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Abstract. We give a rather short and self contained presentation of the global existence for Leray-

Hopf weak solutions to the three dimensional incompressible Navier-Stokes equations, with constant

density. We give a unified treatment in terms of the domains and the relative boundary conditions

and in terms of the approximation methods. Precisely, we consider the case of the whole space, the

flat torus, and the case of a general bounded domain with smooth boundary and we consider as

approximation schemes the Leray approximation method, the Faedo-Galerkin method, the semi-

discretization in time and the approximation by adding a Smagorinsky-Ladyžhenskaya term. We

mainly focus on developing a unified treatment especially in the compactness argument needed to

show that approximations converge to the weak solutions.

1. Introduction

Let T > 0 be an arbitrary finite number representing the time, Ω ⊂ R3 be a domain to be speci-

fied later, and ν > 0 be a positive number representing the kinematic viscosity. The incompressible

Navier-Stokes equations model the dynamic of a viscous and incompressible fluid at constant tem-

perature and with constant density. They are given by the following system of PDE’s posed in

(0, T )× Ω: {
∂t u+ (u · ∇)u+∇p− ν∆u = 0 in (0, T )× Ω,

div u = 0 in (0, T )× Ω.
(1.1) eq:ns

The vector field u ∈ R3 is the velocity field and p ∈ R is the scalar pressure, and to avoid inessential

complications, we set the external force to vanish. The first equation is the conservation of linear

momentum and the second equation, also called the incompressibility constraint, can be considered

as the conservation of the mass, since the density is assumed to be constant. The system (1.1)

has to be supplemented with initial and boundary conditions. Regarding the initial condition we

impose that

u|t=0 = u0, in Ω,

with u0 satisfying the compatibility condition div u0 = 0 in Ω and. For the boundary conditions

we need to specify the assumptions on the domain. We consider three cases, Ω = R3, Ω = T3 with

T3 being the three-dimensional flat torus, and Ω ⊂ R3 being a bounded domain, whose boundary

will be denoted by ∂Ω; we refer to Assumption 2.1 for the precise hypothesis on Ω.

For each of the three different cases we impose the different and natural boundary conditions:

i) u→ 0 for |x| → ∞, if Ω = R3;

ii) u is periodic, if Ω = T3;

iii) u = 0 on (0, T )× ∂Ω, if Ω is a bounded domain.

(1.2) eq:bc
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Note that the initial datum will be requested to be tangential to the boundary in the case i), and to

satisfy the condition ii) and iii) in the other cases. Contrary to the system of compressible Navier-

Stokes equations, the pressure p, instead of being obtained trough a state equation, is an unknown

of the system. This is a consequence of the incompressibility conditions and indeed the pressure

can be interpreted as Lagrange multiplier associated with the incompressibility constraints. Note

that there are no initial/boundary conditions imposed on the pressure, which, since it appears only

as a gradient in the momentum equation, is always determined up to an arbitrary function of time.

Generally speaking, it is very difficult to prove existence and uniqueness of smooth solutions to

nonlinear PDE’s. Here, with existence we always mean global in time existence, namely existence

on any given time interval (0, T ), for arbitrary T > 0. The available theories for weak solutions

provide a framework to give a proper meaning to PDE’s, without requiring too much regularity on

the solutions and they rely on the theory of generalized functions and distributions. In particular,

the landmark idea in the theory of weak solutions is to give up on solving the equations point-wise

but trying to solve them in an averaged sense, which makes sense also from a physical point of

view. In case of fluid mechanics this makes even more sense, due to the fact that we expect a very

complex behavior by (turbulent) flows appearing in real life, hence we expect to be able to capture

only averages of the velocity and pressure, see [2].

The problem of global existence generally becomes easier since the class of available solution is

enlarged and several functional analysis tools can be now used. However, the price to pay to have

such a relatively simple existence theory is that the uniqueness problem becomes a very difficult

one and many calculation which are obvious when dealing with smooth solutions are not possible

or hard to be justified. The three-dimensional incompressible Navier-Stokes is a paradigmatic

example of a such situation and the introduction of weak solutions dates back about 100 years ago.

In fact, in a series of celebrated papers (the time evolution is treated in [15]) Jean Leray introduced

the notion of weak solution as a mathematical tool, but also with a strong understanding of the

physics behind the equations. The theory of weak solutions is also strictly linked with the name of

Eberhard Hopf [10] who gave the first contribution to the problem of weak solutions in a bounded

domain by means of the Faedo-Galerkin method.

It is interesting to observe that many methods and techniques of functional analysis (which are

now a common background of graduate students in mathematics) originated from the study of

PDE’s and especially from those arising in fluid mechanics. In this note we are trying to explain

an extremely limited part of the theory: the existence of (Leray-Hopf) weak solutions. This is a

topic at the level of most undergraduate students, with a minimal knowledge of Sobolev spaces and

functional analysis (mainly weak convergence and weak compactness), as for instance in the widely

used (text)books by Brezis [5], just to name one. Note also that we try to present a minimal spot

in the abstract theory of Navier-Stokes equations, which can be an “appetizer” for students trying

to start a serious understanding of (part of) the mathematical fluid mechanics. It is impossible

to review what is done on the subject, even only for the mathematical analysis side. Nevertheless

many information, at an introductory or more advanced level, can be found in several books, see

for instance, just to name a few in alphabetical order [6, 7, 9, 12, 20, 23, 25].

We think that we will not discourage any reader unfolding the (many) mathematical difficulties of

the topic, but –instead– we hope that highlighting the challenges which are typical of mathematical
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fluid mechanics further interest could be stimulated; To this end we quote the following coming

from an interview reported in [1] in a essay in memory of Jacob Schwartz

When I asked him [Jacob Schwartz] if there was a subject he had trouble learning,

he admitted that there was, namely, fluid dynamics. “It is not a subject that can be

expressed in terms of theorems and their proofs,” he said.

Following the above point of view, the first step even in the mathematical analysis of the Navier-

Stokes equations is that of giving an appropriate definition of weak solutions, which take into

account the functional space where it is reasonable find weak solutions, the initial and the boundary

conditions. Usually, the functional space to be considered are hinted by the a priori estimate

available for the system under consideration. The informal notion of an a priori estimate may be

a quantitative bound depending only on the data of the problem, which holds for smooth solutions

of the system under consideration, regardless their existence. In particular, for system arising from

physics, the a priori estimates usually have a deep physical interpretation.

In the context of the three-dimensional incompressible Navier-Stokes equations the main a priori

estimate is indeed the conservation of the energy of the system and is given by the following integral

equality: ∫
|u(t, x)|2 dx+ 2ν

∫ t

0

∫
|∇u(s, x)|2 =

∫
|u0(x)|2 dx t ∈ [0, T ], (1.3) eq:e

where the space integral is over the domain under consideration.

The equality (1.3) has a very simple formal proof. Indeed, let (u, p) be a smooth solution

of (1.1)-(1.2). By multiplying the momentum equation by u and integrating over Ω we get∫
∂tu · u− ν∆u · u+ (u · ∇)u · u+∇p · u dx = 0.

By integrating by parts and using the divergence free condition and (1.2) we get

−
∫

∆u · u =

∫
|∇u|2 dx,

∫
(u · ∇)u · u dx = 0,∫

∇p · u dx = 0.

Then, after integration in time on (0, t) with t ∈ (0, T ) we get (1.3). Note that (1.3) gives a

quantitative bound depending only on T , and u0 on square integrals of the velocity field u and its

gradient ∇u. The energy equality (1.3) will serve as motivation for the definition of Leray-Hopf

weak solution we will give in Section 3.

Once a reasonable definition of weak solution is given, to prove global existence one usually

exploits what it is know as a compactness argument, which consists in 1) proving the existence of

a sequence of relatively smooth approximating solutions satisfying appropriate uniform estimates;

2) proving that limits of these approximating solutions are effectively weak solution of the problem

under consideration. We remark that usually the uniform bounds obtained on the the sequence of

approximating solutions are the same inferred by the a priori estimates available for the system

under consideration; These bounds are then hopefully inherited by weak solutions obtained a

with a passage to the limit. To be more precise, in the case of the Navier-Stokes equations, the

approximation method should be chosen such that the approximate solutions satisfy the energy
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(in)equality. Due to the limited regularity which can be generally inferred on weak solutions, the

validity of any energy balance on the weak solutions to the 3D Navier-Stokes equations is obtained

with a limiting process on the approximate solutions and not using the solution u itself as a test

function as done to obtain (1.3), since this argument is only formal and not justified when dealing

with genuine Leray-Hopf weak solutions.

In this short notes we provide a rather self-contained account on the the global existence of weak

solutions for the three-dimensional incompressible Navier-Stokes equations and some of the several

approximation methods used in the literature. Since the convergence argument is essentially the

same for every approximation methods and for every choice of the domains and boundary conditions

mentioned above, we introduce (for the purpose of the exposition) a notion of approximating solution

for which we will prove the convergence to a Leray-Hopf weak solution of the problem (1.1)-(1.2).

This is not the historical path, but is a way we identify to have a unified treatment, which can

describe the existence theory within the notion of approximating solutions.

Then, we show how several and well-known approximations fit in the framework introduced

and, therefore, we recover the existence of Leray-Hopf weak solution by using those methods. In

particular, we will consider the most common techniques available for the construction. Further

results based on the energy type methods, on the uniqueness, regularity and the connection with

applied analysis of turbulent flows, can be found in the forthcoming monograph [2], which is also

written in the spirit of being an introduction for undergraduate students interested in applied

analysis of the Navier-Stokes equations.

Organization of the paper. The paper is organized as follows: In Section 2 we introduce the

functional spaces that we use. Then, in Section 3 we define of Leray-Hopf weak solutions and

study their main properties. In Section 4 we give the definition of approximating solution and we

prove the convergence to a Leray-Hops weak solution. Finally, in Section 5 we prove that certain

approximating schemes fit in the framework of approximating solution.

2. Preliminaries
sec:2

In this section we fix some notations and we recall some basic preliminaries we will need for the

analysis. We start by fixing the assumptions on the domain Ω.

ass:1 Assumption 2.1. The domain Ω ⊂ R3 will be of the following type:

(A1) the whole space, Ω = R3;

(A2) the flat torus, Ω = T3;

(A3) a bounded connected open set Ω ⊂ R3, locally situated on one side of the boundary ∂Ω,

which is at least locally Lipschitz.

2.1. Notation. We will never distinguish between scalar and vector functions unless it is not clear

from the context. We will denote by C∞c (Ω) the space of compactly supported functions which

are infinitely differentiable and D′(Ω) its dual, which is the space of distributions over Ω. In the

case Ω = T3 the subscript “c” is not needed and we set C∞c (T3) = C∞(T3). With an abuse of

notation we will use C∞c (Ω) for all the three choices of the domain Ω satisfying Assumption 2.1.

We recall that for any vector f ∈ C∞c (Ω;R3) the Helmholtz decomposition holds true: there exists



LERAY-HOPF WEAK SOLUTIONS 5

two function g ∈ C∞c (Ω;R3) and q ∈ C∞c (Ω;R) such that f = g + ∇q, and g is divergence-free.

Given a Banach space E, we denote with ‖·‖E its norm. However, for the classical Lebesgue spaces

Lp(Ω), with p ∈ [1,∞], we shall denote their norms with ‖ · ‖p. Finally, we recall that the space

H1
0 (Ω) is the classical Sobolev space obtained as a closure of C∞c (Ω) in the norm

‖v‖H1 :=

(∫
Ω
|v|2 + |∇v|2 dx

) 1
2

, v : Ω 7→ Rk.

The subscript “0” is needed only when Ω is a bounded domain. In the case of Ω = R3 or Ω = T3

we simply consider the closure of periodic functions and we have H1
0 (R3) = H1(R3) and H1

0 (T3) =

H1(T3), but as before, with an abuse of notation, we will use H1
0 (Ω) for all the three choices of

the domain Ω satisfying Assumption 2.1. Moreover, we recall that H1(R3) and H1(T3) can also be

characterized in terms of the Fourier Transform and the Fourier Series, respectively. When dealing

with a Banach space (E, ‖ . ‖E) we denote by xn → x, xn ⇀ x and xn
∗
⇀ x, the strong, weak and

weak* convergence, respectively.

Next, let E be a Banach space, then Lp(0, T ;E), with 1 ≤ p < ∞, and L∞(0, T ;E) denote the

classical Bochner spaces of strongly measurable (classes of) functions u : (0, T )→ E such that

‖u‖Lp(E) :=

(∫ T

0
‖u(s)‖pE ds

) 1
p

<∞,

‖u‖L∞(E) := ess sup
t∈[0,T ]

‖u(t)‖E <∞.

Finally, the space of weakly continuous functions in E, which is denoted by Cw([0, T ];E), consists

of functions u : [0, T ] 7→ E such that for any f ∈ E∗ the real function of real variable

〈f, u〉E∗×E : [0, T ] 3 t 7→ 〈f, u(t)〉E∗×E ,

is continuous.

Finally, when we write A . B, this means that there exists a constant c > 0 (independent on

the relevant parameters of the problems) such that A ≤ cB.

2.2. The spaces H and V . In the analysis of solutions of the Navier-Stokes equations is useful

to consider spaces of divergence-free functions. We start by defining the space

V(Ω) := {φ ∈ C∞c (Ω) : div φ = 0},

Then, we define the spaces

H := V(Ω)
‖·‖2

, V := V(Ω)
‖·‖1,2

.

We start by noticing that H and V are closed subspace of L2(Ω) and H1
0 (Ω), respectively. Therefore,

they are Hilbert space themselves with the inherited scalar products, which are

(u, v) :=

∫
Ω
u · v dx ((u, v)) :=

∫
Ω
u · v +∇u : ∇v dx.

Next, although H and V are Hilbert space, hence reflexive, we will not identify them with their

duals. We will instead denote by H ′ and V ′ the topological dual of H and V endowed with the
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classical dual norms
‖f‖H′ := sup

φ∈V(Ω),‖φ‖2≤1
|〈f, φ〉H′×H |,

‖f‖V ′ := sup
φ∈V(Ω),‖φ‖1,2≤1

|〈f, φ〉V ′×V |.

We stress that H ′ and V ′ are not subset of the space of distributions D′(Ω) since D(Ω) 6⊂ H.

Finally, we recall that by Sobolev embedding theorem and the interpolation inequality for the

Lp-norm, there exists a constant C > 0 such that for any 2 ≤ p ≤ 6, θ = 6−p
2p ∈ [0, 1], and any

u ∈ H1
0 (Ω) it holds that

‖u‖p ≤ C‖u‖θ2‖∇u‖1−θ2 . (2.1) eq:gns

The inequality (2.1) is a particular case of the well-known Gagliardo-Nirenberg-Sobolev inequality,

see [18].

3. Definition of Leray-Hopf weak solutions
sec:3

In this section we give the definition of Leray-Hopf weak solutions and we prove some related

properties. The definition is the following.

def:lh Definition 3.1. A measurable vector field u : (0, T ) × Ω 7→ R3 is a Leray-Hopf weak solution of

the Navier-Stokes equations (1.1)-(1.2) if the following conditions are satisfied.

(1) It holds that

u ∈ Cw([0, T ];H) ∩ L2(0, T ;V ); (3.1) eq:weak-continuity

(2) For any φ ∈ V(Ω) and any χ ∈ C∞([0, T )), it holds that∫ T

0

(
(u(t), φ)χ̇(t)− ((u · ∇)u, φ)χ(t)− ν(∇u,∇φ)χ(t)

)
dt− (u0, φ)χ(0) = 0. (3.2) wf

(3) For any t ∈ [0, T ]

‖u(t)‖22 + 2ν

∫ t

0
‖∇u(s)‖22 ds ≤ ‖u0‖22. (3.3) eq:eidef

rem:enerylh Remark 3.2. It is important to point out that it is an open problem whether or not condition (3)

can be deduced from the condition (1) and (2). Note also that in the definition we have (3.3) which

is the so-called global energy inequality and not the equality (1.3).

Remark 3.3. In literature Leray-Hopf weak solutions are often defined in the space L∞(0, T ;H)

rather than Cw([0, T ];H) and satisfying (3.3) for a.e. everywhere t ∈ (0, T ) instead that for any

t ∈ (0, T ). This is equivalent to Definition 3.1, because in that case the velocity field can redefined

on a set of measure zero in time in order to lie in Cw([0, T ];H) and satisfying (3.3) for any t ∈ (0, T ),

see [8]. We preferred to start with a solution already weakly continuous, to avoid the technical step

of redefinition.

We want to show that once we have proved the existence of a vector field satisfying the conditions

in the Definition 3.1, we are actually solving the initial value boundary problem (1.1)-(1.2) in the

sense of distributions. First of all we notice that from the condition (1), we can deduce that u

is divergence-free and satisfies the boundary conditions (1.2) in the appropriate weak sense. The

following lemma guarantee that u attains the initial datum u0.
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lem:id Lemma 3.4. Let u0 ∈ H and u a Leray-Hopf weak solution. Then,

u(t)→ u0 strongly in H.

Proof. For k ∈ N and t̄ ∈ (0, T ), we consider the following function

χt̄k(t) =


1, t ∈ [0, t̄)

k(t̄− t) + 1, t ∈ [t̄, t̄+ 1
k )

0, t ∈ [t̄+ 1
k , T )

Then, by using χt̄k, after sending k →∞ and using that u ∈ Cw([0, T ];H) we arrive to the following

estimate:

|(u(t), φ)− (u0, φ)| ≤
∫ t

0
|(∇u(s), φ)|+ |(u(s) · ∇)u(s), φ)| ds

≤ t
1
2

(∫ T

0
‖∇u(s)‖22

) 1
2

(
‖φ‖

1
2
2 + ‖φ‖∞ sup

s∈[0,T ]
‖u(s)‖2

)
.

Then, for any fixed φ ∈ V(Ω) we can send t→ 0+ and we can conclude that (u(0), φ) = (u0, φ). By

using the Helmholtz decomposition we deduce that this is true for any φ ∈ C∞c (Ω)) and therefore

u(0) = u0 a.e. on Ω. Moreover, the previous calculations also show that

u(t)→ u0 in Cw([0, T ];H) as t→ 0+. (3.4) eq:idweak

and, again by using the Helmholtz decomposition, the same result is valid also for φ ∈ L2(Ω). By

weak lower semi-continuity of norms in weak convergence we get

‖u0‖2 ≤ lim inf
t→0+

‖u(t)‖22.

Next, by using the energy inequality (3.3) we also get, by disregarding the non-negative dissipative

term and taking the superior limit that

lim sup
t→0+

‖u(t)‖22 ≤ ‖u0‖22.

This shows that ‖u(t)‖2 → ‖u0‖2, which combined with the weak convergence implies the strong

convergence, since we are in an Hilbert space. Since the norm induced on H is the same as in

L2(Ω), this proves the strong convergence also in H.

�

Finally, we show that to any Leray-Hopf weak solution u it is possible to associate a pressure p

such that (u, p) solves the momentum equation in (1.1) in the sense of distributions.

lem:pre Lemma 3.5. Let u be a Leray-Hopf weak solution of (1.1)-(1.2). Then, there exists p ∈ D′((0, T );×Ω))

such that

∂t u− ν∆u+ (u · ∇)u+∇ p = 0 in D′((0, T )× Ω).

and, for any t ∈ (0, T ), we have p(t) ∈ L2
loc(Ω) and

∫
Ω p(t) dx = 0.

In the case of a general bounded domain Ω satisfying the Assumption (A3), the proof of the

Lemma 3.5 is very technical and requires several preliminaries of operator theory. We refer to

[9, 23, 25] for the proof. On the other hand in the case of Ω has no physical boundary the proof is

straightforward. We consider here the case Ω = T3.
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Proof. Let u be a Leray-Hopf weak solution in the sense of Definition 3.1. For a.e. t ∈ (0, T )

consider the elliptic problem
−∆p(t) = div(u(t) · ∇u(t)),∫

T3

p(t) dx = 0.
(3.5) eq:poisson

Note that by (3.1), Gagliardo-Nirenberg Sobolev inequality (2.1), and standard elliptic regularity

we can infer that there exists a unique solution of (3.5) satisfying p ∈ L
5
3 ((0, T )×T3). Next, we show

that (u, p) solve the Navier-Stokes equations in the sense of distributions. Let ψ(t, x) = χ(t)φ(x)

with χ ∈ C∞c (0, T ) and φ ∈ C∞(T3). Let φ = Pφ + Qφ be the Helmholtz decomposition, where

we denote by Pφ the divergence-free part of φ. Then, since P and Q commute with derivatives

because there are no physical boundaries, we have that∫ T

0
(u(t), φ)χ̇(t)− ((u · ∇)u, φ)χ(t)− ν(∇u,∇φ)χ(t) + (p(t),divQφ)χ(t) dt

=

∫ T

0
(u(t), Pφ)χ̇(t)− ((u · ∇)u, Pφ)χ(t)− ν(∇u,∇Pφ)χ(t)

−
∫ T

0
((u · ∇)u,Qφ)χ(t)− (p(t),div φ)χ(t) dt

= −
∫ T

0
((u · ∇)u,Qφ)χ(t)− (p(t), divQφ)χ(t) dt = 0

(3.6) eq:distr

where we have used (3.2) in the second equality and (3.5) together with the fact that Qφ = ∇ q for

some q ∈ C∞(T3) in the last equality. Finally, by an approximation argument, we have that (3.6)

holds for any φ ∈ C∞c ((0, T )× T3) and we conclude. �

4. Approximate solutions of the Incompressible Navier-Stokes equations
sec:4

In this section, we define the notion of approximate sequence of solutions to the Navier-Stokes

equations and we prove the convergence to Leray-Hopf weak solutions. We use an approach which

is a little different from the one usual used. Our choice, which does not follows the historical path,

is motivated by the pedagogical purpose of having a unified treatment for several different methods.

def:aws Definition 4.1. Let n ∈ N. We say that {un}n ⊂ C(0, T ;L2(Ω)) is an approximate sequence of

solutions with divergence-free initial datum un0 if

(1) It holds that

{un}n is a bounded sequence in L∞(0, T ;H) ∩ L2(0, T ;V ); (4.1) eq:bound-u-n

(2) For any n ∈ N and any φ ∈ V(Ω) there exists Rnφ ∈ L1(0, T ) such that for any χ ∈
C∞c ([0, T ))∫ T

0

(
(un(t), φ)χ̇(t) + ((un · ∇)un, φ)χ(t) + ν(∇un,∇φ)χ(t)

)
dt

− (un0 , φ)χ(0) =

∫ T

0
Rnφ(t)χ(t) dt;

(4.2) wfa

(3) It holds

Rnφ ⇀ 0 weakly in L1(0, T ) as n→∞; (4.3) conrem
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(4) For any n ∈ N and t ∈ (0, T ) it holds that

‖un(t)‖22 + 2ν

∫ t

0
‖∇un(s)‖22 ds ≤ ‖un0‖22. (4.4) eq:energydefaws

Since generally the existence of (smooth) approximating sequences is rather easy to be proved, the

advantage of this definition is that one has just to check a condition on the data and condition (4.3)

on the remainder (commutator) to show that the approximate solutions converge to a Leray-Hopf

weak solution, as is done in the next theorem.

teo:compactness Theorem 4.2. Let u0 ∈ H and {un}n be a sequence of approximate solutions with initial data

{un0}n such that

un0 → u0 strongly in H. (4.5) eq:idc

Then, up to a sub-sequence not relabelled, there exists u such that if Ω satisfies (A1) and (A2) then

un → u strongly in L2(0, T ;L2(Ω)), (4.6) eq:idc1

and if Ω = R3

un → u strongly in L2(0, T ;L2
loc(R3)). (4.7) eq:idc2

Moreover, u is a Leray-Hopf weak solution of (1.1)-(1.2).

rem:theo Remark 4.3. We stress that because of Remark 3.2 requiring condition (4.4) (that is a good en-

ergy balance already on the approximate functions) is fundamental in order to obtain the energy

inequality (3.3). Moreover, by inspecting the proof below it will be clear that given {un}n satis-

fying (1) and (2) in Definition 4.1 then there exists u satisfying (1) and (2) in Definition 3.1 such

that the convergences (4.6) and (4.7) hold. This remark will be important in the analysis of the

Implicit Euler Scheme in Subsection 5.3, because the scheme will not fully fit in the framework of

Definition 4.1.

We start with the following straightforward corollary of the classical Arzelà-Ascoli theorem for

real functions of a real variable.

lem:aale Lemma 4.4. Let E be a separable Banach space and let E ⊂ E be a dense subset. Let {fn}n be a

sequence of measurable functions such that fn : [0, T ] 7→ E∗. Assume that

(1) the sequence {fn}n is equi-bounded in E∗,

(2) for any fixed φ ∈ E the sequence of real functions 〈fn, φ〉 : [0, T ] 3 t 7→ 〈fn(t), φ〉, n ∈ N, is

equi-continuous.

Then, fn ∈ Cw([0, T ];E∗) and there exists f ∈ Cw([0, T ];E∗) such that, up to a possible passage to

sub-sequences,

fn → f in Cw([0, T ];E∗).

A fundamental step in the proof of existence for nonlinear partial differential equations is the

proof of certain compactness which allows to get strong convergence in suitable norms. Observe

that the a-priori bounds are useful to get weak or weak-* convergences, by means of application

of the Riesz representation theorem and more generally of Banach-Alaoglu-Bourbaki theorem. On

the other hand, since T (xn) ⇀ T (x) for a linear operator T , weak convergence allows to consider

linear equations, or more precisely, the linear terms in the equations. On the other hand weak
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convergence is in general not enough to prove that∫ T

0
((un · ∇)un, φ)χ(t) dt→

∫ T

0
((u · ∇)u, φ)χ(t) dt, as n→∞.

Hence by the a priori estimates we can construct a limit object u, but we still have to show that u

is a weak solution of the limiting problem.

To address this point several results have been used. Leray used Helly’s theorem on monotone

functions and an ingenious application of Riesz theorem with multiple Cantor diagonal arguments.

Hopf used an inequality by Friederichs to handle the Galerkin case. Starting from the work of J.L.

Lions [16] it became common to use the approach by the so-called Aubin Lions lemma, which is

borrowed from the general theory of abstract equations and is based on obtaining some estimates

on the time derivative (at least in negative space) of the solution. This latter approach is very

flexible, but it requires some non-trivial functional analysis preliminaries to estimate the time-

derivative, since instead one can use directly some properties coming from the proper definition

of the approximation. Note that in the Definition 3.1 of weak solution there is no mention to the

time-derivative. We will show how to obtain compactness in a elementary way, directly from the

weak formulation and thus avoiding the use of time derivatives in Bochner spaces. We believe

this may be a simpler approach, at least for presentation to students. We also point out that in

certain applications to more complex fluid problems as for instance fluids in a moving domain of

non-Newtonian fluids with rheology with time-dependent constitutive law, the proper definition

of the time derivative is technically complicated and an approach avoiding the use of this notion

becomes particularly welcome.

The next lemma provides a general criterion for strong convergence, which has the advantage to

avoid assumptions on the time derivative. Of course, the lemma holds only on bounded domains

and therefore we exclude the whole space case, since in the latter one has to work locally. We

also stress that the hypothesis are not optimal since we do not prove an if and only if, but the

hypotheses are easily verifiable for general nonlinear evolution problems.

The lemma below is very similar to the one proved by Landes and Mustonen in [14] and for

an application to the Navier-Stokes equations see Landes [13]. For an optimal version (at least in

general Hilbert spaces) we refer to Rakotoson and Temam [19].

thm:LM1987 Lemma 4.5. Let U ⊂ R3 be any bounded domain or U = T3. Let 1 < p < ∞ and assume that

g ∈ L∞(0, T ;L1(U)) ∩ Lp(0, T ;W 1,p
0 (U)) and {gn}n is a sequence such that

{gn}n is bounded in L∞(0, T ;L1(U)) ∩ Lp(0, T ;W 1,p
0 (U)),

and gn(t) ⇀ g(t) weakly in L1(U) for a.e. t ∈ [0, T ]. Then, it holds that

gn → g in Lp(0, T ;Lp(U)).

Proof. We prove the lemma only in the case of U ⊂ R3 being a bounded domain with smooth

boundary. First, since gn(t, ·) and g(t, ·) are in W 1,p
0 (U), their extensions to zero off U are both in

W 1,p(R3). We denote by ḡn and ḡ these extensions. a.e. t ∈ (0, T ).
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Let ρε be a standard spatial mollifier and set gnε := ρε ∗ ḡn and gε := ρε ∗ ḡ. Next, we have that

|gnε (t, x)− ḡn(t, x)| ≤ ε
∫
B1

ρ(y)

∫ 1

0
|∇ḡn(t, x− ετy)| dτdy

≤ ε
(∫

B1

ρ p
′
(y) dy

) 1
p′
(∫

B1

(∫ 1

0
|∇ḡn(t, x− ετy)| dτ

)p
dy

) 1
p

≤ ε
(∫

B1

ρ p
′
(y) dy

) 1
p′
(∫

B1

∫ 1

0
|∇ḡn(t, x− ετy)|p dτdy

) 1
p

,

and the same estimate holds also for ḡ. Therefore, the following estimate hold∫ T

0
‖gnε − ḡn‖pp dt . εp

∫ T

0
‖∇ḡn‖pp dt,∫ T

0
‖gε − ḡ‖pp dt . εp

∫ T

0
‖∇ḡ‖pp dt,

with bounds depending only on ρ.

Next, by triangular inequality we have∫ T

0
‖gn − g‖pLp(U) dt ≤

∫ T

0
‖gn − gnε ‖

p
Lp(U) dt+

∫ T

0
‖gnε − gε‖

p
Lp(U) dt+

∫ T

0
‖gε − g‖pLp(U) dt

≤
∫ T

0
‖ḡn − gnε ‖

p
Lp(R3)

dt+

∫ T

0
‖gnε − gε‖

p
Lp(U) dt+

∫ T

0
‖gε − ḡ‖pLp(R3)

dt

≤ εp
∫ T

0

(
‖∇ḡn‖pp + ‖∇ḡ‖pp

)
dt+

∫ T

0

∫
U
|gnε (t, x)− gε(t, x)|p dxdt.

(4.8) eq:trian

The first term from the right-hand side can be made arbitrarily small by choosing ε small enough.

To conclude, we first note that by definition of convolution, there exists C = C(ε, U) such that

|gε(t, x)|+ |gnε (t, x)| ≤ C.

Next, since clearly it holds that for the extended functions it holds

ḡn(t) ⇀ ḡ(t) weakly in L1(R3),

we also have that

gnε (t, x)→ gε(t, x), a.e. in t ∈ (0, T ) and for all x ∈ R3.

This follows by fixing ε > 0, a time t such that ḡn(t) ⇀ ḡ(t), x ∈ R3, and noticing that

ḡnε (t, x)− ḡε(t, x) =

∫
R3

(ḡn(t, y)− ḡ(t, y))ρε(x− y) dy → 0,

as n→∞.

This shows that, for any fixed ε > 0, the last term in last inequality in (4.8) goes to zero as

n→∞, by using Dominated Convergence Theorem. The proof is concluded since we showed that

‖gn − g‖Lp(0,T ;Lp(U)) can be made arbitrarily small. �

The following theorem is the main result of this section.

Proof of the Theorem 4.2. Let {un}n be a sequence of approximate solutions. By condition (4.1) of

Definition 4.1 we can infer that up to a sub-sequence (not relabelled) there exists u ∈ L∞(0, T ;H)∩
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L2(0, T ;V ) such that

un
∗
⇀ u weakly-* in L∞(0, T ;L2(Ω)), (4.9) eq:convustar

un ⇀ u weakly in L2(0, T ;L2(Ω)), (4.10) eq:convu

∇un ⇀ ∇u weakly in L2(0, T ;L2(Ω)). (4.11) eq:convnu

For k ∈ N and t̄ ∈ (0, T ), we consider the following function

χt̄k(t) =


1, t ∈ [0, t̄)

k(t̄− t) + 1, t ∈ [t̄, t̄+ 1
k )

0, t ∈ [t̄+ 1
k , T ),

(4.12) eq:blowup

Let φ ∈ C∞c (Ω) with div φ = 0 and s, t ∈ (0, T ). By using the function χt̄k(t) with first with t̄ = t

and then with t̄ = s, together with the fact that un ∈ C(0, T ;L2(Ω)) we can infer that

(un(t), φ)− (un(s), φ) +

∫ t

s

(
((un(τ) · ∇)un(τ), φ) + ν(∇un(τ),∇φ) +Rnφ(τ)

)
dτ = 0.

Next, for φ ∈ C∞c (Ω), let Fn(t) := ((un(t) · ∇)un(t), φ) + ν(∇un(t),∇φ) + Rnφ(t). Then, condi-

tion (4.1), the Gagliardo-Nirenberg-Sobolev inequality (2.1), and the hypothesis on Rnφ in (4.2) im-

ply that the family {Fn}n is equi-integrable and then the function t 7→ (un(t), φ) is equi-continuous.

Since V(Ω) is dense in H and H is reflexive, we can conclude by using Lemma 4.4 that

un → u in Cw([0, T ];H). (4.13) eq:convustrong1

By using (4.13) and (4.11) we can prove that u satisfies the energy inequality (3.3). Indeed, for

any t ∈ (0, T ) we have that

‖u(t)‖22 ≤ lim inf
n→∞

‖un(t)‖22,∫ t

0
‖∇u(s)‖22 ds ≤ lim inf

n→∞

∫ t

0
‖∇un(s)‖22 ds.

Then,

‖u(t)‖22 + 2ν

∫ t

0
‖∇u(s)‖22 ds ≤ lim inf

n→∞
‖un(t)‖22 + lim inf

n→∞
2

∫ t

0
‖∇un(s)‖22 ds

≤ lim inf
n→∞

(
‖un(t)‖22 + 2ν

∫ t

0
‖∇un(s)‖22 ds

)
≤ lim

n→∞
‖un0‖22 = ‖u0‖22.

where we have used (4.5). In order to conclude it remains only to prove (4.6) and (4.7). If Ω

is the flat torus or a bounded domain (4.6) follows directly by Lemma 4.5. If Ω = R3 we need

a localization argument. We first note that by the Helmholtz decomposition (4.13) holds also in

Cw([0, T ];L2(R3)). Next, for k ∈ N let ψ ∈ C∞c (Bk+1(0)) such that ψ = 1 on Bk and define

gn := un ψ. The sequence {gn}n satisfies the hypothesis of Lemma 4.5, and therefore, after a

diagonal argument, it follows that there exists a sub-sequence not relabelled such that

gn → g = uψ strongly in L2(0, T ;L2(Bk+1)). (4.14) eq:strongu4

Then, condition (4.14) easily implies (4.7). �
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5. Approximation methods
sec:5

After the general result of the previous section, we are now going to show that a general class of

methods used to construct weak solutions will fit the in the framework of Theorem 4.2, as described

in Section 4.

5.1. Leray Approximation Scheme. We start describing the original scheme introduced by

Leray in [15] (even if we use a completely different compactness argument to show the convergence

of approximations). In this case we consider Ω = R3. We fix a sequence εn of positive numbers going

to zero and let ρεn be a standard mollifier (only) in the space variables. For v : (0, T )× R3 7→ R3

we set Ψn(v) := ρεn ∗ v, where the convolution is only in the space variables. Let u0 ∈ H and let

n ∈ N. Define un0 = Ψn(u0) and un as the solution of the following Cauchy problem:
∂tu

n − ν∆un +
(
Ψn(un) · ∇

)
un +∇pn = 0 in (0, T )× R3,

div un = 0 in (0, T )× R3,

un|t=0 = un0 on {t = 0} × R3.

(5.1) eq:lerayn

We want to prove that for any n ∈ N the function un exists, is smooth, and {un}n is an approximate

sequence of solutions in the sense of Definition 4.1.

teo:leray Theorem 5.1. Let u0 ∈ H. Then, it holds that

(1) for any fixed n ∈ N there exists a unique un ∈ C([0, T );H3(R3)) solution of (5.1);

(2) there exists a Leray-Hopf weak solution u and a possible sub-sequence of {un}n such that

un → u strongly in L2(0, T ;L2
loc(R3)).

Proof. Let us prove (1). The proof is very classical so we only sketch it. By using a fixed point

argument we can prove that there exists a time T1 = T1(‖un0‖H3) > 0 such that there exists a unique

un ∈ C([0, T ∗);H3(R3)) solution of (5.1) for T ∗ ≥ T1. Let us suppose that T ∗ is the maximal time

of existence of un and, if T ∗ < T then limt→T ∗− ‖un(s)‖H3 =∞.

To obtain a global solution we exploit a standard energy estimates argument. Indeed, we first

note that by multiplying (5.1) by un and integrating by parts we get

‖un(t)‖22 + 2ν

∫ t

0
‖∇un(s)‖22 ds = ‖un0‖22, (5.2) eq:leray1

with an equality which is valid for all t < T ∗. Note that this is exactly the same calculation we have

done formally to obtain the energy inequality (1.3) in the introduction. In particular, from (5.2)

we obtain

sup
t∈(0,T )

‖un(t)‖2 ≤ ‖un0‖2. (5.3) eq:idapp
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Next, by using that H3(R3) is an algebra and by using the standard properties of mollifiers, it is

easy to prove that

d

dt
‖un(t)‖2H3 + ν‖∇un(t)‖2H3 .

∣∣((Ψn(un(t)) · ∇)un(t), un(t)
)
H3

∣∣
. ‖Ψn(un(t))‖H3‖∇un(t)‖H3‖un(t)‖H3

. ‖Ψn(un(t))‖2H3‖un(t)‖2H3 +
ν

2
‖∇un(t)‖2H3

.
1

ε6n
‖un(t)‖22‖un(t)‖2H3 +

ν

2
‖∇un(t)‖2H3

.
1

ε6n
‖un0‖22‖un(t)‖2H3 +

ν

2
‖∇un(t)‖2H3 .

where in the last inequality we have used (5.3). Therefore, we have that

d

dt
‖un(t)‖2H3 ≤ Cn‖un0‖22‖un(t)‖2H3

and by Gronwall Lemma we conclude that necessarily T ∗ = T (this argument shows that in fact

un is defined for all t > 0, for any fixed n ∈ N).

Next, to show (2) it is enough to prove that {un}n satisfies the conditions in Definition 4.1.

Clearly, from(1) we have that {un}n ⊂ C([0, T ];L2(R3)). By using the the standard property of

mollifiers ‖Ψn(u0)‖2 ≤ ‖u0‖2, and from the energy estimate (5.2) we get that {un}n is bounded

uniformly in L∞(0, T ;H) ∩ L2(0, T ;H). Moreover, (5.2) is exactly (4.4) and then it remains only

to verify (4.2). For φ ∈ C∞c (Ω) and t ∈ (0, T ) the function t 7→ Rnφ(t) is defined as follows

Rnφ(t) :=

(([
Ψn(un(t))− un(t))

]
· ∇
)
un(t), φ

)
.

With this choice of Rnφ, the equation (4.2) is satisfied and it remains only to prove that convergence

stated in condition (4.3) of Definition 4.1. First, note that by Hölder inequality

|Rnφ(t)| ≤ ‖∇un(t)‖2‖φ‖∞‖Ψn(un(t))− un(t)‖2. (5.4) ler1

Then, for any fixed (t, x) ∈ (0, T ) × R3, by a direct calculation (using again the properties of

mollifiers) we have

|Ψn(un(t, x))− un(t, x)| ≤ εn
∫
B1

ρ(y)

∫ 1

0
|∇un(t, x− ετy)| dτdy

≤ εn
(∫

B1

ρ2(y) dy

) 1
2

(∫
B1

(∫ 1

0
|∇un(t, x− ετy)| dτ

)2

dy

) 1
2

≤ εn
(∫

B1

ρ2(y) dy

) 1
2
(∫

B1

∫ 1

0
|∇un(t, x− ετy)|2 dτdy

) 1
2

.

Then, by a further integration∫
R3

|Ψn(un(t, x))− un(t, x)|2 dx ≤ ε2
n

∫
R2

|∇un(t, x)|2 dx,

and going back to (5.4) we have that

|Rnφ(t)| ≤ εn‖∇un(t)‖22‖φ‖∞.
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Since the sequence {∇un}n is bounded uniformly with respect to n in L2(0, T ;L2(R3)), we have

that Rnφ → 0 in L1(0, T ). �

5.2. Faedo-Galerkin method. The next scheme we consider is the Faedo-Galerkin method. The

variant we present is close to the one considered by Hopf and is at the basis of several computational

methods, which are used also in fields different from fluid dynamics. In particular, we will see that

the unified treatment is possible under the assumption of having a basis which is orthogonal in

both L2 and H1, as is the case of the spectral basis made by eigenfunctions of the Stokes operator.

Observe that in the space-periodic case this basis is explicitly constructed by considering complex

exponentials, while in the case of a smooth bounded domain, the existence is obtained via standard

theory of compact operators, showing existence of countable non-decreasing positive {λj} and

smooth {ψj} such that it holds

−∆ψj +∇πj = λjψj in Ω,

divψj = 0 in Ω,

ψj = 0 on ∂Ω.

We consider Ω ⊂ R3 with smooth boundary ∂Ω or the three-dimensional flat torus. Let be given

an orthonormal basis {ψm}m∈N of H, such that ψm ∈ V(Ω). The Faedo-Galerkin method is based

on the construction of approximate solutions of the type

un(t, x) =
n∑
j=1

cnj (t)ψj(x) n ∈ N, (5.5) eq:as

which solve the Navier-Stokes equations projected equations over the finite dimensional space Vn =

Span(ψ1, . . . , ψn) ⊂ V . This means that for n ∈ N, the approximate problem to be solved is given

by 
d

dt
(un, ψm) + ν(∇un,∇ψm) + ((un · ∇)un, ψm) = 0 t ∈ (0, T ),

(un(0),ψm) = (u0, ψm) t = 0,
(5.6) eq:Faedo-Galerkin-system

for m = 1, . . . , n, which is a Cauchy problem for a system of n ODE’s in the coefficients {cnj (t)}nj=1.

Let Pn be projection operator from H into Vn:

Pn : f ∈ H 7→ Pnf :=

n∑
m=1

(f, ψm)ψm.

Then, the ODE’s (5.6) reduce to the following system of PDE’s:{
∂tu

n + Pn
(
(un · ∇)un

)
− ν∆un = 0 in (0, T )× Ω,

un|t=0 = Pn u0 in Ω.
(5.7) eq:fg

In the next theorem we prove that un is smooth and exists on (0, T ), and that {un}n is an

approximate sequence of solutions.

teo:fg Theorem 5.2. Let u0 ∈ H. Then, it holds that

(1) For any fixed n ∈ N there exists a unique un ∈ C([0, T );C∞c (Ω)) solution of (5.7);

(2) There exists a Leray-Hopf weak solution u and a possible sub-sequence of {un}n such that

un → u strongly in L2(0, T ;L2(Ω)).
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Proof. We prove (1). By the theory of ordinary differential equations one easily obtains that there

exists a unique solution cnj (t) ∈ C1(0, Tn), for some 0 < Tn ≤ T , being (5.6) a nonlinear (quadratic)

system in the coefficients cnj (t). Moreover, un is defined trough (5.5) and satisfies (5.7). Then, by

multiplying (5.7) by un and integrating by parts we get

‖un(t)‖22 + 2ν

∫ t

0
‖∇un(s)‖22 ds = ‖un0‖22 ≤ ‖u0‖22, (5.8) eq:enappgal

where we have used that ‖un0‖2 = ‖Pnu0‖2 ≤ ‖u0‖2. Therefore, for any n ∈ N we have that

n∑
j=1

|cnj (t)|2 = ‖un(t)‖22 ≤ ‖u0‖22

which easily implies that necessarily Tn = T .

To prove (2) we show that {un}n satisfy the conditions in Definition 4.1. Clearly, the sequence

{un}n is in C([0, T ];L2(Ω)) and by (5.8) it verifies the condition (1) and the energy inequality (4.4).

To check that (4.2) is verified, let φ ∈ V(Ω) and, for any t ∈ (0, T ), define

Rnφ(t) :=
(
Pn((un(t) · ∇)un(t))− (un(t) · ∇)un(t), φ

)
.

Note that we have that

|Rnφ(t)| . ‖un(t)‖3‖∇un(t)‖2‖φ− Pnφ‖6

. ‖un(t)‖
1
2
2 ‖u

n(t)‖
3
2

H1‖φ− Pnφ‖H1 ,

where we have used the Gagliardo-Nirenberg-Sobolev inequality (2.1), that Pn is a projection in

both H and V , since for eigenfunctions it holds for f ∈ H1(Ω) that∥∥∇[f − n∑
m=1

(f, ψm)ψm
]∥∥2

=

∞∑
m=n+1

λm|(f, ψm)|2‖ψm‖2
n→+∞−→ 0.

Then, by using Hölder inequality, and Gagliardo-Nirenberg Sobolev inequality and taking into

account that T <∞ we have that Rnφ → 0 in L1(0, T ). �

As already specified if Ω = T3, then one can take {ψm}m∈N to be the Fourier basis. Then,

the Faedo-Galerkin method consists in finding the approximated sequence of type (5.5) solving

the Navier-Stokes equations projected over the first n Fourier modes. On the other hand, in the

case Ω = R3 one possible choice is to use the method of invading domains, that is to consider the

problem in the ball B(0, R) with zero boundary conditions on ∂B(0, R) and to construct a solution

uR by the Galerkin method. It turns out that the energy estimate (1.3) is valid for uR, providing

uniform estimates (on uR which is considered as a function over the whole space, after extension

by zero off of Ω); this allows to pass to the limit as R → +∞, more or less in the same way as

before.
subsec:eu

5.3. Implicit Euler Scheme. The scheme we consider in the present subsection deals instead with

the time-discretization and represents a first step also in the numerical analysis of the Navier-Stokes

equations.

We consider the case of Ω being a bounded domain satisfying the hypothesis (A3). Let n ∈ N
and define the time-step κn := T/n and the net IM = {tm}nm=0, such that ti − ti−1 = κn for any

i = 1, ..., n.
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Moreover, given u0 ∈ H, consider a sequence1 of initial data {un0}n ⊂ V such that

‖∇un0‖2 .
√
n‖un0‖2, and un0 → u0 strongly in H. (5.9) eq:idimplicit

For m ∈ {1, ..., n}, given ũm−1
n the iterate ũmn is obtained by solving the boundary value problem

ũmn − ũm−1
n

κn
− ν∆ũmn + (ũmn · ∇) ũmn +∇p̃mn = 0 in Ω,

∇ · ũmn = 0 in Ω,

ũmn = 0 on ∂Ω,

with ũ0
n = un0 .

For any fixed n ∈ N, we define the following sequences of functions defined on [0, T ] with values

in V and in L2:

un(t) =

n∑
m=1

χ[tm−1,tm)(t)

(
ũm−1
n +

(t− tm−1)

κn
(ũmn − ũm−1

n )

)
, un(tn) = ũnn,

vn(t) =
n∑

m=1

χ(tm−1,tm](t) ũ
m
n , vn(t0) = un0 .

pn(t) =
n∑

m=1

χ(tm−1,tm](t) p̃
m
n .

(5.10) eq:def

We are now ready to prove the following theorem, which is referred in literature as the alternate

proof by semi-discretization, see [25].

teo:implict Theorem 5.3. Let u0 ∈ H. Then, it holds that

(1) For any fixed n ∈ N, there exist {ũmn }nm=1 ⊂ H1
0 (Ω) such that for any m = 1, ..., n and any

ψ ∈ V

(ũmn , ψ)− (ũm−1
n , ψ) + κn ν(∇ũmn ,∇ψ) + κn((ũmn · ∇) ũmn , ψ) = 0; (5.11) eq:weakform

(2) There exists a Leray-Hopf weak solution u such that the sequence {un}n and {vn}n, defined

in (5.10), satisfy

un → u strongly in L2(0, T ;L2(Ω)),

un − vn → 0 strongly in L2(0, T ;L2(Ω)).

Proof. For the proof of (1) we refer to [25]. The idea is the following: For any fixed n ∈ N and any

m = 1, ..., n, the existence of ũmn ∈ V solution of (5.11) is obtained by applying the Brouwer fixed

point theorem to the following modified version of the steady Navier-Stokes equations, where the

given iterate ũm−1
n is considered an external force:

ũmn
κn
− ν∆ũmn + (ũmn · ∇) ũmn +∇p̃mn −

ũm−1
n

κn
= 0 in Ω,

∇ · ũmn = 0 in Ω,

ũn = 0 in ∂Ω.

In particular, by the definitions (5.10), we have that {un}n ⊂ C(0, T ;L2(Ω) and {vn}n ⊂ L2(0, T ;L2(Ω)).

1In the space periodic setting this can be obtained simply with a mollification with kernel ρε, with ε = 1√
n

.
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Next, we prove part (2). By taking ψ = ũmn in (5.11) and by using the elementary inequality

(a− b, a) = a2−b2
2 + (a−b)2

2 valid for all a, b ∈ R, we have that

‖ũmn ‖22 − ‖ũm−1
n ‖22 + ‖ũmn − ũm−1

n ‖22 + κn‖∇ũmn ‖22 = 0. (5.12) eq:eniter

Then, for any fixed m ∈ {1, ..., n} we have that

‖ũmn ‖22 ≤ ‖un0‖22 ≤ ‖u0‖22, (5.13) eq:imp1

κ ν
m∑
i=1

‖∇ũin‖22 ≤ ‖un0‖22 ≤ ‖u0‖22, (5.14) eq:imp2

m∑
i=1

‖ũin − ũi−1
n ‖22 ≤ ‖un0‖22 ≤ ‖u0‖22. (5.15) eq:imp3

By using (5.13)-(5.15) and (5.10) we easily have that

{un}n is bounded in L∞(0, T ;H), (5.16) eq:implb

{vn}n is bounded in L∞(0, T ;H) ∩ L2(0, T ;V ). (5.17) eq:implb1

We want to prove a uniform bound in L2(0, T ;V ) also for {un}n. By a direct calculation we have

that ∫ T

0
‖∇un(s)‖22 ds =

n∑
m=1

∫ tm

tm−1

(
1− (t− tm−1)

κn

)2

‖∇ũm−1
n ‖22 dt

+ 2
n∑

m=1

∫ tm

tm−1

(
1− (t− tm−1)

κn

)(
(t− tm−1)

κn

)
(∇ũm−1

n ,∇ũmn )

+

n∑
m=1

∫ tm

tm−1

(
(t− tm−1)

κn

)2

‖∇ũmn ‖22

≤ κn
2

n∑
m=1

‖∇ũm−1
n ‖22 +

κn
2

n∑
m=1

‖∇ũmn ‖22

≤ κn
2
‖∇ũ0

n‖22 + κn

n∑
m=1

‖∇ũmn ‖22.

By using (5.9) we obtain∫ T

0
‖∇un(s)‖22 ds . κn

n∑
m=1

‖∇ũmn ‖22 + κn‖∇un0‖22

. κn

n∑
m=1

‖∇ũmn ‖22 + ‖u0‖22 . ‖u0‖22.

where we have also used that κn = T/n and (5.14). Therefore we have that {un}n is bounded in

L2(0, T ;V ) and then, taking into account (5.16), {un}n satisfies the condition (1) in Definition 4.1.

Next, we show that {un}n satisfies the condition (2) of Definition 4.1. First, for all φ ∈ V(Ω) and

χ ∈ C∞c ([0, T )) we have, by using (5.10) and (5.11) we have that∫ T

0

(
(un(t), φ)χ̇(t) + ((vn(t) · ∇)vn(t), φ)χ(t) + ν(∇vn(t),∇φ)χ(t)

)
dt− (un0 , φ)χ(0) = 0.
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If we define

Rnφ := (vn(t)− un(t), ν∆φ) + ((vn(t)− un(t))⊗ vn(t) + un(t)⊗ (vn(t)− un(t)),∇φ),

then {un}n satisfies the formulation (4.2) and we only need to prove that (4.3). To this end we

note that∫ T

0
|Rnφ(t)| dt ≤ c‖∇φ‖∞

(∫ T

0
‖un(s)− vn(s)‖22 ds

) 1
2
(∫ T

0
‖un(s)‖2 + ‖vn(s)‖22 ds

) 1
2

+ ν T
1
2 ‖∇2φ‖2

(∫ T

0
‖un(s)− vn(s)‖22 ds

) 1
2

.

By a direct calculation, we have that∫ T

0
‖un(t)− vn(t)‖22 dt =

κn
3

n∑
m=1

‖ũmn − ũm−1
n ‖22 ≤ Cκn, (5.18) eq:diff

and therefore ∫ T

0
|Rnφ(t)| dt ≤ C‖∇φ‖∞ κn,

and (4.3) follows.

In conclusion, we have proved that {un}n satisfies the conditions (1) and (2) of Definition 4.1

and thanks to Theorem 4.2 and Remark 4.3, there exists u satisfying the condition (1) and (2) in

Definition 3.1. Then, in order to conclude, we only need to prove that u satisfies also the energy

inequality. First we note that by using (5.12) and (5.10), a direct calculation implies that for any

t ∈ (0, T )

‖vn(t)‖22 + 2ν

∫ t

0
‖∇ vn(s)‖22 ds ≤ ‖un0‖22. (5.19) eq:energy10

By using (5.17) and (5.18) we can infer that vn converges to the same limit of un, namely that

vn → u strongly in L2(0, T ;L2(Ω)),

∇vn ⇀ ∇u weakly in L2(0, T ;L2(Ω)).
(5.20) eq:convimpl

For k ∈ N and t ∈ (0, T ), let χtk be the same function already defined in (4.12). Noticing that −χ̇tk
is positive, after multiplying (5.19) and integrating in time we get for any t ∈ (0, T ) it holds

1

k

∫ t+k

t
‖vn(s)‖22 ds+ 2ν

∫ T

0
χtk(s)‖∇vn(s)‖22 ds ≤ ‖un0‖22

∫ T

0
(−χ̇tk(s)) ds = ‖un0‖22.

By using (5.20) we get

1

k

∫ t+k

t
‖u(s)‖22 ds+ 2ν

∫ T

0
χtk(s)‖∇u(s)‖22 ds ≤ ‖u0‖22,

and Lebesgue differentiation theorem and dominated convergence theorem we that for a.e. t ∈ (0, T )

‖u(t)‖22 + 2ν

∫ t

0
‖∇u(s)‖22 ds ≤ ‖u0‖22. (5.21) eq:energyalmost

Let N ⊂ (0, T ) the set of measure zero where (5.21) does not hold and fix t ∈ N . Then, there

exists {tk}k ⊂ (0, T ) \ N such that tk → t and

‖u(tk)‖22 + 2ν

∫ tk

0
‖∇u(s)‖22 ds ≤ ‖u0‖22.
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Since u ∈ Cw(0, T ;H) and ‖∇u(·)‖22 ∈ L1(0, T ) it follows that

‖u(t)‖22 + 2ν

∫ t

0
‖∇u(s)‖22 ds ≤ lim inf

k
‖u(tk)‖22 + lim

k
2ν

∫ tk

0
‖∇u(s)‖22 ds ≤ ‖u0‖22,

and therefore (5.21) holds for any t ∈ (0, T ). �

5.4. Smagorinsky-Ladyžhenskaya model. In this section we show how the approximation by

adding a nonlinear stress tensor produce weak solutions. We consider the following initial value

problem

∂t u
n + (un · ∇)un +∇pn − ν∆un − 1

n
div(|Dun|Dun) = 0 in (0, T )× Ω,

div un = 0 in (0, T )× Ω,

un = 0 on (0, T )× ∂Ω,

un(0) = u0 in Ω,

(5.22) eq:SL

where Dun = ∇un+(∇un)T

2 . This system has been introduced for numerical approximation of

turbulent flows by Smagorinsky [22] and the analysis as a possible approximation for weak solutions

of the Navier-Stokes equations started with the studies by Ladyženskaya [11], cf. also [3] for the role

of this method in the analysis of Larger Eddy simulation models. For the analysis also of related

models, with general stress tensor given by S(v) = S(Dv) = |Dv|p−2Dv, with different values of p,

see [16, 17] and also the more recent [4].

teo:sma Theorem 5.4. Let u0 ∈ H. Then, it holds that

(1) For any fixed n ∈ N there exists a unique un ∈ C([0, T );L2(Ω)) solution of (5.22);

(2) There exists a Leray-Hopf weak solution u and a possible sub-sequence of {un}n such that

un → u strongly in L2(0, T ;L2(Ω)).

Proof. By using the theory of monotone operators, [12, 16], there exists a unique un ∈ C(0, T ;L2(Ω))

weak solution of (5.22) with un ∈ L∞(0, T ;H) ∩ L2(0, T ;V ) and Dun ∈ L3(0, T ;L3(Ω)) such that

it holds

‖un(t)‖22 + 2ν

∫ t

0
‖∇un(s)‖22 ds+

2

n

∫ t

0
‖Dun(s)‖33 ds ≤ ‖un0‖22.

Observe that by Korn inequality ‖Dun‖3 ∼ ‖∇un‖3.

To prove (2) we show that {un}n satisfy the conditions in Definition 4.1. Define the remainder

Rnφ(t) by

Rnφ(t) = − 1

n

∫
Ω
|Dun(t)|Dun(t) ·Dφdx.

By means of the Hölder inequality we get

|Rnφ(t)| ≤ 1

n

∫
Ω
|Dun(t)|2|Dφ| dx ≤ 1

n
‖Dun‖23‖Dφ‖3.

Consequently, it also holds∫ T

0
|Rnφ(t)| dt ≤ T 1/3

n1/3

(
1

n

∫ T

0
‖Dun‖33 dt

)2/3

‖Dφ‖3,

showing that Rnφ → 0 in L1(0, T ). Since the other conditions in Definition 4.1 are trivially satisfied

the application of Theorem 4.2 finally shows (2). �
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[9] G. P. Galdi. An introduction to the mathematical theory of the Navier-Stokes equations. Steady-state problems.

Springer Monographs in Mathematics. Springer-Verlag, New York, 2011.
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