the
temperature (in various solvents such as dichloromethane, 1-
decanol and 2-methyltetrahydrofuran). ECD spectra of
solution aggregates were all quite consistent with that
measured for the spin-coated film (Figure 69), apart from
small details in the vibronic structure. The authors tried to
rationalize the observed spectra in terms of exciton theory and,
among other things, estimated the splitting between exciton
levels (Davydov splitting, see Figure 6 in section 2.1) from the
ECD spectra. As discussed in section 2.1.3, this approach offers
only a rough estimation of Davydov splittings for several
reasons, including the inaccuracy of point-dipole approxima-
tion for closely packed chromophores and the effect of
vibronic-vibrational couplings. Even for a covalent bis-
terthiophene model, in fact, the dipole−dipole coupling
potential (theoretically amounting to one-half of the Davydov
splitting) underestimated the real splitting by a factor of 5.113

Elsewhere, similar analyses were more successful in predicting
reasonable geometric parameters for aggregated PT
chains.719,720 Still, the qualitative analysis of aggregate ECD
spectra was sufficient to disentangle the possible effects of
intrachain (macromolecular) and interchain (supramolecular)
chirality in generating the observed ECD signals. In principle,
in fact, one may envisage three limiting (supra)molecular
arrangements by which PT chains may produce non-negligible
ECD signals: a transoid twisted ribbon conformation, a cisoid
helical conformation, and a planar conformation arranged in a
helical stack (Figure 70). The former two, first hypothesized by
Cui and Kertezs in 1989,724 entail an intrachain mechanism
and the latter one an interchain mechanism of chiroptical
activity, respectively. Langeveld-Voss et al. definitely concluded

that only the latter arrangement may be responsible for the
observed ECD signals of PBMBT (10) and possibly many
other chiral PTs.114 This conclusion has been substantiated by
vibronic ECD calculations by Santoro, Pescitelli, and co-
workers, who used TD-DFT with a multiple normal-mode
treatment.155 Interestingly enough, using a simple dimeric
model of oligothiophenes ranging from 3 to 13 thiophene
units, the same authors reproduced surprisingly well aggregate
ECD spectra of 10 (see Figure 14 in section 2.1.3 above),
demonstrating that such a simple model is able to capture the
essence of the vibronic coupling.118 ECD of intrinsically chiral
oligothiophene derivatives, embedding multiple bithianaph-
thene cores, not showing vibronic structure, have also been
reproduced by TD-DFT calculations.218 Theoretical studies on
chiral oligothiophenes have also been pursued by VCD
calculations.725

Fujiki and colleagues in 2002 studied the chiroptical
response of drop-casted samples of chiral poly[3,4-bis((S)-2-
methyloctyl)thiophene] at different temperatures,726 while
more recently, Reynolds et al. focused their attention on
poly(3,4-propylenedioxythiophene)s disubstituted with (S)-2-
ethylhexyl or (S)-2-methylbutyl chains: films prepared by spray
coating from toluene solution exhibited gabs

max values of 2.9 ×
10−2 (at 627 nm) and 3.2 × 10−3 (at 637 nm), respectively;
furthermore, no change in the ECD spectra was observed after
a complete redox cycle, performed upon exposure to I2
(doping) followed by NH2NH2 (undoping) vapor.727 In this
paper, the authors also proposed a new efficient route to the
synthesis of (2S)-ethylhexan-1-ol, the most common enantio-
merically pure side chain used to solubilize π-conjugated
polymers.
Other classes of chiral polythiophenes have been more

marginally investigated. Schenetti and co-workers reported a
chiroptical investigation of a regioregular head-to-head/tail-to-
tail polythiophene, synthesized by chemical or electrochemical
polymerization of the enantiopure 4,4′-bis[(S)-2-methylbutyl-
sulfanyl]-2,2′-bithiophene; ECD spectra of thin films obtained
by drop casting from chloroform or THF solutions under
different evaporation rate conditions were measured, reaching
maximum gabs value of −8 × 10−2 (at 650 nm).728 In a
following paper, the same authors investigated a set of β-

Figure 69. ECD spectrum of chiral poly[3,4-bis((S)-2-
methylbutoxy)thiophene] (PBMBT, 10) as thin film obtained by
spin-casting of a chloroform solution. Adapted with permission from
ref 114. Copyright 2000 Elsevier.

Figure 70. Possible main-chain chiral structures ((a) twisted-ribbon
transoid, and (b) helical cisoid), and the supramolecular (c) chiral
arrangement of oligothiophenes.
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alkylsulfanyl-substituted octithiophenes.729 Furthermore, the
self-assembly in solution and thin film state of a poly(3-alkoxy-
4-methylthiophene) bearing enantiopure oligo(ethylene oxide)
side chains730 was also described. Yashima and co-workers
reported a head-to-tail regioregular poly(3-arylthiophene) (96,
Figure 71) bearing chiral oxazoline residues731 for which, very

interestingly, the effect of solvatochromism was tested with as
many as 35 different solvents. Aggregate ECD spectra
developed by adding many “poor” solvents to chloroform
were very similar to each other and to thin film spectra and
consistent with the behavior described above for other chiral
PTs. However, some “poor solvents” such as acetonitrile and
nitromethane caused more dramatic changes in ECD spectra,

including ECD sign inversion. The authors proposed a
reasoned model for their supramolecular assembly, where a
major role is played by vertical π-stacking between layers
composed of horizontally arranged PT chains. Two possible
sources of optical activity were suggested: a helical stacking
between layers (A, Figure 71) and a chiral twist of each layer
(B, Figure 71). While the former mode of aggregation is most
probable for chiral PTs with branched alkyl or alkoxy
substituents, as explained above,114 the second mode seems
plausible for compound 96 because of its peculiar substituent
group.
Many different enantiopure substituents have been used as

source of chirality in oligothiophenes, attached in some well-
defined positions, showing a large impact on their supra-
molecular organization in the solid state. The ECD properties
of a chiral sexithiophene α,α-disubstituted with (S)-2-methyl-
3,6,9,12,15-pentaoxahexadecyl ester chains were described by
Meijer and co-workers; samples fabricated by drop casting
from THF solutions revealed a negative Cotton effect at lower
energy (408 nm, gabs = −2.42 × 10−2) and a positive Cotton
effect at higher energy (377 nm, gabs = 2.71 × 10−2). Aggregate
ECD spectra in solution were also very strong (gabs ∼ −2 ×
10−2) and showed solvatochromic and thermochromic effects.
Helical fibril structures were observed by AFM analysis with
widths ∼25 nm.732 Barbarella and colleagues investigated the
chiroptical properties of several dinucleotide-functionalized
quaterthiophenes733 and quinquethiophenes734 in drop-casted
films from a 10−3 M aqueous solution, displaying significant
variation by changing the dinucleotide scaffold. Ruggeri, Di
Bari et al. reported the ECD response of terthiophene 97,
having an enantiopure imine moiety at α-position of a terminal
thiophene ring, dispersed in polyethylene thin films. Non-
oriented samples exhibited modest ECD signals, with
maximum dissymmetry factor gabs value of −8.7 × 10−4 at
408 nm, without significant changes at different rotation angles
θ around the optical axis (Figure 72a); ECD of aligned films
was instead much stronger and was found dependent on the
sample rotation, thus indicating the presence of LD artifacts
(third term of eq 4, due to interaction of the residual PEM

Figure 71. Possible aggregation modes for oxazoline-appended
poly(3-arylthiophene) 96 with interlayer (A) and intralayer (B)
supramolecular chirality. Adapted with permission from ref 731.
Copyright 2002 American Chemical Society.

Figure 72. ECD spectra of chiral terthiophene 97 dispersed in (a) nonoriented polyethylene thin film; (b) highly stretched polyethylene thin film,
recorded at different rotation angles θ. Adapted with permission from ref 735. Copyright 2004 John Wiley and Sons.

Chemical Reviews pubs.acs.org/CR Review

https://dx.doi.org/10.1021/acs.chemrev.0c00195
Chem. Rev. 2020, 120, 10145−10243

10199

https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00195?fig=fig71&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00195?fig=fig71&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00195?fig=fig71&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00195?fig=fig71&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00195?fig=fig72&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00195?fig=fig72&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00195?fig=fig72&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00195?fig=fig72&ref=pdf
pubs.acs.org/CR?ref=pdf
https://dx.doi.org/10.1021/acs.chemrev.0c00195?ref=pdf


birefringence with the macroscopic anisotropies of the sample)
which covered the CDiso contribution (Figure 72b).735

Oligothiophenes bearing a trans-1,2-cyclohexanediamine unit
via diamino or diimino moieties were studied by Melucci and
collaborators; drop casted samples of diamino derivatives
revealed, in general, stronger ECD signals (|gabs| up to 2.5 ×
10−2) than the ones of the corresponding diimino systems
(|gabs| up to 3.6 × 10−3).736 The difference was ascribed to the
different flexibility of the two families of compounds, which in
the case of amine derivatives produced conformations with
more efficient ECD exciton coupling between the oligothio-
phene units.
A large variety of chiral thiophene-based copolymers were

investigated as thin films by ECD spectroscopy. The first
example was a poly(2,5-thienylenevinylene) derivative having
(S)-2-methylbutoxy chiral chains, reported in 1998 by Meijer
and co-workers; if pristine samples prepared by spin-coating
from CHCl3 solution exhibited a modest chiroptical response,
upon thermal annealing at 120 °C, a clear increase of the ECD
signals was found, reaching maximum gabs value (7.0 × 10−3)
after 2 h.737 The authors explained these results by assuming
that only a small amount of the chiral aggregates were formed
in the spin-coating deposition, but during thermal annealing,
the remaining part of nonaggregated polymer chains was
allowed to rearrange into the thermodynamically more stable
chiral aggregates, thus resulting in a stronger chiroptical
response. Once again, solution aggregates displayed the typical
solvatochromic/thermochromic effects, and the spectra
recorded for the solution samples with the largest degrees of
aggregation were very consistent with those of annealed thin
films, also in terms of gabs values.
Koeckelberghs et al. investigated in detail chiral poly-

(phenylene-alt-bithiophene)s 98a−e and 99a−b; as depicted
in Table 1, spin-coated samples from chloroform solution
showed, after 1 min of annealing at 150 °C, a deviation from
the bisignate shape recorded in solution or before annealing,
accompanied by a large increase of gabs values (about 1 order of
magnitude).738 These impressive ECD features were attributed
to the development of a large pseudo circular dichroism effect
(i.e., LDLB term) during the thermal annealing; although the

ECD measurements were not repeated upon sample flipping,
for copolymer 98c a clear dependence of gabs values on the film
thickness was found (similar to the above-described poly-
fluorene 80).72 However, none of the copolymers 98a−e and
99a−b showed any mesophase behavior, thus demonstrating
that liquid crystallinity is not a necessary requisite for obtaining
thickness-dependent gabs and large LDLB effects. In a following
paper, Koeckelberghs et al. observed the same behavior on
other chiral poly(phenylene-alt-bithiophene)s with similar
structure.739

More recently, the ECD properties of many other
phenylene-thiophene-based copolymers were investigated in
thin films, functionalized with enantiopure 2-nonyloxy carbon-
yl740 or bornyloxy carbonyl741 substituents, as well as of chiral
poly(p-phenylene-alt-propylenedioxythiophene)s742 or poly(p-
phenyleneethynylene-alt-bithiophene)s.743 When these latter
were derivatized with carboxylic moieties, they also displayed
sensing properties toward primary amines, which promoted
aggregation of the polymers with a specific chiroptical
response. Because a phenylene spacer between two thiophene
units does not introduce any tilt angle or deviation from
planarity, aggregate ECD spectra of thiophene/phenylene
copolymers are similar to those of already described PTs; they
are dominated by exciton couplings between substantially
planar polymer chains, although with less pronounced
vibrational structure than PTs.740−742 Instead, aggregate
ECD spectra of poly(p-phenyleneethynylene-alt-bithiophene)s
resemble those of PPEs, with the characteristic sequence of
several sharp bands due to the exciton coupling between
vibronic excitations.743 In 2012, a series of axially chiral 1,1′-
binaphthyl-thiophene copolymers were synthesized and
investigated as drop-casted films by Goto et al.,744 while
Hirahara and colleagues focused the attention on alternating
fluorene-thiophene copolymers, reporting dissymmetry factor
gabs values up to 0.3 for pristine spin-coated samples;745−747

these giant ECD should be ascribed to the same extrinsic
phenomena described above for poly(fluorene)s (section
3.3.4). More recently, Bazan and co-workers described an
alternating copolymer with thiophene or cyclopentadithio-
phene units and benzotriazole units bearing enantiopure (S)-2-

Table 1. Maximum Dissymmetry Factor gabs Values Recorded for Poly(phenylene-alt-bithiophene)s 98a−e and 99a−b, as Thin
Films Prepared by Spin-Coating from a CHCl3 Solution (10 mg/mL), Before and After Thermal Annealing

entry compound gabs
max value before annealing gabs

max value after annealinga

1 98a 6.0 × 10−4 4.5 × 10−3

2 98b 2.5 × 10−3 1.5 × 10−2

3 98c 5.1 × 10−3 1.5 × 10−2

4 98d 1.1 × 10−3 8.8 × 10−3

5 98e 5.5 × 10−3 9.1 × 10−3

6 99a 1.2 × 10−3 7.0 × 10−4

7 99b 7.5 × 10−3 2.3 × 10−2

aThermal annealing was performed for 1 min at 150 °C, followed by slow cooling at room temperature.
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ethylhexyl chains, which showed maximum gabs factor of
−0.008 at 665 nm in thin films prepared by drop casting of a
chlorobenzene solution.748 In this latter case, the chiroptical
response was again similar to that of PTs, with vibronic ECD
couplets in the long-wavelength region.
In addition to the above-mentioned copolymers, several

oligomers composed of thiophene fragments linked to other
chiral π-conjugated units, and appended with chiral chains,
have found considerable attention in the last few years. In
2017, Di Bari and co-workers reported the chiral benzo[1,2-
b:4,5-b′]dithiophene-based oligothiophene 100 bearing two
(S)-3,7-dimethyl-1-octyl alkyl chains, which showed very
uncommon chiroptical properties in drop-casted thin films; if
no significant changes in the ECD spectrum were found by

sample rotation, an almost complete inversion of the ECD sign
was observed upon sample flipping, with maximum gabs value
(at 299 nm) of 1.8 × 10−2 for the “front” side, i.e., with the
organic layer facing the light source, and −1.9 × 10−2 for the
“back” side, i.e., with the organic layer facing the detector
(Figure 73a).347 This so-called polarity inversion of ellipticity
was discussed is section 2.1.1. According to eq 4, the authors
isolated CDiso and LDLB terms by taking the semisum and
semidifference of ECD spectra recorded with the two sample
orientations (i.e., front and back), thus revealing a clear
prevalence of the LDLB contribution on the CDiso.
Interestingly enough, CDiso and LDLB were interpreted as
the chiroptical responses of two different scales of chirality
belonging to the same solid-state organization; the modest

Figure 73. (a) ECD spectra recorded for the front side (blue line) and back side (red line) of chiral benzo[1,2-b:4,5-b′]dithiophene-based
oligothiophene 100 as thin films, prepared by drop casting of a 10−2 M CHCl3 solution; the black continuous line is the front−back semisum (i.e.,
CDiso term), while the black dashed line is the front−back semidifference (i.e., LDLB term). Adapted with permission from ref 347. Copyright 2017
The Royal Society of Chemistry and the Chinese Chemical Society. (b) Idealized domains of drop-casted samples of 100 giving rise to the LDLB
effect. For each of them, the LD principal axis (blue arrow) and the LB principal axis (red arrow) are consistently tilted, thus generating a LDLB
contribution; however, mesoscopic domains are randomly oriented on account of the overall sample isotropy, therefore both LD and LB average to
zero over the whole film. Adapted with permission from ref 348. Copyright 2018 John Wiley and Sons.

Figure 74. ECD spectra recorded for the front side (blue line) and back side (red line) of chiral 1,4-phenylene-based oligothiophene 101 as thin
films, prepared: (a) by drop casting of a 1.0 × 10−3 M CHCl3 solution, (b) by spin-coating of a 2.0 × 10−2 M CHCl3 solution with angular speed of
1000 rpm. For each panel, the black continuous line is the front-back semisum (i.e., CDiso term), while the black dashed line is the front-back
semidifference (i.e., LDLB term). Adapted with permission from ref 348. Copyright 2018 John Wiley and Sons.
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CDiso was attributed to first-order supramolecular chiral
aggregates, while their further organization into higher-order,
mesoscopic chiral domains would generate a large LDLB.
Because thin films of 100 were prepared without any other
operation which might impart a preferential molecular
orientation, these mesoscopic domains were randomly
oriented and both linear dichroism (LD) and birefringence
(LB) averaged to zero over the whole film (Figure 73b).348

However, the thin film may be thought to be composed of
microscopic domains, seen through polarized microscopy, in
which the relative direction of the principal axes of LD and LB
would remain approximately the same (Figure 73b). As a result
of this consistent microscopic off-alignment between LD and
LB, a net LDLB term arises, contributing strongly to the
overall CDobs. Another intriguing observation was that the
relative importance of the CDiso and LDLB term depended on
the time of annealing; LDLB predominated on the pristine film
and at long annealing times (60′), while CDiso predominated at
short times (10′), thus revealing a pronounced tendency to
polymorphism.
In a following paper, the investigation was extended to a

larger family of structurally related benzo[1,2-b:4,5-b′]-
dithiophene-based or 1,4-phenylene-based oligothiophenes
bearing two chiral alkyl chains; thin films gave rise to a
manifold of situations, with dichroic signals due to CDiso and
LDLB with relative contributions depending on the chemical
structure as well as on the adopted deposition technique.348 In
particular, the most intriguing chiroptical features were found
for the 1,4-phenylene-based oligomer 101; in drop-casted
films, the ECD spectrum was independent of sample
orientation, indicative of a sole CDiso contribution (Figure
74a); both CDiso and LDLB contributions were instead
isolated from ECD spectra of spin-coated samples, with
relative content depending on the speed rate of the spin-coater.
The maximum LDLB/CDiso ratio was obtained at 1000 rpm,
resulting in strong ECD signals with almost complete sign
inversion by sample flipping (Figure 74b). After further
studies, also based on CDi experiments (see section 3.4), more
recently the authors proposed two concomitant aggregation
pathways for 101 during thin films fabrication: (i) samples
prepared by drop casting or under prolonged solvent annealing
reached their thermodynamic structural organization, associ-
ated with an ECD spectrum invariant upon sample flipping,

and hence due to a pure CDiso, and (ii) freshly prepared films
obtained by spin-coating were instead in a kinetic or
metastable aggregation state, with the ECD spectrum highly
dependent upon sample flipping and hence dominated by the
LDLB term.97

Amabilino et al. focused the attention on chiral at-end
thiophene-diketopyrrolo[3,4-c]pyrrole derivatives, using the
natural product myrtenal as source of chirality; it was found
that ECD is an extremely sensitive probe for their structural
characterization in thin films, as very modest changes in the
absorption spectra were obtained upon aggregation.749

Furthermore, some examples of π-conjugated oligomers,
synthesized by electrooligomerization of monomers bearing
achiral thiophene fragments and axially chiral biaryl units (i.e.,
3,3′-bithianaphthene284,750 or 2,2′-biindole220 moieties) were
also described in the literature. In these latter cases, the axial
chirality dominates the chiroptical response which is of clear
exciton-coupled nature. ECD spectra were demonstrated to be
associated with CDiso without contributions from LD and LB.
Similarly to other classes of π-conjugated compounds, also

achiral thiophene-base homopolymers/copolymers may exhibit
ECD signals in thin films, under specific conditions: Goto et al.
reported the asymmetric polymerization of achiral 2,5-di(2-
th ienyl)pyr id ine ,751 3-a lky l th iophene,752 or 3 ,4-
(ethylenedioxy)thiophene753 monomers in cholesteric liquid
crystals, affording products with remarkable chiroptical proper-
ties; alternatively, chiral supramolecular aggregates of achiral
PTs were obtained upon addition of enantiopure additives
(1,1′-bi-2-naphthol754,755 or 1,1′-binaphthyl-2,2′-diamine756).
Finally, some chiral oligo/polythiophene analogues were

synthesized and characterized as thin films by ECD spectros-
copy, including poly(cyclopenta[2,1-b:3,4-b′]dithiophene)s
and related copolymers757,758 and tetraphenylsilole function-
alized with carbohydrates,759 α-amino acids (in particular,
valine760 or leucine761 derivatives), or enantiopure amines762

as chiral pendants. Recently, an unexpected circular dichroism
was found in drop-casted thin films of achiral hexaphenylsilole
(HPS): the authors modeled the formation of helical
nanofibers with 50 nm width which might be responsible for
ECD signals, and were also evidenced by AFM (Figure 75).763

These systems are also CPL-active (see section 4.2).

Figure 75. (a) AFM image of hexaphenylsilole (HPS) fibers obtained by evaporation of THF solution, showing left-handed helical fibers. (b)
Dimeric model and molecular layer of HPS. (c) Reconstruction of the self-assembled helical fiber. Adapted from ref 763. Creative Commons
Attribution 3.0 Unported License, 2017 The Royal Society of Chemistry.
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3.4. ECD Imaging in Thin Films of π-Conjugated Systems

As shown in the previous sections of our literature overview,
chiroptical properties in thin films of π-conjugated systems
may strongly depend on their local supramolecular structures;
apparently homogeneous samples often show local poly-
morphisms, responsible for different contributions to the
emergent ECD spectrum, determined by chemical structure,
deposition technique, and postdeposition operations. Looking
for a deeper insight into local supramolecular structures, in the
last few years some ECD imaging measurements have been
performed on thin films of chiral π-conjugated systems.
In 2008, Watarai and collaborators described the first

spatially resolved chiroptical investigation on samples of
organic π-conjugated materials, i.e., drop-casted thin films of
a cationic porphine/DNA complex, thanks to the development
of a microscope able to collect the ECD spectrum of a
microscopic area (60 × 60 μm2), obtained by combining a
couple of objective lenses with a CCD camera, installed in the
sample chamber of a benchtop spectropolarimeter.764

As previously described in section 3.3.4, freshly prepared
spin-coated thin films of polyfluorene 80 exhibited a weak
positive ECD band (gabs = +3.0 × 10−4 at 400 nm),684

attributable to a substantial CDiso arising from the supra-
molecular helical arrangement of individual π-conjugated
chains, while after prolonged annealing in the liquid crystalline
state, a strong negative ECD band appeared (gabs of about
−0.15 at 403 nm),683 attributable to a large LDLB
contribution due to the rearrangement into helically over-
lapped layers of aligned polymer chains. Interestingly, in 2012,
Finazzi and colleagues applied the two-photon fluorescence
(TPF) scanning confocal microscopy for the ECD imaging
investigation of thermally annealed spin-coated samples of 80,
obtaining a 2D map of the transmission dissymmetry factor g
(at 405 nm) associated with the ECD measured for
transmitted light (Figure 76).90 Neighboring areas with
opposite signs of transmission dissymmetry factor g values,
represented by the blue and red zones, are clearly visible,
suggesting the existence of local domains with two different
structural chiral configurations: one could be definitely
considered responsible for the large LDLB contribution of
the global ECD spectrum, while from the other could originate
the lower CDiso term.
Microspot ECD measurements, performed with a pinhole

masked sample cell put in the beam path of a benchtop ECD
spectropolarimeter and settled on an XY translation stage, were
reported in 2016 by Percec and co-workers for thin films of
racemic PDI bearing chiral 3,7-dimethyl-1-octyl chains (102,
Figure 77). Although the ECD spectrum of the whole sample
showed as expected negligible signals, surprisingly microspot
ECD measurements revealed the existence of local domains
containing columns of a single handedness, thus responsible of
strong ECD signals. Therefore, the authors concluded that
deracemization took place between left- and right-handed
homochiral supramolecular columns in the crystal state.372,765

The compound reported by Percec and co-workers is ideal to
be investigated by ECD imaging techniques. In fact, it exhibits
temperature-dependent thin film ECD spectra, chirality
amplification in solution, UV−vis, and ECD solution spectra,
which also depend on the temperature in different ways,
demonstrating overall a cooperative nucleation mechanism for
their helical supramolecular polymerization and the occurrence
of multiple aggregation pathways (Figure 77). Similar
microspot ECD measurements with a beam diameter smaller

than 10 μm, performed by using a focal-reducing optics in a
benchtop ECD spectropolarimeter, were very recently applied
by Choi and co-workers to study local helical microdomains of
an achiral nematic liquid crystal refilled into chiral nanoporous
thin films of a reticulated polyacrylate.766

To fill the gap between standard ECD spectroscopy and
conventional microscopy, in 2017, Di Bari et al. introduced the
CDi technique,96 an innovative approach for electronic circular
dichroism imaging investigation of thin films of organic π-
conjugated systems, based on the highly collimated synchro-

Figure 76. ECD imaging investigation of chiral polyfluorene 80
performed by Finazzi and colleagues with the two-photon
fluorescence scanning confocal microscopy: 2D map of the
dissymmetry factor gabs for ECD transmission at 405 nm vs x−y
coordinate (blue/red hues). Adapted with permission from ref 90.
Copyright 2012 American Chemical Society.

Figure 77. Cogwheel model of the self-organization of PDI 102
described by Percec and co-workers. Single molecules of 102 (a)
organize into twisted dimers (b), held together by π-stacking
interactions, which then aggregate to form helical supramolecular
columns (c). The columns with same handedness (for either (R)-102
or rac-102) pack into a hexagonal pattern retrieved in the crystal
structure (d). Adapted with permission from ref 765. Copyright 2020
American Chemical Society.

Chemical Reviews pubs.acs.org/CR Review

https://dx.doi.org/10.1021/acs.chemrev.0c00195
Chem. Rev. 2020, 120, 10145−10243

10203

https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00195?fig=fig76&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00195?fig=fig76&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00195?fig=fig76&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00195?fig=fig76&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00195?fig=fig77&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00195?fig=fig77&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00195?fig=fig77&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrev.0c00195?fig=fig77&ref=pdf
pubs.acs.org/CR?ref=pdf
https://dx.doi.org/10.1021/acs.chemrev.0c00195?ref=pdf


tron radiation (SR) of Diamond Light Source B23 beam-
line;93−95 in contrast with other ECD imaging techniques
based on microscopy methods, CDi is based on a point-by-
point collection of ECD spectra, recorded by mapping the
sample surface by means of a motorized XY stage. CDi
technique was first applied to study thin films of the chiral
poly(p-phenylene-ethynylene) 79a (Figure 58), fabricated by
spin-coating and drop casting; for each sample, 25 ECD
spectra were measured scanning a 5 × 5 grid array area of 1
mm step size with a beam diameter of 1 mm, revealing that
apparently homogeneous films of 79a were actually charac-
terized by local polymorphisms.96 However, a more intensive
CDi investigation was performed in a following work on the
1,4-phenylene-based oligomer 101;97 in this case, 100 local
UV−vis absorption and ECD spectra were simultaneously
recorded for a pristine spin-coated sample of 101, scanning a
10 × 10 grid array area of 0.5 mm step size with 0.5 mm beam
diameter (Figures 78a,b), and the values of absorption (at 433
nm) and ECD (at 436 nm) were then transposed to form 2D
maps of the 10 × 10 grid area (Figures 78c,d). With the help of
postacquisition data analysis tools the authors were able to
quantify the polymorphs, confirming the existence of two main
aggregation pathways for 101 (see section 3.3.5), whose

relative weight was a function of sample preparation protocols
and postdeposition operations. The same type of instrument
was also used very recently by Campbell, Fuchter, and co-
workers to testify the homogeneity of thin films of a chiral
polyfluorene derivative, giving rise to a blue-phase endowed
with extra-large ECD (see section 2.1.4).175

Very recently, ECD imaging techniques were also applied to
study supramolecular polymers of achiral nucleobase mimics.
The Hud’s group showed a spontaneous symmetry breaking in
the aggregation of 2,4,6-triaminopyrimidine with a cyanuric
acid bearing a hexanoic acid tail, which organized into
hydrogels exhibiting ECD signals (although with intensity
and sign randomly distributed for different batches, because
the symmetry breaking may occur stochastically in both
directions).767 Interestingly, 2D electronic circular dichroism
images of these hydrogels, as thin films (0.01 mm of thickness)
confined between two quartz plates, were obtained by simply
scanning samples in the path of spectropolarimeter beam
(restricted to a diameter of 0.8 mm using an iris); a patchwork
of macroscopic domains was found, with ECD spectra varying
in both intensity and sign, which suggested the existence of
chiral superhelical structures having opposite handedness in
different domains of the same sample.767

Figure 78. CDi investigation of freshly prepared spin-coated samples of 101, performed by mapping a 10 × 10 grid array area of 0.5 mm step size
with a beam diameter of 0.5 mm. Local UV−vis absorption spectra (a) and ECD spectra (b) recorded for the 100 spots. 2D color maps of: (c)
absorbance intensity at 433 nm vs x−y (red/yellow hues), (d) ECD intensity at 436 nm vs x−y (red/yellow hues). Adapted with permission from
ref 97. Copyright 2019 Centre National de la Recherche Scientifique (CNRS) and The Royal Society of Chemistry.
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4. CPL PROPERTIES IN THIN FILMS OF
π-CONJUGATED SYSTEMS: LITERATURE
OVERVIEW

As explained in the Introduction (section 2.2), there is a
growing interest in the investigation of the CPL properties of
π-conjugated systems: chiral supramolecular architectures in
the solid state can act as efficient source of circularly polarized
light.183,184,196 However, to the best of our knowledge, the
specific application of CPL to thin films of π-conjugated
systems has never been reviewed.
In this section, we shall try to give a complete overview of

the existing literature on the CPL properties measured for π-
conjugated systems as thin films, following the same scheme
used for ECD in the previous section (i.e., depending on their
molecular size): π-conjugated small molecules will be
considered in the first part, distinguishing between species
with chiral moieties and achiral systems dispersed in a
cholesteric mesophase; in the second part, we shall focus on
various classes of π-conjugated oligomers and polymers. We
wish to point out a fundamental difference between ECD and
CPL investigations which applies more generally to all chiral
systems. The occurrence of ECD signals is seldom an
interesting property per se; most often, ECD is employed
with specific purposes such as the detection of molecular and
supramolecular chirality and the structural characterization of
chiral systems. On the contrary, CPL activity is itself an
interesting molecular property because of the many related
useful applications. As a matter of fact, the search for highest
possible glum values is one of the main aims fueling the research
in the field.181−183,194 For that reason, in the following section,
we shall stress in particular the reported values of glum.
Conversely, structural analysis is less pursued by CPL than by
ECD for a 2-fold reason: first, structure-to-spectra relationships
are not straightforward because excited states are involved;
second, for organic compounds, the visible CPL band just
parallels in sign and dissymmetry factor the most red-shifted
ECD band.

4.1. CPL in Thin Films of π-Conjugated Small Molecules

In the last few years, there has been a growing interest in the
CPL measurement of thin film samples of chiral π-conjugated
small molecules. In particular, 1,1′-binaphthyl derivatives,
bearing axial chirality directly into the π-conjugated scaffold,
are the most widely investigated compounds of this class. The
first study was reported in 2009 by Kawai et al. on a 2,2′-
bis(perylene diimide)-1,1′-binaphthalene system 103 (Figure
79); opaque films prepared by drop casting from a chloroform

solution showed glum values of −2 × 10−3 at 640 nm and −3 ×
10−3 at 670 nm; however, their CPL measurements included
an error of approximately Δglum = 1 × 10−3, due to the effect of
the linear polarization of emission.328 In a following paper, the
authors examined the CPL response for different morpho-
logical aggregates of the same binaphthyl derivative 103
embedded into PMMA films; spherical nanostructures
(obtained from concentrated CHCl3 solutions) showed glum
values of ∼0.01 at 630 nm, while helical nanowires (generated
in CHCl3/methylcyclohexane mixtures) exhibited maximum
luminescence dissymmetry factor glum of ∼0.02.768
A wider investigation on the CPL properties of thin films of

enantiopure 1,1′-binaphthyl derivatives was performed by Imai
and Fujiki. Interestingly, they found that the CPL signal of
chiral binaphthyl fluorophores dispersed in spin-coated PMMA
thin films could be controlled depending on the choice of open
or closed-type substituents in the 2,2′-positions; (S)-2,2′-
diethoxy-1,1′-binaphthalene (S)-18 showed a positive CPL
band, with a maximum glum value of 7.9 × 10−4 at 360 nm,
while (S)-2,2′-(1,4-butylenedioxy)-1,1′-binaphthalene (S)-104
revealed a negative CPL band, with glum

max of −1.6 × 10−3

(Figure 80).769 This inversion of the CPL sign for open and
closed derivatives follows a similar behavior in the most red-
shifted ECD band and confirms the expected correlation
between the sign of CPL and ECD (lowest energy transition).
Because ECD and CPL spectra of compounds 18 and 104 are
essentially molecular in origin, even in their aggregated state,
they could be reproduced by single-molecule TD-DFT
calculations, which confirmed the role played by the dihedral
angle between the naphthalene rings.770 The same trend was
then found with other similar compounds: the CPL of open-
type 2,2′-dialkoxy-1,1′-binaphthyl derivatives in poly(methyl
methacrylate) or polystyrene films showed |glum| values up to
∼5 × 10−4;336−338 instead, maximum luminescence dissym-
metry factors of about 1.5 × 10−3 were found for 1,1′-
binaphthyl339 and 1,1′-biaryl340 systems with hydrogen
phosphate or phosphoramidite as closed-type substituents.
Large differences were found between CPL spectra measured
as thin films dispersed in PMMA and KBr pellets, which were
consistent with the behavior of ECD spectra (see section
3.1.1). The same authors also studied PMMA blends of
binaphthyl derivatives 26−27 (Figure 23, section 3.1.1) having
two bulky triphenylsilyl groups in the 3,3′-positions: despite
the same axial chirality of the binaphthyl frameworks, the
open-type system (R)-26 showed negative CPL between 350
and 400 nm (with maximum glum = −6.1 × 10−4), while the
closed-type system (R)-27 showed a positive signal (glum =
−1.3 × 10−3).341 Again, the sign inversion was consistently
found in ECD and CPL spectra and was ascribed to the
conformation of the 1,1′-binaphthyl core. To obtain a shift of
CPL properties to longer wavelengths, very recently Imai et al.
performed preliminary measurements on a set of chiral
rotatable oligonaphthalene derivatives.342 In most of these
works the presence of artifacts was excluded simply by
measuring a mirror-image CPL spectrum for the opposite
enantiomer.
In the last few years, thin films of 1,1′-binaphthyl systems

bearing other π-conjugated substituents (Figure 81) were
investigated by CPL spectroscopy. Li and co-workers described
spin-coated samples of 3,3′- and 6,6′-bis(pyrenyl)-1,1′-
binaphthol derivatives 105−106, showing maximum |glum|
values of 6.2 × 10−3 and 1.1 × 10−3, respectively.329 These
compounds additionally exhibited circularly polarized electro-

Figure 79. Chemical structure of chiral 2,2′-bis(perylene diimide)-
1,1′-binaphthalene system 103 studied by Kawai et al. in opaque thin
films prepared by drop casting or embedded into PMMA films.
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luminescence (CP-EL) and were employed in the fabrication
of circularly polarized organic light emitting diodes (CP-
OLEDs) with electroluminescent dissymmetry factors gEL up
to 5.6 × 10−3. Chiral luminogen 107 with thermally activated
delayed fluorescence (TADF) properties, achieved by
introducing donor−acceptor-type groups to a 1,1′-binaphthol
skeleton, was prepared by the same group and revealed a
dissymmetry factor glum of 9.2 × 10−4 in neat films.331 A CP-
OLED was fabricated in this case too, with gEL ∼ 10−3. Zheng
et al. reported a set of octahydro-binaphthyl TADF emitters,
bearing bridged terephthalonitrile portions functionalized with
carbazole (108)771 or diphenylamine (109)772 units, with glum

values up to 2.0 × 10−3. The resulting CP-OLEDs had
extremely high quantum efficiencies and gEL up to 2 or 3 ×
10−3. More interestingly, closed-type 1,1′-binaphthol-tereph-
thalonitrile derivatives 110−113 with aggregation induced
emission (AIE) properties were found to exhibit glum up to
about 0.04 in spin-coated samples and gEL up to 0.06 when
used as active layers in CP-OLEDs.332 Hirata and collaborators
instead described dissymmetry factors values of ±4.5 × 10−4

for thin films of (S)- and (R)-N,N′-dimethyl-1,1′-binaphthyldi-
amine (114) doped into an amorphous β-estradiol matrix.287

Transient ECD spectra (TrCD) were also measured on the
same sample, confirming the conformational rearrangement

Figure 80. CPL spectra of chiral 1,1′-binaphthyl fluorophores dispersed in spin-coated PMMA thin films: (a) (S)-2,2′-diethoxy-1,1′-binaphthalene
(S)-18, (b) (S)-2,2′-(1,4-butylenedioxy)-1,1′- binaphthalene (S)-104. Adapted with permission from ref 769. Copyright 2012 John Wiley and
Sons.

Figure 81. Chemical structure of 1,1′-binaphthyl systems 105−114 bearing other π-conjugated substituents recently investigated by CPL
spectroscopy in thin films.
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which occurs in the 1,1′-binaphthyl core when passing from
the singlet S1 to the triplet excited state T1; the same results
had been predicted theoretically. This compound exhibits a
circularly polarized phosphorescence (CP phosphorescence),
which is persistent at room temperature and is quite
uncommon for a metal-free organic molecule. Because CP
phosphorescence originates from T1 and CP fluorescence from
S1, the dissymmetry factors are very different for the two
phenomena (±2.3 × 10−3 vs ±4.5 × 10−4, respectively). It
must be stressed that such low values were extracted from a
statistical treatment of 145 different measurements.
Very recently, Chen and co-workers reported the use of

axially chiral enantiomers 115, synthesized by coupling two 3-
(9H-carbazol-9-yl)benzonitrile fluorophores, as TADF-active
materials with remarkable CPL and CPEL properties in thin

films.773 In particular, the absence of artifacts was testified by
measuring almost mirror-image CPL spectra for the two
enantiomers, with glum values of −4.8 × 10−3 for (−)-115 and
4.5 × 10−3 for (+)-115 (Figure 82).
Higher dissymmetry factor glum values were measured in

2016 by Lu and co-workers on helical nanostructures obtained
by ionic linkage between the anionic chiral binaphthyl system
116 and two cationic achiral tetraphenylethene (TPE)
derivatives 117. Drop-casted thin films of (S)-116/117 and
(R)-116/117 as neat material showed, respectively, dissym-
metry factor glum of 3.8 × 10−2 and −4.2 × 10−2 at 442 nm,
associated with helical fibers (Figure 83).343 More recently, the
same group reported glum values up to 3.6 × 10−3 for spin-
coated thin films of chiral binaphthyl dyes bearing TPE lateral
units.344 The resulting CP-OLED had gEL = 3 × 10−3.

Figure 82. CPL spectra of the axially chiral enantiomers (+)-(R)-115 (blue line) and (−)-(S)-115 (red line) recorded in thin film state, together
with their crystal structures. Adapted with permission from ref 773. Copyright 2020 John Wiley and Sons.

Figure 83. CPL spectra recorded for drop-casted thin films of helical nanostructures of (S)-116/117 and (R)-116/117, developed in 2016 by Lu
and co-workers. On the right, the hierarchical assembly of the constituent molecules is illustrated, yielding first microdomains (a) held together by
electrostatic interactions, which then pack together in a chiral fashion (b), forming helical nanostructures (c), which finally form helical fibers (d).
Adapted with permission from ref 343. Copyright 2016 The Royal Society of Chemistry.
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However, the highest glum for enantiopure 1,1′-binaphthyl
derivatives was measured in 2018 by Cheng and collaborators:
thin film samples of an AIE-active 1,1′-binaphthol derivative,
dissolved in the commercial nematic liquid crystal E7, showed
luminescence dissymmetry factors up to 0.41; unfortunately,
no CP-OLED was fabricated thereof.774 The mesogen E7 by
itself is achiral, but the binaphthol derivative induces a chiral
nematic phase (N*-LC), which is responsible for such a high
chiroptical response. Very recently, the first example of
photon-upconversion in circularly polarized luminescence
was reported for thin films of a cholesteric mesophase,
obtained by mixing the commercial nematic liquid crystal
SLC1717 with a chiral binaphthylamine derivative emitter in
the presence of a platinum(II)octaethyl porphyrin sensitizer.775

The N*-LC phase containing both the binaphthylamine and
the porphyrin showed a similar CPL spectrum of the N*-LC
phase containing only the binaphthylamine but using a much
longer excitation wavelength (532 vs 360 nm). The
phenomenon may thus be described as upconverted CPL. In
2020, Guo et al. reported a detailed photophysical inves-
tigation, including CPL spectroscopy, on thin films of a chiral
system undergoing fluorescence resonance energy transfer
(FRET), fabricated by doping a binaphthyl-functionalized 1,2-
dithienyldicyanoethylene fluorescent photoswitch with a
conventional achiral coumarin dye into a nematic liquid
crystal host.776

The CPL properties of thin films of chiral π-conjugated
small molecules containing tetraphenylethene (TPE) moieties
have been intensively studied because of their typical AIE
property,777 producing generally high quantum yields in the
solid state. The principle of AIE-active molecules such as TPE
and hexaphenylsilole (vide infra) is based on the reduction of
mobility between the free, molecularly dispersed, and the
aggregated state (Figure 84). These AIEgens have a twisted

ground-state structure due to the steric crowding of the phenyl
groups around the core (ethylene or aromatic), accompanied
by vibrational and rotational modes, which offer efficient
nonradiative relaxation pathways. In the aggregated state, these
motions are largely suppressed, circumventing the more
commonly observed aggregation-caused quenching; this latter
is related to energy traps formed in aggregate states, which
decay by other nonradiative dissipative pathways. The TPE
unit shows an absorption profile with three maxima between
220 and 320 nm in solution and an emission profile with a
broad band with maximum around 440−480 nm in the
aggregated state.

When a chiral self-assembling moiety such as an amino acid
derivative is appended to TPE units, helical superstructures are
obtained characterized by exciton-coupled ECD spectra and
CPL spectra. Tang and colleagues reported detailed CPL
investigations on casted films of TPE-based systems function-
alized through 1H-1,2,3-triazole bridges with α-amino acid
derivatives (Figure 85): a mono-L-valine methyl ester-

functionalized TPE (118) showed an average glum of 0.03 in
the range 400−600 nm,778 while a similar bi-L-valine methyl
ester-functionalized TPE derivative (119) exhibited glum values
between −3.5 × 10−3 and −5.2 × 10−3 in the range 400−520
nm;779 instead, π-conjugated systems bearing one or two L-
leucine methyl ester attachments (120−121) revealed
maximum glum values of, respectively, 0.07364 and 3.2 ×
10−3.365 All of the above systems display a clear-cut tendency
to form helical fibers detected by microscopy, which at least in
one case were reconciled with the first-order supramolecular
chirality.779 Lu and co-workers studied the chiroptical
properties of drop-casted films of a TPE bearing two
cholesterol pendants at different temperatures; here, at low
temperature, the CPL is clearly associated with the formation
of helical fibers, which molecularly dissolve at higher
temperature. Thus, glum (483 nm) decreased from 2.54 ×
10−2 at 20 °C to approximately 0 at 60 °C, following a similar
evolution of ECD spectra.780 Zheng et al. developed achiral
triangular macrocycles containing three TPE moieties, whose
phenyl rings cis to one another are linked by a 5-oxyethylene
bridge, which forms a crown ether. When an enantiopure α-
hydroxyacid interacts with this molecule, it enters the crown
ether cavity, inducing a defined twist of the TPE, which is
reflected by the CPL activity in drop-casted films,490 while
more recently, they focused the attention on two different TPE
derivatives bearing four cholesterol pedant units, able to self-
assemble into nanotubes showing strong CPL signals in thin
films, with glum values up to 3 × 10−3.379 The authors noticed
that the aggregates detected by SEM and TEM on the 100 nm
scale were not chiral and concluded that, due to lack of helical
structure in aggregates, ECD and CPL signals would be
ascribed to the propeller-like conformations of TPE units.
However, as we warned above, one should not directly transfer
the morphological information from microscopy scale to first-
order supramolecular scale, as they refer to objects of different

Figure 84. Principle of aggregation induced emission (AIE) of
tetraphenylethene (TPE). In the middle, the photographs of a cuvette,
containing TPE as THF solution and THF−water 10:90 suspension,
are shown under illumination of a UV lamp. Adapted with permission
from ref 777. Copyright 2012 The Royal Society of Chemistry.

Figure 85. Chemical structure of α-amino acid derivatives-function-
alized TPE-based systems 118−121, recently developed by Tang and
colleagues for a detailed CPL investigation in casted thin films.
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sizes. In fact, the solution ECD spectra reported by Zhang and
collaborators are clearly a manifestation of exciton coupling
between TPE units, arranged in a chiral supramolecular
assembly.
Other π-conjugated small molecules bearing chiral groups

were also investigated by CPL spectroscopy in thin films,
including: trans-1,2-bis(phthalimide)-cyclohexane376 and trans-
1,2-bis(perylene diimide)-cyclohexane781 derivatives (showing
|glum

max| values of, respectively, 1.1 × 10−3 and 3.5 × 10−2); the
gelator molecule N,N′-bis(octadecyl)-(anthracene-9-carboxa-
mido)-glutamic diamide, with glum of −6.0 × 10−3 (D-
enantiomer) and 5.5 × 10−3 (L-enantiomer) as Langmuir−
Schaefer films, i.e., nearly 5 times larger than those in the gel
system;359 a 1-pyrenemethylamine functionalized with enan-
tiopure 1-phenylethyl moiety, which revealed |glum

max| value of
0.006 at 476 nm.782 Imai and Nishikawa’s groups reported the
CPL properties of chiral PDI 31 (Figure 28 in section 3.1.1),
again bearing 1-phenylethyl chiral units, blended in PMMA
and myo-IPU (a polyurethane) spin-coated samples, and a
clear AIE effect was found in both matrices, with maximum |
glum| values of about 2.4 × 10−3 (654 nm) and 1.3 × 10−3 (637
nm), respectively.389 Although the CPL of (R,R)-31 and (S,S)-
31 were nearly mirror images, subtle differences in the shapes
were found, which could be due to the effect of humidity
during thin film preparation. PMMA blends of other
structurally related PDIs, having 1-naphthylethyl and 2-
naphthylethyl chiral groups, showed CPL spectra with |glum|
up to 4 × 10−3.390 Significant differences in CPL signals were
observed upon sample rotation and flipping (glum ranging
between −0.61 × 10−3 and −5.96 × 10−3) for drop-casted thin
films of a chiral AIEgen functionalized with a cholesteryl
moiety and two long alkyl chains; the phenomenon was
attributed to artifacts (Bragg reflection) induced by the
presence of birefringent domains.382 In 2020, Jiao and
collaborators reported the CPL spectra of Langmuir−Blodgett
thin films of two PDIs bearing axial or inherent chirality; the
estimated maximum glum values were about −1.6 × 10−3 and
1.3 × 10−3, respectively.391 In the last few years, the attention

has largely moved to branched alkyl chains; Lai and colleagues
described thin films of a symmetric perylene-carbazole dyad
with four (R)-3,7-dimethyl-1-octyl chains, fabricated by spin-
coating from a 1.0 mg mL−1 THF solution, with a relatively
weak CPL activity (glum = −5.34 × 10−4 at 641 nm).373 Meijer,
Di Bari, and co-workers have found strong CPL signals for
drop-casted thin films of an asymmetric carboxylic acid-
functionalized naphthalene diimide having a (S)-3,7-dimethyl-
1-octyl group, which exhibited the surprisingly high maximum
dissymmetry factor glum value of −2 × 10−2 at around 555 nm
associated with an off-white emission.783 These values exceed
those reported for most organic emitters and were attributed to
the emission by excimer species formed in solution and in the
solid state, which was suggested by the broad emission band
with large Stokes shift.
It is well-known that cholesteric liquid crystals can generate

CPL signals in thin film samples; Sisido et al. reported several
works on chiral mesogenic cholesteryl esters bearing different
π-conjugated moieties as substituents,784−786 while Tamaoki
and Das described strong circularly polarized photolumines-
cence in the liquid crystalline phase for a set of dimeric
cholesteryl derivatives with the diphenylbutadiene core,787 and
very recently, Liu, Jiang and co-workers reported multicolor
tunable CPL signals for xerogel thin films of a pyridine-
functionalized cyanostilbene mesogen bearing a chiral
cholesterol group.788 However, very large CPL have been
reported also for thin films of achiral π-conjugated small
molecules in a cholesteric mesophase, with maximum
luminescence dissymmetry factor glum often >0.1. These
exceptionally strong CPL signals are usually due to an extrinsic
chiral medium effect, as explained in section 2.2.3. The
phenomenon was first investigated by Stegemeyer et al. on a
large set of achiral aromatic compounds; for each system,
strong CPL signals were found corresponding to their
photoluminescence bands, but with glum values dependent on
the sense (left- or right-handed) and on the pitch of the
cholesteric helical structure.224,225,789 Further investigations
were then performed by Sisido et al.790 and Chen et al.,226 who

Figure 86. (a) Intrinsic CPL ability of chiral photonic cellulose films studied by Xu and co-workers. Neat films transformed the incident light into
passive left-handed CP-light by selective reflection and passive right-handed CP-light by selective transmission, collectable on the same and
opposite side of the incident light, respectively. Composite films, obtained by incorporating achiral luminophores into CNCs, showed only right-
handed CP-light emission (i.e., negative CPL), because of the forbidden propagation of left-handed CP-light. (b) CPL spectrum of the composite
chiral photonic cellulose films investigated by Xu and co-workers showing maximum glum values. Adapted with permission from ref 796. Copyright
2018 John Wiley and Sons.
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attributed the origin of the large circular polarization of
emitted light to the macroscopic stacking of the achiral π-
conjugated molecules into cholesteric-like layers. Similar to
that discussed above for ECD spectra of cholesteric phases
(see, e.g., section 3.3.4), CPL becomes a property of the large-
order cholesteric organization rather than being associated
with molecular or first-order supramolecular chirality. In 2006,
Furumi and Sakka measured a maximum glum value of 1.64 for
thin films of a cholesteric mesophase doped with the achiral
fluorescent Nile Red dye,791 while values up to 0.4 were
obtained for samples of chiral nematic liquid crystals
containing an achiral tetraphenylethylene-propylphenylethyne
fluorophore.792 Wang and co-workers instead studied the
impact of dye concentration on the CPL properties of samples
of cholesteric liquid crystals doped with the dye pyrromethene
597; interestingly, the maximum glum value decreased by
increasing dye concentration, presumably because higher dye
amounts may lead to a shorter penetration depth of the
photoexcitation.793 In 2019, Cheng et al. studied the CPL
properties for thin films of four different achiral AIE dyes
dispersed in a chiral nematic liquid crystal (obtained by adding
1 wt % of a chiral binaphthyl molecule bearing biphenyl-cyano
groups into the commercial nematic LC E7); interestingly, the
largest dissymmetry factors glum measured were 1.42/−1.39
(values for the two opposite cholesteric textures of the used
liquid crystals).794

More recently, chiral nematic liquid crystalline composite
films with strong CPL were fabricated by encapsulating achiral
luminophores into cellulose nanocrystals (CNCs), i.e., highly
crystalline and high-aspect ratio nanorods able to self-assemble
in aqueous suspensions forming left-handed chiral nematic
liquid crystals.795 Xu and co-workers reported that chiral
photonic cellulose films were able of dividing the unpolarized
incident light into two “passive” CP-light components: left-
handed light is selectively reflected, while right-handed light is
selectively transmitted (Figure 86a).796 This phenomenon, due
to the presence of a photonic bandgap (PBG) in the
absorption spectrum, and to the cholesteric architecture of
CNCs, was found attainable in the range from near-UV to
near-IR; therefore, by incorporating achiral luminophores into
these films, highly selective emission of right-handed CP-light
(i.e., negative CPL signals) was obtained, owing to the
forbidden propagation of left-handed light, with glum values up
to −0.68 (Figure 86b).796 Actually, Piao et al. found later that
also the emission of left-handed CP-light (i.e., positive CPL
signals) could be obtained in these samples by changing the
helical pitch of the chiral photonic films through ultrasonic
processing.797 Very recently, chiral nematic liquid crystalline
composite films exhibiting similar properties (glum up to −0.38)
were also obtained with chiral nematic mesoporous silica
(CNMS) encapsulating achiral rhodamine B dye.798

In the last few years, a few works describing CPL properties
for thin films of achiral π-conjugated small molecules in other
chiral matrices have been reported, including chiral gelators799

and bacterial cellulose.800 He, Tang, and co-workers
introduced in 2019 a new concept for modulating the
chiroptical response of AIEgens by acting on the host polymer
matrix with an engineered helical microstructure rather than on
molecular-level structural modifications.801 By their approach,
they could obtain white emission and CPL from the polymer
composites of two AIEgens, 9,10-bis(di-4′-methylphenyl-
methylene)-9,10-dihydroanthracene (TDHA) and 9,10-bis-
(diphenylmethylene)-9,10-dihydroanthracene (PDHA). The

optimized dissymmetry factor glum was 2 × 10−3. Liu and
collaborators described the self-assembly of achiral discotic
luminophores into chiral supramolecular assemblies with
strong CPL (glum = 3.2 × 10−2) in drop-casted films, triggered
by 1,2-diaminocyclohexane.432 Very recently, the CPL proper-
ties of a series of achiral luminescent open-shell π-radicals,
induced with different chirality regulation approaches (mag-
netic field induction, supramolecular coassembly, chiral liquid
crystal encapsulation) were reported.431

Summarizing this section, we observe that CPL spectra of
small π-conjugated molecules very often follow the paradigm
of being strongly correlated with the lowest-energy band in
their respective ECD spectra, both in sign and intensity. The
glum factors hardly exceed 5 × 10−3, as commonly found for
chiral organic compounds.182 Some CPL amplification may be
observed in the solid state as a consequence to aggregation,183

yielding assemblies with glum up to 10−2. Substantially higher
glum values, able to compete with those reached by lanthanide
complexes,181 may be obtained only by large-scale ordering
observed in chiral nematic phases.

4.2. CPL in Thin Films of π-Conjugated Oligomers and
Polymers

This section, although not explicitly divided in subsections, will
follow the same order of the above section 3.3. Thus, we will
describe first oligo/polymers with π-conjugated groups in side
chains, then oligo/polymers with π-conjugated groups in the
main chain.
Interestingly, only a few examples of CPL investigations of

thin films of oligo/polymers bearing π-conjugated groups in
the side chains have been reported in the literature. Akagi and
co-workers reported the photo-cross-link polymerization of
two methacrylate derivatives, containing respectively a 2,7-
bis(1,1′-biphenyl)fluorene luminescent moiety and a phenyl-
cyclohexyl mesogenic unit, in a cholesteric liquid crystal as
asymmetric solvent; the resulting polymethacrylate 122, with a
sense of helicity depending on the (R) or (S) chirality of the
cholesteric mesophase, exhibited in thin films circularly
polarized blue photoluminescence with maximum glum value
of 4.80 × 10−2 (Figure 87).802 A poly[2,7-bis(4-tert-
butylphenyl)-dibenzofulvene] possessing only one enantiopure
menthyl group at the chain terminal was instead developed by

Figure 87. CPL spectra recorded for two different thin film samples of
polymethacrylate 122 with opposite sense of helicity, obtained by
photo-cross-link polymerization in a cholesteric mesophase with (R)
or (S) chirality. Adapted with permission from ref 802. Copyright
2015 American Chemical Society.
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Nakano et al.; drop-casted thin films revealed a chiral π-stacked
arrangement, but only moderate CPL signals were recorded
(glum

max = 6 × 10−4).557 Ikai and co-workers reported instead
the copolymerization of benzo[1,2-b:4,5-b′]dithiophene-ap-
pended glycine-based and L-alanine-based isocyanides (99:1
molar ratio), affording submicrometer supramolecular polymer
fibers, which then assembled to form a cholesteric liquid crystal
film with CPL emission.573 It is worth emphasizing that
polyisocyanide samples, although with only 0.01 mol % of the
chiral monomer unit, exhibited remarkable CPL signals (glum
more than 2.0 × 10−2), suggesting a chiral amplification from a
molecular point chirality to supramolecular helical chirality.
Very recently, Rizzo and colleagues found that syndiotactic
polystyrene (s-PS) films obtained by melt extrusion, after
crystallization from amorphous state induced by sorption of
(R)- or (S)-carvone at room temperature for 1 h, exhibited a
strong CPL response (with glum values between 0.02 and 0.03)
extrinsic to the site of photon emission, due to a helical
morphology of the s-PS crystallites, complementing solid-state
ECD and VCD experiments on the same system (see sections
3.3.1 and 5.1).803 Instead, in 2020, Ihara and collaborators
reported the preparation of polystyrene thin films exhibiting
strong (glum up to 0.05) and broad-band CPL signals, that were
obtained by stabilization of self-assembly driven secondary
chirality via polymer encapsulation.804

Thin films of oligomers and polymers with a π-conjugated
backbone showed more interesting CPL properties, as
confirmed by a larger number of papers related to this topic.
In addition to a few very recent works on chiral binaphthyl-
TPE-based polymers,805,806 polyquinoxalines,807 poly(TPE-
triazole)s,808 and poly(carbazole-ran-acridine)s,582 the most
important classes investigated are the same described above for
the ECD properties and will be listed in the same order:
polyacetylenes, oligo/poly(p-phenylene)s and analogues,
oligo/polyfluorenes and related copolymers, and oligo/
polythiophenes and related copolymers.
Akagi and collaborators studied in detail the CPL properties

of the poly(diphenylacetylene) 66 (see Figure 50) function-
alized with 2-nonyl chains as chiral groups, which exhibited

lyotropic liquid crystalline behavior at a concentration range
from 5 to 10 wt % in toluene, investigating both enantiomers
and also the racemic form in the presence of enantiopure 1,1′-
binaphthol derivative 65 as additive.624 The system has been
already described in section 3.3.2 as for its ECD properties.
Although drop-casted thin films of this system as neat material
showed no CPL, outstanding glum values up to orders of 10−1

were obtained in films of their liquid crystalline state: 1.8 ×
10−1 at 466 nm for (R)-66 and −2.3 × 10−1 at 471 nm for (S)-
66 (Figure 88a). Samples of (rac)-66 in their liquid crystalline
state revealed obviously no CPL signals, but when doped with
the chiral additive 65 they exhibited luminescence dissymme-
try glum factors similar to their enantiopure forms: −1.2 × 10−1

at 478 nm for (R)-65/(rac)-66, 5.9 × 10−2 at 473 nm for (S)-
65/(rac)-66 (Figure 88b). The cholesteric π-stacked structures
of the liquid crystalline phase, induced by means of
enantiopure moieties in the side chains or with the use of
chiral additives, clearly promoted very strong signals CPL in
these systems, as an effect of the chiral medium. Very
interestingly, the CPL spectra in Figure 88 are bisignate and
their maxima do not coincide with the emission maximum
(502 nm), although this aspect is not commented by the
authors. Because a violation of the Kasha’s rule, which implies
emission from the lowest-energy vibronic state, is unexpected
for an organic system at room temperature, a bisignate CPL
spectrum might suggest two distinct emissive species, for
example, an excimer-like species for the longer-wavelength
CPL band. Alternatively, noticing that this latter has a very
pronounced tailing, it might arise from a different phenomen-
on, such as CDS. To further increase the degree of circular
polarization of their emitted light, the same authors took
advantage of selective reflection of CP light typically exhibited,
as discussed above, by chiral nematic liquid crystals. Therefore,
they developed a CPL-switchable cell by combining a layer of
enantiopure poly(diphenylacetylene) 66 in the lyotropic
mesophase, acting as source of CPL, with a cell of a
thermotropic chiral nematic liquid crystal (N*-LC), having
selective reflection of CP-light in the same wavelengths range
of the emitted CPL. The thermoresponsive cell was

Figure 88. CPL spectra recorded for thin films of: (a) enantiopure (S)-66 and (R)-66 in the lyotropic liquid crystalline phase; (b) racemic 66 in
the lyotropic liquid crystalline phase, pure or doped with the enantiopure additive (S)-65 or (R)-65 (10 wt %). Adapted with permission from ref
624. Copyright 2012 American Chemical Society.
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constructed by sandwiching the two active layers between
three quartz windows. Depending on the specific phase
(cholesteric mesophase or isotropic liquid phase) assumed
by the mesogen at different temperatures, the transmission of
CPL with opposite handedness and very high dissymmetry
factor values (|glum

max| up to 1.79) was obtained (Figure 89).809

Similar thermally CPL-switchable devices were also fabricated
for the racemic form of 66 and a derivative of 65 as chiral
dopant, by using a double-layered cell of cholesteric liquid
crystal.810

In 2019, Deng and co-workers reported strong dissymmetry
factors glum (up to 10−1) in chiral composite thin films,
obtained by combining helical polyacetylenes, appended with
camphorsulfonic acid groups and an achiral naphthalensul-
phonamide luminophore blended into a PMMA matrix.271 The
chiral polymer acts as CP filter of the light emitted by the
luminophore. With a setup of the type source → luminophore
→ (R)-polymer → detector, left CP light is detected, while
with an inverse setup the detected light has no circular
polarization (“on−off” device in Figure 90). Interestingly,
using a triple-layered device with the two antipodes of the
chiral polymer, one may obtain CP light of opposite
handedness: source → (S)-polymer → luminophore → (R)-
polymer → left CP light, and source → (R)-polymer →
luminophore → (S)-polymer → right CP light (“switchable”
device in Figure 90).271 This device thus reproduces in the
context of CP light emission the phenomenon of non-

reciprocity already seen for ECD, which will be further
discussed below for CPL. More recently, Deng and co-workers
developed CPL-active composite thin films with a left-handed
cholesteric structure by coassembly of an achiral fluorescent
polyacetylene containing dansyl groups and partially desulfu-
rated cellulose nanocrystals.811

The first CPL investigation on thin films of poly(p-
phenylene)s was reported by Chen et al. in 1998; a set of
chiral block copolymers carrying cyanobiphenyl and choles-
terol as pendant groups showed large glum values (up to orders
of 10−1), attributed to their cholesteric liquid crystalline state
at room temperature.812 A very similar behavior was then
found for poly(p-phenylene) block copolymers with enantio-
pure (S)-1-phenylethyl and mesogenic cyanobiphenyl
groups.813 Unfortunately, for these systems, no CPL measure-
ments were performed on the opposite enantiomer, making it
impossible to rule out the occurrence of artifacts. Akagi and
collaborators instead investigated chiral cationic poly(p-
biphenylene)s and poly(p-terphenylene)s (68 and 69),
functionalized with chiral alkyl substituents with terminal
quaternary ammonium groups (see section 3.3.3 and Figure
52), which were coupled to anionic π-conjugated molecules;
interestingly, although these systems assumed helically π-
stacked structures with strong CPL signals in aqueous solution
(|glum

max| ≈ 10−1), much smaller luminescence dissymmetry
factor values were observed in the corresponding drop-casted
thin films (|glum

max| = 2.66 × 10−3).645 Suda and Agaki found

Figure 89. Schematic representation of the thermoresponsive switchable cell ideated by Akagi and co-workers. The film of (R)-66 emits
predominantly left-handed CPL. At 25 °C, the N*-LC layer, whose components are shown in the green frame, selectively reflects left CP light, thus
only right CP light is transmitted. At 40 °C, the N*-LC layer cell turns into an isotropic phase, and selective reflection of CPL does not occur; thus,
predominantly left CP light is transmitted. Reproduced with permission from ref 809. Copyright 2014 John Wiley and Sons.
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dissymmetry factors |glum| = 1.27 × 10−3 (at 420 nm) and 5.0 ×
10−3 (at 550 nm) for thermally annealed drop-casted films of
poly(m-phenylene)s bearing enantiopure 2-nonyl chains.646

Janssen and co-workers reported a detailed CPL inves-
tigation on the random copolymer 123, bearing enantiopure
2,5-bis[(S)-2-methylbutoxy]-1,4-phenylenevinylene and race-
mic 2,5-bis[(rac)-3,7-dimethyloctyloxy]-1,4-phenylenevinylene
units (Figure 91), in films fabricated by spin-coating from
chloroform solution. They excluded the presence of artifacts
due to photoselection by recording glum values for five different
samples at different orientations with respect to the optical

axis, while the artificial contribution attributed to the partial
overlap between CPL and ECD bands was successfully
removed by means of correction equations.209 The authors
noticed that the CPL band of 123 recorded above 600 nm was
positive, like the ECD maximum at 570 nm, however, the
degree of circular polarization in emission was lower than in
absorption. The CPL spectra of oligo(p-phenylenevinylene)s
(OPV oligomers such as 76 in Figure 56, section 3.3.3), which
can be taken as models of PPVs, have been theoretically
investigated by Spano and co-workers, who demonstrated that
a bandwidth analysis of aggregate CPL spectra in the
framework of vibronic−vibrational coupling theory is able to
provide useful information on supramolecular assemblies in
terms of exciton delocalization (coherence).131,223 Marletta et
al. recorded very high luminescence dissymmetry factors (with
glum values up to 0.84) in Langmuir−Blodgett films of achiral
poly(p-phenylenevinylene), which were due to photoselection
artifacts arising from macroscopic anisotropies.652,814,815 An
easy control of the CPL properties in spin-casted thin films of
chiral polymer 74 (Figure 54, section 3.3.3) was reported by
Swager and co-workers. Pristine thin films prepared from a
solution of a “good” solvent, CHCl3, were CPL silent; after 30
min of solvent annealing at 45 °C, they acquired a negative
CPL signal (glum

max = −1.5 × 10−3 at 488 nm). On the
contrary, freshly prepared samples from 1,2-dichloroethane
solution exhibited a positive CPL signal (gabs

max = 2.1 × 10−3 at
507 nm).816 In all cases, CPL spectra paralleled ECD spectra
recorded on the same samples, which were bisignate in the
region between 320 and 500 nm. The authors rationalized the
observed behavior according to a multiple aggregation
pathways model involving a thermodynamically stable and a
kinetically trapped state.
Neher and Bunz reported in 2002 the first CPL study of

poly(p-phenyleneethynylene)s; thin films of 77b (Figure 57,
section 3.3.3), prepared by spin-casting a chloroform solution,
after thermal annealing for 30 s at 160 °C and other 2 h at 140
°C, revealed the maximum glum value of −0.186 at 443 nm.674

This very high value was again in accord with exceptionally
high gabs (−0.38 at 432 nm) observed for the same sample.
However, the interest in the CPL of oligo/poly(p-phenyl-
eneethynylene) derivatives has increased in recent years. In
2017, Morisaki and Chujo investigated a set of π-conjugated
oligo(p-phenyleneethynylene) dimers having a chiral 4,7,12,15-
tetrasubstituted [2.2]paracyclophane unit, showing different
chiroptical properties in thin films depending on the
deposition technique.817 In particular, for the oligomer (R)-
124 opposite CPL signals were found for drop-casted (glum =
−3.0 × 10−2) and spin-coated samples (glum = 2.1 × 10−2); in
both cases, thermal annealing for 5 h at 90 °C provided the
most thermodynamically stable forms to the films, charac-
terized by a strong negative CPL band with glum up to −0.25
(Figure 92). Lower luminescence dissymmetry factors (in the
order of 10−3) were instead obtained by the same authors for
similar dendritic compounds.496 Compound (R)-124 is a good
model for studying interchain couplings between PPE chains
which may occur as a result of aggregation. Solution ECD
spectra of (R)-124 show multiple bands in the region between
300 and 430 nm, which are seemingly due to a combination of
exciton coupling between the two oligo(p-phenylene
ethynylene)s and direct orbital mixing mediated by the
cyclophane ring. CPL spectra in solution show a single band
with maximum at 440 nm, which has the same sign and similar
dissymmetry factor of the longest-wavelength ECD band at

Figure 90. Schematic illustration of the chiroptical device developed
by Deng and co-workers for preparing the (a) on−off CPL device and
(b) the switchable CPL device based on a multilayer architecture of
thin films of an achiral luminophore (DA) and a chiral polyacetylene
(PSA) in PMMA matrix. Reproduced with permission from ref 271.
Copyright 2019 American Chemical Society.

Figure 91. Chemical structure of the chiral poly(p-phenyleneviny-
lene) random copolymer 123 developed by Janssen and co-workers.
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410 nm (gabs = 1 × 10−3, glum = 1.2 × 10−3). Ikai et al. focused
their attention on the CPL properties of poly(p-phenyl-
eneethynylene) derivatives having glucose units as chiral
moieties and assuming main-chain helical conforma-
tion,677,678,818 while glum values up to 0.013 were recently
measured by Tang and colleagues for drop-casted films of a
self-assembling 1,2-diphenylethyne functionalized with a
fluorene group and an amino acid derivative.679

Very recently, Di Bari and co-workers have described the
first material exhibiting nonreciprocal circularly polarized light
emission as thin film.208 The compound is a chiral phenylene
bis-thiophenylpropynone (PTPO) derivative 125, whose films,
spin-coated from CH2Cl2 solutions, showed almost mirror-
image CPL spectra when illuminated from the front or back
side, with glum of −0.15 for forward configuration and +0.09 for

backward configuration at 505 nm (Figure 93). The same film
showed also nonreciprocal ECD (polarity reversal of
ellipticity), with gabs of −0.19 and +0.17 ± 0.03 (at 465 nm)
for forward and backward configuration, respectively (see
Figure 9, section 2.1.1). It must be stressed that although
nonreciprocal CPL emission had been postulated819 or realized
through multiple film architectures (see Figure 90 above), the
direction-dependent circular polarization in the emitted light
from the thin film of a single material was unprecedented.
Thanks to their thermotropic liquid crystalline behavior,

chiral oligo/polyfluorenes may exhibit strong circularly
polarized photoluminescence in thin film samples. This family
of π-conjugated oligo/polymers displays in fact the most
typical chiral medium effects, that is, CPL signals which are
nonlocal, extrinsic, and extensive (section 2.2.3). The group of

Figure 92. CPL spectra recorded for the [2.2]paracyclophane-based oligo(p-phenyleneethynylene) dimer (R)-124 as thin films fabricated from a
CHCl3 solution (3.4 × 10−3 M) by drop casting or spin-coating technique, freshly prepared and after thermal annealing for 5 h at 90 °C. Adapted
with permission from ref 817. Copyright 2017 American Chemical Society.

Figure 93. (a) Illustration of nonreciprocal CP emission from a thin film with definition of forward and backward illumination for the 0° setup
employed by Di Bari and co-workers. (b) CPL spectra recorded for spin-coated thin films of PTPO derivative 125 in forward (blue line) and
backward (red line) configuration; excitation 365 nm. Adapted with permission from ref 208. Copyright 2020 John Wiley and Sons.
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Scherf, Neher, and co-workers measured CPL spectra of
several poly(fluorene)s also investigated by ECD, as described
above (section 3.3.4). In 2000, Oda et al. reported a glum value
of −6.6 × 10−2 (at 420 nm) for spin-coated thin films of
poly(9,9-bis[(S)-2-methylbutyl]-2,7-fluorene) 82 (Figure 61)
after thermal annealing at 200 °C; however, because no special
precautions for minimizing artifacts were reported, their
occurrence cannot be excluded here.682 In fact, the CPL
band at 420 nm had opposite sign to the ECD maximum at
383 nm, and the same sign of the long-wavelength tail, which is
probably due to CDS or selective circular reflection. The same
group performed a detailed investigation on several poly-
fluorenes, showing the strongest CPL signals in poly(9,9-
bis[(R)-2-ethylhexyl]-2,7-fluorene) 83 (glum

max = −0.28 at 430
nm). Although no measurements were performed on the
opposite enantiomer, the presence of any contribution due to
photoselection was excluded by checking the degree of linear
polarization of emission in each sample of 83; however, the
CPL intensity at 405 nm was found to be strongly dependent
on the position of the excitation spot with respect to the
pinhole placed behind the sample, probably arising from light
scattering effects (Figure 94). These latter were also evident

from the CDS contributions to the thin film ECD spectra.146

Fujiki and co-workers described the CPL properties for spin-
coated samples of liquid crystalline poly(9,9-bis[(S)-2-
methyloctyl]-2,7-fluorene) 81 (Figure 61, section 3.3.4),
having glum of −0.07 at 426 nm and −0.02 at 511 nm only
after thermal annealing for ∼3 h at 200 °C.685 In this case, too,
the sign of the CPL band did not reflect the major long-
wavelength ECD band, but rather the one of its tail, related to
scattering (CDS) or selective circular reflection. Chen et al.
focused their attention on chiral oligofluorenes functionalized
with enantiopure (S)-3,7-dimethyloctyl and (S)-2-methylbutyl
chains which, as recalled above (section 3.3.4), were also
investigated by ECD and ellipsometry.228,229 Nakano and co-
workers reported the CPL behavior of polyfluorene 84 (Figure
61, section 3.3.4) having chiral 9-neomenthyl-9-n-pentyl-

fluoren-2,7-diyl and achiral 9,9-bis-n-octyl-fluoren-2,7-diyl
units, which showed a huge enhancement of the glum value at
423 nm in drop-casted films upon thermal annealing (<0.5 ×
10−4 for pristine films, 0.16 after 48 h at 160 °C). A similar
though less pronounced enhancement was observed in the
ECD spectra (gabs passing from 0.2 × 10−4 to 0.026). The
polymer also shows an excimer emission band at 520 nm
which is also very CPL-active after annealing (glum = 0.025).686

Many π-conjugated copolymers having fluorene chiral units
have been also investigated by CPL spectroscopy. In 2011,
Nakano et al. described a poly(fluorenevinylene) function-
alized with neomenthyl groups showing glum values of −0.45 at
430 nm and −0.16 at 490 nm.695 Recently, Nomura and Fujiki
studied poly(fluorene vinylene)s bearing several alkyl branched
chains with dissymmetry factors glum up to orders of 10−2.
Aggregate ECD and CPL spectra of poly(fluorene vinylene)s
show a clear vibronic structure which, as noticed above, is
strongly reminiscent of that of poly(phenyleneethynylene)s.694

A strong circularly polarized green photoluminescence (with |
glum

max| = 0.2) was reported by Rikukawa and co-workers for
chiral poly(fluorene-thiophene)s thin films fabricated by spin-
coating of a CHCl3 solution.

745 The work by Di Nuzzo et al.
on copolymer 86 (Figure 62), with 9,9-bis[(S)-3,7-dimethy-
loctyl]-2,7-fluorene unit alternated to benzothiadiazole, has
been already described in detail in section 3.3.4. Upon thermal
annealing, this polymer adopts a chiral nematic multidomain
structure responsible for unique chiroptical properties.
Similarly to absorption dissymmetry factors gabs, also emission
dissymmetry factors glum were found dependent on the film
thickness and reached the outstanding maximum glum value of
−0.6 for a spin-coated sample with thickness of 400 nm.213

CP-EL spectra were also recorded leading to gEL values up to
−0.8 with pulsed voltage, among the highest figures reported
for an OLED. The scheme of the CP-OLED based on
copolymer 86 is reported in Figure 95. In this study, the
authors described in great detail the two possible types of
contribution, local vs nonlocal, to ECD and CPL spectra of
chiral aggregated polymers. In particular, they evaluated the
impact of various nonlocal effects (circular differential
transmission, scattering, and birefringence) on ECD, CPL,

Figure 94. CPL spectra recorded for the poly(9,9-bis[(R)-2-
ethylhexyl]-2,7-fluorene) 83 as thin film (thickness = 60 nm), with
the excitation spot placed directly at the position of the pinhole (blue
line) or slightly displaced from this position (red line). Adapted with
permission from ref 146. Copyright 2002 American Chemical Society.

Figure 95. Diagram of the CP-OLED constructed by Di Nuzzo et al.
following a standard OLED architecture.213 Legend: Ag, silver
cathode; Ca, calcium cathode; c-PFBT, chiral poly(fluorene-alt-
benzothiadiazole) (86), the active layer producing circularly polarized
electroluminescence (CP-EL); TFB, poly[2,7-9,9-di-n-octylfluorene-
alt-1,4-phenylene-4-sec-butylphenylimino-1,4-phenylene], electron-
blocker layer; PEDOT:PSS:PFI, mixture of poly(3,4-ethylenediox-
ythiophene), polystyrenesulfonate and a perfluorinated ionomer,
conductive layer; ITO, indium tin oxide transparent anode. Adapted
with permission from ref 213. Copyright 2017 American Chemical
Society.
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and CP-EL spectra. The authors applied a theoretical model
accounting for the transmission of light through a chiral
nematic liquid crystal composed of distinct domains and were
able to reproduce the experimental CP-EL spectra as well as
the trend observed for the dependence of gEL on the film
thickness.213 Their main conclusion was that the observed
CPL signals were possibly due to two effects, namely CDS and
the combination of linear birefringence and linear polarization
of emission within each single domain. Very recently, the same
group obtained similar results for a poly(9,9-dialkylfluorene-
alt-2,5-dialkoxyphenyl) copolymer; a maximum glum value of
−0.62 for a thermally annealed spin-coated was obtained
(thickness = 333 nm) and a maximum gEL around 0.2.227

O’Neill and Kelly described fascinating CPL properties for
the π-conjugated co-oligomer 126, based on a 9,9-bis(n-
propyl)-2,7-fluorene central unit functionalized with two
thiophene−p-phenylene moieties bearing an enantiopure (S)-
citronellyl chain: samples cooled at 25 °C after prolonged
annealing in the liquid crystalline state (i.e., 122 °C) assumed a
chiral glass state, which exhibited the surprising maximum glum
value of 1.77 and also retained a value >1.7 between 465 and
545 nm (Figure 96).820 Unfortunately, the authors did not
describe any precaution to avoid the occurrence of fictitious
contributions to the experimental CPL signal.

There are also some examples of achiral oligo/polyfluorenes
showing strong CPL response in thin films under specific
conditions. Chen and collaborators studied in detail the
circularly polarized photoluminescence of commercial Exalite
428, an achiral oligofluorene luminophore, dispersed in thin
films of several cholesteric liquid crystals.821−823 The measured
glum depended on the film thickness and reached maximum
values of −1.7.821 Fujiki and co-workers investigated the
impact of nonchromophoric chiral polymers (cellulose
triacetate,151 acetate butyrate,151 or tris(phenylcarbamate)699)
as enantiopure additive on the development of CPL signals
from achiral oligo- and polyfluorenes; glum were generally
modest (<2 × 10−3). Zhang et al. fabricated thin films of

achiral poly(9,9-dioctylfluorene) with |glum| values up to orders
of 10−3 by gelation in the presence of enantiopure (S)- or (R)-
limonene.698 Moderately intense CPL signals (glum ∼ 6 × 10−3

at 463 nm) were obtained by Nakano et al. in thin films of
achiral poly(9,9-dioctylfluorene) as a result of a chirality
induction attained in the solid state by irradiating each sample
with left- or right-handed CP-light for 6−7 h.702 Furthermore,
a strong CPL response was found for thin films of achiral
poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) in the
presence of an enantiopure small molecule as additive: Yu and
Kim reported a glum = −0.72 and gEL = −1.13 at 546 nm for
F8BT layers blended with 10 wt % of the commercial 1,1′-
binaphthyl derivative R5011,824 while Campbell and Fuchter
recorded a glum value exceeding 0.2 for F8BT samples with
only 7 wt % of the (+)-1-aza[6]helicene (+)-12 as dopant (see
Figure 18 in section 3.1.1, where the ECD properties of the
system have been described), which increased up to ∼0.5 for
the 53 wt % helicene blend.308 However, a more detailed
investigation on spin-coated samples of F8BT blended with 10
wt % of 1-aza[6]helicene 12 was recently performed,
examining the impact of film thickness (between 100 and
200 nm) on the dissymmetry factor values: for F8BT blend
with (+)-12, glum first decreased (100−110 nm) to zero and
then inverted its sign (>120 nm). Using the opposite
enantiomer (−)-12, a specular response was observed, with
glum varying from +0.35 (100 nm) to −0.35 (200 nm) (Figure
97). The gEL values measured for the derived CP-OLED varied

consistently with the active layer thickness, from +0.50 (100
nm) to −1.00 (200 nm) for (+)-12.214 The authors noticed
that the phenomenon of sign inversion of CPL for a single
chiral material had been only rarely observed.72,171,228 They
proposed that glum variation is due to two distinct mechanisms
acting at different thickness regimes: (i) local CP-light
emission originating from supramolecular chirality (i.e., twisted
π-conjugated chains or nanoscale chiral aggregates), which is
dominant for thin active layers (<120 nm); (ii) CP-light

Figure 96. Luminescence dissymmetry factor glum spectrum of π-
conjugated co-oligomer 126 developed by O’Neill and Kelly, recorded
as thin film cooled at 25 °C after prolonged annealing at 122 °C.
Adapted with permission from ref 820. Copyright 2003 John Wiley
and Sons. Figure 97. Dissymmetry factor glum values at 546 nm recorded for

spin-coated samples of F8BT blended with 10 wt % of (−)-12 (blue
line) or (+)-12 (red line) as a function of the film thickness. Adapted
with permission from ref 214. Copyright 2019 American Chemical
Society.
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amplification or inversion via propagation through a chiral
medium, which is dominant for thick active layers (>120 nm).
From our viewpoint, it is also important to stress that these
two chiral entities occur at different level of hierarchy: the first-
order supramolecular structure and a higher-order chiral
medium. What is especially noteworthy is that the emerging
handedness at both levels of hierarchy is ultimately dictated by
the molecular chirality of the dopant. Although the phenomena
responsible for the chiral medium effects remain to be fully
elucidated, the authors suggested that one of them could be
circular differential scattering (CDS), as proposed by Di Nuzzo
et al. for copolymer 86 (which is a F8BT analog with chiral
side chains).213 Within this mechanism, in fact, it is expected
that circular polarization of emission of the CP-OLED device
should increase as the recombination zone moves deeper into
the device, as physically observed. On the contrary, the
contributions from linear anisotropy and selective Bragg
reflection were excluded.
An alternative way to induce chirality in F8BT thin films is

via solvent chirality transfer:825 Vacha and co-workers reported
CPL signals in samples prepared by drop casting or spin-
coating from a solution of F8BT chiral aggregates, whose
formation was induced by addition of an excess of (R)- or (S)-
limonene during the aggregation process.199

Interestingly, the number of papers on the CPL properties of
oligo/polythiophenes as thin films is still quite limited,
contrary to their extended investigations by ECD. Chen et
al. in 1998 synthesized a set of polythiophenes carrying
cyanobiphenyl and cholesterol as pendant groups, charac-
terized by large glum values (up to orders of 10−1) attributable
to their cholesteric liquid crystalline behavior at room
temperature,812 while more recently Funahashi and collabo-
rators for drop-casted samples of a phenylterthiophene dimer
with chiral nematic behavior have found extraordinary glum
values up to 1.5 for very thick films (9 μm).826 However, we
notice that at the excitation wavelength (360 nm) the
transmittance of the film is zero, meaning that only a very
superficial layer of the film is actually excited. Janssen and co-
workers reported a glum

max value of 4 × 10−3 for thin films of
poly(3,4-bis[(S)-2-methylbutoxy]thiophene) fabricated by
spin-coating from chloroform solution.209 Similar to the PPV
derivative reported in the same paper, they observed that the
sign of the CPL band was the same of the long-wavelength tail
of the corresponding ECD band, while the absolute value of
glum was smaller than the gabs. Meskers, Janssen, and colleagues
found a maximum glum of 2.5 × 10−3 for spin-coated thin films
of regioregular poly[3-((S)-3,7-dimethyloctyl)thiophene].714

In these two papers, the authors estimated the amount of
the overlap between CPL and ECD bands, i.e., corresponding
to self-absorption effect of fluorescence emission spectra. This
is not a common practice in the literature although the effect
may be not negligible at all; for example, for poly[3-((S)-3,7-
dimethyloctyl)thiophene], a contribution of ∼0.3 × 10−3 due
to artifacts was estimated on the glum, that is, above 10%.

714 In
2018, Swager and co-workers described a CPL inversion in
spin-coated thin films of chiral poly(3-alkylsulfone)thiophenes
before and after thermal annealing, attributable to two different
supramolecular organizations with opposite helicity; the sign
inversion was also observed in ECD spectra (see section
3.3.5).722 More recently, Ikai et al. reported a polythiophene
(127) with main-chain helicity, based on an axially chiral
bithiophene with a fixed syn-conformation, showing maximum

glum of 6.9 × 10−3 in drop-casted thin films from a chloroform
solution (Figure 98).723

Akagi and collaborators investigated several phenylene-
thiophene-based copolymers,740 including systems with photo-
responsive moieties responsible for reversible CPL switching in
thin films.827 Additionally, Akagi et al. also reported a
polythiophene derivative whose film showed, upon annealing,
not only an increase of glum by one order of magnitude but also
a sign inversion with respect to not annealed films. They
explained this phenomenon by invoking a rearrangement of the
polymer backbone into a chiral nematic phase.740

In the last few years, there has been a growing interest in the
CPL study of chiral π-conjugated oligomers containing a
tetraphenylsilole moiety, due to their typical aggregation
induced emission (AIE) property which often ensures high
quantum yields: in particular, compounds 128−131, function-
alized with carbohydrates,759 α-amino acids (valine760 or
leucine761 derivatives) or enantiopure amines762 as chiral
pendants (Figure 99) showed strong CPL signals in drop-
casted thin films, with glum values up to orders of 10−1. The
CPL spectra of 128 were very conservative for different

Figure 98. Structure of PT 127 assuming a one-handed helically
folded conformation, shown from two different viewpoints for a
model 20-mer as a result of MD simulations. Adapted with permission
from ref 723. Creative Commons Attribution 3.0 Unported License,
2019 The Royal Society of Chemistry.
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aggregation states: cast films, suspensions, and PMMA films.
Tang, Wong, Li, and their co-workers made several efforts for
characterizing the supramolecular chirality at various levels of
hierarchy. For 128, SEM and TEM images revealed the

existence of helical nanoribbons with average width and pitch
of about 30 nm and 120−150 nm, respectively. X-ray
diffraction showed spacings of 0.5 and 1.8 nm, suggesting an
S-shaped conformation of the monomer. Geometry optimiza-
tions predicted several possible dimer geometries (held
together by CH··O, CH··N, and π-stacking interactions),
which would generate columnar stacks with a width of 1.8 nm;
several columns would then associate “laterally”, yielding the
nanoribbons.759 Compounds 129 and 130 also exhibited chiral
microscopic morphologies.760,761 More surprisingly, a broad
negative CPL signal between 475 and 600 nm was found in
thin films of achiral hexaphenylsilole prepared by drop casting
of a THF solution, with maximum glum = −0.0125 at 550 nm
(which is pretty high compared to the above-described chiral
tetraphenylsilole-based oligomers); as previously explained for
its ECD properties, molecular modeling justified the formation
of helical nanofibers held together mainly by van der Waals
interactions, also detected by AFM.763

4.3. CPL Imaging in Thin Films of π-Conjugated Systems

As already described in section 3.4 for ECD, also CPL
properties in thin films of π-conjugated systems may strongly
depend on their local supramolecular structures, responsible
for different contributions to the global CPL spectrum.
Interestingly, in the last few years, a couple of CPL imaging
measurements have been reported for thin film samples of
chiral π-conjugated compounds.

Figure 99. Chemical structure of the chiral tetraphenylsilole-based π-
conjugated oligomers 128−131 recently investigated by CPL
spectroscopy.

Figure 100. (a) Chemical structure of (1S,2S)-trans-1,2-bis(perylene diimide)-cyclohexane (1S,2S)-132 (left) and glum 2D-map recorded for a
drop-casted thin film from a methylciclohexane solution by mapping a 40 × 40 μm2 area at a gap distance of 4 μm (right). (b) Chemical structure
of (1R,2R)-trans-1,2-bis(perylene diimide)-cyclohexane (1R,2R)-132 (left) and glum 2D-map recorded for a drop-casted thin film from a
methylciclohexane solution by mapping a 40 × 40 μm2 area at a gap distance of 4 μm (right). Adapted with permission from ref 781. Copyright
2013 John Wiley and Sons.
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In 2013, Kawai and collaborators781 reported a detailed CPL
investigation on trans-1,2-bis(perylene diimide)-cyclohexane
132; by drop casting a methylciclohexane solution of 132 onto
glass slides, uniform fluorescent thin films were obtained with
maximum |glum| = 0.035 at 650 nm (in particular, (1S,2S)-132
and (1R,2R)-132 enantiomers exhibited positive and negative
CPL signs, respectively). Despite the apparently uniform
morphology, AFM images suggested that samples were
composed of helical networks of fibrous assemblies of 132
molecules. Therefore, CPL imaging measurements were
performed in order to confirm the consistency of chiroptical
signals at different points of the film. Fluorescence, CPL, and
glum intensities of 132 at 650 nm were simultaneously
monitored by mapping a 40 × 40 μm2 area at a gap distance
of 4 μm. The glum map consistently showed negative and
positive values for the (1S,2S) and (1R,2R) enantiomers,
respectively (Figure 100); despite some differences in glum
intensities from each spot to another, the values distribution
showed a peak at 0.02−0.03 for both enantiomers, thus
demonstrating the uniformity of circularly polarized emission
of the aggregated structures on the surface.
In 2014, Vacha and co-workers reported a microscopic study

of spatially resolved CPL, based on a home-built confocal
fluorescence microscope, for drop-casted or spin-coated thin
films from a solution of F8BT chiral aggregates, whose
formation was induced via solvent chirality transfer, in the
presence of (R)- or (S)-limonene during the aggregation
process.199 Interestingly, local glum measured for individual
aggregate microstructures were found very different from each
other as well as from the glum value obtained via standard CPL
spectroscopy for the whole sample. The authors explained
these differences hypothesizing that local glum values could be
strongly distorted by additional phase retardation along the
optical path in the sample, thus containing little information on
the circular polarization state of the emitted light itself.
Therefore, the study evidenced how data analysis and
interpretation in the CPL imaging of thin films must be
done with the utmost care. Very recently, CPL imaging
measurements were also applied by Choi and co-workers to
study local helical microdomains of an achiral nematic liquid
crystal, doped with 0.5 wt % of a pyrromethene-based
fluorescent dye, refilled into chiral nanoporous thin films of a
reticulated polyacrylate.766

5. OTHER CHIROPTICAL SPECTROSCOPIES USED
FOR THIN FILMS OF π-CONJUGATED SYSTEMS

As noticed in section 2, the applications of other chiroptical
spectroscopies different from ECD and CPL to the character-
ization of thin films of π-conjugated systems have been quite
scarce. This is probably due more to the advantages and
versatility of ECD and CPL than to the intrinsic limitations of
the other techniques. Because of the limited number of
examples, we will review them without further classification
according to the system size.

5.1. Vibrational Optical Activity (VOA)

VCD has countless applications in the analysis of biomolecules,
including their aggregated states.236,828 In the context of thin
films of π-conjugated systems, we are aware of only a few
examples of application.
Concerning the VCD properties of chiral organic π-

conjugated small molecules as thin films, Lu and colleagues
reported on helical nanostructures of the anionic chiral

binaphthyl 116 with two cationic achiral TPE derivatives
117 (Figure 83); VCD spectra of drop-casted thin films of (S)-
116/117 and (R)-116/117 showed reversed signals for peaks
of aromatic rings at 1512 and 1476 cm−1, as well as a Cotton
effect centered at 1243 cm−1 related to the C−N stretching
vibration close to the quaternary ammonium group of TPE
moiety.343

In 2002, Tigelaar et al. first applied VCD, together with
ECD, to study a chiral conducting polymer, which they dubbed
“chiral metal” obtained by doping polyaniline films with
camphorsulfonic acid.829 Depending on the solvent used to
cast the films, these latter exhibited VCD signals in the mid-IR
region. Interestingly enough, these signals had a characteristic
dispersive appearance due to the Fano-type interference with
the continuous absorption of the polaron band of the polymer.
Tanatani and co-workers reported instead the VCD spectrum
for drop-casted thin films of both enantiomers of an oligo(m-
phenylurea) bearing chiral N-2-(methoxyethoxyethoxy)propyl
groups,241 while Gonzaĺes and collaborators reported an
interesting example of achiral polymethacrylate with azoben-
zene moieties, showing VCD signals in thin films only after
CP-light irradiation.535

The most extensive application of VCD relevant for the
present review has been demonstrated by Rizzo, Guerra, and
co-workers in the already described studies of the interaction
between syndiotactic polystyrene (s-PS) with diverse chiral
guests. Sorption of enantiopure carvone (55) into thin films of
s-PS induces crystallization witnessed by helical crystalline
peaks in the IR/VCD spectra. Notably, VCD peaks are
associated with both the host and the guest normal modes,
indicating an effective host−guest interaction. More interest-
ingly, when carvone is displaced by azulene (an achiral guest),
not only the VCD activity of the crystalline host polymer is
preserved, but also the peaks associated with the new, achiral,
guest acquire optical activity. A consistent behavior has been
observed both for spin-coated and melt-extruded films, with
typical thickness ranging from 0.1 to 20 μm.514,515,830 The
phenomenon is reminiscent of the chiral memory capability of
many remarkable chiral supramolecular assemblies, for
example, based on porphyrins.831 Although VCD and ECD
spectroscopies similarly probe the host−guest interaction and
chiral memory behavior of s-PS films, VCD uniquely
demonstrates that the chiral recognition only occurs when
guest molecules embedded in the nanoporous crystalline s-PS
phase rather than dissolved in the amorphous phase.515

5.2. Other Spectroscopies

Several other chiroptical spectroscopies have been applied,
though more occasionally than ECD and CPL, to the
characterization of thin films of π-conjugated systems. They
have been introduced in section 2.4 and their specific
applications have been reviewed in sections 3 and 4 during
our systematic overview of ECD and CPL spectra. They will be
just recapitulated here.
Mueller matrix polarimetry (MMP or MME) has been

applied to TPPS aggregates,268 films of BINOL,73 squaraine
derivatives,269,270 and poly(fluorene-alt-benzothiadiazole)-
s.213,214,824

Second-harmonic generation circular dichroism (SHG-CD)
measurements have been described for thin films of several
classes of π-conjugated systems, including Langmuir−Blodgett
films of an aggregating helicene derivative,304 layers of
enantiopure BINOL fabricated with different techni-
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ques,73,279,322−324,345,346 azobenzene polymethacrylates,540 pol-
yisocyanides,280 polydiacetylenes,633 and poly(3-
alkylthiophene)s.281,716

Circular differential scattering (CDS) has been measured or
estimated for poly(fluorene)s,174 poly(acetylene)s,271 and
poly(fluorene-alt-benzothiadiazole)s.212−214

Circular differential transmission and circular selective
reflection have been measured for cholesteric liquid crystals
obtained by various samples.174,213,228,229,272,273

Ellipsometry has been used for porphyrin aggregates,268,484

poly(phenylenevinylene)s,815 oligo- and poly(fluorene)-
s,213,228,229,273 and poly(fluorene phenylene)s.692

Finally, the following techniques have also found sporadic
applications for thin films of π-conjugated systems: ECD
spectroelectrochemistry,284 circular differential reflec-
tance,272,286 and transient circular dichroism.287−289

6. CONCLUDING REMARKS
In this review, we provided a comprehensive coverage of the
chiroptical properties measured on thin films of organic π-
conjugated molecules, both in absorption (mainly ECD) and
in emission (mainly CPL). We showed that the number of
papers related to this topic is constantly growing, and it
includes nowadays countless π-conjugated systems with
different molecular size, from small molecules to polymers,
neat or dispersed in a matrix.
We tried to stress a few aspects which we believe are

especially crucial in the collection of experimental data and
their interpretation.
From an experimental or instrumental viewpoint, the reader

should be warned that the measurement of ECD and CPL
properties in thin films is not straightforward as it is for
isotropic solution samples due to many sources of parasitic
signals (macroscopic anisotropies, instrumental defects, and so
on). The first and foremost precaution one should take is to
obtain spectra for the two enantiomeric samples. Especially
when this precaution is not possible, the sample orientation
should be varied both by rotating it multiple times around the
optical axis and by flipping it around the vertical axis. This
latter procedure is seldom followed, however, it is mandatory
to verify the contribution of linear anisotropies to the
measured spectrum. In our survey, we realized that although
the dissymmetry g-factor values were (almost) always
described only in terms of true ECD or CPL, in many cases,
the provided evidence would not rule out the existence of
spurious contributions.
Looking forward to the possible applications of emissive

chiral organic materials, we observe that they are approaching
lanthanide-based compounds in terms of dissymmetry values
(glum and gEL) and of emission efficiency, with some relevant
positive aspects: in the first place, the better environmental
impact of the starting materials and at the disposal; second, in
terms of the unique possibility to modulate the electronic
structure of organic chromophores, thus covering selected and
broader spectral windows. In this context, chiral nematic liquid
crystals stand out; their CPL is mostly due to a chiral medium
effect rather than to natural optical activity, however, from the
viewpoint of technological applications, one would focus more
on the recorded value rather than on their actual source. The
phenomenon of LDLB, which we have stressed with special
emphasis in our review, responds to the same reasoning. While
the LDLB term is often considered an artifact in ECD
measurements, it may be exploited to generate nonreciprocal

thin films (i.e., exhibiting the phenomenon of polarity reversal
of ellipticity), which are likely to have useful applications in the
future.
Another, more fundamental way, by which the use of ECD

and CPL may assist the search for efficient materials, is in the
structural characterization of chiral supramolecular structures.
This is indeed the most important application of chiroptical
spectroscopies in the field. Our literature survey demonstrates
well that especially ECD is able to furnish crucial information,
which is not easily attainable by other techniques. In particular,
chirality at the first level of hierarchy, namely small
supramolecular aggregates, may hardly be investigated by
microscopy. Moreover, the relation between the different levels
of hierarchical organization is very complex, and a piece of
information on one level (say, the helicity detected for
nanoribbons or nanofibers) cannot be immediately transferred
to other levels (say, the first-order molecular stacks). In the
specific context of thin films, polymorphism is a very
widespread phenomenon; the use of ECD as the tool of
choice for investigating chiral polymorphic species and
multiple aggregation pathways is now definitely recognized
by the scientific community. We observe that despite the
advance in computational methodologies, most applications of
ECD and CPL to π-conjugated systems in their aggregated
form are still founded on a qualitative basis. Computational
predictions on large systems with several different approaches
are however a field of research in rapid expansion; one can
forecast that, in the near future, quantitative spectra-to-
structure relationships will be available even for very complex
systems like those covered by the present review, while
predicting the manifold forms of aggregates that the same
molecule(s) can originate will be matter of further research.
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Regenstein, W.; Neher, D. Chiroptical Properties of Chiral
Substituted Polyfluorenes. Macromolecules 2002, 35, 6792−6798.
(147) Rivera-Fuentes, P.; Alonso-Goḿez, J. L.; Petrovic, A. G.;
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Shi, X.; Salerno, F.; Ryan, S.; Schöche, S.; Arteaga, O.; et al. A Unified
Model to Explain the Large Chiroptical Effects in Polymer Systems
through Natural Optical Activity. ChemRXiv 2020, DOI: 10.26434/
chemrxiv.12277889.v1.
(176) Richardson, F. S.; Riehl, J. P. Circularly Polarized
Luminescence Spectroscopy. Chem. Rev. 1977, 77, 773−792.
(177) Riehl, J. P.; Richardson, F. S. Circularly Polarized
Luminescence Spectroscopy. Chem. Rev. 1986, 86, 1−16.
(178) Longhi, G.; Castiglioni, E.; Koshoubu, J.; Mazzeo, G.; Abbate,
S. Circularly Polarized Luminescence: A Review of Experimental and
Theoretical Aspects. Chirality 2016, 28, 696−707.
(179) Kasha, M. Characterization of Electronic Transitions in
Complex Molecules. Discuss. Faraday Soc. 1950, 9, 14−19.
(180) Samoilov, B. N. Luminescence from a Chiral Crystal of
Sodium Uranyl Acetate. J. Exp. Theor. Phys. 1948, 18, 1030.
(181) Zinna, F.; Di Bari, L. Lanthanide Circularly Polarized
Luminescence: Bases and Applications. Chirality 2015, 27, 1−13.
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