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Abstract: The increasing demand for high-resolution hyperspectral images from nano and
microsatellites conflicts with the strict bandwidth constraints for downlink transmission. A possible
approach to mitigate this problem consists in reducing the amount of data to transmit to ground
through on-board processing of hyperspectral images. In this paper, we propose a custom
Convolutional Neural Network (CNN) deployed for a nanosatellite payload to select images eligible
for transmission to ground, called CloudScout. The latter is installed on the Hyperscout-2, in the
frame of the Phisat-1 ESA mission, which exploits a hyperspectral camera to classify cloud-covered
images and clear ones. The images transmitted to ground are those that present less than 70% of
cloudiness in a frame. We train and test the network against an extracted dataset from the Sentinel-2
mission, which was appropriately pre-processed to emulate the Hyperscout-2 hyperspectral sensor.
On the test set we achieve 92% of accuracy with 1% of False Positives (FP). The Phisat-1 mission will
start in 2020 and will operate for about 6 months. It represents the first in-orbit demonstration of
Deep Neural Network (DNN) for data processing on the edge. The innovation aspect of our work
concerns not only cloud detection but in general low power, low latency, and embedded applications.
Our work should enable a new era of edge applications and enhance remote sensing applications
directly on-board satellite.

Keywords: earth observation; on-board; microsat; mission; nanosat; hyperspectral images; AI on the
edge; CNN

1. Introduction

In the last years the number of micro and nanosatellites, respectively microsat and nanosat,
has rapidly increased. These satellites allow testing, experimenting and proving several new ideas
by reducing at the same time the overall costs of the missions [1,2]. The increase in the number
of microsats and nanosats and the augmented resolution of modern sensors lead to an increase in
bandwidth usage and therefore the need to exploit new techniques to efficiently manage the bandwidth
resources. Generally, for many sensors, only a portion of the data has valuable information for the
mission and it is exploitable for the purpose of the mission. In recent years, the advances in low-power
computing platforms combined with new Artificial Intelligence (AI) techniques have paved the
way to the “edge computing” paradigm [3]. In fact, through the use of new hardware accelerators,
it is possible to bring efficient algorithms, such as Convolutional Neural Network (CNN), directly on
board. One example is represented by cloud detection algorithms [4,5]. The latter allows to identify
images whose content is shaded by the presence of clouds.
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In this paper, we demonstrate the effectiveness of use CNN cloud detection algorithm directly on
board satellites, which leads to several benefits including:

• On-board filtering of unuseful data, relaxing the strict bandwidth requirements typical of
modern/future Earth Observation applications [6–8];

• Preliminary decision taken directly on board, without the need for a human operator;
• Mission reconfigurability, changing only the weights of the network[6];
• Continuous improvement of results, in terms of accuracy and precision, through new

generated data.
• Reduction of operative costs and mission design cycles [6,7];
• Enabling the use of Commercial off-the-shelf (COTS) hardware accelerators for Deep Learning,

featuring improved computation efficiency, costs, and mass compared to space-qualified
components [6,7].

Moreover, recent radiation tests [6], performed on the COTS Eyes of Things (EoT) board [9]
powered by the Intel Movidius Myriad 2, show it as the best candidate among the others.

Our CNN-based algorithm will be launched on board of the HyperScout-2 satellite, which is led
by cosine Remote Sensing (NL) with the support of Sinergise (SL), Ubotica (IR) and University of Pisa
(IT) in the framework of the European Space Agency (ESA) PhiSat-1 initiative. This represents the
first in-orbit demonstrator of Deep Neural Network (DNN) applied to hyperspectral image [10–12].
Our network takes as input some bands of hyperspectral cubes produced by the HyperScout-2 sensor,
identifying the presence of clouds through a binary response: cloudy or not cloudy. Since the EoT board
has a specific low power hardware accelerator for Machine Learning (ML) on the edge, it is suitable to
be integrated in microsat and nanosat.

The paper is structured as follows: in Section 2 we describe the goals of the PhiSat 1 mission,
while in Section 3 we provide a description of the CNN model, the training procedure, and the dataset.
In Section 4 results in terms of accuracy, number of False Positive (FP), and power consumption are
shown both for the entire dataset and a critical dataset. In Section 5 a summary of the benefits brought
by this technology is discussed and, finally in Section 6 overall conclusions are drawn.

2. Aim of the PhiSat-1 Mission

The aim of this mission is to demonstrate the feasibility and the usefulness in bringing AI on-board
Hyperscout-2 satellite [12]. To this end, the mission involves the use of a CNN model suited on the
Myriad 2 Vision Processing Unit (VPU) featured in the EoT board, which was chosen by the European
Space Agency (ESA) as the best hardware to fly. The network is expected to classify hyperspectral
satellite images, in two categories: cloudy and not cloudy. The main requirements for the network in
this mission are:

• Maximum memory footprint of 5 MB: to update the network with respect to the uplink bandwidth
limitation during the life of the mission;

• Minimum accuracy of 85%: to increase the quality of each prediction even in particular situations,
e.g., clouds on ice, or clouds on salt-lake;

• Maximum FP of 1.2%: to avoid the loss of potentially good images.

This strategy allows downloading to ground only non-cloudy images, respecting the constraints
imposed by the hardware accelerator and the budget of satellite resources i.e. power consumption,
bandwidth, memory footprint, etc.
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3. Methods

3.1. Machine Learning Accelerators Overview

In recent years, the interest in AI applications has grown very rapidly. These applications run
both on the cloud, powered by Graphic Processing Unit (GPU)-farms that work as a global hardware
accelerator, and on the edge through dedicated low-power hardware accelerators. A simple example
of this mechanism is the “OK-Google” application. In fact, it is divided into two phases: the first part
is requested by users on their personal smartphone using keyword-spotting [13] algorithm performed
by the smartphone accelerator; then, during the second phase, the voice is sent to the cloud which uses
its "intelligence" to complete the required tasks.

The cloud provides the greatest flexibility in all the cases where there are no bandwidth constraints
or privacy issues; vice versa, in automotive, space, or real-time application, the cloud paradigm could
not be the right choice [3].

Thus, several companies have developed their own AI hardware accelerators. The COTS
accelerators are easily classifiable by their processors [14,15]: VPU, Tensor Processing Unit (TPU),
the most known GPU and Field-Programmable Gate Array (FPGA). The first two processors have the
best performance in terms of power per inference since they have been devised to speed up inferences.
Instead, GPUs and FPGAs are more general purposes and they are the most powerful in term of
computational capabilities.

A TPU: TPU is an innovative hardware accelerator dedicated to a particular data structure:
Tensors [16]. Tensors are a base type of the TensorFlow framework [17] developed by Google.
The standard structures and the dedicate libraries for GPU and VPU make tensors and
consequently TensorFlow very powerful tools in the ML world. The Coral Edge TPU is an example
of an edge hardware accelerator whose performances are very promising, especially in the static
images processing acceleration e.g., CNN, Fully Convolutional Network (FCN).
The best performances of this hardware platform are reached exploiting TensorFlow Lite and
8 bits integer quantization, even if the latter could have a big impact on the model metrics.

B GPU: GPUs [18] are the most widely used to carry out both inference and training process of
the typical ML models. Their computational power is entrusted to the parallel structure of the
hardware that computes operations among matrices at a very high rate. Nvidia and AMD lead the
market of the GPU for ML training, using respectively CUDA Core (Nvidia) and Stream processor
(AMD), as shown in [14,15]. Moreover, several frameworks allow to use the potentiality offered
by GPUs, including TensorFlow, TensorFlow Lite, and PyTorch. This hardware can quantize the
model and run inferences supporting a wide range of computational accuracies e.g., 32 and 16 bits
floating point, 16, 8, 4, and 2 bits integer. On the other hand, these solutions consume huge power,
reaching a peak of 100 W and therefore cannot be used for on the edge applications.

C FPGA: FPGAs are extremely flexible hardware solutions, which could be completely customized.
This customizability, however, represents the bottleneck for a fast deployment [19]. In fact, the use
of an FPGA requires many additional design steps compared to COTS Application-Specific
Integrate Circuit (ASIC), including the design of the architecture of the hardware accelerator and
the quantization of the model, for approaches exploiting fixed-point representation. FPGAs are
produced by numerous companies such as Xilinx, MicroSemi, Intel. Some FPGAs, like RTG4 or
Brave, are also radiation-hard/tolerance, which means these boards can tolerate the radiations
suffered during the life of the mission as explained in [20,21].

D VPU: VPUs represent a new class of processors able to increase the speed of visual processing
as CNN, Scale-Invariant Feature Transform (SIFT) [22], Sobel and similar. The most promising
accelerators in this category are the Intel Movidius Myriad VPUs. At the moment, there exist
two versions of this accelerator, the Myriad 2 [23] and the Myriad-X. The core of both processors is
the computational engine that uses groups of specialized vectors of Very Long Instruction Word
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(VLIW) processors called Streaming Hybrid Architecture Vector Engine (SHAVE)s capable of
consuming only a few watts (W) [24,25]. Myriad 2 has 12 SHAVEs instead the Myriad-X has
18 SHAVEs. The Myriad 2 and Myriad-X show better performance when they accelerate CNNs
model or other supported layers than mobile CPUs or general-purpose low-power processors.
To reduce the computational effort, all the registers and operation within the processor use 16 bits
floating point arithmetic. Moreover, the Myriad 2 processor has already passed the radiation tests
at CERN [6].

A more extensive comparison among the various COTS devices used for Deep Learning can be
found in [26,27].

3.2. Eyes of Things

The EoT board was developed in the framework of H2020 European project called Eyes of
Things by Spain’s Universidad de Castilla-La Mancha [9] and it is powered by the Intel Myriad
2 VPU, which results to be a promising solution for Low Earth Orbit (LEO) missions [23,25].
Moreover, as described in [6], the EoT board with Myriad 2 VPU passed the preliminary radiation tests.

However, the core of the Myriad 2 VPU hardware accelerator, described in Section 3.1,
natively supports:

• Convolutional layers
• Pooling layers
• Add and subtraction layers
• Dropout layers
• Fully connected layers

The Myriad 2 chip shows some features that match with the set of requirements described in
Section 2. Notably, as briefly described in Section 3.1 and in [6,14], Myriad 2 shows one of the best
compromises in terms of power per inference among the hardware accelerators available on the market.
It also supports in-hot reconfiguration via uploading a new GRAPH file, which contains information
about the model, the weights, and a set of hardware configurations (e.g., number of SHAVEs to
use, batch size, layer fusion, etc.). Unluckily, one limitation of the EoT board is that it exploits only
8 SHAVEs, while the Myriad 2 processor has 12 SHAVEs. The reconfigurability is of great importance
for space applications, as it enables a new generation of re-configurable AI satellites whose goals could
be changed during the mission life.

In fact, we plan to improve the network accuracy during the mission life exploiting the data taken
directly by Hyperscout-2 satellite. This factor is of fundamental importance when flying with new
sensors for which there is no data set available.

3.3. Dataset and Training Preparation

3.3.1. Satellite Selection

The training of the CNN network is carried out through a supervised process in which the
network calculates the difference between the set of images and the corresponding right decisions
or labels. The dataset should represent the entire range of the images that will be presented to the
network during the mission. In addition to this, the data could be augmented to represent all the
possible disturbances introduced by the camera or some other acquisition errors that might happen
during the life of the mission. Hence, training a network using a highly variegated set of images and
their corresponding outputs labeled as accurate as possible, provides high-quality results able also to
tolerate small errors, band misalignment, and light effects.

For all the missions that exploit new sensors, as HyperScout-2, there are not enough representative
data to build a dataset; thus, a new dataset is simulated from the images captured by similar previous
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missions. The source satellite is selected by taking into account: the similarity of the data with respect
to the new mission, the availability of data and labels, and the existence of analysis tools, dedicate to
the source satellite, able to produce and enhance data for the new mission.

To this aim, the dataset was composed of 21546 Sentinel-2 hyperspectral cubes. These cubes
consist of 13 bands; each of them represents a different wavelength. An example of a hyperspectral
cube is shown in Figure 1. Each two-dimensional image in the hyperspectral cube represents the
scene with respect to only one wavelength, allowing the division of the components through the light
reflection on them such as fog, nitrogen, methane, etc.

Sentinel-2 satellites elaborate the images in three steps:

• Level-0 saves raw-data and appends them with annotation and meta-data;
• Level-1 is divided into three sub-steps: A, B, C. Step A decompresses the mission-relevant Level-0

data. Step B applies radiometric correction, then step C applies geometric corrections;
• Level-2 applies atmospheric correction and, if required, some other filters or scene classification.

The output of the Sentinel-2 Level-2A produces a Bottom-Of-Atmosphere (BOA) reflectance
hyperspectral cube of data, while HyperScout-2 satellite has a sensor producing images in radiation
bands [11,28]. Due to these differences in sensors, we need to transform the Sentinel-2 hyperspectral
cubes from saturation to radiation data. This process exploited the additional information provided by
the Sentinel-2 satellites during the Level-0 step, such as the relative position of the sun with respect to
the satellite, the location of the satellite, and the maximum and minimum values of pixel saturation.

Figure 1. Example of hyperspectral Cube.

There are multiple reasons to use the Sentinel-2 dataset cubes even if they need some
pre-processing activities:

• The data are provided by a member of the CloudScout mission consortium, Sinergise Ltd.;
• The data are accurately labeled, as shown in Figure 2, using a Sinergise’s ML algorithm called

Sentinel Hub [29];
• The Sentinel-2 spatial resolution (10 to 60 m) is compatible with HyperScout-2 (75 m).

The downscale does not deteriorate the quality of the information;
• The swath of both satellites is about 300 km;
• 10 of the 13 bands of Sentinel-2 are compatible with HyperScout-2 camera both in wavelength

and Signal-to-Noise Ratio (SNR);
• Sinergise provides also a tool to convert saturation images into radiance images.

Moreover, we introduced a random Gaussian noise to the Sentinel-2 images to obtain a dataset
robust to small perturbation of SNR. Hence, the number of dataset images was doubled, noisy, and not
noisy. The data were processed to obtain 512 × 512 × 3 tiles, where each tile represents 30 × 30 km2

with a resolution of 60 × 60 m2 per pixels. These images represent the original dataset.
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Figure 2. Sentinel Hub results compared with the main cloud detector algorithms [29].

Unluckily, the original dataset contained some outliers. They represent a critical point for the
training phase. Thus, they were removed using an outlier search. Some examples of these images are
shown in Figures 3 and 4. The final dataset distribution is shown in Figure 5.

Figure 3. Example of incomplete images found in our dataset.

Figure 4. Example of images with not correctly aligned bands found in our dataset.

Figure 5. Histogram representing the cloudiness distribution in our dataset.
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3.3.2. Preliminary Trainig Phase

The tile size was decided by taking into account the maximum image size supported by the
intra-layer memory of the Myriad 2, which is a 121 MB memory dedicated to the intermediate results
between two consecutive layers. The compiler for the EoT board was provided as part of the Neural
Compute Software Development Kit (NCSDK) [30]. It supported only input images with at most
three bands. This limitation derived from the datatype ImageData of Caffe, which was the framework
used to develop DNN models [31] on EoT. For this reason, Sinergise Ltd. chosen the best three bands
through a Principal Component Analysis (PCA), starting from the 13 ones available on Sentinel-2 [32].
The bands detected by PCA were the 1, 2, and 8 with respect to the Sentinel-2 bands ordering.
bOur network gives as output the probability to belong to one of the two classes cloudy and not cloudy.

To obtain the two classes we labeled as cloudy those images containing a number of cloudy
pixels higher or equal to a specific threshold. Vice versa we labeled as not cloudy the remaining
images. The labeling process was executed twice to perform incremental training. The first time
a threshold of 30% cloudiness (named TH30 dataset) was used, while the second time a 70% threshold
(named TH70 dataset) was considered. The TH30 dataset is used to train the network to recognise the
“cloud shape”. The TH70 one, instead, it is used to change the decision layers (Fully Connected layers),
by blocking the back-propagation [33] for the feature extraction layers and performing a fine-tuning
on the decision layers. The two training steps were necessary due to the non-equal distribution of
the images inside the original dataset as shown in Figure 5. In fact, the original dataset is composed
mainly by fully cloudy covered images or cloudless images. This approach improves the generalization
capabilities of the network.

The two datasets were divided as described in Table 1 and Table 2 respectively.
The difference in the number of images belonging to the training, validation, and test sets,

of the two datasets derive again from the unbalance of the original dataset. We divided each of the
two datasets to obtain a balanced training and validation sets. The following steps illustrate how the
training, validation, and test sets were obtained for each dataset:

• Label the original dataset with the selected threshold;
• Compute the minimum between the number of cloudy and not cloudy images, call it N;
• Sample 0.7 × N cloudy and not cloudy images, call it training set;
• Sample 0.15 × N cloudy and not cloudy images, call it validation set;
• Exploit all the remaining images to populate the test set.

Table 1. TH30 dataset details.

Training

Number of Images 31,926

Data augmentation used

Mirror

Flip X axis

Flip Y axis

Noise injection

Validation

Number of Images 5986

Data augmentation used Mirror

Test

Number of Images 5180

Data augmentation used none
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Table 2. TH70 dataset details.

Training

Number of Images 26,834

Data augmentation used

Mirror

Flip X axis

Flip Y axis

Noise injection

Validation

Number of Images 5032

Data augmentation used Mirror

Test

Number of Images 11,226

Data augmentation used none

3.4. CloudScout Network

3.4.1. EoT NCSDK

To develop our CNN model for the EoT board, we used the iterable method shown in Figure 6
where the model is considered acceptable if it meets the requirements about accuracy (greater than 85%)
and FP rate (less than 1.2%), both in GPU and EoT.

GPU generally produces 32 bits floating point weights, while the Myriad 2 supports only 16-bits
floating point weights. Thus, we converted the GPU weights to 16-bits floating point. This conversion
may change the overall model behaviour in a non-predictable way due to quantization and pruning
processes. Both of them are non-linear processes, which might affect the performance of the generated
network in terms of accuracy and FP results.

Owing to that, it is necessary to design networks to minimize the impact of these processes on
performance, or to design a network that already considers the quantization during the training [34,35].

In particular, the quantization process is required to port the developed model to the EoT board.
For this purpose, we had to rely on the Movidius NCSDK [30] only. Hence, we decided to adopt the
quantization-aware technique [35] which creates virtual constraint during the training to maintain the
weights within the 16 bits. This process ends when the difference between the GPU weights and the
weights generated by the NCSDK is under 10−2.
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Figure 6. Iterative approach used to select the right network.

3.4.2. CloudScout Network Structure

The model is composed by two levels: feature extraction and decision, as shown in Figure 7.

Figure 7. The CloudScout model block diagram.

The layers of the feature extraction level are used to discriminate different components of each
image using convolutional layer with different kernel sizes and depth. This allows to separate clouds
with respect to terrains, sea, sand, etc. Feature extraction level is composed by a convolutional size
reduction layer followed by four group of three convolutional layers. Each group improves the
generalization performance exploiting a sequence of kernels of 3 × 3, 1 × 1, 3 × 3 , which provides
the same performance of a 5 × 5 kernel, but they reduce the number of weights. Furthermore,
the output given by the 1 × 1 convolutional layer with the bias set to true represents a local pixel level
classification [36]. In order to allow future upload of the network during the mission and to meet
the model size requirement (less than 5 MB) a Global Max Pooling layer was exploited. It extracts the
maximum value from each filter produced by the last convolutional layer of the feature extraction level.
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The decision layer collects and assigns a value to the data produced by the Global Max Pooling in
the feature extraction level.

The last layer is a softmax, which computes the probability of belonging to the first or second class
from the output of the decision level. The training was performed in two steps:

• train the CNN model against the dataset with labels generated by using TH30 dataset to improve
the recognition of the shape of the clouds;

• train the CNN model against the dataset with labels generated by using TH70 dataset to improve
the accuracy of the decision layers.

One of the given requirement was to obtain FP number of 1% with respect to the given dataset
without affecting the accuracy. Since accuracy and Receiver Operating Characteristic (ROC) analysis
assume FP and False Negative (FN) results to be equally important, we decided to exploit the F2

metrics. This metric is a particular case of the Fβ score, also known as the Sørensen–Dice coefficient or
Dice Similarity Coefficient (DSC), defined in Equation (1).

Fβ = (1 + β2) · precision · recall
(β2 · precision) + recall

(1)

=
(1 + β2) · TP

(1 + β2) · TP + β2 · FN + FP

This equation gives more relevance to FP errors than FN errors and allows to better estimate the
influence of the FP within the network.

Moreover, to effectively reduce the number of FP during the training phase, we changed the
standard Binary-Cross Entropy loss-function, shown in Equation (2), by doubling the penalty given in
case of FP errors.

L(y, ŷ) = − 1
N

·
N

∑
i=0

(yi · log(ŷi) + 2 · (1 − yi) · log(1 − ŷi)) (2)

where y is the expected/labeled value, and ŷ is the predicted value.
This produced a network more prone to classify images as cloudless, effectively reducing the

number of FP results at the expense of producing more FN ones. However, the increased number of
FN results, does not pose a threat to the overall performance of the system thanks to the high value of
accuracy of 92% on the EoT as detailed in Section 4.

4. Results

In this Section, we show the results obtained from the CNN model described in Section 3.4
implemented on the EoT board featuring the Myriad 2 hardware accelerator.

As shown in Table 3 and in Table 4 we met all the requirements, described in Section 2, related to
Accuracy and False Positive Rate. These results were obtained exploiting the entire 43,092 images
contained in the dataset since the network quantization process could fully change the hyper-plane
of the network. The network was trained by exploiting an initial learning rate of lr = 0.01 and using
an exponential decay computed as shown in Equation (3).

lr = lrold · e−0.6·epoch (3)

where lr is the new learning rate computed at each epoch, lrold is the learning rate used for the
previous epoch, epoch is the actual number of epoch, and 0.6 is a constant chosen empirically. In Table 5
the model characterization run on the EoT board is reported, taking into account inference time,
power consumption per inference, and memory footprint. Furthermore, as preliminary described in
Section 2, the 2.1 MB memory footprint allows uploading a new version of weights during the mission
operation through telecommand allowing on-the-fly flexibility and improvements.
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Table 3. Performance of the CloudScout model on the EoT board (Myriad 2).

ROC analysis:

TPR 0.83

FPR 0.02

False Positive 1.03 %

EoT board (Myriad 2) accuracy 92 %

Table 4. Confusion matrix of the CloudScout model run on the entire dataset.

Cloudy Not Cloudy

Cloudy 32.5 % 1 (FP)%

Not Cloudy 6.8 (FN) % 59.7 %

Table 5. Network characterization on EoT board (Myriad 2).

EoT board (Myriad 2) Inference Time 325 ms

Model memory footprint 2.1 MB

Power consumption per inference 1.8 W

The CloudScout network has been also tested using a dataset of 24 images representing some
critical environments with or without clouds. The critical dataset is composed of images taken by
Sentinel-2 and elaborated following the same criteria used in Section 3.3. In particular, the 24 images
contain very difficult classification problems due to the presence of salt lakes or snow mountains mixed
with clouds. On this dataset, the CloudScout network achieves 67% accuracy with only 8 misclassified
images against the 24 of the entire critical dataset. The obtained results are described in the Confusion
Matrix described in Table 6. It is noted that the number of FN classifications is much higher than the
FP owing to the unbalance of the loss function, described in Section 2, used during the training.

Table 6. Confusion matrix of the model with respect to the critical test set.

Cloudy Not Cloudy

Cloudy 2 2 (FP)

Not Cloudy 6 (FN) 14

Some example of the images contained in the critical dataset are shown in Figures 8–12. Each figure
shows the radiance image obtained after the elaboration to represent a CloudScout 2 image, its RGB
visible image, and the corresponding binary cloud mask which shows in white the cloudy pixels
while in black the not cloudy ones. The binary mask was used as ground truth only to compute the
number of cloudy pixels inside the image. Figures 8–10, represent three of the most obvious wrong
classifications while Figures 11 and 12 are two examples of good classifications. Here we briefly give
a justification for the wrong classification of three images:

• In Figure 8 the network recognises ice as a continuum of the cloud. To avoid this behaviour,
a possible solution could be to use a thermal band that provides high-quality cloud contours.

• The CloudScout network was not trained to recognise the fog, even if in some cases it could
represent a big obstacle to visibility. This phenomenon is observable in Figure 9. Here, the image
is fully covered by fog as further shown by the cloud mask, but our network does not interpret
the fog as cloud obtaining, in fact, just a 1% probability of cloudiness in this picture.

• Another reason for wrong classifications is the use of a fixed threshold to define an image cloudy
or not. Indeed, as shown in Figure 10, the cloudiness inside the image is about 65%. This value
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is very close to the threshold selected for this project (70%). To achieve a better result for all the
borderline cases should be useful to increase the granularity of the classification, developing
a segmentation network.

Figure 8. Aral sea clouds and ice; radiance image, RGB image, cloud mask. False Positive case.

Figure 9. Bonneville clouds; radiance image, RGB image, cloud mask. False Negative case.

Figure 10. Erie ice and clouds; radiance image, RGB image, cloud mask. False Positive case.

Figure 11. Bonneville clouds and shadows; radiance image, RGB image, cloud mask.
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Figure 12. Pontchartrain clouds over water; radiance image, RGB image, cloud mask.

Finally, Table 7 shows the output details of the inferences performed on the critical dataset.

Table 7. The critical test set results.

Name Clouds % Prob. of Cloudiness % (Net Output)

Aral Sea clouds and ice Figure 8 35% 99 %
Bonneville clouds Figure 9 87% 1 %
Algeria mixed clouds and shadows 98% 0 %
Erie ice clouds Figure 10 65% 96 %
Pontchartrain clouds 72% 1 %
Amadeus January clouds 78% 1 %
Aral Sea clouds 87% 2 %
Aral Sea thin clouds 90% 0%
Aral Sea no clouds 0% 0%
Pontchartrain sun glint 3% 0%
Caspian sea cloud 64% 0%
Alps snow no clouds 9% 0%
Bonneville clouds shadows Figure 11 56% 1%
Greenland snow ice no-cloud 2% 18%
Alps snow cloud no-shadow 44% 12%
Amadeus no clouds 0% 0%
Alps snow cloud shadow 22% 0%
Greenland snow ice clouds 85% 99%
Amadeus no-clouds 3% 0%
Bonneville no clouds 29% 0%
Erie ice no-clouds 0% 9%
Amadeus clouds 99% 100%
Pontchartrain small clouds 14% 0%
Pontchartrain clouds over water Figure 12 66% 2%

5. Discussion

The advantages and limitations of the proposed approach concerning several aspects are discussed
in this Section:

• Relaxing Bandwidth limitations: as described in Section 1, the introduction of DNNs onboard
Earth Observation satellites allows filtering data produced by sensors according to the
Edge computing paradigm. In particular, cloud-covered images can be discarded mitigating
bandwidth limitations. More detailed information on these aspects is provided in [6–8].
However, producing a binary response (cloudy/not cloudy) leads to a complete loss of data
when clouds are detected, preventing the applications of cloud removal techniques, described
in [37–39]. Such approaches allow reconstructing the original contents by exploiting low-rank
decomposition using temporal information of different images, spatial information of different
locations, or frequency contents of other bands. Such methods are generally performed on ground
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because of their high complexity.
To enable the use of these approaches and to the reduction of downlink data through filtering data
on the edge, DNN-based approaches performing image segmentation can be exploited [40]. In this
way, pixel-level information on the presence of clouds can be exploited to improve compression
performance through the substitution of cloudy areas through completely white areas. In this
way, the application of cloud removal techniques can be performed after data downlink.
The implementation of a segmentation DNN for on-board cloud-detection represents a
future work.

• Power-consumption/inference time: The use of DNNs allows leveraging modern COTS
hardware accelerators featuring enhanced performance/throughput trade-offs compared to
space-qualified components [6]. Table 5 shows the proposed model can perform an inference
in 325 ms with an average power consumption of 1.8 W. Such reduced power consumption
represents an important outcome for CubeSats, for which the limited power budget represents an
additional limitation for downlink throughput [41].

• Training procedure: This work proposes to exploit a synthetic dataset for the training of the DNN
model in view of the lack of data due by the novelty of the HyperScout 2 imager [11].
Despite the functionality of the proposed approach has still to be demonstrated through the
validation by means of HyperScout 2 data, the methodology described might be exploited in near
future to realize a preliminary training of new applications used for novel technology for which
a proper dataset is not available. Moreover, thanks to the possibility to reconfigure hardware
accelerators for DNNs, the model can be improved after the launch thanks to a fine-tuning process
performed through the actual satellite data [6].

• Cloud detection performance: There are different cloud detection techniques for satellite images,
both at the pixel and image level. Yang at al. [42] divide the cloud detector techniques into
three categories:

- Threshold methods: some of the most known thresholding-based techniques are ISCPP [43],
APOLLO [44], MODIS [45], ACCA [46], and some new methods which work well when ice
and clouds coexist. However, these methods are very expensive for the CPU because of the
application of several custom filters on the images. Hence, they are not good candidates to
be used directly on-board.

- Multiple image-based methods: Zhu and Woodcock [47] use multiple sequential images to
overcome the limitations of thresholding-like algorithms. Again, processing this information
requires an amount of power that is hardly available on board. In addition, this method
requires the use of a large amount of memory.

- Learning-base methods: these methods are the most modern. They exploit all the ML
techniques such as Support Vector Machines (SVM) [48], Random Forest (RF) [49], and NN
as our CloudScout or [42]. Contrary to SVM and RF methods, NNs have a standard structure
that allows building ad-hoc accelerators able to speed up the inference process by reducing
energy consumption.

All three categories provide an excellent solution for ground processing. However, the purpose of
CloudScout is to provide reliable information directly on board, without requiring a huge amount of
power. So, thanks to the technological advancement given by the EoT board, we developed a simple
NN model that performs a hyperspectral image threshold directly on board. The needed to build a
new custom model and do not exploit directly one taken from the literature is given by the limitation of
the hardware itself. In fact, as described in Section 3.2, the accelerator has some hardware constraints
that must be considered in order to obtain a valid result.
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6. Conclusions

The Phi-sat mission and in particular Hyperscout 2 is a nano-sat system with the aim to
demonstrate the possibility of using DNN in space, by exploiting COTS hardware accelerators directly
on-board, such as the Myriad-2 VPU. Moreover, the reconfigurability provided by these devices enables
the update of DNN models on the fly, allowing to improve the model performance exploiting new data
acquired during the mission. Furthermore, thanks to the intrinsic modularity of such DNN models,
it would be possible to change the mission goals during the mission life.

This may represent the beginning of a new era of re-configurable smart satellites equipped by
programmable hardware accelerator (such as the Myriad 2) enabling the on-demand paradigm at
payload level [6].

As described by [6], this fact would enable a significant cost reduction due to satellite design or
even satellite platform reuse.

Other advantages are related to the smart use of transmission bandwidth that represents one
of the main concern in nearly future in view of the growing number of satellites and the increasing
resolution of on-board sensors[6,8]. The efficacy of AI and in particular of CNN for this goal will be
demonstrated by the results of the HyperScout-2, which might represent a precursor for this new smart
satellite era. Indeed, such results demonstrate that exploiting a CNN running on the Intel Movidius
Myriad 2 we are able to detect with a 92% accuracy, 1.8W of power consumption, and 2.1 MB of
memory footprint the cloudiness of hyperspectral images directly on board the satellite.
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