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Abstract
This paper tackles the problem of controlling articulated soft robots (ASRs), i.e., robots with either fixed or variable
elasticity lumped at the joints. Classic control schemes rely on high-authority feedback actions, which have the
drawback of altering the desired robot softness. The problem of accurate control of ASRs, without altering their inherent
stiffness, is particularly challenging because of their complex and hard-to-model nonlinear dynamics. Leveraging a
learned anticipatory action, Iterative Learning Control (ILC) strategies do not suffer from these issues. Recently, ILC
was adopted to perform position control of ASRs. However, the limitation of position-based ILC in controlling variable
stiffness robots is that whenever the robot stiffness profile is changed, a different input action has to be learned. Our
first contribution is to identify a wide class of ASRs, whose motion and stiffness adjusting dynamics can be proved to be
decoupled. This class is described by two properties that we define: strong elastic coupling - relative to motors and links
of the system, and their connections - and homogeneity - relative to the characteristics of the motors. Furthermore, we
design a torque-based ILC scheme that, starting from a rough estimation of the system parameters, refines the torque
needed for the joint positions tracking. The resulting control scheme requires minimum knowledge of the system.
Experiments on variable stiffness robots prove that the method effectively generalizes the iterative procedure w.r.t. the
desired stiffness profile and allows good tracking performance. Finally, potential restrictions of the method, e.g., caused
by friction phenomena, are discussed.
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1 Introduction

Recent years have seen a growing interest in the design of
robots whose mechanical structure is intentionally realized
with compliant elements, i.e., soft robots. These robots are
attracting wide attention because of the many interesting
features, e.g. the possibility to perform cyclic motions and
high dynamic tasks (Braun et al. 2012), to exploit natural
dynamics (Vanderborght et al. 2006) and to allow a safe
interaction with uncertain environments (Albu-Schaffer et al.
2008), (Bicchi and Tonietti 2004). Furthermore, these robots
are typically divided in continuum and articulated soft
robots (Della Santina et al. 2020), which can be considered
as the counterparts of invertebrate and vertebrate animals,
respectively. In this paper, we focus on articulated soft
robots (ASRs), whose structure is composed of rigid parts
(with a structural role similar to bones) and compliant joints
(reproducing the visco-elastic behavior of muscles, tendons
and ligaments). Compliant elements in articulated soft robots
can have fixed elasticity as in Series Elastic Actuators (SEAs)
(Pratt and Williamson 1995) or a variable elasticity. The
latter are known as Variable Stiffness Actuators (VSAs)
(Vanderborght et al. 2013).

The main benefit of using VSAs is the possibility to
vary the compliant behavior of the output link according

to the desired task. There are several solutions, detailed
in Vanderborght et al. (2013), that allow for the variation
of compliance, e.g. the pre-loading of springs or the
modification of the transmission ratio from the spring(s)
to the motor output link. One of the main challenges in
controlling VSA powered robots is to obtain an accurate
trajectory tracking without losing the prescribed compliant
behavior.

In the last decade, several works have been published
to study the control of these actuators. Among them, we
can find methods based on PD with Gravity compensation
(De Luca and Flacco 2011), Feedback Linearization
(Buondonno and De Luca 2016), (De Luca et al. 2009)
and BackStepping (Petit et al. 2015). More recently, the
authors in Keppler et al. (2018) proposed a control strategy
purposefully designed to achieve motion tracking while
preserving the elastic structure of the system. All these
strategies rely on the dynamic model and require the
knowledge of the torque-deflection characteristic of the
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Figure 1. Frames of the trajectory tracking time sequence in case of pILC (a-d) and tILC (e-h) methods. The first sequence (a-d)
shows that, with the same position control action and two different values of the stiffness regulation parameter (from soft to stiff),
the resulting robot trajectory presents non negligible variation. Differently, in the second sequence (e-h), given the same torque
control action and two different stiffness values, the robot position tracking is much less alterated. The 6-DOF manipulator used for
the experiments and shown in picture is equipped with VSA-Cube actuators (Catalano et al. 2011) and a Pisa/IIT SoftHand
(Della Santina et al. 2017b)

elastic elements of the system. This relationship maps
the deflection of the output link from its equilibrium
point to the variation of the external load applied. The
lack of complete knowledge of this model requires the
implementation of estimation or identification methods. To
solve this issue, Flacco and De Luca (2011) proposed a
parametric identification method, which requires an accurate
model of the actuators, while in Flacco and De Luca (2014)
the same authors presented a signal-based approach to
estimate the stiffness. Most of the control laws from De Luca
and Flacco (2011) to Keppler et al. (2018) use FeedBack
(FB) terms on the variable to be controlled. As discussed
in Della Santina et al. (2017a), closing the control loop
over the link position can considerably alter the dynamic
behavior of the system, up to the point of removing the
benefits of intrinsic compliance. According to Della Santina
et al. (2017a), the use of FeedForward (FF) control actions
are preferable to preserve the natural behavior of the robot.
Thus, balancing a predominant FF term and a low-gain FB
component can lead to an accurate trajectory tracking while
preserving the designed dynamics of the robot.

Following this idea, in Angelini et al. (2018) an Iterative
Learning Control (ILC) scheme was recently proposed to
generate a FF control action for articulated soft robots
in which the position motor references, needed to track
a desired link trajectory with a defined compliant profile,
are iteratively refined. For this reason, we refer to this
method as a position-based ILC (pILC). The advantages
of the iterative learning approach are: model-independence,
softness preservation and a reduced set of gains to tune.

Although the pILC scheme in Angelini et al. (2018) showed
good results, it presents an undesirable coupling between
motion control action and stiffness. This implies that, to
execute a trajectory for which the control action was
previously learned with a different stiffness profile, a new
learning process is required, Fig. 1 (a-d).

To improve the applicability of this approach, exploiting
the ILC benefits, we propose a control strategy, named
torque-based ILC (tILC), in which this undesired coupling
effect is eliminated by generating a torque-based control
action. This strategy derives from a twofold contribution: i)
we introduce two properties that an ASR can have: strong
elastic coupling and homogeneity. Then, we prove that the
dynamics of a strong elastically coupled and homogeneous
ASR can be decoupled in two parts: a flexible robot dynamics
and an adjusting dynamics. Each part can be controlled
by a separate torque component; ii) we adopt an ILC
approach to design the first torque component, mostly in
FF, useful to perform trajectory tracking, while the other
is used to control the compliant behavior in FB. As a
result of the motion/stiffness decoupling, which requires
minimum knowledge of the system, and the use of an
iterative approach, the control strategy proposed is model-
free, meaning that it does not require any knowledge of the
dynamics parameters.

The proposed control scheme shows good results in
terms of trajectory tracking performance, and as well, it
allows to independently vary the stiffness of the joints
without affecting the tracking performance, Fig. 1 (e-
h). This means that the limitation posed by the pILC
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is overcome, i.e. that the control action learned with
the tILC method can be reused with different compliant
behavior, reducing the iterations needed to regain tracking
performances. Experimental results show that the number
of iterations and the tracking error achieved at convergence,
are strongly related to the amount of friction affecting the
system: the main limitation for the control strategy proposed.
Furthermore, the method can be applied to most of the
variable joint stiffness structures proposed in the literature.

As an additional result, the proposed approach allows
us to fully exploit the compliant nature of the robot when
performing tasks in which, even undesired, interactions may
be involved. Following the method we propose, the learning
process can be safely and robustly performed with the robot
controlled with a low stiffness profile. Once the learning
process is completed, the robot stiffness can be changed to
properly execute the task. In this regard, we discuss one
practical example at the end of the experimental part.

After recalling the dynamic model of VSAs systems,
Section 2 defines the treated problem by introducing the
desired control requirements. In Section 3 a brief review
of the control strategies in the State of the Art (S.o.A.) is
reported, discussing their advantages and limitations. The
proposed solution is introduced and analyzed in Section
4. Section 5 presents a set of experiments where the
effectiveness of the method, compared also with S.o.A.
techniques, is proved on articulated soft systems (Fig. 1 and
Fig. 5). Finally, conclusions are drawn in Section 6.

2 Problem definition

2.1 Dynamic model

We here consider the dynamic model of an n-DOFs robot
with lumped elasticity at the joints proposed in Albu-
Schäffer and Bicchi (2016). This formulation assumes a
negligible inertia coupling between motors and links and
gravity potential energy dominated by the links. Then, the
dynamic equations can be written as


M(q)q̈ + C(q, q̇)q̇ +G(q) +

∂V (q, θ)T

∂q
= τext, (1)

Jθ̈ +Dθ̇ +
∂V (q, θ)T

∂θ
= τm, (2)

where q ∈ Rn are the link positions; θ ∈ Rm are the
motor positions; M(q) and C(q, q̇) are inertia and Coriolis,
centrifugal and frictional terms, respectively, and G(q) is
the gravitational vector of the system. Hereinafter, the
dependency of M(q), C(q, q̇) and G(q) from the state
variables q, q̇ is omitted for the sake of clarity. J, D
are inertia and damping constant diagonal matrices of
the motors; V (q, θ) is the elastic potential; τm are the
motor torques and τext is the external torque (if present).
Furthermore, we consider the ideal case in which the
dissipative actions acting on the link side equation (1) are
negligible or constant. We will discuss the implication of the
presence of non-negligible and variable dissipative actions,
e.g., friction phenomena, in Section 4.3.

2.2 The control problem
One of the main purposes of a generic robotic control scheme
is trajectory tracking. In the case of compliant actuators, e.g.,
variable stiffness actuators, regulation of the link position
results in a non-trivial problem due to the elastic connection
between motors and links. Indeed, the elastic mechanism is
often nonlinear and hard-to-model. Furthermore, for VSA
systems, the possibility to vary the stiffness during the
task represents a key property, useful e.g., to exploit the
intrinsic compliant behavior. The stiffness variation should
be performed independently from the trajectory tracking and
the control action should not alter it, e.g., in case of FB
strategies, as discussed in Della Santina et al. (2017a).

Therefore, the problem addressed in this work is to define
a control strategy that achieves the following goals:

• decoupling of the motion control from the stiffness
control;

• accurate tracking of the desired link position
trajectory;

• independence from the torque/deflection model;
• preservation of the stiffness behavior;
• independence from the robot dynamic model.

3 State of the Art
This section briefly describes the control techniques
proposed in the last decade for compliant actuators. Their
main characteristics and limitations will be reported.

For ASRs equipped with compliant actuators in the
specific class of agonistic-antagonistic (A-A) VSAs with
m = 2n, i.e., where there are two motors associated with
each link of the system, it is convenient to define the elastic
deflection as the difference between link and motor position
vectors, i.e., φi , q − θi, with i = 1, 2 number of the motor.
Then, following De Luca et al. (2009), it can be observed that
V (q, θ) =

∑
i V (φi) from which (1) and (2) can be rewritten

as follow
Mq̈ + Cq̇ +G+ τe1(φ1) + τe2(φ2) = τext

J1θ̈1 +D1θ̇1 − τe1(φ1) = τ1

J2θ̈2 +D2θ̇2 − τe2(φ2) = τ2

, (3)

where Ji, Di are inertia and damping constant matrices of the
motors i and τei = ∂V (φi)

T

∂φi
, for i = 1, 2. Referring to (3), the

torque control strategy based on the feedback linearization
approach, proposed in De Luca et al. (2009), considers τ1
and τ2 as control inputs of the actuators. As outputs of
interest, the control scheme takes the link positions q and
the link stiffnesses σ = [σ1 . . . σn]T (each element defined
as σi =

∂τei
∂qi

). Differentiating four times q and two times σ
the following nonlinear torque control law holds[

τ1
τ2

]
= A−1(x)

([
v1
v2

]
− b(x)

)
, (4)

with x = (θ1, θ2, q, θ̇1, θ̇2, q̇)
T state of the new system,

A(x) decoupling matrix (defined in De Luca et al. (2009)),
assumed non-singular, and b(x) vector of terms depending
on x. The desired link positions q̂ and the desired stiffnesses
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σ̂ can be tracked by choosing

v1 = q̂[4] + kq,3e
[3]
q + kq,2ëq + kq,1ėq + kq,0eq,

v2 = ¨̂σ + kσ,1ėσ + kσ,0eσ,
(5)

where eq = q̂ − q and eσ = σ̂ − σ, are the link position and
stiffness errors with their derivatives, up to the third order
(i.e., superscript [3]), q̂[4] is the fourth derivative of the desired
link positions and kq,i,∀i = 0 . . . 3 and kσ,j ,∀j = 0, 1 are
the control gains.

More recently Keppler et al. (2018) propose a control
strategy, named elastic structure preserving (ESP), suitable
to drive variable stiffness actuators with either A-A design
or with adjusting stiffness mechanisms, i.e., where there
is a motor specifically designed to vary the compliance.
The basic idea in Keppler et al. (2018) is to introduce new
coordinates (q̃, η) that reflect the desired behavior of the link
dynamics. Then, based on these new variables, it is possible
to design a specific control input to regulate (or to track) a
desired trajectory at the link with a desired damped behavior.
In the following, we show a sketch of the method, the reader
can refer to Keppler et al. (2018) for a detailed description.
The method consists in imposing a desired dynamics written
as

M(q̃)¨̃q + C(q̃, ˙̃q) ˙̃q +Dq ˙̃q + τe(q̃, η) = τext, (6)

with Dq damping matrix satisfying specific conditions (see
the reference paper), q̃ = q − q̂ tracking error coordinate
and where τe(q̃, η) is the resulting elastic torque function
at the link evaluated in the new coordinates, i.e., τe(q̃, η) =
∂V (q̃,η)T

∂q̃ . Then, equating (1) with (6), the new motor
coordinate η can be computed by solving the follows

τe(q̃, η) = τe(q, θ) + n(q̃, ˙̃q), (7)

where n(q̃, ˙̃q) collects all the remaining terms. Note that
(7) should be solved numerically (except for special cases).
Finally, the control input is designed as

τm =τe(q, θ) + J(Ȧη̇ + α̇)+

− JAJ−1 (τe(q̃, η) +KPη +KDη̇)
(8)

where J is the motor inertia matrix, KP,KD are PD control
gains and A,α are terms defined in Keppler et al. (2018).

For a more general class of compliant actuators, e.g.,
where there may be more than two motors per link, or
even motors connected to multiple links, under conditions
C.2 and C.3 in Braun et al. (2013), i.e., high gear-box
reduction and high low-level position gains, it is possible to
control directly the motors equilibrium position (θr ∈ Rn).
Then, other parameters (m− n) can be defined in order to
regulate additional free degrees of the system, e.g., to adjust
the compliant behavior. In this last case, the free degree
is represented by the stiffness regulation parameter (s.r.p.)∗

θs ∈ R(m−n). Thus, given a specific θs and controlling
through θr it is possible to track the link position by using
the inverse dynamic approach (Braun et al. 2013). Indeed,
for this control strategy, the system dynamics is

Mq̈ + Cq̇ +G+ τe(q, θr, θs) = τext, (9)

where τe is the overall elastic torque at the output link.
From the link dynamic equation (9) the desired equilibrium

position, needed to reach the desired link position, can be
computed as

θ̂r = q̂ − τ−1e (τext −M ¨̂q − C ˙̂q −G). (10)

The s.r.p. θs is used to evaluate τ−1e
†.

Alternatively, to learn the control action needed to track
the desired link trajectory, iterative approaches can be used.
Following this idea, a position-based ILC (pILC) algorithm
is proposed in Angelini et al. (2018). In the latter work
the equilibrium position control input is computed in each
iteration k ∈ N+ as

θkr = θk−1r + θkUP︸ ︷︷ ︸
θkFF

+θkFB, (11)

starting from an initial guess θ0r . θkFB represents a feedback
component added to improve the controller action. The
stiffness of the system is imposed by choosing θs.

The aforementioned control strategies introduce the
following drawbacks:

i) need for the system model (i.e., deflection function τe
and dynamic matrices M, C, G),

ii) alteration of dynamic properties of the system,
iii) coupling between motion control and stiffness control.

More in detail, the feedback linearization approach allows
to control either link position and link stiffness, decoupling
the two control inputs. However, a drawback of the method
is that it assumes that the inverse of the decoupling
matrix, i.e., ∃ A−1(x), exists. This method, as the elastic
structure preserving control, requires also smooth reference
trajectories. Moreover, the feedback linearization approach,
the elastic structure preserving control and the inverse
dynamic solution depend on both the model of the system
and the model of the stiffness mechanism (i). Lastly, some of
the aforementioned strategies may produce control laws that
compromise the mechanical behavior of the system (ii).

On the other hand, the control strategy based on iterative
learning is model-independent and preserves the stiffness
behavior, as proved in Angelini et al. (2018). Thus, pILC
overcomes the points (i) and (ii). However, the control action
learned through iterations depends on a specific stiffness
regulation parameter θs. This means that varying θs leads to
the need for a new learning phase to recover from tracking
performance loss (Fig. 1 (a-d)). For this technique, point (iii)
represents an unsolved problem.

4 Control Design
In this section, we first define some properties of the elastic
system in (1) and (2) and some assumptions from which it
is possible to decouple the dynamics into two separate parts:
a flexible joint robot dynamics and an adjusting dynamics.
Then, we propose the torque-based ILC law that fulfills

∗The equilibrium position and the s.r.p. are always given as functions of
the motor positions. For instance for the VSA-Cube in Fig. 2b (bottom)
these consist in the semi-sum and semi-difference of the motor positions
(Della Santina et al. 2017b).
†To algebraically solve (10), the elastic torque function τe is supposed to be
invertible. If this is not the case, then numerical methods should be adopted.
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(a)

(b)

Figure 2. A graphical representation of Definition 1 is reported
in (a), while in (b) different schemes of compliant actuators
(left-hand side) and pictures of real prototypes (right-hand side)
are shown: the CompACT (Tsagarakis et al. 2009) (top), the
AwAS (Jafari et al. 2013) (middle) and the VSA-Cube (Catalano
et al. 2011) (bottom). Variables in (b) represent: m number of
motors (θ), n number of joints (q), r number of deflecting motors
(θd) and number of elastic elements s. Note that, the number of
adjusting motors (θa) can be obtained as m− r.

requirements stated in Section 2 and avoids drawbacks (i),
(ii) and (iii) listed in Section 3.

It is useful to recall that soft robots lie in the class
of underactuated systems. The literature proposes different
definitions of underactuated systems, e.g., systems with the
number of control inputs smaller than the number of DOFs
(Spong 1998), or systems that are not able to command
an instantaneous acceleration in an arbitrary direction in
the joint space (Tedrake 2009). In both definitions, the
Lagrangian coordinates can be divided into two types, the
collocated variables, that have the dimension of the input
vector, and the non-collocated variables. Referring to Spong
(1998), the first are the variables whose accelerations can
be arbitrarily commanded, while the accelerations of the
second can not. In our case, i.e., articulated soft robots,
the first variables refer to the motor positions θ, and the
second are the link positions q. Indeed, for these systems,
the actuation of the joints relies on the elastic elements that
connect the links to the motors. Thus, to control the non-
collocated variables it is possible to exploit their coupling
with the collocated ones. The coupling can derive from the

inertial components of the system dynamics, as for the case
of strong inertially coupled systems defined in Spong (1998),
or may depend on the presence of a potential term that relates
the collocated and non-collocated variables, as shown by
the potentially coupled condition in Albu-Schäffer and Petit
(2012). Furthermore, the potential term can be relative to
the gravity effect or associated to the presence of elastic
terms. For the latter case, we here introduce a new rigorous
definition: strong elastic coupling.

4.1 Model decoupling
According to Albu-Schäffer and Petit (2012), we assume
that the system is such that there exists a relation between
the collocated and the non-collocated state variables in static
configurations. This means that it is always possible, for any
given external torques τ̂ext and link positions q̂, to find motor
positions θ and corresponding motor torques τm that balance
external load, i.e., solve (1) and (2) at the equilibrium. More
accurately we define the following

Definition 1. The system (1) and (2) is said to be Strongly
Elastically Coupled (SEC) if, ∀q̂ and τ̂ext, ∃θ and τm such
that, at the equilibrium (i.e., q̈ = q̇ = 0, θ̈ = θ̇ = 0), it holds

∂V (q, θ)T

∂q

∣∣∣∣
q̂,θ

= τ̂ext −G(q̂), (12)

∂V (q, θ)T

∂θ

∣∣∣∣
q̂,θ

= τm. (13)

Remark 1. Definition 1 implies that ∂V (q̂,θ)T

∂q̂ : Rm → Rn,
with m ≥ n, is surjective.

Definition 1 is graphically explained in Fig. 2a.
Hereinafter, we will consider n-DOFs systems with lumped
elasticity at the joints, described as in (1) and (2). In the
implementation of VSA, it is expedient to distinguish motors
which are directly connected to the extreme of one or more
elastic elements, each connected in turn to one or more of
the links; and motors which are instead explicitly designed
to vary the stiffness of the elastic elements. We will term
the first type as deflecting motors, while the second will be
referred to as adjusting motors. In general, we assume to
have m motors, r of which are deflecting and m− r are
adjusting motors. Fig. 2b illustrates this distinction for three
different compliant actuators. More precisely we define

Definition 2. Two or more rigid bodies (motors and/or
links) with Lagrangian coordinate µi, i = 1, . . . , ` ≥ 2, are
said to be elastically connected (or connected for brief) if
there exists an elastic element whose potential V (·) depends
on their coordinates, i.e., V (µ1, µ2 . . . , µ`), ∂V (·)

∂µi
6≡ 0, i =

1, . . . , `.

Definition 3. A motor is said to be a deflecting motor and is
associated with the Lagrangian variable θd, if it is elastically
connected to n ≥ 1 links, associated to the Lagrangian
variable qi, i = 1, ..., n, and the elastic potentials Vl(·)
depend only on the linear combination of θd and qi, i.e.,
Vi(qi, θd) = f (α1qi + α2θd) with non-null α1 and α2.

Definition 4. A motor is said to be an adjusting motor
and is associated with the Lagrangian variable θa, if
it is elastically connected to n ≥ 1 links, associated to
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the Lagrangian variable qi, i = 1, ..., n, and the elastic
potentials Vi(·) depend on the product of the functions
f(·) and g(·) of qi and θa, respectively, i.e., Vi(qi, θa) =
f(α1qi)g(α2θa) with non-null α1 and α2.

Furthermore, inspired by Hogan (1985) that classifies the
muscles of vertebrates in mono-articular and poly-articular
depending on the number of joints on which they exert
torques, here we define what follows.

Definition 5. A deflecting motor is called mono-articular if
it is elastically connected to only one link. Differently, it is
said to be poly-articular.

Remark 2. Given Definition 5, we define as mono-articular
system a system whose deflecting motors are all mono-
articular. We define poly-articular systems all the other
cases.

To realize the motor-link connections, we assume that
the system has s total elastic elements. Moreover, it may
happen that there exist additional elastic elements connecting
multiple deflecting motors (motor-coupling) or, similarly,
other elastic interconnections between links (link-coupling).
A further definition is useful to state our propositions.

Definition 6. A system in the form (1) and (2), is said
to be homogeneous if all the deflecting motors elastically
connected to the same links share equal inertia and damping
terms.

It is worth noting that the presence of the m− r adjusting
motors does not alter the homogeneity property of the
system.

From these definitions, multiple topologies of compliant
systems can be realized. Fig. 3 shows, as an example, the
case of a system with three deflecting motors (r), two links
(n) and different connections of the elastic elements (s).
From now on, we will consider the general case in which
s ≥ r ≥ n. Note that the SEA is a particular case where s =
r = n. We let θ ∈ Rm denote the vector of motor positions,
and we assume that the motors are ordered so that θ =[
θTd θTa

]T
, where θd ∈ Rr and θa ∈ Rm−r are the motor

variables already defined in Definitions 3 and 4, respectively.
For convenience, we collect mono-articular (θm) and poly-
articular (θp) components such that θd = [θTm θTp ]T . Then,
the following assumption holds in many compliant actuators
in practical use. In Appendix C some useful examples are
reported.

Assumption 1. The elastic potential of the system (1) and
(2) has the form

V (q, θ) =

s∑
i=1

Vi(q, θ) =

s∑
i=1

fi(

yi︷ ︸︸ ︷
aiq + biθd)gi(

wi︷︸︸︷
ciθa ), (14)

where, for each i: fi(·) and gi(·) are functions at least
of class C1; ai ∈ {−1, 0, 1}1×n has non-zero elements
corresponding to links connected to the i-th elastic element;
bi ∈ {−1, 0, 1}1×r has non-zero elements corresponding to
deflecting motors connected to the i-th elastic element,
and ci ∈ {0, 1}1×(m−r) has ones corresponding to motors
adjusting the i-th elastic element.

From (14) it is possible to observe that the functions
fi(·) rely only on the deflecting components of the motor
positions, while the potential term gi(·) depends only on the
adjusting motor position components.

Remark 3. Under Assumption 1, (12) and (13) can be
rewritten as

∂V (q, θ)T

∂q

∣∣∣∣
q̂,θ

= Az(q, θ)|q̂,θ = τ̂ext −G(q̂), (15)

∂V (q, θ)T

∂θ

∣∣∣∣
q̂,θ

=

[
Bz(q, θ)
Cv(q, θ)

]∣∣∣∣
q̂,θ

=

[
τ d
τ a

]
,(16)

where A,B and C are defined as

A ,
[
aT1 . . . aTs

]
∈ {−1, 0, 1}n×s,

B ,
[
bT1 . . . bTs

]
∈ {−1, 0, 1}r×s,

C ,
[
cT1 . . . cTs

]
∈ {0, 1}(m−r)×s,

(17)

and the motor torques vector is divided in two components:
deflecting torques τ d and adjusting torques τ a. Observe
that the vectors z(q, θ) and v(q, θ) represent elastic torque
components of the system. From Definition 1 it follows that
A andB are full-row-rank. More details about the derivation
of the terms A,B,C, z(q, θ) and v(q, θ) are reported in
Appendix B.

Under this assumption, we can state the following

Proposition 1. For a SEC system fulfilling Assumption 1
there exist matrices Γd ∈ Rn×r,Υ ∈ Rn×p and Π ∈ Rn×q
such that

τ̂ext −G(q̂) = Γdτ d + Υλ1 + Πλ3, (18)

where the terms λ1 ∈ Rp, λ3 ∈ Rq are elastic torque
components and Γd is a full-row-rank matrix.

Proof. The system of equations in (15) and (16) can be
rewritten as

Y︷ ︸︸ ︷[
In 0 −A
0 Ir −B

] τg
τ d
z

 = 0, (19)

[
I(m−r) −C

] [ τ a
v

]
= 0, (20)

where Y ∈ {−1, 0, 1}(n+r)×(n+r+s), τg , τ̂ext −G(q̂), and
Il ∈ Rl×l are identity matrices of size l = n, r and (m− r),
respectively. For conciseness, we omitted the dependency
from the parameters in z(q, θ) and v(q, θ). Note that, systems
(19) and (20) are decoupled. The vector z ∈ Rs represents all
the solutions of (19) and it can be conveniently expressed as

z = Q1λ1 +Q2λ2 +Q3λ3 +Q4λ4, (21)

whereQi is a basis of the subspace Si, and the four subspaces
are

• S1 = {z | z ∈ (Im(AT ) ∩ ker(B))};
• S2 = {z | z ∈ (Im(AT ) ∩ Im(BT ))};
• S3 = {z | z ∈ (ker(A) ∩ Im(BT ))};
• S4 = {z | z ∈ (ker(A) ∩ ker(B))};
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Figure 3. Graphical representation of Definitions 5 and 6 for a SEC system in which there are two links n = 2 and three motors
m = 3, all deflecting r = m. Note that the number of elastic connections s varies from 3 (left-hand side in figure) to 5 (right-hand
side in figure). The symbol L represents the links and Mi are the motors with inertia and damping Ji, Di such that J1 > J2 and
D1 > D2.

such that

ker(Y ) = Im[Q1 +Q2 +Q3 +Q4]

= S1 ⊕ S1 ⊕ S3 ⊕ S4.
(22)

Associated to the four subspaces Si we have four elastic
torque components λi. The physical meaning of these
torque components is the following: λ1 are elastic torques
that generate link torques without affecting the motor
components, λ2 are elastic torques that generate both link
and motor torques, λ3 are elastic torques that generate
motor torques with no effects on the link torques, e.g., co-
contraction for A-A systems and λ4 are elastic components
that do not affect either link nor motor torques, i.e., elastic
pre-load actions.

Premultipling (21) by the matrix A it is possible to obtain
the resulting torques at link side

τg = Az = A(Q1λ1 +Q2λ2), (23)

and, similarly for the motor side, premultipling (21) by the
matrix B we obtain

τ d = Bz = B(Q2λ2 +Q3λ3). (24)

Computing λ2 from (24) and substituting it in (23) we
obtain the thesis

τg = AQ2

(
QT2 B

TBQ2

)−1
QT2 B

T τ d +AQ1λ1+

−AQ2

(
QT2 B

TBQ2

)−1
QT2 B

TBQ3λ3

= Γdτ d + Υλ1 + Πλ3.

(25)

Remark 4. If the matrices Υ = 0, Π = 0, then (18)
simplifies in

τg =
∂V (q̂, θ)T

∂q
= Γd

∂V (q̂, θ)T

∂θ
= Γdτ d. (26)

This is the case, for example, of systems in which s = r.
Indeed, in this case, the matrix B = −I ∈ Rr×r thus, its
null-space is the vector 0 only, the basis Q2 = AT and Π =
−AQ3 ≡ 0 since Q3 ∈ ker(A). Mono-articular systems are
such that (26) is verified. Note that there may be other cases
in which the matrices Υ = 0,Π = 0 even if the matrix B 6=
−I and(or) s 6= r, e.g., if there are motor-couplings (Tonietti
et al. 2005).

Proposition 2. (Motion/Stiffness decoupling) Consider an
ASR with dynamics formulated as in (1) and (2) and elastic
potential as in (14). If the system is SEC, homogeneous
and Remark 4 holds (i.e., Υ = 0,Π = 0), then the dynamic
model ((1),(2)) can be written in the form

Mq̈ + Cq̇ +G+
∂V (q, θeq, θsr)

T

∂q
= τext, (27)

Jeθ̈eq +Deθ̇eq −
∂V (q, θeq, θsr)

T

∂q
= τeq, (28)

Jsθ̈sr +Dsθ̇sr − ΓTN
∂V (q, θeq, θsr)

T

∂θ
= τsr, (29)

and[
θeq
θsr

]
, −

[
Γθ

ΓTN θ

]
,

[
τeq
τsr

]
, −

[
Γτm

ΓTN τm

]
,

(30)
where Γ = [Γd 0] ∈ Rn×m and ΓN is a basis of the null
space of Γ. The terms Je ∈ Rn×n, Js ∈ R(m−n)×(m−n) and
De ∈ Rn×n, Ds ∈ R(m−n)×(m−n) are the new inertia and
damping matrices of the two equivalent dynamics: the
equilibrium dynamics (28) (subscript eq) and the stiffness
regulation dynamics (29) (subscript sr). Note that τeq, θeq ∈
Rn have the same size of q, while τsr, θsr ∈ Rm−n have the
size of the remaining m− n degrees of actuation.

Proof. Starting from the matrix Γd computed in Proposition
1 and under Remark 4, we define the full-rank matrix T as

T ,

[
Γ

ΓTN

]
∈ Rm×m, (31)

where Γ = [Γd 0] ∈ Rn×m and ΓN is a basis of the null
space of Γ. Pre-multiplying the motor dynamics (2) by the
matrix T defined in (31) and post-multiplying the matrices J
and D by the term T−1T (the identity) we obtain

TJT−1T θ̈ + TDT−1T θ̇ + T
∂V (q, θ)T

∂θ
= Tτm. (32)

Note that, since the matrix T is full-rank, then its inverse can
be written as T−1 = TT (TTT )−1, from which the similarity
transformations‡ TJT−1 becomes

TJT−1 = TJTT (TTT )−1. (33)

‡Hereinafter, we will consider only the transformation in (33). Exact same
derivation holds to prove the block diagonal form of the transformation
TDT−1 thus, we will omit them for the sake of space.
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The term TTT is given by

TTT =

[
ΓΓT 0
0 ΓTNΓN

]
, (34)

since ΓΓN ≡ 0 and ΓTNΓT ≡ 0 because ΓN ∈ ker(Γ).
Thus, the inverse of (34) is block diagonal. Instead, the term
TJTT is

TJTT =

[
ΓJΓT ΓJΓN

ΓTNJΓT ΓTNJΓN

]
. (35)

To show the block diagonality of (35) we consider the mono-
articular case with m = r (all deflecting motors) from which
Γ = Γd. Then, the matrix Γ can be written as

Γ = diag
(
[ Γ1 . . . Γn ]

)
, (36)

where Γj ∈ R1×rj is associated to the j-th link and rj are
the number of motors connected to the j-th link. A basis of
the null space of (36) is given by

ΓN = diag
(
[ ΓN1 . . . ΓNn ]

)
, (37)

where each block ΓNj
∈ R(rj×(rj−1)) is chosen as a basis of

the null space of each component Γj .
Focusing on the off-diagonal elements of (35) it is possible

to note that, from (36) and (37) we have

ΓJΓN = diag
(
[ Γ1J1ΓN1 . . . ΓnJnΓNn ]

)
, (38)

where Jj ∈ Rrj×rj is the inertia matrix of the motors
associated to the j-th link.

Then, invoking the assumption of homogeneous system
each block of (38) can be written as

ΓjJjΓNj = JjΓjΓNj = 0, (39)

since ΓNj ∈ ker(Γj). Matrix (35) is thus block diagonal.
These considerations can be extended to the case of
compliant systems with r < m by showing that the m− r
adjusting components do not affect the computation of Γ.
As a consequence, their inertia (and damping) terms can be
different w.r.t. inertia and damping of the deflecting motor
components.

Finally, from (33), (34), (35) and under (39) we define the
matrix

J , TJT−1 =

[
Je 0
0 Js

]
, (40)

where Je , ΓJΓT (ΓΓT )−1 and Js , ΓTNJΓN (ΓTNΓN )−1.
(Exact same derivation holds for D). From (40), (32)
becomes equivalent to

J T θ̈ +DT θ̇ + T
∂V (q, θ)T

∂θ
= Tτm. (41)

Given the block diagonality of J and D, then (41) can be
rewritten also as

JeΓθ̈ +DeΓθ̇ + Γ
∂V (q, θ)T

∂θ
= Γτm

JsΓ
T
N θ̈ +DsΓ

T
N θ̇ + ΓTN

∂V (q, θ)T

∂θ
= ΓTN τm

, (42)

and, substituting (30) in (42) and using (26) (recalling that
Γd = Γ), the thesis is obtained.

Remark 5. If the motor dynamics in (28) is negligible or is
compensated by the motor actions, then (27), (28) and (29)
are simplified in

Mq̈ + Cq̇ +G− τeq = τext, (43)

−
∂V (q, θeq, θsr)

T

∂q
= τeq, (44)

Jsθ̈sr +Dsθ̇sr − ΓTN
∂V (q, θeq, θsr)

T

∂θ
= τsr. (45)

Under Remark 5, (43) represents the dynamics of a
flexible joints robot with nonlinear springs, whose elastic
torques are determined by τeq. Furthermore, it is useful to
give the physical meaning of the torque components shown
in the right-hand side of (44) and (45). The first one, i.e., τeq,
represents the torque components that equate the dynamics
of the equivalent flexible joint system at the equilibrium,
thus that drives θeq. Recalling that the motor positions vector
is partitioned as θ =

[
θTd θTa

]T
and the matrix Γ = [Γd 0],

τeq results in a combination of the deflecting motor torques
only, as described in (30). On the other hand, the torque
components τsr control the dynamics of θsr. Given (30), it
results that the component θsr are orthogonal to θeq, and
analogously the component τsr are orthogonal to τeq. This
implies that τsr does not influence the equilibrium positions
θeq. In addition, given the aforementioned partitioning of
the motor positions vector, and consequently of the matrix
Γ, the term τsr also includes torque components that are
relative to the adjusting motors. Finally, it is worth noting
that (45) may be used to shape the desired feature of the
elastic characteristic V (q, θeq, θsr). Thus, given τeq, if θsr is
adjusted then θeq changes in such a way that (44) remains
valid.

4.2 Torque-based ILC (tILC) strategy
Assuming that both Proposition 2 and Remark 5 can be
applied, then the ASR dynamics (1) and (2) can be rewritten
in the form (43), (44) and (45). As previously mentioned,
under these assumptions, the two torque actions τeq and
τsr allow to separately control q and θsr, respectively. Also,
it is worth mentioning that, the considerations made in
Section 4.1 hold for a wide variety of actuators, and it is
straightforward to compute the matrix Γj for two major
classes: Γj = [−1, −1] for the case of symmetric A-A VSAs
and Γj = [−1, 0] for the case of VSAs with adjuster. More
details can be found in Appendix C.

Several control methods could be employed to compute
the two torque terms. Here we propose a novel control
scheme able to overcome points (i), (ii), (iii). This consists
in:

• exploiting τsr to let θsr follow a desired trajectory θ̂sr;
• learning a control action τeq (consisting of a dominant

feedforward component) via an ILC approach to let q
follow a desired link-position trajectory q̂.

4.2.1 Stiffness adjusting : From (45) the dynamics of θsr
can be interpreted as a linear second order dynamics with

a disturbance term d(q, θeq, θsr) = −ΓTN
∂V (q,θeq,θsr)T

∂θ , such
that

Jsθ̈sr +Dsθ̇sr + d(q, θeq, θsr) = τsr . (46)
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Thus, to set a desired vector θ̂sr, rejecting the disturbance d,
we choose the following proportional integral (PI) controller

τsr = kp(θ̂sr − θsr) + ki

∫
(θ̂sr − θsr)dt , (47)

where kp, ki ∈ R are the proportional and integral gains.

4.2.2 Motion control : In this part, we design the control
action τeq that enables the robot to track, in tf seconds,
a desired link trajectory q̂ : [0, tf)→ Rn, while preserving
its compliant behavior (point (ii)) and employing a model-
free method (point (i)). Since high-gain feedback control
techniques have the drawback of stiffening the robot, in
Della Santina et al. (2017a) it is suggested to prefer
feedforward control approaches. Among all the possible
techniques, we decide to exploit the benefits of the Iterative
Learning Control (ILC). Given a desired link trajectory
and without the knowledge of the system dynamics, this
control strategy is able to achieve good tracking performance
by iteratively refining the control action. The iteratively
learned control action τeq, at iteration k ∈ N+, combines a
FeedForward (FF) and a FeedBack (FB) component, namely
τkFF and τkFB, such that

τkeq(t) = τk−1eq (t) +KUP(t)ξk−1(t)︸ ︷︷ ︸
τk

FF(t)

+KFB(t)ξk(t)︸ ︷︷ ︸
τk

FB(t)

, (48)

where the tracking error at iteration k is defined as

ξk(t) ,


q̂1(t)− qk1 (t)
˙̂q1(t)− q̇k1 (t)
· · ·

q̂n(t)− qkn(t)
˙̂qn(t)− q̇kn(t)

 ∈ R2n, (49)

and KUP,KFB are the iteration-constant and time-dependent
update and feedback control gain matrices, respectively. For
the sake of clarity, hereinafter, the time dependency will be
omitted whenever possible. Note that, in order to preserve the
robot’s compliant behavior, τkFB should remain small, while
most of the total control action should rely on τkFF.

To be independent of the dynamics of the system,
overcoming problem (i) and simplifying the selection of the
control gains in (48), we employ a decentralized§ control
approach (Siciliano et al. 2010). Thus, the control matrices
can be written as KUP , diag(KUP,j) ∈ Rn×2n and KFB ,
diag(KFB,j) ∈ Rn×2n, where KUP,j , [KpUP,j KvUP,j ] ∈
R1×2 are the update gains relative to the position
(subscript p) and velocity (subscript v) error, and KFB,j ,
[KpFB,j KvFB,j ] ∈ R1×2 are the feedback gains (again
relative to position and velocity error) of the j-th joint. It is
worth noting that, without loss of generality, we can rewrite
(43) as

żj =

[
0 1
0 −Lj/Wj

]
︸ ︷︷ ︸

Ej

zj +

[
0

1/Wj

]
︸ ︷︷ ︸

Hj

τeq,j + δj(z, ż),

(50)
where zj = [qj , q̇j ]

T is the state, Wj and Lj are the inertial
and damping coefficients for the j-th joint, respectively.
δj(z, ż) collects friction, uncertainties, gravitational compo-
nents and coupling terms between joints. Note that Wj and

Lj can be firstly identified with a step response, resulting in
scalar constants, while δj(z, ż) is state-dependent. The state
matrix Ej and the input vector Hj are also constants.

To guarantee the convergence of the iterative learning
process, we leverage on the criteria introduced in Ouyang
et al. (2011) and adopted in Angelini et al. (2018), that
refer to a dynamic system in the from ẋ = f(x) +Bu+ ν,
where x, u and ν are the state, control input and uncertainties
vectors, respectively and f,B are the drift vector and the
input matrix. Adopting a control technique as in (48), the
convergence of the method is guaranteed if the following
conditions are satisfied∥∥(I +KFB(t)B)−1

∥∥
∞ < 1,∀t ∈ [0, tf), (51)

‖I −KUP(t)B‖∞ < 1,∀t ∈ [0, tf), (52)

where ‖·‖∞ stands for the∞-norm (Ouyang et al. 2011).
The convergence conditions (51) and (52), applied to (50),

become ∣∣(1 +KFB,j(t)Hj)
−1∣∣ < 1,∀t ∈ [0, tf), (53)

|1−KUP,j(t)Hj | < 1. (54)

The feedback gain KFB,j(t) is chosen as the solution of
the following time-varying linear quadratic optimization
problem

∫ tf
0
zTj Qzj +Rτ2eq,jdt, with R ∈ R+ and Q ∈

R2×2 design parameters. Thus,

KFB,j(t) = R−1HT
j Sj(t), (55)

with Sj(t) ∈ R2×2 solution of the time-varying matrix
Riccati differential equation, i.e., Ṡj = −SjEj − ETj Sj +

SjHjR
−1HT

j Sj −Q (constrained by Sj(tf) = 0).
For the update component we adopt the following choice

KUP,j(t) = (1 + ε)H†j + Φj , (56)

where H†j is the Moore-Penrose pseudoinverse of the matrix
Hj , ε is chosen as ε = 0.9 (Angelini et al. 2018) and Φ ∈
R1×2 is a vector to be chosen such that ΦTj ∈ ker(HT

j ).
Then, we state the following

Proposition 3. For the system in (50) controlled by (48), if,
for each joint j the feedback control gain KFB,j is chosen
as (55) and the update gain KUP,j as (56), then, ∀ε ∈
[0, 1),∀ΦTj ∈ ker(HT

j ) and ∀R > 0, the convergence of the
iterative algorithm is guaranteed.

Proof. By choosing KFB,j as in (55), condition (53)
becomes ∣∣∣∣∣ R

R+HT
j Sj(t)Hj

∣∣∣∣∣ < 1, ∀t ∈ [0, tf), (57)

that is always fulfilled ∀R > 0 because HT
j Sj(t)Hj is

always positive definite. This is true since Hj is a non-
null vector (inertia term) and Sj(t) is positive definite by
definition.

§According to this approach we can rewrite the inertia and damping matrix
in (43) asM = W + ∆W and C = L+ ∆L, withW = diag(Wj), L =
diag(Lj) and rewrite the dynamics of the j-th joint as in (50), collecting the
coupling terms in δ(z, ż).
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Algorithm 1 Control scheme pseudo-code

1: procedure INITIALIZATION
2: Set(q̂(t), ˙̂q(t), ¨̂q(t)) . Desired joint trajectory
3: Set(θ̂sr(t)) . Stiffness profile selection
4: Set(kp, ki) . s.r.p. PI loop gains
5: Set(Q,R) . LQR control parameters
6: Compute(τ0FF) . Initial guess Eq. (60)
7: Evaluate(KFB(t),KUP(t)) . ILC gains Eq. (55),

(56)
8: procedure LEARNING
9: k ← 1 . Iteration number

10: ξk−1(t)← 0 . Tracking error (49)
11: do
12: Run Trial(τk−1eq )

13: Store(ek, ξk, τkeq)

14: Update(τkeq)
15: k ← k + 1
16: while ek−1 > threshold . Iteration error (63)

For the second condition (54), indeed, by substituting (56)
in (54) we obtain

|1−KUP,jHj | <
∣∣∣1− (1 + ε)H†jHj + ΦjHj

∣∣∣
< |ε− ΦjHj | < |ε| < 1,

(58)

that is always verified with the assumptions made of ε ∈
[0, 1) and ΦTj ∈ ker(HT

j ).

Remark 6. Since Hj = [0 W−1j ]T , we obtain that Φj =
[KpUP,j 0]. Then, according to Angelini et al. (2018), in
order to maintain the same balance between proportional
gain on position and proportional gain on velocity of the j-th
joint, we impose the following

KpUP,j =
‖KpFB,j(t)‖1
‖KvFB,j(t)‖1

KvUP,j ,∀j = 1, . . . n, (59)

where ‖·‖1 is the 1-norm of the vector.

In order to apply the proposed iterative strategy, an initial
guess for the FF torque reference is needed. To compute
it, the steps followed are the same as implemented in the
pILC strategy in Angelini et al. (2018). Thus, for the j-th
joint, given the coefficients Wj and Lj previously defined
and a desired trajectory, with its first and second derivatives
(q̂j , ˙̂qj , ¨̂qj), the initial guess is computed as

Wj
¨̂qj + Lj ˙̂qj + τg,j(0) = τ0FF,j , (60)

where the term τg,j(0) is the torque needed to hold the j-th
joint at initial position, i.e., at the time instant t = 0.

In conclusion, learning the control action τeq with the tILC
approach allows to track the desired position profile with no
knowledge of the system model (point (i)), while, as a result
of Proposition 2, the term τsr is used to separately (point (iii))
adjust the stiffness of the system, overcoming point (ii). The
overall control scheme is shown in Fig. 4, while in Algorithm
1 the pseudo-code for the implementation is reported.

Remark 7. The stability analysis of the closed-loop system
(1) and (2) with the control inputs given by (47) and

Figure 4. Control scheme of the tILC strategy

(48) during each iteration requires further discussion. The
problem amounts to studying the stability of a flexible
joints robot around a time-varying trajectory. To the best of
the authors’ knowledge, this problem, in its most general
form, has not been solved yet. However, the following
considerations apply:

• in case of perfect knowledge of the system model, the
techniques presented in the S.o.A. (Section 3) can be
exploited to solve the tracking problem in a stable
manner;

• in case of partially unknown model, but perfect
knowledge of the gravitational term, asymptotic
stability can be ensured. Tomei (1991) proves the
stability of an equilibrium point. De Luca and Book
(2016) show that the system can be locally stabilized
around a slowly varying reference trajectory;

• in case of a non-perfect knowledge of the gravitational
term, asymptotic stability is still guaranteed, but at a
different equilibrium point (Tomei 1991);

• for the general case of non-perfect knowledge of the
system model, flexible joints robots and time-varying
trajectories, there are no results in the literature yet.
However, it is reasonable to think that, if the reference
trajectory varies slowly, marginal stability may be
achieved by employing similar assumptions of (Tomei
1991).

By choosing the control gains as shown in Section 4 and by
assuming a reference trajectory slowly varying over time,
the control method presented in this work lies in the last
aforementioned case. Note that, although the stability is not
proven, no stability issues have been encountered during the
experimental validation presented in Section 5. Future work
will address the theoretical proof for this last case.

4.3 From theory to application
In practical implementations, some of the hypotheses that
underlay the proposed control scheme could be not fulfilled.
In this section, we discuss the role of these hypotheses on the
controller performances and possible solutions to overcome
the case in which they are not verified.

First of all, this work considers the case of compliant
systems with lumped elasticity concentrated at the joint.
For each joint, the number of motors should be greater or
equal than one, and at least one motor has to be elastically
connected to the link. This guarantees that the system
satisfies Definition 1. If the elasticity is distributed on the
structure, e.g., in the case of continuum soft robots, then
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there are two consequences: the dynamic model of the
system changes and the definition of the link positions should
be revisited. Approximation methods can be considered to
overcome these two points, e.g., (Della Santina and Rus
2019) or (Yu et al. 2018). Consequently, to fruitfully apply
the elastic coupling concept to a discrete model of continuum
soft robots, Definition 1 may necessitate a generalization.

To prove Proposition 2, the system is assumed to be
homogeneous. However, it may happen that nominally equal
motors are slightly different from one another, e.g., because
of production tolerances. Experimental results reported in
Section 5 show that the motion/stiffness decoupling can be
done even if there are small differences in the dynamics
of the motors coming from the manufacturing process.
Differently, for other types of non-homogeneous systems,
such as A-A systems with different motor dynamics, a
more detailed analysis has to be pursued, e.g., considering
the knowledge of the motor model. Reliable knowledge of
the motor model can also be helpful to compensate motor
dynamics when they are not negligible, i.e., when Remark 5
is no more valid.

The elastic potential should be reconducted in the form
of Assumption 1 in order to apply Proposition 1. Then,
Remark 4 (e.g., the case of mono-articular systems) has to
be verified to apply Proposition 2. If this is not the case,
then the motion/stiffness decoupling can not be performed
since coupling terms appear between link-side and motor-
side dynamics. Appendix C shows that Assumption 1 holds
true in many compliant actuators presented in the literature.
However, there may be cases of systems in which the method
can be still applied even if this assumption is relaxed.
For instance, in the case of systems with only one poly-
articular motor it is possible to prove the decoupling property
following the same steps of Section 4 (not reported here for
the sake of space). Other cases will be investigated in future
works.

Furthermore, in realistic elastic connections, the statement
in Remark 1 together with the assumption of constant
external disturbances of the ILC approach may not hold
because of the presence of Coulomb friction. The presence
of these phenomena may alter the convergence to zero of the
iterative process. Indeed, Wang and Longman (1994) show
that stick-slip friction may lead to a limit cycle like behavior
that degrades the learning results. According to Wang and
Longman (1994), to take into account this effect it is possible
to include a torque friction contribution (τfc) on the flexible
joint robot dynamics¶ that becomes

Mq̈ + Cq̇ +G− τeq = τext − τfc, (61)

−
∂V (q, θeq, θsr)

T

∂q
= τeq, (62)

In this case, there are two possible consequences:

• The convergence of the learning process is no more
guaranteed and typically the tracking error may start
to oscillate around a mean value. This occurs because
at each iteration one specific friction contribution is
learned. However, this contribution varies through
iterations, i.e., τk+1

fc 6= τkfc.
• If τfc depends on θsr, then the use of a feedforward

action that has learned θ̄sr will be subject to an error

(a) Horizontal configuration
during impact (top view).

(b) Vertical configuration:
subject to gravity.

Figure 5. The 2-DOF structures equipped with VSAs and used
as experimental setup to evaluate the stiffness preservation
(5.3).

if employed to track the same desired trajectory with
θ̂sr 6= θ̄sr.

The influence of these two facts on the experimental results
is discussed in Section 5. To cope with these problems,
friction compensation techniques may be implemented, e.g.,
following Papadopoulos and Chasparis (2004). This solution
will be analyzed in future works.

5 Experimental validation
In this section the control strategy proposed in Section 4
is experimentally validated on different compliant robotic
structures, each of them is equipped with symmetric A-A
VSAs at the joints. For these actuators both Proposition 1 and
Remark 4 are verified, thus the motion/stiffness decoupling
(Proposition 2) can be applied.

A first experimental example (Comparative example)
compares the results of the proposed control scheme with
S.o.A. control strategies and motivates the choice of an
iterative learning approach. The comparison is made by
means of the average tracking error at the joints and aims
to prove that the proposed method allows to track the desired
trajectory.

Furthermore, in another experiment (Motion/Stiffness
decoupling) the iterative approach is used to learn a torque
control action suitable to track the desired trajectory with
the desired stiffness profile. Then, the compliant behavior is
changed through the s.r.p., and the tracking error is evaluated
again. At this point, differently from the first experiment, our
intention is to evaluate the deviation of the tracking error
that occurs after the change of stiffness (i.e., the gap). Then,
with this experiment, we want to prove the motion/stiffness
decoupling described in Section 4.1: the main contribution of
the control strategy proposed in this paper. The experimental
results show that, using this control action and different s.r.p.
(i.e., compliant behaviors), the trajectory tracking can be still
performed with a small error, proving the decoupling. The
validity of this result is demonstrated both on a simple 2-
DOF structure placed in a vertical configuration (Fig. 5b)
and on a more complex 6-DOF robotic arm described in
Appendix D and shown in Fig. 1 and Extension 1. These

¶Note that friction effects on the adjusting dynamics (45) will be
compensated by the control loop.
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results are compared to the results obtained with the pILC
strategy (Section 3).

Finally, a third experiment (Stiffness preservation) is
executed to effectively prove the preservation of the imposed
stiffness behavior. This is verified through an impact test.
It is worth noting that, for the chosen test-bed, the stiffness
computation strictly depends on the load applied at the link.
Two cases are investigated: with and without external load.
Fig. 5a depicts the structure with no external disturbances at
the moment of impact, while Fig. 5b shows a case in which
the gravity contribution is not negligible.

For all the structures of the experiments, the low-level PI
gains (47) of the actuators are set as kp = 0.5 and ki = 0.005.
The internal firmware of the actuators runs at 1kHz. More
details about the test-bed are reported in Appendix D.

5.1 Comparative experimental analysis
In this example, we analyze and compare the performance of
our tILC strategy with other three S.o.A. control methods: 1)
a computed torque with PID on the equilibrium position of
the motor, i.e. θeq (CT-PIDθ), proposed in (De Luca 2000);
2) a computed torque with PID on the link position (CT-
PIDq); 3) a PID law on the link position (PIDq). It is worth
noting that the first two techniques are model-based, while
the simple PIDq and the one proposed here are model-free.

The experimental setup is a 1-DOF planar structure made
with one VSA, obtained by removing the second joint
from the system shown in Fig. 5a (without obstacle). The
reference link trajectory is a five order minimum jerk step
from zero to q(tf) = 60deg in tf = 6s, as shown in Fig. 6a
(dashed black line). For all the four strategies we imposed a
constant stiffness regulation parameter θsr = 0.5∆mrad, with
∆m maximum s.r.p. allowable for the joint.

To design the control gains of the PID controllers for the
three techniques, an optimization problem has been solved
using as cost function the error in (63). The values (P,I,D)
obtained are the following: k1 = [2.7e03, 9.4e-03, 22.6] and
k2 = k3 = [2.5e03, 4.0e-03, 75.4].

Results: In Table 1 and Fig. 6 the comparative results
are reported. Figure 6a shows the link tracking and the
equilibrium position tracking of the four analyzed methods.
The error evolution for 20 iterations of the tILC method
(solid orange line) and 20 consecutive trials of the other
control strategies (solids green, violet, and yellow lines) is
illustrated in Fig. 6b.

The first result to observe is that, once the iterative process
converges (from iteration 10), the tracking error for the tILC

Strategy ēI [rad] ∆eI [rad]
∫
τ2FB[Nm]

∫
τ2FF[Nm]

CT+PIDθ 0.117 0.001 0.123 0.088
CT+PIDq 0.020 0.004 0.062 0.088

PIDq 0.060 0.003 0.538 -
tILC 0.009 0.005 1.6e-05 0.164

Table 1. Numerical results for the four strategies. The first two
columns report the mean and the standard deviation of the error
for the last ten iterations/trials, i.e. I ∈ [10 : 20]. The value of
the torque power index for the components of FB and FF is
shown in the last two columns. Note that the PIDq has,
obviously, no FF term.

(a) (b)

(c)

Figure 6. Graphical results of the comparative experiment.
Trajectory tracking for both link and equilibrium position are
reported in (a), top and bottom plot, respectively. The evolution
of the error (eq. (63)) during iterations (for tILC) and during
different trials (for the other controls) is reported in (b), while
comparison between FB and FF torque components is shown in
(c). Note that, for the tILC case in (a) and (c) we considered the
last iteration (k = 20).

(a)

(b)

Figure 7. The evolution of the equilibrium torque τeq through
iterations is shown in (a), while the plot in (b) shows the
measured motor torques at the last iteration k = 20 together
with the equilibrium and the stiffness regulation contributions,
for the tILC method in the 1-DOF case.

case is lower compared to the other methods (see Fig. 6b).
More in details, the simple PIDq gives worst performances
compared to the tILC strategy. Nevertheless, due to the
simple case under analysis (i.e. planar 1-DOF), for which
we can easily evaluate the dynamic model parameters, if
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we add a feedforward model-dependent term (CT+PIDq
method) we can obtain good tracking results. It is worth
noting, however, that the sole use of the model-dependent
term, closing the feedback loop on the equilibrium position
of the motors (CT+PIDθ), is not sufficient to achieve
good results. This is due to the fact that, despite the
simple case, the model does not perfectly match with the
real system. Consequently, the control strategies analyzed
should leverage the feedback terms to reach good tracking
performance. Then, as discussed in Section 1, in this
last situation the compliant behavior may be altered. The
evolution of FB and FF torque components are shown in
Fig. 6c and their amount are reported in Table 1 (last two
columns).

This point introduces the second important result of this
comparative example. Indeed, it is possible to see how,
among all the other strategies, tILC allows us to achieve the
best tracking performance (Fig. 6a top plot) maintaining the
feedback component to a minimum amount (Fig. 6c bottom
plot, orange line). This can also be verified in Table 1.

Furthermore, for the tILC strategy proposed in this work,
the evolution of the feedforward contribution τeq through
iterations is reported in Fig. 7a, while all the measured torque
contributions are shown in Fig. 7b.

5.2 Motion/Stiffness decoupling
These experiments aim to prove the decoupling of the
proposed strategy compared to the results obtained with
the pILC approach (Angelini et al. 2018). The two ILC
approaches employ the same control parameter R and start
from the same rough estimation of the dynamic parameters,
obtained through a step response.

The experiments proceed as follow:

• learning process; according to the ILC case under
test, in this phase an equilibrium torque τeq (or position
θeq) control action is learned through iterations with
a specific compliant behavior (soft or stiff ). The
iterations proceed until the trajectory tracking error
reaches a satisfying value,
• stiffness change; once the control action is learned,

the stiffness regulation parameter θsr is changed to
modify the compliant behavior, from low value (soft)
to high value (stiff ), and viceversa. The same control
action is used to execute one more iteration, and the
overall tracking error‖ is computed as

ek ,

n∑
j=1

(∫ tf

0

∣∣q̂j − qkj ∣∣ dt)
n · tf

, (63)

where k is the iteration number, tf final time and n
number of joints,
• performance recovery; additional iterations are per-

formed to recover the trajectory tracking performance
degradation caused by the stiffness transition.

5.2.1 2-DOF (vertical configuration) : For this simple
case the joint trajectory goes from q(0) = [0, 0]T deg to
q(tf) = [35, 45]T deg in tf = 2s. The reference trajectory is
a five order minimum jerk trajectory. The stiffness regulation

parameters are set as θsr,j = 0.2∆m,j for the soft case
and θsr,j = 0.8∆m,j for the stiff case, where ∆m,j is the
maximum s.r.p. for the j-th actuator. For both ILC approaches
the control parameters are chosen as R = 5.

Results: Fig. 8 shows the evolution of ek for both position
(dashed blue line) and torque (solid orange line) ILC, either
for the soft to stiff transition (Fig. 8a), and the stiff to soft
transition (Fig. 8b). Table 2 reports the numerical results.
For these cases 20 iterations are required to reach a small
tracking error with both the behaviors (left-hand side curves
of the plots in Fig. 8a and Fig. 8b). From the 21st on iteration
the s.r.p. is changed and other 20 iterations are performed
(right-hand side curves of the plots in Fig. 8a and Fig. 8b).
In both the figures, FF20 refers to the error at the 20th
iteration (e20) while FF20+1 refers to the first iteration after
the stiffness change, starting from FF20 (e21). It is worth
noting that, comparing the FF20 and FF20+1 marked points
in both the cases of Fig. 8a and Fig. 8b, the gaps relative to
the pILC case (blue square markers) are larger then the gaps
of the tILC case (orange circle markers). More in detail, the
ratio between the error gaps in the tILC case and the error
gap in the pILC case is: 0.50, for the soft to stiff case (Fig.
8a) and 0.45, for the stiff to soft (Fig. 8b) case. This suggests
that the control inputs are less coupled with the tILC strategy
proposed in this work.

5.2.2 6-DOF (soft arm) : In this case, the desired link tra-
jectory goes from q(0) = [0, 0, 0, 0, 0, 0]T deg to q(tf/2) =
[60,−10,−45,−25,−90,−45]T deg and then goes back to
the initial position, in tf = 20s . As in the simpler 2-DOF
case, the reference trajectory is a five order minimum jerk
trajectory and the stiffness regulation parameters are set as
θsr,j = 0.2∆m,j for the soft case and θsr,j = 0.8∆m,j for the
stiff case, where ∆m,j is the maximum s.r.p. for the j-th
actuator (j = 1, ...6). For both ILC approaches the control
parameter is chosen as R = 9.

Results: Fig. 9 shows the evolution of ek for either position
(dashed blue line) and torque (solid orange line) ILC case
for the soft to stiff transition (Fig. 9a) and the stiff to soft
transition (Fig. 9b), while numerical results are reported in
Table 3. For these cases, 40 iterations are required to reach
a small tracking error either in soft and in stiff behaviors
(left-side curves of both plots in Fig. 9a and Fig. 9b). At the
41st iteration the s.r.p. is changed and other 40 iterations are
performed (right-side of the plots in Fig. 9a and Fig. 9b). For
the proposed strategy (tILC) the trajectory tracking at each
joint is reported in Fig. 10 and Fig. 11 for the soft to stiff and
stiff to soft transition, respectively. In the figures we show six
meaningful iterations, i.e., k = {1, 20, 40, 41, 60, 80}. The
reference trajectory is depicted with a dashed black line.
Fig. 9a and Fig. 9b show that for this complex structure, the
differences of the gaps between the errors e40 (FF40) and
e41 (FF40+1) are more visible. Indeed, the ratio between the
error gap in the tILC and the error gap in the pILC case is:
0.16 for the soft to stiff transition and 0.18 for the stiff to

‖Please note that metric (63) is averaged between the joints to simplify
the performance comparison between structures with a different number of
joints. Furthermore, it is normalized w.r.t. the terminal time to simplify the
performance comparison between different trajectories.
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(a) Soft to Stiff transition (b) Stiff to Soft transition

Figure 8. Evolution of the error ek over iterations for the 2-DOF structure. The results for the soft to stiff and stiff to soft transitions
are depicted in (a) and (b), respectively. Both the position (dashed blue line) and torque (solid orange line) ILC approaches are
reported. The figures show the convergences of the error during the first 20 iterations (lef-side of plots in (a) and (b)) and the
convergences after s.r.p. change (right-side of the plots). FF20 is the error at the 20th iteration e20, and FF20+1 is the same error at
the first iteration after s.r.p. change e21. The error gaps in (a) are: gapP = 0.186rad and gapT = 0.094rad, and in (b) are:
gapP = 0.111rad and and gapT = 0.050rad, where the pedices denote, P position and T torque ILC case.

(a) Soft to Stiff transition (b) Stiff to Soft transition

Figure 9. Evolution of the error ek over iterations for the 6-DOF robotic arm. The results for the soft to stiff and stiff to soft
transitions are depicted in (a) and (b), respectively. Both the position (dashed blue line) and torque (solid orange line) ILC
approaches are reported. The figures show the convergences of the error during the first 40 iterations (lef-side of plots in (a) and
(b)) and the convergences after s.r.p. change (right-side of the plots). FF40 is the error at the 40th iteration e40, and FF40+1 is the
same error at the first iteration after s.r.p. change e41. The error gaps in (a) are: gapP = 0.208rad and gapT = 0.034rad, and in (b)
are: gapP = 0.134rad and gapT = 0.024rad where the pedices denote, P position and T torque ILC case, respectively. The figures
show that for this complex structure, the comparison from error gaps in (a) and (b) is even more visible.

soft transition. For the soft to stiff transition the gaps ratio
can be also graphically evaluated from the frame sequences
shown in Fig. 1 and in Fig. 12. The same results can also
be seen in Extension 1. Similar to the previous case, these
results validate the proposed control strategy and allow us to
conclude that the decoupling is verified even in robots with a
higher number of joints.

5.2.3 Discussion: Similarly to the pILC strategy, the
iterative process of the tILC method converges, and allows us
to achieve good tracking performance in all scenarios. This
result can be retrieved from Fig. 8 and Fig. 9, and also from
Table 2 and Table 3, by comparing the tracking error at the
first iteration e1 with the error at the 20th iteration e20 (for
the 2-DOF case) or the error at the 40th iteration e40 (for the
6-DOF case). The learning convergence can be also noticed
by comparing the trajectory tracking at the first iteration
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Figure 10. Joint trajectory tracking for the tILC method: soft to stiff transition. Six of the iterations performed are reported: from
k = 1 to k = 80. Among them, the first three lines, i.e. k = {1, 20, 40}, are performed with a soft behavior, while the last three,
k = {41, 60, 80}, are obtained with a stiff behavior. The dashed black line is the reference trajectory for each joint. The learning
improvement can be verified by comparing k = 1 with k = 40, while the motion/stiffness decoupling by comparing k = 40 and
k = 41. The joint J2 is the more subjected to the friction effect, especially in the soft case.

Figure 11. Joint trajectory tracking for the tILC method: stiff to soft transition. Six of the iterations performed are reported: from
k = 1 to k = 80. Among them, the first three lines, i.e. k = {1, 20, 40}, are performed with a stiff behavior, while the last three,
k = {41, 60, 80}, are obtained with a soft behavior. The dashed black line is the reference trajectory for each joint. The learning
improvement can be verified by comparing k = 1 with k = 40, while the motion/stiffness decoupling by comparing k = 40 and
k = 41. The joint J2 is the more subjected to the friction effect, especially in the soft case.
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(k = 1) and at the 40th iteration (k = 40) in Fig. 10 and
Fig. 11. However, it is worth saying that, in terms of tracking
error, the error of tILC is slightly larger than the pILC one,
especially in the soft case. This first part of the experiment
(i.e. the learning process) shows the effectiveness of the tILC
method in tracking the desired trajectory. Instead, the second
part aims to prove the motion/stiffness decoupling. Indeed,
iteration k = 41 shows the performance degradation after a
change in the stiffness of the system. The results show that,
as soon as this change occurs, the error gaps caused by a
stiffness change are considerably smaller in the tILC case
w.r.t. the pILC case. This can be numerically verified from
Table 2 and Table 3 by comparing the errors e20 and e21 for
the 2-DOF structure, and similarly for the 6-DOF arm (cf.
e40 and e41).

In terms of individual joint performance, Table 4 shows
the integral absolute error of each joint at the iteration k =
{1, 40, 41, 80}, for the tILC case of the 6-DOF arm. From
Table 4 it is possible to see that also the error at each
joint converges during the first 40 iterations. In addition,
the trajectory tracking for each joint is reported in Fig. 10
and Fig. 11, and in the video attachment (Extension 1).
From these figures we can conclude that, especially in soft
behavior, the worse tracking performance is given by the
second joint J2. This is mainly due to the presence, in our
experimental setup, of a gravity compensation mechanism
composed of a pair of springs, belts and several pulleys
(more details in Appendix D). These components are more
subjected to wear phenomena and friction, that in turn affect
joint J2 and J3. The mechanism also couples the two joints
J2 and J3. Furthermore, due to the mechanical structure of
the manipulator, we have that the torque seen at the joint
J4 is more influenced by the trajectory we impose to the
last two joints (i.e. J5, J6). This influence is also caused by
the weight of the last components of the arm that affects
J4, differently to what happens to J2 and J3, for which the
gravity is compensated.

Besides these positive results, the experiments also
highlight the sensitivity of the tILC method to undesired
friction effects on both the test-beds. Indeed, as discussed
in Section 4.3, these effects change for each iteration, thus
they can not be completely learned. In addition, these effects
may depend on the value of θsr, resulting in a more visible
influence with soft behavior than with stiff behavior, for both
the controllers. The reader can observe this phenomenon in
Fig. 8 and Fig. 9, where fluctuations of the error can be
noticed.

On the other hand, pILC presents fewer irregularities in
the convergence, due to the loop closed in position, that
allows compensating the friction phenomena. It is reasonable
to conclude that, whenever the system is affected by friction
effects, and the task does not require to change the stiffness
profile, tILC does not present clear advantages compared
to pILC. Conversely, if the stiffness profile of the task
must be changed considerably, then tILC should be chosen,
taking into account the friction effect. In order to reduce the
performance degradation due to friction, high-gain feedback
could be employed, however, this would counteract the goal
of this work regarding the stiffness preservation (discussed
in Section 2).

The recovery part of the experiment shows that for the
soft to stiff transition, tILC requires few more iterations to
regain performances after the stiffness change. It is worth
noting that the number of iterations that tILC requires to
regain performance is less if compared with the pILC case.
Indeed, the latter method requires an entirely new learning
process, as shown in Fig. 8a and Fig. 9a. Differently, in
the stiff to soft transition, tILC performs much better in
terms of the error gaps achieved after the change of stiffness.
Indeed, for this case, after the stiffness change, the tracking
error reaches immediately the best value achievable by the
compliant structure. Then, no more iterations are needed to
regain performance (differently from the pILC, Fig. 9b).

From a comparative point of view, tILC improves the
results of the pILC, meaning that it allows to generalize
the learning process w.r.t. possible change of the compliant
behavior of the system. Despite this, dealing with a control
strategy based on torque, the results are more sensitive to
friction effects. This may restrict the effectiveness of the tILC
method to all the cases in which such effects are negligible.
Also, other sources of error compromising the effectiveness
of tILC may depend on the characteristics of the system
itself. For instance, if the actuation unit is relocated w.r.t.
the variable to be controlled, the interconnecting mechanism
(e.g., a Bowden cable (Zhang et al. 2017)) can be subjected
to vibrations, thermal variability or in general will be more
prone to friction. For this reason, to improve the performance
of the tILC method, the use of friction compensation
techniques will be investigated in future works.

5.3 Stiffness preservation
This experiment starts with the same learning process of
Section 5.2, considering only the tILC case. Once the
trajectory is learned, a fixed object is placed along the desired
trajectory path. The test is performed with two compliant
behaviors changing the s.r.p. θsr: low value (soft) and high
value (stiff ). At a certain time instant (dashed magenta
vertical line in Fig. 13 and Fig. 14) the system impacts the

e1 [rad] e20 [rad] e21 [rad] e40 [rad]

a)
pILC 0.150 0.007 0.193 0.004
tILC 0.279 0.011 0.105 0.012

b)
pILC 0.058 0.008 0.119 0.032
tILC 0.294 0.020 0.070 0.079

Table 2. Tracking error ek at the k-th iteration of the two
strategies pILC and tILC for the 2-DOF system. The first two
rows (a) show the transition from soft to stiff, and the stiff to soft
case is shown in the last two rows (b).

e1 [rad] e40 [rad] e41 [rad] e80 [rad]

a)
pILC 0.179 0.027 0.236 0.023
tILC 0.175 0.050 0.075 0.019

b)
pILC 0.113 0.025 0.159 0.053
tILC 0.181 0.023 0.057 0.064

Table 3. Tracking error ek at the k-th iteration of the two
strategies pILC and tILC for the 6-DOF system. The first two
rows (a) show the transition from soft to stiff, and the stiff to soft
case is shown in the last two rows (b).
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(a) t1 = 0s t2 = 2.5s t3 = 5s t4 = 7.5s t5 = 10s

(b) t1 = 0s t2 = 2.5s t3 = 5s t4 = 7.5s t5 = 10s

(c) t1 = 0s t2 = 2.5s t3 = 5s t4 = 7.5s t5 = 10s

(d) t1 = 0s t2 = 2.5s t3 = 5s t4 = 7.5s t5 = 10s

(e) Time evolution of error defined as: et = ||q̂ − q||2

Figure 12. Frame sequences of the soft-to-stiff experimental task (see also Extension 1). Figures report the frame sequences of
the task for the first and last iteration in soft case, (a) and (b), and first and last iteration in stiff case, after stiffness regulation
parameter change, (c) and (d). The plots report the time evolution of the Euclidean norm (2-norm) of the joints error as reported in
the caption (e), for the four cases respectively.

obstacle. Then, the stiffness is computed as in (92), and it is
compared to the obstacle-free stiffness profile.

5.3.1 2-DOF (horizontal configuration) : For this config-
uration the minimum jerk joint trajectory goes from q(0) =
[0, 0]T deg to q(tf) = [35, 45]T deg in tf = 2s. The stiffness
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regulation parameters are set as θsr,j = 0.2∆m,j for the soft
case and θsr,j = 0.8∆m,j for the stiff case, where ∆m,j is
the maximum deflection reachable from the j-th actuator
(j = 1, 2). The ILC control parameter is chosen as R = 5.

Results: Fig. 13 shows the stiffness profiles, computed as
in (92), in case of obstacle impact (solid blue lines) and
obstacle-free execution (dashed red lines). From the figures it
is possible to conclude that, either with the soft (Fig. 13a) as
with the stiff (Fig. 13b) behavior, the stiffness is preserved at
the moment of impact. With this particular configuration the
system is not altered by external load. Thus, in the obstacle-
free case, the stiffness remains constantly at the desired value
during all the execution.

5.3.2 2-DOF (vertical configuration) : For this configu-
ration the minimum jerk joint trajectory goes from q(0) =
[0, 0]T deg to q(tf) = [35, 45]T deg in tf = 2s. The stiffness
regulation parameters are set as θsr,j = 0.2∆m,j for the soft
case and θsr,j = 1∆m,j for the stiff case, where ∆m,j is
the maximum deflection reachable from the j-th actuator
(j = 1, 2). Note that, for the sake of visibility, the stiffness
regulation parameter in the stiff case is higher w.r.t. the one
used in the horizontal case. The ILC control parameter is
chosen as R = 5.

Results: Fig. 14 shows the stiffness profiles, computed
as in (92), in case of obstacle impact (solid blue lines)
and obstacle-free execution (dashed red lines). As in the
horizontal configuration, the figures suggest that, either with
the soft (Fig. 14a) or with the stiff (Fig. 14b) behavior, the
stiffness is preserved at the moment of impact. However, the
external load (i.e., gravity action) is not negligible and alters
the stiffness profiles, as visible in the soft case. This causes
an increment of the stiffness values even in the obstacle-free
execution.

5.4 Application:
One practical example where it is useful to apply the tILC
strategy proposed in this work, is the button-pushing task
reported in Mengacci et al. (2019). In this example, the task
requires to interact with a switch button, with the goal of

tILC e1 [rad] e40 [rad] e41 [rad] e80 [rad]

a)

J1 0.094 0.028 0.084 0.023
J2 0.148 0.084 0.085 0.014
J3 0.205 0.062 0.084 0.014
J4 0.184 0.017 0.077 0.005
J5 0.234 0.093 0.085 0.032
J6 0.188 0.017 0.034 0.026

b)

J1 0.142 0.016 0.074 0.032
J2 0.052 0.028 0.034 0.062
J3 0.222 0.014 0.052 0.068
J4 0.203 0.008 0.083 0.042
J5 0.266 0.051 0.045 0.124
J6 0.200 0.020 0.055 0.048

Table 4. Integral absolute error at the k-th iteration of the tILC
strategy for each joint of the 6-DOF system. The first six rows
(a) show the transition from soft to stiff, while the stiff to soft
case is shown in the last six rows (b).

correctly push it. Moreover, as discussed in the referenced
paper, the task can not be performed with a low compliant
behavior, due to interaction stability issues. Thus, to reach
the button it is important to perform a good trajectory
tracking and to push the button a specific stiffness is required.
Furthermore, a compliant behavior can still be needed to
prevent any damage to the environment or to the manipulator
itself during the interaction.

Thus, by exploiting the proposed scheme, the control
action that leads to a satisfactory trajectory tracking can be
firstly learned with any compliant (soft) behavior. Once this
control action is successfully learned, the compliant behavior
can be changed to meet the task requirements, i.e., in this
case, to push the button without slipping. Then, for this
case, and for other cases of trajectory tracking for elastic
robots with variable compliance, the iterative procedure is
considerably reduced if the presented control strategy is
adopted.

6 Conclusions
In this paper, a novel control scheme has been presented
with the aim to track a desired link position trajectory
without compromising the natural compliant behavior of an
articulated soft robot. We proved that, under the assumptions
of strong elastic coupling and homogeneity, the dynamics of
a robot with lumped elasticity at the joints can be decoupled
into two separate parts, one representing the dynamics of
a flexible joint robot and the other one that allows the
stiffness adjusting. Then, a torque-based ILC approach was
proposed to control the link position and a PI control loop
was implemented to track the stiffness regulation parameter.

Combining these two actions, the overall control strategy
results in a model-free decoupled torque control scheme
useful for driving robotic systems equipped with compliant
actuators. In addition, the general formulation of this method
allows to apply this scheme to most VSAs presented in the
literature.

We discussed what are the main points to be considered
whenever the theoretical control strategy has to be imple-
mented in real applications. We analyzed the consequences
of a lack of validity of some of the hypotheses and we
proposed some solutions. Then, experimental validation of
the strategy on symmetric A-A VSAs has been done proving
that the proposed method effectively reduces the coupling
between the learned control action and the stiffness selection.
This is verified either for a simple 1-DOF or 2-DOF struc-
tures and a more complex 6-DOF arm. Impact tests proved
also that the stiffness was preserved during the tasks.

To summarize, in this work we showed that the proposed
tILC scheme allows us to track a given position trajectory
independently from the stiffness profile. Furthermore, it
is possible to learn the control action, needed to perform
accurate positioning of the system, in a safe condition
(i.e., with low stiffness profile) either for the surrounding
environment or for the structure itself. Once learned, the
same control action can be used with different compliant
behavior to adapt to the task requirements. This control
strategy finds direct application on tasks in which intentional,
or unexpected, interactions with the environment may occur,
e.g., the button-pushing task presented in Section 5.4.
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(a) Soft case (b) Stiff case

Figure 13. Normalized joints stiffness for the 2-DOF horizontal structure. In figures are reported the joints stiffness in the soft case
(a) and in the stiff case (b), computed as in (92) and normalized by the maximum stiffness of the respective actuator. The moment
of impact is marked with a dotted magenta vertical line. The stiffness profile in case of obstacle impact is decited in solid blue lines,
while the obstacle-free execution is depicted in dashed red lines. For this configuration, the two profiles are identical before the
impact, while after the collision a gap grows.

(a) Soft case (b) Stiff case

Figure 14. Normalized joints stiffness for the 2-DOF vertical structure. In figures are reported the joints stiffness, in the soft case
(a) and in the stiff case (b), computed as in (92) and normalized by the maximum stiffness of the respective actuator. The moment
of impact is marked with a dotted magenta vertical line. The stiffness profile in case of obstacle impact is depicted in blue solid line,
while the obstacle-free execution is depicted in dashed red line. Even in this case the two profiles are identical before the impact.
However, for this setup, the gravitational contribute is not negligible and alters the stiffness of the system. This can be seen
expecially in the soft case in (a).

The experiments carried out in this work showed that
the main limitation of the proposed method resides in the
presence of friction. Indeed, friction plays a crucial role
in the tracking error achieved and for the motion/stiffness
decoupling. The frictional effects are also strongly related to
the actuation employed in the experiments. This is the case of
our experimental setup that, especially when operating with
low stiffness, showed high sensitivity to friction, leading to
a significant error on the trajectory tracking for some joints.
It is also worth noting that the individual errors at the joints
affect the resulting Cartesian position (cf. video attachment
in Extension 1), depending also on the kinematic structure
and the number of degrees of freedom of the system.

For all these reasons, to overcome the practical limitations
of the method and to further improve the tracking
performance, future works will be devoted to limit the
friction influence. To achieve this goal, both improvements
of the hardware and friction compensation techniques will
be investigated.
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Appendix A. Index to multimedia extensions

Table of Multimedia Extensions

Extension Media type Description
Demonstration of

1 Video Experiment 1 for the
6-DOF arm

Appendix B. Derivation of A,B,C matrices

In this Appendix we derive the matrices A,B and C shown
in Proposition 1 of Section 4.

From Assumption 1, we write

∂Vi
∂qj

=
∂fi
∂yi

∂yi
∂qj

gi, ∀i = 1, ..s, ∀j = 1, ..n, (64)

thus,

∂V T

∂q
=


∑
i
∂Vi

∂q1
...∑
i
∂Vi

∂qn

 =


∂y1
∂q1

. . . ∂ys
∂q1

...
∂y1
∂qn

. . . ∂ys
∂qn


z︷ ︸︸ ︷

∂f1
∂y1

g1
...

∂fr
∂ys

gs

,
(65)

where z ∈ Rs×1. From (14), ∂yi∂q = aTi , hence

∂V T

∂q
=
[
aT1 . . . aTs

]︸ ︷︷ ︸
A

z, (66)

with A ∈ {−1, 0, 1}n×s.
We suppose here, without loss of generality∗∗, that the

vector θ is reordered such that

θ =
[
θTd θTa

]T
=
[
θd,1 . . . θd,r θa,(r+1) . . . θa,(m−r)

]T
.
(67)

The partial derivative w.r.t. the motor positions can be
written as

∂V T

∂θ
=


∂V T

∂θd

∂V T

∂θa

 =


∑
i

∂V Ti
∂θd∑

i

∂V Ti
∂θa

 , (68)

where 
∂V Ti
∂θd

=
∂fi
∂yi

∂yTi
∂θd

gi

∂V Ti
∂θa

= fi
∂gi
∂wi

∂wi
∂θa

, ∀i = 1, ..s. (69)

from which

∂V T

∂θ
=



[
∂yT1
∂θd

. . .
∂yTs
∂θd

]
z︷ ︸︸ ︷

∂f1
∂y1

g1
...

∂fs
∂ys

gs



[
∂wT

1
∂θa

. . .
∂wT

s
∂θa

]
f1

∂g1
∂w1

...
fs

∂gs
∂ws


︸ ︷︷ ︸

v



, (70)

where v ∈ Rs×1. From (14) ∂y
T
i

∂θd
= bTi , ∂w

T
i

∂θa
= cTi and then

(70) becomes

∂V T

∂θ
=


B︷ ︸︸ ︷[

bT1 . . . bTs
]
z

[
cT1 . . . cTs

]︸ ︷︷ ︸
C

v

 , (71)

with B ∈ {−1, 0, 1}r×s and C ∈ {−1, 0, 1}(m−r)×s.
Thus (66) and (71) lead to

∂V (q, θ)T

∂q
= A · z(q, θ), (72)

∂V (q, θ)T

∂θ
=

[
B · z(q, θ)
C · v(q, θ)

]
. (73)

Appendix C. Elastic models
In the following we report the evaluation of the matrices
A,B and Γ for some examples of compliant actuators found
in literature.

Series Elastic Actuator (SEA)
For completeness we report here also the case of an actuator
in which the output link is connected to only one motor
(m = n = 1) through a spring element with fixed elasticity
(Kl). Note that, for this model, Proposition 2 can not be
applied since the stiffness can not be varied. The elastic
potential can be written as

V (q, θ) =
Kl

2
(q − θ)2. (74)

The partial derivative w.r.t. the output link is

∂V (q, θ)

∂q
= Kl(q − θ), (75)

while the partial derivative w.r.t. the motor position is

∂V (q, θ)

∂θ
= −Kl(q − θ). (76)

From (75) and (76) it is possible to show that the matrices are
A = 1, B = −1, Γ = −1. The deflecting motor is θd = θ
and there is no adjusting motor.

∗∗Note that reordering the motor vector can always be done since the motors
dynamics are decoupled (i.e. J and D are diagonal matrices).

Prepared using sagej.cls



21

Adjustable Variable Stiffness Actuator (AwAS)
This actuator, proposed in Jafari et al. (2013), implements the
variable lever arm principle in which, to vary the stiffness
of the output link, the spring point is changed. For this
design two different motors are used to drive the joint and to
adjust the stiffness, separately, i.e.,m = 2, r = 1. The elastic
potential can be written as

V (q, θ) =
Ks

2

[
(l0 + θ2 sin(q − θ1))2+

+(l0 − θ2 sin(q − θ1))2
]
. (77)

The partial derivative w.r.t. the output link is

∂V (q, θ)

∂q
=
Ks

2

[
2θ2 cos(q − θ1)(l0 + θ2 sin(q − θ1))2+

−2θ2 cos(q − θ1)(l0 − θ2 sin(q − θ1))2
]
,

(78)

while the partial derivatives w.r.t. the motor positions are

∂V (q, θ)

∂θ1
= −Ks

2

[
2θ2 cos(q − θ1)(l0 + θ2 sin(q − θ1))2+

−2θ2 cos(q − θ1)(l0 − θ2 sin(q − θ1))2
]
, (79)

∂V (q, θ)

∂θ2
=
Ks

2

[
2 sin(q − θ1)(l0 + θ2 sin(q − θ1))2+

−2 sin(q − θ1)(l0 − θ2 sin(q − θ1))2
]
. (80)

From (78), (79) and (80) it is possible to show that the

matrices are A = [1 0], B =

[
−1 0
0 0

]
and Γ = [−1 0],

given the motors partitioning with θd = θ1 and θa = θ2.

vsaUT (II)
As for the previous case, the VSA proposed in Visser
et al. (2011) is based on a lever arm principle. However,
in this case the stiffness is changed by moving the point of
application of the force on the lever. Even for this actuator
two different motors (m = 2, r = 1) allow to change the
position and the stiffness. The elastic potential and its
derivatives are computed as

V (q, θ) =
1

2

(L− θ2)2

θ22
KL2 sin2(q − θ1), (81)

∂V (q, θ)

∂q
=
KL2 cos(q − θ1) sin(q − θ1)(L− θ2)2

θ22
, (82)

∂V (q, θ)

∂θ1
= −KL

2 cos(q − θ1) sin(q − θ1)(L− θ2)2

θ22
,

(83)

∂V (q, θ)

∂θ2
= −KL

2 sin(q − θ1)2(2L− 2θ2)

2θ22
+

− KL2 sin(q − θ1)2(L− θ2)2

θ32
. (84)

From (82), (83) and (84) we obtain that the matrix is given

by A = [1 0], B =

[
−1 0
0 0

]
and Γ = [−1 0]. Even in

this case, given the motors partitioning with θd = θ1 and
θa = θ2.

VSA-Cube
The actuator proposed in Catalano et al. (2011), is of the
antagonistic springs with antagonistic motors category. This
implies that the motors (m = 2, r = 2 in this case) are
connected through an elastic element to the output link. Thus,
to change the stiffness both motors have to move in opposite
direction, while a movement on the same direction changes
the equilibrium point. The elastic potential is

V (q, θ) =
k ((cosh(a(q − θ1))− 1)+))

a
+

+
k ((cosh(a(q − θ2))− 1)))

a
. (85)

Note that, for the sake of simplicity, we considered a
symmetric agonistic-antagonistic mechanism, i.e., same k
and a parameters. The partial derivatives w.r.t. the link and
the motors are

∂V (q, θ)

∂q
= k [sinh(a(q − θ1)) + sinh(a(q − θ2))] , (86)

∂V (q, θ)

∂θ1
= −k sinh(a(q − θ1)), (87)

∂V (q, θ)

∂θ2
= −k sinh(a(q − θ2)). (88)

In this case, from (86), (87) and (88) the matrices are

obtained as A = [1 1], B =

[
−1 0
0 −1

]
and Γ = [−1 −

1]. Differently, here both the motors are deflecting motors
thus, θd = [θ1 θ2]T and there is no adjusting motor.

Appendix D. The 6-DOF VSAs soft arm
In this section we report the mechanical design of the 6-DOF
robotic arm used as experimental setup (Fig. 1). The overall
CAD assembly and its main components are illustrated in
Fig. 15.

Kinematic analysis
To analyze the direct kinematics of the 6-DOF arm the
standard Denavit-Hartenberg (DH) parameterization was
used. The manipulator has a serial, fully actuated, six degrees
of freedom structure. The detailed DH table is reported in
Tab. 5. To perform manipulation tasks a Pisa/IIT SoftHand
(Della Santina et al. 2017b) is mounted as end-effector (ee)
of the robotic arm, (element B in Fig. 15). The structural
parameters of the manipulator are the following: l0 =
0.033m, l1 = 0.077m, l2 = 0.300m, l3 = 0.128m, l4 =
0.089m, l5 = 0.077m, l6 = 0.157m, α = 16.4deg, β =
30deg, γ = 13.6deg, ψ = 18deg.

Gravity compensation
The overall weight of the 6-DOF manipulator is approx-
imately 4kg. To improve the payload capabilities of the
system, a gravity compensation system has been introduced
in the design of the soft arm. The mechanism is depicted in
Fig. 16. The key idea is to mechanically remove, through an
elastic system, the structure load on the second (J2, Fig. 16a)
and third (J3, Fig. 16b) joint. In this way, all the joints can
exploit full torque and stiffness range.
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d θ a α

S0-S1 l0 0 0 0

S1-S2 l1 q1 0 π/2

S2-S3 0 q2 + γ + π/2 l2 0

S3-S4 0 q3 + β + α+ π/2 l3 cos(ψ) π/2

S4-S5 l3 sin(ψ) q4 + π/2 0 π/2

S5-S6 l4 + l5 q5 + π/2 0 π/2

S6-S7 0 q6 + π/2 l6 −π/2
S7-See 0 −π/2 0 0

Table 5. Denavit-Hartenberg table of the 6-DOF
antrophomorphic arm.

Nominal torque 6 Nm
Nominal speed 10 rad/s
Stiffness range 0.6− 30 Nm/rad
Rotation range ±180 deg

Sensors position, current
Weight ≈ 0.5 kg

Table 6. Main feautures of qbMove Advanced actuator.

To take into account the elastic system contribution, the
potential energy is computed as

Us =

3∑
j=2

1

2
kj

(
xpj + dxj

2

)2

, (89)

where kj are the elastic spring constants, xpj are the
pre-tension lengths of the tackles and dxj are the spring
deflections (see Fig. 16c). By the Carnot theorem, the

Figure 15. CAD assembly of the 6-DOF robotic arm with main
components highlighted. The components are: A) qbMove
actuators; B) Pisa/IIT SoftHand; C) qbMove flanges; D) idler
(tensioner) pulleys; E) Transmission belt; F) Plastic covers; G)
Tackle system; H) Base bearings; I) Dynema tendon; L)
Compensation spring; M) USB type-B power port.

(a) Right view: spring/tendon for
J2 compensation.

(b) Left view: spring/tendon
for J3 compensation.

(c) Detail of variables.

Figure 16. Sketch of the gravity compensation mechanisms.

effective spring compression is

dxj =
√
c2j + d2j − 2cjdj cos(θj + αj), (90)

where θj = arccos(dj/cj) are structural angles, cj , dj
structural parameters and α2 = q2, α3 = α2 + q3 + π/2 +
γ due to the curvature (γ) of the second link. Note that this
mechanism couples the two joints, in fact q2 angle appears in
the computation of dx3.

Finally, differentiating (89) over joint variables, it is
possible to compute the torque contribution of the gravity
compensation mechanism as

Gs =
∂Us

∂q
. (91)

Hence, the gravitational term in (1) becomes G′ = G+Gs
The parameters used in the real mechanism are:
d2 = 0.024m, d3 = 0.031m, xp2 = 0.011m, xp3 =
0.009m, c2 = 0.036m, c3 = 0.031m, k2 = k3 =
45kNm/rad.

Actuation
Each actuation unit consists in a qbmove Advanced variable
stiffness actuator (Della Santina et al. 2017b), (Catalano
et al. 2011). This modular VSA is based on the symmetric
antagonistic springs with antagonistic motors variable
stiffness mechanism (Vanderborght et al. 2013). Table 6
shows the main features of this device. The data-sheet elastic
torque (τe) and the stiffness (σ) models are{

τe = 2k cosh(aθsr) sinh(a(q − θeq))

σ = 2ak cosh(aθsr) cosh(a(q − θeq))
, (92)

where q, θeq, θsr are defined as in Section 4, while a =
6.7328rad−1 and k = 0.0222Nm are model parameters.
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Note that, due to the prosthaphaeresis simplification (92)
appears slightly different from the same model presented in
Appendix C.

Electronics and user interfaces
Each actuators has a custom electronic board equipped with a
Cypress PSoC 3 micro-controller that allows to drive the two
dc motors and to retrieve position signals, from the magnetic
encoders (Austria Microsystems AS5045 12-bit resolution),
and current signals. The board is programmed with an
internal firmware developed in C language. The actuators are
mainly used as servo-motors but other control strategies can
be implemented into the firmware, e.g., based on position
or current measurements. Furthermore, a set of libraries
allows to communicate with the internal firmware through
common robotic software, such as Matlab/Simulink (www.
mathworks.com) or Robot Operating System (ROS)
(www.ros.org). Both firmware and libraries (with several
examples) are available in the website†† of the open source
Natural Machine Motion Initiative (NMMI) (Della Santina
et al. 2017b).
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