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Abstract: We perform a numerical simulation of the effects of an orthogonal magnetic field on charge
transport and shot noise in an armchair graphene ribbon with a lattice of antidots. This study relies on
our envelope-function based code, in which the presence of antidots is simulated through a nonzero
mass term and the magnetic field is introduced with a proper choice of gauge for the vector potential.
We observe that by increasing the magnetic field, the energy gap present with no magnetic field
progressively disappears, together with features related to commensurability and quantum effects.
In particular, we focus on the behavior for high values of the magnetic field: we notice that when it is
sufficiently large, the effect of the antidots vanishes and shot noise disappears, as a consequence of
the formation of edge states crawling along the boundaries of the structure without experiencing any
interaction with the antidots.
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1. Introduction

Graphene, a planar hexagonal lattice of carbon atoms, represents one of the currently most studied
and promising materials [1–5]. The interest raised by graphene has more recently also triggered large
scale research on a wide range of 2D materials [6–8]. Graphene has very useful characteristics [9,10],
such as high mechanical strength, electrical and thermal conductivity, flexibility and transparency.

Since its envelope-function transport equation is formally equivalent to the relativistic Dirac
equation [11–14], graphene exhibits relativistic effects at velocities much smaller than the velocity of
light, such as Klein tunneling and Zitterbewegung [15–18]. Moreover, it is characterized by peculiar
electrical noise characteristics [19–22]. Furthermore, its behavior in the presence of high magnetic fields
is particularly interesting [1,23–25], since it exhibits an “anomalous” quantum Hall effect, observable
even at room temperature, with a spectrum of unevenly spaced Landau levels and a Landau level at
zero energy.

Due, in particular, to its very high mobility and its current carrying capability, graphene has
been often considered as a candidate to replace commonly used semiconductors, such as silicon,
in “Beyond Moore” nanoelectronics [4,26–32]. Unfortunately, however, pristine graphene does not
have an energy gap, which makes it difficult to effectively “turn off” a graphene-based transistor,
and makes it unsuitable for digital electronics, for which a minimum Ion/Io f f ratio (the ratio of the
current when the device is on to that when the device is off) of at least 104 is required (while with
pristine graphene it is possible to obtain at most a value of about 10).

It has been shown that a gap can be opened in graphene by means of lateral confinement,
i.e., by defining a nanoribbon [14,33,34]; however, in order to achieve a gap of practical interest of a
few hundreds of millielectronvolts, nanoribbons with a width of just a few nanometers should be
defined, which is substantially impossible with current lithographic techniques. Chemical synthesis
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can yield such nanoribbons [35], but they are produced in a solution, and there is no practical approach
for transferring millions or billions of them reliably and cost-effectively onto a substrate, in order to
create circuits. Even the most recent advances [36] in nanoribbon direct synthesis on a metal oxide
surface do not offer the possibility of placing the nanoribbons according to a predefined scheme.

Other methods have been proposed for opening up an energy gap in graphene [4,37], and,
in particular, the introduction (by means of techniques such as e-beam lithography, diblock copolymer,
nanosphere and nanoimprint lithography [38–44]) of a lattice of perforations (antidots) [45–47].

We performed a numerical investigation of the effects of an orthogonal magnetic field B on the
transport and noise behavior of armchair graphene ribbons both with a regular and an irregular
distribution of antidots (Figure 1).

The effects of the magnetic field on the transport properties of graphene samples with an
antidot lattice have been experimentally explored in references [41,48–50]. Previous numerical studies
on antidot lattices in graphene, performed using a tight-binding technique in references [51–53],
have focused on the band-gap quenching in unconfined graphene and on conductance oscillations,
related to the presence of edge states and of commensurability effects. Other analyses have instead
focused on the effects of single antidots on transport in graphene in the presence of a magnetic
field [54–56].

We have generalized our in-house developed envelope-function based transport simulator [57–61]:
this code can efficiently handle relatively large graphene structures, with sizes of the order of hundreds
of nanometers or microns (similar to those of the samples on which experimental studies are
performed), which cannot be studied using more detailed but computationally demanding atomistic
approaches. We note that the energy gap that is present for B = 0 gradually vanishes as the applied
magnetic field is increased. This represents a generalization of the conclusions of references [62]
and [51]. In these references, an atomistic (tight-binding) approach was used to investigate the
dependence of the energy gap on the magnetic field in graphene structures with very small feature
sizes. In particular, in reference [62], narrow, unperforated (i.e., without antidots) graphene ribbons
were analyzed, investigating the reduction of the energy gap with increasing magnetic field strength:
as the highest valence band and the lowest conduction band get closer to each other [62], they ultimately
coalesce for high values of the magnetic field strength, giving rise to the zero-energy Landau level
characteristic of graphene. Instead, in reference [51], an unconfined, perforated (i.e., with antidots)
graphene sheet with small feature sizes was studied; it was shown that the energy gap introduced
by the antidot lattice should progressively disappear as the magnetic length approaches the lattice
feature size. Our simulations extend these results to the case in which confinement and antidot
lattice are simultaneously present, using a continuum model, which can handle relatively large
graphene structures.

We also confirm the appearance of the commensurability effects and of the quantum oscillations,
which have been previously experimentally reported and simulated [48–50,52].

Finally, we focus on the behavior for high values of the magnetic field: in this condition,
the formation of edge states with small cyclotron radius, crawling along the boundaries of the ribbon
without experiencing any scattering from the antidots, leads to a transport behavior in which the
role of the antidots effectively disappears and shot noise vanishes. Similar phenomena have been
reported in the two-dimensional electron gas of semiconductor heterostructures [63,64], where the
antidots consisted simply in the electrostatic effect of charged impurities and defects. In graphene,
the presence of Klein tunneling [15–18] and thus the impossibility to confine charge carriers only by
means of the electrostatic potential landscape, make it necessary to implement the antidots by means
of actual perforations in the graphene sample.

2. Method

We have added to our code for the k · p (envelope-function) [14] simulation of armchair graphene
ribbons the capability of treating the effect of antidots and of an orthogonal magnetic field. In order to
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preserve the possibility to handle relatively large devices, we decided to neglect the atomistic details
of the antidot edges by simulating the effect of the antidots with the introduction into the graphene
envelope-function equation (Dirac equation) of a mass term mv2

F (where m is the mass and vF is the
graphene Fermi velocity) [17,19,54,65], with a value that outside the antidots is zero and inside the
antidots is much greater than the maximum energy of the moving charges. Regarding the magnetic
field ~B = Bẑ (orthogonal to the plane x, y of the ribbon, where x and y are the transport and transverse
directions, respectively), its effect on transport was simulated by introducing a vector potential ~A(x, y),
such that ~B = ~∇× ~A, in the Dirac equation. In particular, among the infinite forms of vector potential
~A corresponding to the magnetic field ~B = Bẑ, in most of our simulations we used the Landau gauge
~A = Bxŷ [66].
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Figure 1. Considered graphene ribbon with a regular (a) and an irregular (b) distribution of
circular antidots.

We compute the transmission matrix of the device using a recursive scattering matrix technique [57].
We subdivide the structure into a series of sections, in each of which the potential energy U(x, y),
the vector potential ~A(x, y) and the mass term m(x, y) are approximately longitudinally constant.
In particular, with our choice of gauge, where ~A depends on x, the condition on the longitudinal
invariance of the vector potential within each section translates into a limitation on the magnetic flux
threading each section, which has to be much less than the flux quantum. Therefore, we have to divide
the device into a large number of thin sections.

Due to the invariance along x of all the physical and geometrical parameters, within each section
the four envelope functions of monolayer graphene F~αβ (~r) (corresponding to the sublattices β = A, B

and to the Dirac points~α = ~K, ~K′) can be written as the products of a plane wave propagating along
x and of a transverse component depending only on y: F~αβ (x, y) = eiκx xΦ~α

β(y). In each section, if we
introduce the function (defined in the domain [0, 2W̃])

~ϕ(y)=


e−iK̃y

[
Φ~K

A(y)
Φ~K

B(y)

]
y∈ [0, W̃]

eiK̃(2W̃−y)i

[
Φ~K′

A (2W̃ − y)
Φ~K′

B (2W̃ − y)

]
y∈ [W̃, 2W̃] ,

(1)
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the Dirac equation with Dirichlet boundary conditions for the electron wave function is equivalent [57,67]
to the following differential system with periodic boundary conditions on the domain [0, 2W̃]:{(

(∂y + iK̃)σz + g(y)I + d(y)σz + f (y)σx + q(y)σy
)
~ϕ(y) = −κx~ϕ(y)

~ϕ(2W̃) = ~ϕ(0) ,
(2)

where ∂y = d/d y; W̃ is the effective width of the ribbon; e is the elementary charge; h̄ = h/(2π) is
the reduced Planck constant (with h the Planck constant); σx, σy and σz are the Pauli matrices; E is the
injection energy; g(y) = (e/h̄) Ax(x̄, W̃ − |W̃ − y|); d(y) = i (e/h̄) sign(W̃ − y)Ay(x̄, W̃ − |W̃ − y|);
f (y) = [U(x̄, W̃ − |W̃ − y|) − E]/(vF h̄); q(y) = −i [m(x̄, W̃ − |W̃ − y|)v2

F]/(vF h̄); x̄ is the abscissa
identifying the section; and K̃ = |~K| − round (|~K|W̃/π)π/W̃. Our choice of gauge strongly simplifies
the solution of the Dirac Equation (2) in each section. Indeed, with the adopted gauge, the envelope
functions F~αβ (x, y) within each section in the presence of magnetic field coincide with those for B = 0
multiplied by a Peierls phase factor exp[−i(e/h̄)Ayy]. Therefore, it is sufficient to perform a numerical
solution of the problem (2) in the absence of a magnetic field. This eigenproblem with periodic
boundary conditions can be very efficiently treated in the reciprocal domain, thereby obtaining the
values of κx and of the Fourier coefficients of ~ϕ(y), and hence the four envelope functions.

Then, by enforcing the continuity on the two graphene sublattices A and B of the four envelope
functions at the interface between neighboring sections, we have computed the scattering matrix
of the transverse region containing this interface [57]. Finally, the scattering matrices of all the
regions into which we have divided the device have been composed, thereby obtaining the overall
scattering matrix, and, in particular, the transmission matrix t. The conductance G and the Fano
factor F (i.e., the ratio of the value of the actual shot noise power spectral density SI to the “full”
value 2eI of the shot noise power spectral density that would be expected if charge carriers moved
independently, with I the average current flowing through the device) have been obtained using the
Landauer–Büttiker approach:

G =
2e2

h ∑
i

wi , F =
SI
2eI

=
∑i wi(1− wi)

∑i wi
, (3)

where the wis are the eigenvalues of the matrix t†t.
The number of transport modes considered in the calculation was chosen in such a way that a

further increase of this number would not alter the transport results within a given accuracy.
At the entrance and at the exit of the considered nanostructure, we have included two regions

with low potentials, which emulate the effects of the input and output contacts and guarantee the
injection of a sufficient number of propagating modes into the ribbon.

The correctness of the presented approach has been confirmed by performing some tests also with
the alternative gauge ~A = −Byx̂: in this case the Peierls phase technique is not applicable anymore
and we have to actually solve Equation (2) with a nonzero magnetic field (again operating in the
reciprocal space).

We have also used our code to simulate the results of a conductance measurement on
a nanopatterned graphene nanoribbon that is available in the literature. In reference [52] a
100 nm × 210 nm zigzag graphene ribbon containing an 8 × 4 square array of antidots (each one with
a diameter of 10 nm and a separation of 26 nm) has been simulated using a tight-binding technique
in order to analyze the experimental results obtained in reference [49]. Due to the small antidot
size and separation (a choice dictated by the computational limits of the tight-binding simulation)
and to the large Fermi energy (chosen in such a way as to fall inside the semiclassical regime),
in reference [52] large, physically unfeasible values of the magnetic field have been used, in order
to explore the commensurability regime. Here, for validation purposes, we repeat a very similar
simulation using our envelope function code, considering an armchair graphene ribbon with the same
geometry and size as in reference [52], i.e., a 100 nm × 210 nm armchair graphene ribbon containing
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an 8×4 square array of antidots with a diameter of 10 nm and a separation of 26 nm. The Fermi
energy is 1.08 eV and we use a mass term of 10 eV. The results of our simulation are reported in
Figure 2, with the magnetic field normalized with respect to B0 = 97 T (the value corresponding to
the primary commensurability peak) and the resistance normalized with respect to the resistance
quantum R0 = h/(2e2). Comparing our numerical result with the data from reference [52] yields
good qualitative agreement. The commensurability peaks were properly reproduced, as were the
Aharonov–Bohm oscillations, which have a smaller amplitude in the experimental results, due to the
presence of dephasing.
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Figure 2. Half of the two-probe resistance (normalized with respect to the resistance quantum
R0 = h/(2e2)) achieved with our envelope-function-based code for a nanopatterned armchair ribbon
with the same size as that studied in reference [52], reported as a function of the orthogonal
magnetic field (normalized with respect to B0 = 97 T, the value corresponding to the primary
commensurability peak).

3. Numerical Results

In order to obtain an aspect ratio among those commonly used in experiments and an overall size
yielding a problem of manageable computational complexity, we have considered a 110 nm wide and
200 nm long armchair graphene ribbon (corresponding to a width of 894 dimer lines) containing a
set of circular antidots, all with a radius of r = 5.41 nm and located in its central 100 nm long region
(see Figure 1). We have analyzed both a regular distribution of antidots, located on a hexagonal lattice
with distance between the antidot centers equal to L1 = 26.84 nm, and an irregular one, obtained by
shifting the center of each antidot (independently along the x and y directions) by a random quantity
uniformly distributed between −4 and 4 nm, in such a way as to simulate the effect of irregularities
in the fabrication of the antidots. The effect of the perforations has been introduced by means of a
mass term mv2

F equal to 1 eV inside the antidots and null outside. We have considered a potential
equal to zero in the central 100 nm long region of the sample and equal to −0.2 eV in the input and
output leads, in order to simulate the effect of electrical contacts. We have considered two different
types of transition between these two potential levels: an abrupt one and a smooth one. The first is
step-like: taking x = 0 at the beginning of the structure, the potential varies from −0.2 eV to zero
at x = 20 nm and from zero to −0.2 eV at x = 180 nm, to finally end at x = 200 nm. The second
one starts from −0.2 eV at x = 0; from x = 0 to x = 40 nm rises from −0.2 eV to zero according to
the smooth relationship −0.2 eV + 0.2 eV((1 + tanh((x− 20 nm)/(6.67 nm)))/2); and finally from
x = 160 nm to x = 200 nm decreases from zero to −0.2 eV according to: −0.2 eV + 0.2 eV((1 +

tanh((−x + 180 nm)/(6.67 nm)))/2). In our calculations, we had to consider up to 10,000 sections in
order to satisfy the constraint on the maximum magnetic flux threading each section.

In Figures 3–5 we report (for three different values of the Fermi energy E: 0.02, 0.1 and 0.3 eV) the
conductance (normalized with respect to the conductance quantum G0 = 2 e2/h) that we obtained as a
function of the applied magnetic field, for: the pristine ribbon (without the antidots), the ribbon with a
regular lattice of antidots and the ribbon with an irregular distribution of antidots. For E = 0.02 eV
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and E = 0.1 eV calculations were performed using both a smooth and an abrupt connection between
the contacts and the device, obtaining, however, similar behaviors. For E = 0.3 eV, instead, we have
considered only a smooth connection between the contacts and the device (and in this case, in order to
achieve a better understanding of the phenomenon, the calculation was performed up to unrealistically
high values of magnetic field).
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Figure 3. Normalized conductance of the graphene ribbon as a function of the orthogonal magnetic
field, obtained for E = 0.02 eV in the presence of an ordered (panel (a)) and a disordered (panel (b))
distribution of antidots, compared with the conductance of the ribbon without antidots.

For no magnetic field, the conductance for E = 0.02 eV is zero, while the conductances for
E = 0.1 eV and E = 0.3 eV are different from zero. Indeed, in the absence of magnetic field an energy
gap in the order of 0.06 eV is present, generated by the lattice of antidots (the main effect, in this
case) [45,46] and by the lateral confinement of the graphene structure [14,33,34]. Since E = 0.02 eV falls
inside the energy-gap region for B = 0 T, for E = 0.02 eV we observe a conductance behavior that starts
from zero and becomes nonzero only for higher values of the magnetic field. The transition details
depend on the specific geometrical distribution of the antidots: in the case of an ordered distribution of
antidots (with evenly spaced perforations), the transition is smoother, while in the presence of disorder
in the antidot arrangement the transition is more irregular.

In order to analyze the effect of the magnetic field on the energy gap, in Figure 6 we report the
behavior that we have obtained (using a smooth connection between the contacts and the sample) for
the conductance as a function of the Fermi energy E for several values of the magnetic field, for the cases
of ordered and disordered antidots. We see that, starting from an energy gap of the order of 0.06 eV for
B = 0, by applying an orthogonal magnetic field and progressively increasing its strength, the width of
the gap gradually decreases. As mentioned earlier in the introduction, this represents a generalization
of what has been previously reported in references [51,62] for unperforated, confined graphene ribbons
and for perforated, unconfined graphene, respectively. In Figure 6c we report the behavior of the energy
gap (defined as the energy range around zero in which the normalized conductance is less than 0.01)
as a function of the magnetic field.
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Figure 4. Normalized conductance of the graphene ribbon as a function of the orthogonal magnetic
field, obtained for E = 0.1 eV in the presence of an ordered (panel (a)) and a disordered (panel (b))
distribution of antidots, compared with the conductance of the ribbon without antidots.
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Figure 5. Normalized conductance of the graphene ribbon as a function of the orthogonal magnetic
field (normalized with respect to B∗ = 100 T), obtained for E = 0.3 eV in the presence of an ordered
(panel (a)) and a disordered (panel (b)) distribution of antidots, compared with the conductance of the
ribbon without antidots.
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We notice that this agrees with the behavior (reported in Figure 3) of the conductance as a function
of the magnetic field for 0.02 eV (an energy smaller than the energy gap in the absence of magnetic
field Eg(B = 0) = 0.06 eV). Indeed, for an energy Ẽ which falls inside the gap for no magnetic field
(Ẽ < Eg(B = 0)), the conductance vs. magnetic field starts from zero, and then becomes nonzero
for the value B̃ of the magnetic field such that Eg(B̃) = 2Ẽ. Actually, in Figure 3 the transition of the
conductance takes place for B = 6 T, and in Figure 6c we see that Eg(6 T) = 2 · 0.02 eV = 0.04 eV.
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Figure 6. Normalized conductance as a function of the Fermi energy E for 6 values of the magnetic field,
for the ribbon with an ordered (a) and a disordered (b) distribution of antidots. In panel (c) we report
the behavior of the energy gap as a function of the magnetic field for the two different distributions
of antidots.

Now let us focus on the values of energy and magnetic field for which the sample has a nonzero
conductance. In particular, let us consider the behavior of the conductance as a function of the magnetic
field obtained for E = 0.1 eV and shown in Figure 4 (an analogous discussion is valid for E = 0.3 eV).
In the absence of antidots, we notice a clear staircase behavior. The thresholds correspond to the values
of B for which the considered Fermi energy E equals the Landau levels. This can be verified considering,

for the sake of simplicity, the Landau levels of unconfined graphene; i.e., E±N = ±
√

2h̄v2
FeNB (with N

an integer number). In the absence of confinement, for high values of the magnetic field B the electrons
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can propagate only through the Landau state with N = 0, because only the Landau level for N = 0
(i.e., E0 = 0) is lower than the injection energy E. Therefore, for high values of B the conductance is
equal to G0 (the conductance quantum). By reducing the magnetic field B, the Landau levels decrease
and therefore the number of propagating modes increases. When B reaches the value B1 = 9.95 T,
the doubly degenerate Landau level E1 equals the injection energy and thus the conductance jumps to
3G0. Similarly, when the magnetic field becomes lower than 4.98, 3.31 or 2.49 T, the doubly degenerate
Landau levels E2, E3 and E4 drop below the injection energy, and the conductances jump to 5G0, 7G0

and 9G0, respectively. It can be observed that also in our case, although actually a confinement is
present, the conductance exhibits a behavior as a function of the magnetic field similar to that described
in the absence of confinement.

When the antidots are present, the behavior is less regular and several minima and oscillations
appear. These features can be explained with the effects studied in GaAs/AlGaAs (gallium
arsenide/aluminium gallium arsenide) heterostructures in reference [68] and in graphene in
references [48,49,52]. Using a semi-classical approximation, we can assume that the charges move
along cyclotron orbits with radius Rc = E/(evFB), giving rise along the boundaries to edge states
crawling in the transport direction [53]. This approximation is better for higher values of E (such as
0.1 and 0.3 eV, which correspond to lower Fermi wavelengths), because a semi-classical approximation
is accurate if the Fermi wavelength is sufficiently small with respect to the geometrical feature sizes of
the device. As a rule of thumb for the validity of the semi-classical approximation, we can compare [52]
the Fermi wavelength λF = hvF/EF with the neck width between the antidots L1 − 2r: for 0.1 and
0.3 eV λF is comparable or smaller than the neck width, while for 0.02 eV quantum effects still play a
significant role. For the values of magnetic field, and therefore of Rc, for which the cyclotron orbits
encircle an antidot or a group of antidots, the charges, localized around their orbit centers, do not
contribute to transport, and this results in conductance dips (commensurability minima). In our
hexagonal lattice geometry, when the cyclotron orbit encircles 1, 3, 7 or 12 antidots (see Figure 1a),
it gives rise to conductance minima (indicated by arrows in Figure 4a) for B = 8.5, 4.9, 3.1 and 2.4 T,
respectively (for E = 0.1 eV). Quantum effects make the behavior more complex, introducing diffusive
scattering, interactions between the different orbits and oscillations (with a period ∆B = (e/h)/A,
where A is the area of the antidot lattice unit cell) due to the Aharonov–Bohm interference between
the components of the wave function scattered by an antidot [49].

Finally, let us look at the conductance and noise behavior for high magnetic fields (which
represents the main focus of this work). By examining the behavior of the conductance as a
function of the magnetic field B, we notice that for large enough B the effect of the antidots vanishes.
Indeed, for the energies and magnetic fields for which an energy gap is not present, from a semiclassical
point of view the motion of the charges can be described in terms of cyclotron orbits. By increasing the
magnetic field B, the cyclotron radius Rc = E/(evFB) [53] decreases. When the cyclotron diameter 2Rc

becomes of the order of the average distance L1− 2r between adjacent antidots, the charges move along
the edges of the structure (Figure 1b) without experiencing any scattering from the antidots, which,
therefore, do not affect the transport properties of the device. A similar effect is observed for shot noise,
and in particular for the shot noise suppression factor (Fano factor). In Figures 7–9 we report the Fano
factor as a function of the applied magnetic field, for the same structures and energies considered in
Figures 3–5. As we can observe, the Fano factor vanishes when the normalized conductance assumes
integer values, because in those conditions a number of transport modes (corresponding to the Landau
levels lower than the considered Fermi energy) are transmitted with unit probability across the device,
while the others do not propagate. We notice that also in this case for a large enough magnetic
field the results obtained with and without antidots coincide. In particular, in these conditions,
transport becomes ballistic: the edge states crawl along the boundaries without experiencing any
scattering due to the antidot lattice. Therefore, each transport mode is either evanescent or totally
transmitted; i.e., the transmission probability of each transport mode is either zero or one. As a
consequence, no shot noise is present and the Fano factor vanishes, exactly as in the absence of the
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antidot lattice. This phenomenon is very similar to what we observed in reference [64] for a disordered
wire in a GaAs/AlGaAs heterostructure, where the effect of disorder actually disappeared for high
values of the magnetic field.
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Figure 7. Fano factor of the graphene ribbon as a function of the orthogonal magnetic field, obtained
for E = 0.02 eV in the presence of an ordered (panel (a)) and a disordered (panel (b)) distribution of
antidots, compared with the Fano factor of the ribbon without antidots.
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Figure 9. Fano factor of the graphene ribbon as a function of the orthogonal magnetic field (normalized
with respect to B∗ = 100 T), obtained for E = 0.3 eV in the presence of an ordered (panel (a)) and a
disordered (panel (b)) distribution of antidots, compared with the Fano factor of the ribbon without
antidots.

4. Conclusions

We have presented an extension of our envelope-function simulator with the inclusion of a mass
term (in order to define regions in which particles cannot penetrate) and of the effect of magnetic field,
in order to study the transport and noise behavior in an armchair graphene ribbon of a realistic size,
with an antidot lattice and an orthogonal magnetic field. We have observed that, as for a graphene
sheet, in the case of a confined perforated graphene structure, the energy gap decreases as the magnetic
field is increased. Moreover, our results show that, as could be expected from the analogy with
ordinary disordered semiconductors, for high values of the magnetic field, the effects of the antidot
lattice on the conductance and noise behavior of the structure vanish, as a consequence of the formation
of the edge states moving along the boundaries of the structure. In such conditions, transport becomes
ballistic and shot noise vanishes. Therefore, such an effect is insensitive to the particular nature of the
material. From the point of view of the application of graphene-based devices to digital electronics,
nanopatterning with an array of antidots does indeed lead to a gap significantly larger that the
one achievable by means of lateral confinement alone; however, the antidots act also as scatterers,
thereby lowering the maximum achievable current and therefore the resulting effective mobility.
Thus, the antidot density and layout must be chosen carefully, as a result of a trade-off between gap
opening and conductance suppression. Our simulation approach and the presented results can
be of assistance in establishing such a trade-off, and, in general, in the design and optimization of
graphene-based devices and sensors operating in the presence of magnetic fields.
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