PHYSICAL REVIEW B 102, 224302 (2020)

Dissipative dynamics at first-order quantum transitions

Giovanni Di Meglio®,' Davide Rossini®,> and Ettore Vicari*"
' Dipartimento di Fisica dell’ Universita di Pisa, Largo Pontecorvo 3, I-56127 Pisa, Italy
2Dipartimento di Fisica dell’ Universita di Pisa and INFN, Largo Pontecorvo 3, 1-56127 Pisa, Italy

® (Received 28 September 2020; revised 19 November 2020; accepted 20 November 2020; published 4 December 2020)

We investigate the effects of dissipation on the quantum dynamics of many-body systems at quantum
transitions, especially considering those of the first order. This issue is studied within the paradigmatic one-
dimensional quantum Ising model. We analyze the out-of-equilibrium dynamics arising from quenches of the
Hamiltonian parameters and dissipative mechanisms modeled by a Lindblad master equation, with either local
or global spin operators acting as dissipative operators. Analogously to what happens at continuous quantum
transitions, we observe a regime where the system develops a nontrivial dynamic scaling behavior, which is
realized when the dissipation parameter u (globally controlling the decay rate of the dissipation within the
Lindblad framework) scales as the energy difference A of the lowest levels of the Hamiltonian, i.e., u ~ A.
However, unlike continuous quantum transitions where A is power-law suppressed, at first-order quantum
transitions A is exponentially suppressed with increasing the system size (provided the boundary conditions

do not favor any particular phase).
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I. INTRODUCTION

The recent progress in atomic physics and quantum optical
technologies has enabled great opportunities for a thorough
investigation of the interplay between the coherent quantum
dynamics and the (practically unavoidable) dissipative effects,
due to the interaction with an external environment [1-4].
The competition between coherent and dissipative dynamic
mechanisms may originate a nontrivial interplay, which can be
responsible for the emergence of further interesting phenom-
ena in many-body systems, in particular close to a quantum
phase transition where the many-body systems develop pecu-
liar quantum correlations [5].

Certain issues related to the competition between coherent
and dissipative dynamics have been addressed at continuous
quantum transitions (CQTs) [6-10], where quantum correla-
tions develop diverging length scales &, and the gap A closes
as a power law of &, i.e., A ~&7%, z being the universal
dynamic exponent. These studies considered a class of dis-
sipative mechanisms which can be reliably described by a
Lindblad master equation governing the time evolution of
the system’s density matrix. It was argued, and numerically
checked, that a dynamic scaling limit exists at a CQT even
in the presence of dissipation, whose main features are con-
trolled by the universality class of the quantum transition.
However, such a dynamic scaling limit requires a particu-
lar tuning of the dissipative interactions, whose decay rate
u should scale asu ~ A ~ £7%,

In this paper we extend the above studies to first-order
quantum transitions (FOQTs), which have their own peculiari-
ties, in particular related to the emergence of an exponentially
suppressed gap and to their sensitivity to the boundary con-
ditions in finite systems [11-13]. Besides that, FOQTs are
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of great phenomenological interest, since they occur in a
large variety of many-body systems, including quantum Hall
samples [14], itinerant ferromagnets [15], heavy-fermion met-
als [16-18], disordered systems [19,20], and infinite-range
models [21,22].

We address the interplay between the critical coherent dy-
namics and dissipative mechanisms, when the Hamiltonian
parameters are close to a FOQT. To this purpose, we consider
dynamic protocols that start from ground states close to FO-
QTs and then analyze the out-of-equilibrium dynamics arising
from a instantaneous quench of the Hamiltonian parameters
and the dissipative interaction with the environment. We take,
as a paradigmatic example, the one-dimensional spin-1/2
quantum Ising model, exhibiting a FOQT line in its zero-
temperature phase diagram, in the presence of either local
or global homogeneous dissipative mechanisms—see Fig. 1.
Their effects are assumed to be well captured by a Lindblad
master equation of the density matrix of the open system. We
mention that the dissipative dynamics of spin models at first-
order transitions has been recently considered in Ref. [23],
discussing various variants of the Lindblad equations.

Analogously to what happens at CQTs [8,9], the quantum
Ising chain along the FOQT line unveils a regime where a
nontrivial dynamic scaling behavior is developed. This is ob-
served when the dissipation parameter u (globally controlling
the decay rate of the dissipation within the master Lindblad
equation) scales as the energy difference A of the lowest levels
of the Hamiltonian of the many-body system, i.e., u ~ A.
However, unlike CQTs where A is power-law suppressed,
at FOQTs A is exponentially suppressed with increasing the
system size (when the boundary conditions do not favor any
particular phase). The dynamic scaling behavior turns out to
become apparent for relatively small systems already, such
as chains with L < 10. This makes such dynamic scaling
phenomena particularly interesting even from an experimental
point of view, where the technical difficulties in manipulating
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FIG. 1. The quantum spin-chain model discussed in this work.
Neighboring spins are coupled through a coherent Hamiltonian H
(bidirectional blue arrows). Each spin is also homogeneously and
weakly coupled to some external bath B via a set of dissipators D
(vertical red arrows), whose effect is to induce incoherent dissipation.
The environment is modeled either as a sequence of local indepen-
dent baths, each for any spin of the chain (top drawing), or as a single
common bath to which each spin is supposed to be uniformly coupled
(bottom drawing).

and controlling such systems can be probably faced with
up-to-date methods. Here the out-of-equilibrium quantum
dynamics associated with the above-mentioned protocol is
numerically monitored by considering standard observables,
such as the longitudinal magnetization, as well as the average
work and heat characterizing the quantum thermodynamic
properties of the out-of-equilibrium phenomenon.

The paper is organized as follows. In Sec. II we introduce
the one-dimensional quantum Ising chain, the modelization of
the dissipative interactions through a master Lindblad equa-
tion, and the out-of-equilibrium protocol discussed hereafter.
Section III presents a summary of the main features of the
dynamic scaling theory for closed systems and their extension
to allow for dissipative interactions; in particular we address
the behavior expected at FOQTs. In Sec. IV we numerically
study the dynamics of quantum Ising chains arising from the
above-mentioned protocol, up to the size of order L = 10,
along the FOQTs and at the CQT, showing that the results
support the general dynamic scaling theory. Finally in Sec. V
we summarize and draw our conclusions. In Appendix A we
solve the analogous problem for a single quantum spin. In
Appendix B we address some related questions for the out-of-
equilibrium behavior of the Kitaev fermionic wire (related to
the quantum Ising chain by a Jordan-Wigner mapping) in the
presence of local dissipation due to particle pumping or decay,
atits CQT; these include exact analytic results for the quantum
work and the heat interchange during its time evolution.

II. THE OUT-OF-EQUILIBRIUM PROTOCOL

The Hamiltonian of the one-dimensional ferromagnetic
quantum Ising model reads:

ﬂ(g, h) = —J Z (1) (1) +g0(3) +h A(l)] 60

where 6)5") are spin-1/2 Pauli matrices associated with the xth
site of the chain, J > 0 sets the energy scale, and we assume
a transverse field with strength g > 0. We also consider spin
systems of size L with periodic boundary conditions.

It is well known that, at g = g, = 1 and & = 0, the model
undergoes a CQT separating a disordered phase (g > 1)
from an ordered (g < 1) one [5]. The corresponding quan-
tum critical behavior belongs to the two-dimensional Ising
universality class, characterized by a diverging length scale
(& ~ |g— gc|7", with v = 1) and the power-law suppression
of the gap A between the two lowest energy levels (as
A~ &7 with z =1, or as A ~ L7% in finite-size systems at
the critical point).

The FOQT line, located at g < g. = 1, is related to the
level crossing of the two lowest states | 1) and | |) for 2 = 0,
such that (1|6|1) = mg and (}|6"|]) = —my (indepen-
dently of x), with mg > 0. The degeneracy of these states is
lifted by the longitudinal field, with strength h. Therefore,
h =0 is a FOQT point, where the ground-state longitudinal
magnetization

M= (x"),

S = Z A(l) )

becomes discontinuous in the infinite-volume limit. The tran-
sition separates two different phases characterized by opposite
values of the magnetization my, i.e., [24]

my = (1 —gH'/%. )

lim lim M = £my,

h—0*F L—o00
In a finite system of size L with either periodic or open
boundary conditions (which do not favor any of the two mag-
netized phases separated by the FOQT), the lowest states are
superpositions of the two magnetized states | 1) and | | ). Due
to tunneling effects, the energy gap at 7 = 0 vanishes expo-
nentially as L increases [11,25], as Ay ~ et In particular,
for the one-dimensional case of the model (1), the gap at
h = 0 behaves as [24,26] A; =2 (1 — gz)gL for open bound-
ary conditions and

1—g
— & “
for periodic boundary conditions. The differences E; — E for
the higher excited states (i > 1) are finite for L — oo.
We model the dissipative interaction with the environment
by Lindblad master equations for the density matrix of the
system [27,28],

ap i A

= h[H,p]+u]D[p], )
where the first term in the r.h.s. provides the coherent driv-
ing, while the second term accounts for the coupling to the
environment. Its form depends on the nature of the dissipation
arising from the interaction with the bath, which is effectively
described by a set of dissipators D and a global coupling
u > 0. In quantum optical implementations, the conditions
leading to such a framework to study dissipative phenomena
are typically satisfied [29], therefore this formalism consti-
tutes a standard choice for theoretical investigations of such
kind of systems.
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In the following, we restrict to homogeneous dissipa-
tion mechanisms, preserving translational invariance. We
mostly consider local dissipative mechanisms such as the one
sketched in the top drawing of Fig. 1, whose trace-preserving
superoperator D[ p] can be written as [30,31]

L
Dipl =Y Lol = S(p LiLc+ LiLip).  (©)

The Lindblad jump operator L, associated to the local system-
bath coupling scheme is chosen to be

Lf=6F=1[6" +is®], (7)

corresponding to mechanisms of incoherent raising (4) or
lowering (—) for each spin of the chain. We shall also consider
an alternative global dissipative interaction with the environ-
ment (bottom drawing of Fig. 1), described by

Dip] = LpL" — Y(p L'L + L'Lp), 8)

with a single raising, or lowering, Lindblad operator
A - - 1
+_ +_ Z At
LT=% . YT = Z _ o, . (9)

In the following, we address the interplay between the
coherent dynamics and dissipative mechanisms, focusing in
particular on the cases g < 1 and |h| < 1, corresponding
to situations close to the transition line. For this purpose,
we consider dynamic protocols that start from ground states
of the quantum Ising Hamiltonian close to the transition
line and then analyze the out-of-equilibrium dynamics driven
by the master Lindblad equation (5). More precisely, we adopt
the following protocol: (i) the system starts, at = 0, from
the ground state of the Hamiltonian (1) with transverse field
parameter g < 1 and the longitudinal parameter #4;; (ii) then
the system evolves according to Eq. (5), where the coherent
driving is provided by the Hamiltonian for the same value
g and a longitudinal parameter 4 (which may differ from #;,
giving rise to a sudden quench), while the dissipative driving
is controlled by the parameter u (for u = 0, one recovers the
unitary dynamics of closed systems).

The out-of-equilibrium evolution, for # > 0, is monitored
by measuring certain fixed-time observables, such as the lon-
gitudinal magnetization

M(t, hi, h,L) = Tr[p@t) £V], (10)

where the spin operator $M is defined in Eq. (2) and p(¢) is
the density matrix of the evolving system at time ¢. Analo-
gously, one may also consider fixed-time spin correlations.

We are also interested in the quantum thermodynamic
properties associated with this dissipative dynamics. The
first law of thermodynamics describing the energy flows
of the global system, including the environment, can be
written as [32-34]

A

dt

where E; is the average energy of the open system

=w()+4q(), an

E,=Tr[p()H®)], (12)

and
_aw dH (1)
w(t)=7—Tr[p(t) 7 } (13)
_dQ __ [dp@) ,
q() = — —Tr[ o H(t)] (14)

with W and Q, respectively, denoting the average work done
on the system and the heat interchanged with the environment.
In our quench protocol, a nonvanishing work is only
done at # = 0, when the longitudinal-field parameter suddenly
changes from h; to h # h;. Since, after quenching the field,
the Hamiltonian is kept fixed [thus w(¢) = 0, for ¢ > 0], the
average work is simply given by the static expectation value

W = (04, |H (h) — H(h)|0p,) = (hi — h)L (05,12 |04,)
(15)

where |0p,) is the starting ground state associated with the
longitudinal parameter 4;. Note that the average work of this
protocol is the same as that arising at sudden quenches of
closed Ising chains, whose scaling behavior at the CQT and
FOQTs has been analyzed in Ref. [35]. On the other hand,
the heat interchange with the environment is strictly related to
the dissipative mechanism, indeed one can easily derive the
relation

q(t) = uTr[D[p] H®)], (16)

by replacing the r.h.s. of the Lindblad equation (5) into the
expression (14).

III. DYNAMIC SCALING AT QUANTUM TRANSITIONS

We now summarize the main features of the dynamic
scaling framework that we will exploit to analyze the
out-of-equilibrium quantum dynamics of closed and open
many-body systems. The scaling hypothesis is based on the
existence of a nontrivial large-size limit, keeping appropriate
scaling variables fixed.

We focus on the quantum Ising chain (1) along its transition
line, thus for g < 1 and |h| < 1, corresponding to FOQTs
for g < 1 and CQT for g = 1. Then we discuss the scaling
behaviors arising from a longitudinal external field £, i.e.,

g, = —hZa;“. 17)

The corresponding scaling variable controlling the equilib-
rium properties of isolated many-body systems at both CQTs
and FOQTs can be generally written as the ratio [11,36]

«(h) = Ep/Ap, 18)

between the L-dependent energy variation Ej, associated with
the H), term and the energy difference A, = E| — E of the
lowest-energy states at the transition point z = 0. Nonzero
temperatures could be taken into account as well, by adding
a further scaling variable r = T'/A,. Dynamic behaviors, ex-
hibiting nontrivial time dependencies, also require a scaling
variable associated with the time variable, which is generally
given by

0=A1. (19)
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The equilibrium and dynamic scaling limits are defined as
the large-size limit, keeping the above scaling variables fixed.
Within this framework, the differences between CQTs and
FOQTs are basically related to the functional dependence of
the above scaling variables on the size: Typically, power laws
arise at CQTs, while exponential laws emerge at FOQTs.

Specializing Eq. (18) to the FOQTs of the quantum Ising
chain, we obtain the scaling variable [11]

k(h) =2mohL/ AL, (20)

since 2myhL quantifies the energy associated with the corre-
sponding longitudinal-field perturbation Hj, and A; ~ g*. For
example, in the equilibrium finite-size scaling limit, the mag-
netization is expected to behave as [11] M (h, L) = my M (),
where M is a suitable scaling function. We point out that the
FOQT scenario based on the avoided crossing of two levels
is not realized for any boundary condition [11,13]: In fact, in
some cases the energy difference A of the lowest levels may
even display a power-law dependence on L. However, the scal-
ing variable « (k) obtained using the corresponding Ay turns
out to be appropriate, as well [11]. In the rest of the paper we
shall restrict our study to quantum Ising models with boundary
conditions that do not favor any of the two magnetized phases,
such as periodic or open boundary conditions, which generally
lead to exponential finite-size scaling laws. Thus also the
scaling variable 0 related to the time dependence, cf. Eq. (19),
is subject to an exponential rescaling.

The CQT at g =1 and & = 0 is characterized by power
laws, irrespective of the boundary conditions (see, e.g.,
Ref. [37]). The corresponding scaling variable turns out to be

k(h)y o< L h, 2n

where y, = 15/8 is the renormalization-group dimension of
the longitudinal field % [see, e.g., Ref. [36] for its derivation
from the general expression given in Eq. (18)]. Moreover, the
energy difference between the two-lowest states behaves as
Ap ~ L % wherez = 1.

For example, let us consider a quench of the longitudinal
field of a closed quantum Ising chain at¢ = 0, from A; (starting
from the corresponding ground state) to & # h;. At both the
FOQTs and the CQT, we expect that the quantum coherent
evolution of the longitudinal magnetization (10) develops the
dynamic scaling behavior

M(t, hi,h,L) ~ L™ F,(0, ki, k), (22)
where
ki=k(h), k=«x), (23)

the exponent ¢ =1/8 at the CQT (related to the
renormalization-group dimension of the longitudinal spin
variable), while ¢ = 0 at the FOQTs, and Fj, is an appropriate
scaling function. The approach to such asymptotic behavior is
generally characterized by power-law corrections [11,36,37].

As discussed in Refs. [8,9], at CQTs the dissipator D[p]
typically drives the system to a noncritical steady state, even
when the Hamiltonian parameters are close to those leading
to a quantum transition. However, one may identify a regime
where the dissipation is sufficiently small to compete with
the coherent evolution driven by the critical Hamiltonian,
leading to potentially novel dynamic behaviors. At such a

low-dissipation regime, a dynamic scaling framework can be
observed after appropriately rescaling the global dissipation
parameter u, cf. Eq. (5). Indeed, the master Lindblad equation
(5) at the CQTs of the coherent Hamiltonian driving develops
a scaling behavior as well [8—10], with a further dependence
on the dissipation scaling variable

y =u/Ap, (24)

thus y ~ uL®. Therefore, in the presence of dissipation the
dynamic scaling behavior (22) after quenching % is expected
to change into

M(tahiyha u,L)%L_gFm(H,K,‘,K, V) (25)

Our working hypothesis for the study of analogous issues
at FOQTs is that the dynamic scaling behavior (25) applies
as well, with the same definition (24) of the dissipation scal-
ing variable y. In the following we challenge this scenario
by means of numerical computations. For convenience, we
calculate the rescaled longitudinal magnetization, defined as

M(t’ hi’ h’ u? L)

M(IshishsuvL)z Trn 1 1 7N
M, ki, h,u, L)

(26)

which is expected to behave as
Mt i hou, L) & Fn(0, 1,10, 7). 27)

at both the CQT and FOQTs. We recall that, according to
our protocol, the initial longitudinal magnetization at r = 0
corresponds to that of the equilibrium ground-state expecta-

tion value for A;. Therefore it satisfies the asymptotic scaling
behavior [11,37]

M, i, h,u, L) = M(h;, L) ~ L™ f,,(k:), (28)

with { = 1/8 atthe CQT, ¢ = 0 at the FOQTs, and fj, being a
universal scaling function (apart from a multiplicative normal-
ization and a normalization of the argument) which depends
on the type of transition, being a CQT or a FOQT.

IV. NUMERICAL RESULTS

In this section we present numerical results for the quantum
Ising chain subject to the protocol described in Sec. II, when
the system is close to the FOQT line, i.e., for g < 1 and
|h| < 1. We also report some results at the CQT, for g =1
and |h| < 1, extending the study already reported in Ref. [8],
which focussed on the Kitaev fermionic wire (see also
Appendix B). The latter is somehow related to the quantum
Ising chain, although they are not equivalent, in particular in
the presence of local dissipation. In all our simulations we set
h = 1,and J = 1 as the energy scale.

Numerically solving the Lindblad master equation (5) for
a system as the one in Eq. (1) generally requires a huge
computational effort, due to the large number of states in the
many-body Hilbert space H, which increases exponentially
with the system size (dim H = 2F). More precisely, the time
evolution of the density matrix p(t), which belongs to the
space of the linear operators on H, can be addressed by ma-
nipulating a Liouvillian superoperator of size 22 x22L. This
severely limits the accessible system size to L < 10 sites,
unless the model is amenable to a direct solvability. A notable
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FIG. 2. Time behavior of the longitudinal magnetization for a
quantum Ising ring close to the FOQT, with g = 0.5, in the presence
of homogenous dissipation described by local Lindblad operators I:;.
We show the rescaled quantity M in Eq. (26) versus the rescaled time
0, for different values of the system size L (see legend). With increas-
ing L, we keep the scaling variables x; = 1 and y = 0.1 fixed. The
upper panel is for x; = « (i.e., without the quench of the Hamiltonian
parameter /), while the lower panel is for x = 0. In the inset we show
the energy gap A, as a function of L: Black circles are the results
obtained from the numerics, while the dashed red line denotes the
estimate in Eq. (4).

example in this respect is the Kitaev chain with one-body
Lindblad operators, whose corresponding Liouvillian oper-
ator is quadratic in the fermionic creation and annihilation
operators (see, e.g., Ref. [8]). Unfortunately this is not the
case for a dissipative Ising spin chain, in which the Jordan-
Wigner mapping of Lindblad operators as those in (7) and
(9) produces a nonlocal string operator forbidding an analytic
treatment. Therefore, in this work we resort to a brute-force
numerical integration of Eq. (5) through a fourth-order Runge-
Kutta method, with a time step dt = 1072, sufficiently small
to ensure convergence for all our purposes.

A. Dynamics along the FOQT line

In the following, we numerically challenge the dynamic
scaling behavior put forward in Sec. III at the FOQTs. We
provide results for quantum Ising chains with g = 0.5, up
to lattice sizes L = O(10). Computations for other values of
g < 1 produce analogous results and are not explicitly shown
here. Let us recall that our dynamic protocol starts from
the ground state of the Hamiltonian (1) with longitudinal-
field parameter A4;; then the system evolves according to the
Lindblad master equation (5), with Hamiltonian parameter A
(in principle different from #;) and dissipative strength u.

Figure 2 displays the time evolution of the longitudinal
magnetization (10), in particular the rescaled one defined in
Eq. (26), for some selected values of dynamic scaling vari-
ables. The system-bath coupling has been modeled through
local dissipative mechanisms as in the top drawing of Fig. 1,
where the Lindblad operator associated to each site induces
incoherent lowering of the corresponding spin (f,; =6,).
The scaling behavior (27) is checked by varying the Hamil-
tonian and the dissipation parameters of the protocol with
increasing size L, so that the scaling variables «, «;, and y
[as defined in Egs. (20), (23), and (24)] are kept fixed. For
the gap A, entering the definition of the scaling variables
0 = Art and y = u/Ar, we do not use its asymptotic behav-
ior (4), but the actual energy difference of the lowest levels
of the quantum Ising ring at h = 0, with L spins (it passes
from A, & 3.55x1072 for L =4, to AL~ 3.21x10~* for
L =10, as visible from the inset in the lower panel). In both
cases considered in Fig. 2, namely for x; = « (top panel, with-
out quenching the Hamiltonian) and for «; # « (bottom panel,
in the presence of a Hamiltonian quench), the longitudinal
magnetization appears to asymptotically vanish in the large-
time limit, although with different qualitative trends. Actually
this turns out to be a general feature for any nonzero value
of the dissipation variable y. Analogous results are obtained
using Lindblad operators inducing incoherent raising of the
corresponding spin (L = 67).

Although limited to small system sizes, L < 10, our nu-
merical results substantially support the dynamic scaling
behavior conjectured in Eq. (27), especially for sufficiently
small values of 6. Most likely, the large-L convergence is
not uniform and tends to be slower with increasing 6. In
particular, the results reported in the lower panel of Fig. 2
(when the dynamics arises both from a quench of the Hamilto-
nian parameter and from the presence of dissipation) display
oscillations whose zeros nicely scale with the time scaling
variable 8, even for quite large 6. On the other hand, the values
at the maxima and minima undergo larger corrections, likely
requiring larger lattice sizes to clearly observe the asymp-
totic scaling behavior. The apparent asymptotic convergence
to the conjectured dynamic scaling is also suggested by the
various plots in Fig. 3, showing data at fixed 6 = 1, for various
values of ¥ and y (panels on the left correspond to the two
situations in Fig. 2, while panels on the right are for the
analogous cases with a larger dissipation strength y = 0.5).
The approach to the large-L limit is generally compatible with
1/L corrections, as hinted by the dashed red lines, denoting
1/L fits of numerical data extrapolated at the largest available
sizes.

B. Comparison with the single-spin problem

In the absence of dissipation, the dynamic scaling behavior
of a quantum Ising chain along the FOQT turns out to be well
described by an effective two-level problem [10,11,35,38],
defined by the single-spin Hamiltonian

H=a6"4a;6%. (29)

Indeed the dynamic scaling functions of the quantum Ising
chain, when the boundary conditions do not favor any phase
separated by the FOQT, match the dynamics of the single-spin
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FIG. 3. Approach to the asymptotic dynamic scaling behavior
of the longitudinal magnetization at the FOQT, in the presence of
dissipation ﬁ;. Here we set g = 0.5, k; = 1, and 6 = 1, and show
results for « =0, 1 and y = 0.1, 0.5 (see indications in the panels).
The data are roughly compatible with a global 1/L approach to the
asymptotic dynamic scaling, in particular for y = 0.1 (the dashed
red lines are drawn to guide the eye).

problem (see Appendix A for an analytic discussion of the
single-spin problem). In a sense, closed systems behave
rigidly at FOQTs. We now want to understand whether that
kind of property persists in the presence of dissipative interac-
tion with an environment, such as in the two schemes sketched
in Fig. 1.

In the presence of local dissipation (top drawing in Fig. 1),
we observe that the asymptotic scaling behavior does not
apparently display the rigidity property mentioned above, in
that the scaling functions are not reproduced by the single-spin
model. The corresponding data for the magnetization as a
function of time are shown in the top panel of Fig. 4. The ini-
tial oscillating behavior at finite lengths is reasonably captured
by the single-spin prediction with dissipation coupling y; = y
[thick-dashed black line—see Eqs. (A17), (A21)]. However,
already for 6 2 2, the curves for M exhibit large finite-size
corrections and seem to approach an asymptotic overdamped
behavior for L — oo, quickly reaching the zero value. In any
case, the frequencies of oscillations for finite L values match
those of the single-spin model, even for large 6.

The rigidity of the dynamic scaling behavior can be recov-
ered if a global dissipative mechanism is considered (bottom
drawing in Fig. 1). This is the case of the data reported in
the bottom panel of Fig. 4. The curves for different L ap-
pear to approach an asymptotic dynamic scaling behavior,
as well. Such convergence is much faster than that observed
for the local dissipation scheme. Interestingly, the L — oo
behavior turns out to be well approximated by the solution
of the single-spin problem (at least for & < 5), provided the
dissipation coupling is suitably renormalized according to
ys = ¥ /2 (thick-dashed violet line). We point out that this is
a nontrivial result, since we are matching the full many-body
dynamics close to a FOQT with a much simpler single-body

. s
\W Global dissipation
P I I T NI B
190 12 14 16 18 20
FIG. 4. Time behavior of the longitudinal magnetization at
g = 0.5, in quench protocols with k; = 100, « =0, and y = 0.1,
for various values of L (see legends). The system bath coupling is
implemented in the form of either local dissipation operators (6),
with L, = 6, (top panel), or a single global dissipation operator (8),
with L. = ¥~ (bottom panel). The numerical results are compared
with the single-spin problem (thick-dashed curves): In the upper
case, with increasing L, the curves tend to depart from the single-
spin behavior; in the lower case, the curves appear to approach an
asymptotic dynamic scaling behavior, which is well approximated
by the solution of the single-spin problem with renormalized dissi-

pation coupling y, = y/2 = 0.05. In both cases, the frequencies of
oscillations reasonably match.

behavior, by only admitting a nonuniversal renormalization of
the various scaling variables.

C. Quantum work and heat

We now discuss the quantum thermodynamics arising from
the out-of-equilibrium protocol. As already mentioned in
Sec. II, a nonzero average work is only required at r = 0,
when the Hamiltonian parameter suddenly changes from A;
to h. Therefore, it is the same as that of systems subject to
quench protocols without dissipation (i.e., for u = 0). The
dynamic scaling behavior of the work fluctuations for anal-
ogous quenches at the FOQTs of the quantum Ising chain
was studied in Ref. [35], showing that they reproduce the
analogous quantities of the single-spin problem. In particular,
the average work is given by

(ki — KK

2,/1+«?

Reference [35] also reports results for the higher moments
of work fluctuations and a discussion of the correction to the
asymptotic behavior.

W~ AL W(ki, k), W= (30)
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FIG. 5. Behavior of the heat interchanged between the quantum
Ising chain and the environment, per unit of time, as a function
of the variables of the system. Top panel: the function ¢(z) with
respect to the rescaled time ut, for different values of the system
size L and of the dissipation strength u (see legend). In the inset
we show the behavior of g(t = 0)/u with L, for various values of u.
The transverse field strength is kept fixed at g = 0.5. Bottom panel:
the function g(t = 0)/(u L) with respect to g, for L = 6 and various
values of u. All the data reported in this figure as for x; =« =0,
while the system-bath coupling is taken in the form of local and
uniform Lindblad operators ﬁ; =6,.

Coming to the heat interchanged between the system and
the environment, for the sake of convenience here we focus on
its time derivative ¢g(¢) = dQ/dt, defined in Eq. (14). Unlike
for the average work, this quantity does not present any rele-
vant scaling property. In particular, our numerical results for
the dynamics of the quantum Ising chain homogeneously cou-
pled to local incoherent lowering operators, cf. Eq. (6) with
i; = 6, clearly indicate an exponential decay of g(t) with
time ¢, as shown in the top panel of Fig. 5. More specifically,
we found the following functional dependence on the various
parameters of the system:

q(t) =C(g ki, ik)ule™". (31)

The coefficient C(g, k;, k) depends nearly exponentially on
the transverse field g, although minor quantitative deviations
are present (bottom panel). On the other hand, the dependence
of C on both k; and « is very weak and tends to vanish for
increasing L (on the scale of the figure, it becomes unappre-
ciable already for L 2 8).

Finally, it is worth emphasizing that the linear dependence
of the rate of exchanged heat g(r) with the system volume
(g o L, as indicated in the top inset of Fig. 5) hints at the fact
that such quantity is essentially related to a one-body mecha-
nism, and not to a collective behavior of the system. In fact,
the exponential time dependence ¢(¢) ~ ¢~ is identical to

T
- ~ o3FT T T T T
! 126 oaf . 0=3 1]
0.8 L=8 Ix-o0s5F 14
L=10 g 0.6 \(\. 1
0.6 s e
g L AN
0.4 s %% 02 025 |

= 02}

02
04F A
0.6 W .
0.8+

0

FIG. 6. Time behavior of the longitudinal magnetization for a
quantum Ising chain at the CQT, in the presence of homogenous
dissipation described by local Lindblad operators ﬁ; . We show the
rescaled magnetization M , cf. Eq. (26), versus the rescaled time 6, for
different values of the system size L (see legend). With increasing L
we keep the scaling variables x; = 1, k = 0 and y = 0.1 fixed. The
inset displays data at fixed 8 = 3 versus 1/L, showing that they are
roughly compatible with a 1/L approach to the asymptotic dynamic
scaling (the dashed red line is drawn to guide the eye), although
further corrections are clearly visible.

the single-spin model behavior, as emerging from the analysis
in Appendix A [see, e.g., Eq. (A22)].

D. Dynamics at the CQT

We now discuss the dynamic scaling behavior at the CQT
(i.e., at g=1 and |h| K 1), focusing on the longitudinal
magnetization [see Eq. (27)]. Figure 6 reports the rescaled
quantity M versus the rescaled time 6 = ¢tL%, for various
systems sizes, up to L = 10. The curves with increasing L are
obtained keeping the scaling variables «; ~ h;L”", k ~ hL”,
and y ~ uL® (withy, = 15/8 and z = 1) fixed. The displayed
data are for x; = 1, « = 0, y = 0.1, but analogous qualitative
conclusions can be drawn by changing the specific values of
such rescaled quantities. Our results substantially support the
dynamic scaling behavior conjectured in Eq. (27), in partic-
ular for sufficiently small values of 6. The approach to the
asymptotic behavior is again compatible with 1/L correc-
tions, as expected (see the inset, where numerical data for
the rescaled magnetization at fixed 6 = 3 are plotted against
the inverse system size, and the dashed red line denotes a
1/L fit of such data at large L). We point out that analogous
dynamic scaling behaviors have been reported for the Kitaev
fermionic wire (see Appendix B), where much larger sizes can
be reached, allowing us to achieve a definitely more robust
check of the dynamic scaling behavior at a CQT [8,9].

Again the quantum thermodynamics arising from the dy-
namic protocol is characterized by an initial work at ¢ = 0,
due to the quench of the Hamiltonian parameter. Its scaling be-
havior was already discussed in Ref. [35] for closed systems.
As demonstrated there, the average work shows the scaling
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behavior
W~ L7 W(ki, k). (32)

In Appendix B we discuss the average work within the Kitaev
fermionic wire at its CQT, where the quench is performed over
the chemical potential, corresponding to the transverse field g
of the Ising chain. As shown there, the leading contribution
to the average work is provided by analytical terms, while
the scaling part, such as that in Eq. (32), turns out to be
subleading.

On the other hand, even at the CQT, the heat interchanged
with the environment does not exhibit scaling properties. We
have observed an exponential decay in time and a trivial linear
dependence with L, for the function ¢(¢), analogously as in
Eq. (31). The only difference with respect to the g < 1 case
is an enhanced sensitivity of the coefficient C(g =1, k;, k)
on the rescaled longitudinal field parameters, k; and «, which
however rapidly reduces with increasing L.

V. CONCLUSIONS

We have investigated the effects of dissipation on the quan-
tum dynamics of many-body systems close to a FOQT (that is,
whose Hamiltonian parameters are those leading to a FOQT
for the closed system), arising from the interaction with the
environment, as for example sketched in Fig. 1. The latter is
modeled through a class of dissipative mechanisms that can be
effectively described by Lindblad equations (5) for the density
matrix of the system [27,28], with local or global homogenous
Lindblad operators, such as those reported in Eqs. (6)-(7)
or (8)-(9), respectively. This framework is of experimental
interest, indeed the conditions for its validity are typically
realized in quantum optical implementations [29]. We have
analyzed how homogenous dissipative mechanisms change
the dynamic scaling laws developed by closed systems at FO-
QTs (see, e.g., Refs. [13,38]). We also mention that analogous
issues have been addressed at CQTs (see, e.g., Refs. [8§-10]).

We study the above issues within the paradigmatic one-
dimensional quantum Ising model, cf. Eq. (1), which provides
an optimal theoretical laboratory for the investigation of
phenomena emerging at quantum transitions. Indeed its zero-
temperature phase diagram presents a line of FOQTs driven
by a longitudinal external field, ending at a continuous
quantum transition. To investigate the interplay between co-
herent and dissipative drivings at the quantum-transition line
(FOQTs for g <1 and |h| < 1 and CQT for g~ 1 and
|h| <« 1), we consider the following dynamic protocol. The
system is initialized, at ¢+ = O, into the ground state of the
Hamiltonian (1), for a given longitudinal parameter A;; then,
for t > 0, it evolves according to the Lindblad equation (5),
where the coherent driving is provided by H(g, k), with h
generally different from 4;, and the system-bath interaction
effectively described by the dissipator D[p] with a fixed cou-
pling strength u.

Analogously to what happens at CQTs, we observe a
regime where the system develops a nontrivial dynamic scal-
ing behavior, which is realized when the dissipation parameter
u scales as the energy difference A of the lowest levels of
the Hamiltonian of the many-body system. However, unlike
CQTs where A is power-law suppressed, at FOQTs A is expo-

nentially suppressed when boundary conditions do not favor
any particular phase [11,13]. Numerical solutions of the Lind-
blad equations up to lattice sizes with L &~ 10 substantially
confirm the existence of such dynamic scaling behavior and
pave the way toward experimental testing in the near future
through quantum simulation platforms for spin systems of
small size, where the required resources are less demanding.

We also compare the emerging asymptotic scaling behavior
with the single-spin problem interacting with an environment
modeled by a corresponding Lindblad equation. Unlike closed
systems where the unitary dynamics is well described by the
two-level single-spin problem, in the presence of dissipation
the system loses such a rigidity, and the scaling behavior turns
out to significantly differ. These changes arise from the com-
petition of the rigidity properties of the system at the FOQT
and the local dissipation that tends to destroy the nonlocal
rigidity. On the other hand, in the case of global dissipators
the dynamic scaling resembles that of the single-spin problem.
Since they treat globally the system, it is not surprising that
the resulting dynamics maintains the main features of the
single-spin scenario.

The arguments leading to this scaling scenario at FOQTs
are quite general. Analogous phenomena are expected to de-
velop in any homogeneous d-dimensional many-body system
at a continuous quantum transition, whose Markovian inter-
actions with the bath can be described by local or extended
dissipators within a Lindblad equation (5).

APPENDIX A: THE SINGLE-SPIN MODEL

We consider the following single-spin Hamiltonian:

N 1 K
H=-60_%Xs0

2 2
where A is the energy scale (the gap for « = 0), « is the
rescaled parameter related to the intensity of an applied ex-
ternal magnetic field, and 6® are the usual spin-1/2 Pauli
matrices. We discuss the dynamics of that single-spin system
subject to dissipation, as described by the Lindblad master
equation

H,=AH,, (A1)

ap i A
L =__A, D(p),
P h[ o pl +ud(p)

D(p)=LpL" — (o L'L + L'Lp).

(A2)

(A3)

The protocol starts again from the ground state associated
with an initial value «;, that is, the pure state

|W(t = 0)) = cos(a;/2) [+) + sin(a;/2) |—)

where |+) are the eigenstates of 6V and tan(e;) = «;'. The
corresponding density matrix reads

p(t =0) = 31+ c6®1,

c] = cosa;,

(A4)

=0, c¢3=sing;, (AS)

where I is the 2x2 identity operator. Then the evolution
is determined by the Lindblad equation (A2) with coherent
driving given by the Hamiltonian at « (thus for « # «; we have
also a quench).

We may generally define the energy of the system as

E = TrlpH,], (A6)
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whose time derivative allows us to define quantities analogous
to the heat g and work w in the time unit, i.e.,

A

dE dp dH;
— =Tr| —H; |+ Tr 'Odt =qg+w.

A7
dt dt (A7)
Using the Lindblad master equation we can easily derive the
relation
o dp N
= — =Tr| —H; | = uTr[D(p)H,]. A8
1= [ T } [D(p)H;] (A8)
One can easily prove that g = 0, if [H, L] = 0.
Moreover we define the purity
P =Ti[p’], (A9)
which equals one for pure systems. Its time derivative can be
written as

A10
dt dt ( )

We may rescale the parameters and the time variable
so that

d—P = 2Tr|:d—pp] = 2uTr[D(p)p].

0 I A
p(6) = 25 = —~H,. p1+7D(p).

0 =tA,

(A11)

y =u/A. (A12)

The time dependent density matrix can be generally
parametrized as

1.
p©) = S[1+A0)6®1, D AP <1, (A13)
2 k
where A; are real functions of the rescaled time 6. Note that
1
— 27 = 2
Trlp]l =1, Tr[p’]= 2(1 + Zk:Ak). (A14)

The Lindblad equation (A2) can be turned into coupled
differential equations of the functions Ax. Let us consider the
Lindblad operators
& +i6@
s
corresponding to the sign 4+ and —, respectively. Straightfor-
ward computations lead to the coupled differential equations

[f=6*= (A15)

A=ty = ZAr,

A/2=A] +KA3—%A2,

Ay = —kA —y(A3F 1). (A16)

The upper/lower signs correspond to the cases L*. The various
observables can be written in terms of the function A;. For
example, the longitudinal magnetization M reads

M) =Tr[6Vp(0)] = A, (6). (A17)
The heat per unit of rescaled time is given by
/ 113 1 / K /
qr = Q = TT[P H,] = §A3 - EAl
y 1
= —E(A3:F1)+Z]/KA1. (A18)

The time dependence of the purity (A9) can be easily derived
using Eq. (A14) and the above solutions, obtaining

1
P) = 5 (1 + zk:Ak(Q)2> <1, (A19)
P'0) =) AO)AL0) =
k
- _g(fﬁ +A3) —yAs(AF D). (A20)
In the case k = 0, one can easily find the solution

A1(0) = e 7[A1(0) cos(8) — A2(0) sin(H)],

A2(0) = e 7"[A1(0) sin(0) + A2(0) cos(9)],
A;0)F1=e"[A4500) F 11, (A21)

in terms of the initial density matrix p(0) and in particular of
its coefficients A;(0). Therefore we have that

= —ge—yewm 1], (A22)

©° A
Q= A/O db g, = —3[143(0) F1]. (A23)
Note that Q is positive/negative for pumping/decay (positive
QO means that the system is getting energy from the bath). The
purity (A9) turns out to exponentially approach one, reflecting
the fact the the system relaxes to a pure state.
In the case of dephasing Lindblad operator

L,=69, (A24)
we obtain the coupled differential equations
A| = —Ax —2yA;,
Ay = Ay 4+ kA3 — 2yA,,
Al = —kA;. (A25)

Using the above equations, we derive the heat per unit of
rescaled time, which is given by

q- = Tr[p'H,] = y«A,. (A26)

Again, for k = 0 the solution is quite simple, obtaining
A1(0) = e *?[A1(0) cos(9) — A>(0)sin(0)],
A2(0) = e [A1(0)sin(8) + A2(0) cos(0)],
As(0) = A5(0). (A27)

No heat transmission occurs, because [H, [.] = 0 when k = 0.
On the other hand the purity changes

P(®) = 3{1 +A3(0)° + ¢ 77[A1(0)° + A2(0°]} . (A28)
approaching exponentially the asymptotic value

1+ A45(0)?

PO — 00) >

(A29)

Therefore, the spin system relaxes to a mixed state under
dephasing.
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APPENDIX B: QUANTUM THERMODYNAMICS OF A
FERMIONIC WIRE COUPLED TO LOCAL BATHS

In this Appendix we focus on the quantum thermodynam-
ics of fermionic quantum wires coupled to local Markovian
baths. In particular, we consider a Kitaev quantum wire de-
fined by the Hamiltonian [39]

L L
Ay =—1) " (elec +oelel, +He) —pnd i, (B

x=1 x=1

where ¢, is the fermionic annihilation operator associated with
the sites of the chain of size L, i, = ¢1¢, is the density oper-
ator, and § > 0. We set i = 1, and J = 1 as the energy scale.
We consider antiperiodic boundary conditions, ¢;; = —¢1,
and even L for computational convenience.

The Hamiltonian (B1) can be mapped into a spin-1/2 XY
chain, through a Jordan-Wigner transformation [5]. In the
following we fix 6 = 1 (without loss of generality), so that
the corresponding spin model is the quantum Ising chain (1).
Note however that the nonlocal Jordan-Wigner transformation
of the Ising chain with periodic or antiperiodic boundary
conditions does not map into the fermionic model (B1) with
periodic or antiperiodic boundary conditions. Indeed further
considerations apply [24,40], leading to a less straightforward
correspondence, depending on the parity of the particle num-
ber eigenvalue. Therefore, the Kitaev quantum wire cannot
be considered completely equivalent to the quantum Ising
chain (see, e.g., the discussion in the Appendix of Ref. [10]).
However, analogously to the quantum Ising chain, the Kitaev
quantum wire undergoes a continuous quantum transition at
w = .= —2, between a disordered (u < i.) and an or-
dered quantum phase (Ju| < |u.|). This transition belongs
to the two-dimensional Ising universality class [5], charac-
terized by the length-scale critical exponent v = 1, related
to the renormalization-group dimension y, = 1/v =1 of the
Hamiltonian parameter @ (more precisely of the difference
L = u — ). The dynamic exponent associated with the uni-
tary quantum dynamics is z = 1.

We focus on the out-of-equilibrium thermodynamic behav-
ior of the Fermi lattice gas close to its continuous quantum
transition in the presence of homogeneous dissipation mecha-
nisms described by the Lindblad equation (5). We consider
local dissipative mechanisms, so that D[p] = Zx D,[p] is
given by a sum of local (single-site) terms (top drawing of
Fig. 1). The onsite Lindblad operators L, describe the cou-
pling of each site with an independent bath 3, associated with
particle loss (1) or pumping (p), thus

Liy=¢é¢, Ly,=¢é, (B2)
respectively. With this choice of dissipators, the full open-
system many-body fermionic master equation enjoys a
particularly simple treatment.

As a matter of fact, we mention that the out-of-equilibrium
dynamics of the Kitaev quantum chain with such kind of
dissipators has been the object of several studies in different
contexts (see, e.g., Refs. [41-44]). One of them concerns the
behavior of the fermionic correlation functions resulting from
a sudden quench [8,9]. Namely, one considers a protocol that
starts from the ground state |0,,) of Hy for a generic ;. The

T ]
ool 6=1 T
~ [ B /-r/ 1
Q L — 0.92 i /'(/ 1
R0 o 1
--L=6
: 0.8 _[-s
r ---L=10
0.7+ L=20
L — L=280
0 6 L | |
1.2 T T T T I T T T
L o
e - 6=1 ul
~ 1 Y L ® Tl
~ : - e
Ny C o H
\-/08 gB 1 11, 1]
Q~ 0.04 0.08 0.12 0.16 7
3 0.6

FIG. 7. Time behavior of the correlation function P(r, t) for the
Kitaev quantum wire close to the CQT point (6 = 1, u = —2). The
system is driven out of equilibrium by the coupling with an external
bath in the Lindblad form, under the form of local and uniform
incoherent particle losses with rescaled strength y = 0.1. The top
figure shows data for k; = k = 0 (i.e., the Hamiltonian is exactly at
the CQT), while the bottom figure is for x; = k = 2. The various
curves in the two main panels show L P(r, t) for r = L/2 and differ-
ent chain lengths L (see legend), as a function of the rescaled time
6. In the insets we report the same quantity as a function of L2
(top) or of L~! (bottom), for a fixed value of = 1. To perform this
analysis, we have first washed out the wiggles in 6 (see main plot), by
fitting the original curves in the interval 6 € [0, 5] with a fifth-order
polynomial.

system is then let free to evolve after a quench of the Hamil-
tonian parameter to u, at ¢+ = 0 and a simultaneous turning
on of the interaction with the environment controlled by the
dissipation coupling u. Below we discuss further aspects of
such dynamics, which have not been considered so far.
Before presenting the analysis of the quantum thermody-
namic properties during the time evolution associated with the
above protocol, let us come back to the following correlation
function at distance r:
P(r,t) = Tr[p(t) (¢fel,, + Eeprto)]. (B3)
This is expected to converge, in the large-L limit, to the
asymptotic dynamic scaling behavior [8]
P(rsts llis /:l/fs M,L)%L_IP(R, Q,Ki,K, y)! (B4)
where R = r/L and the other scaling variables are defined

as usual. The data reported in Fig. 7 display the approach
to such scaling behavior, after keeping the scaling variables
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fixed, where
0 =tL™*, y=ul*, «(un)=pl",
== e, k=), k=Kk(un). (B5)

The large-L asymptotic behavior turns out to be approached
with power-law suppressed corrections, analogously to what
has been hinted in the main text for the dissipative quantum
Ising chain. The approach to the asymptotic behavior is gener-
ally characterized by O(1/L) corrections, except at the critical
point where they may get suppressed by a larger O(1/L?)
power [9,10,37], as also shown by the insets of Fig. 7. Further
results for the asymptotic large-L behavior of the fermionic
correlations functions can be found in Refs. [8,9].

We now extend the analysis of the out-of-equilibrium
dynamics arising from the protocol described above to the
quantum thermodynamics, focussing on the quantum work
and heat interchange during the out-of-equilibrium evolu-
tion. We discuss the case of particle decay as a dissipative
mechanism; the case of pumping can be easily obtained by
analogous computations.

The first law of thermodynamics (11) describes the energy
flows of the global system, including the environment. In our
protocol, a nonvanishing work is only done at ¢ = 0, if the
Hamiltonian parameter p is suddenly changed from p; to
W # ;. Since after quenching the Hamiltonian is kept fixed,
thus w(¢) = 0 for ¢t > 0, and the average work is just given by

W = (0,,,|Hx(w) — Hx (1)10,,,)
= (i — WL (0,172,104, ,

where the last expression is obtained because the antiperi-
odic boundary conditions respect translational invariance. The
matrix element of the particle density 7, can be computed
analytically, in particular when u; = ., we have

(B6)

<0;LL.|ﬁx|0m) = D(L) s (B7)
— l sin (271_L) _ T—2 T 4
by = 2_L[1 —cos (¥)] 27 +24L2 +oL™.
(B8)

More generally, for @ in the critical region, so that
L=pn—pu. <1, we obtain the asymptotic expansion [37]

(0,17:10,) = ful) + L75 fi(kc) + O(L™?), (B9)

where ¢ =14+z—y,=1, f, and f; are appropriate
functions.

Concerning the heat interchanged with the environment,
we derive the nontrivial relation

q(t) = —uTr[p(t)Hx ()],

obtained by replacing 9, p(¢) using the Lindblad equation for
the density matrix and further manipulations related to the par-
ticular structure of the Lindblad dissipator D;[0]. Moreover,
since the Hamiltonian is independent of the time forz > 0, we
also have

(B10)

dp(t) » d . dE,
q(t)=Tr[ i HK(M)] =ETr[p(t)HK(u)]= o
(B11)

Then using Egs. (B10) and (B11), we obtain

q(t) = —uTe[ p(O)Hx ()] e ™
= —u (0, [ H (1)[0,,,) e ™. (B12)
Note that

(0,1 Hk (1)[0,,) = Eo, + W, (B13)

where E, = (Oui|1"7K(Mi)|0ui> is the ground-state energy at
Wi, and W is the average work done at ¢t = 0, cf. Eq. (B6). In
particular for ii; = 0

(0, |Hg (1)10,,) = L[4D(L) — 1 + oD(L)]

[rr—4 T =2
T 2

+ O(Lz)] . (B14)

Equilibrium computations around the critical point give the
general structure [37]

(0,, | Hx (1)10,,) = Lga(fi, 1) + L™ ' gy(ki, k) + O(L™?).
(B15)

Finally, we obtain

() =/0 dt q(t) = (0,,|Hg ()0, )(e™ = 1) (B16)

The above results have also been carefully checked nu-
merically, since very accurate results for large lattice sizes
[L = O(10%)] can be easily obtained exploiting the particular
structure of the Lindblad equations for the system considered
[8.9].

Let us finally address the scaling behavior at the critical
point of the above results. In particular, we note that the
average work asymptotically behaves as

W =L fu(i) + L — 1) fi(i) + O(L?) .

Its structure does not apparently agree with the general scaling
behaviors put forward in Ref. [35]. Indeed, taking into account
that y, = 1 is the renormalization-group dimension of the
perturbation involved by the quench of the parameter 1, which
is the density operator 7i,, one would expect

(B17)

W~ L™ F(ki, k), (B18)

with z = 1, which matches the subleading term in the expan-
sion (B17). Equation (B18) is supposed to be the asymptotic
behavior keeping «; and « fixed. This apparent contradiction
is explained by contributions arising from short-ranged fluc-
tuations like those giving rise to the analytic part of the free
energy at the critical point [37]. In other words, this is related
to the mixing of the perturbation considered, i.e., the particle
density operator ) _ i1, with the identity operator, which leads
to the leading term in Eq. (B9). On the other hand, Ref. [35]
considered perturbations not showing such problems, such as
the longitudinal spin operator in the quantum Ising chain.
Generally, quenches associated with perturbations vanishing
at the critical point, by symmetry, give rise to an average
works satisfying the scaling laws reported in Ref. [35].
Analogous considerations apply to the behavior of the heat
interchange around the critical point. Indeed, using Eq. (B15),
we may rewrite the expression of g, cf. Eq. (B12), in terms of
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dynamic scaling variables (B5), obtaining
q(t) = LGy(t, jui, pt, ) + L72Gy(0, ki, 6, 7),  (B19)

where the scaling part is again the subleading term associated
with the scaling function

Gy(0, ki, k,y) = —ye " giki, k). (B20)

However, we should observe that disentangling the O(L~?)
scaling part from the leading O(L) term turns out
to be a very hard task in practice, due also to the
fact that the different variables of the two terms, with
their different L dependence, makes such distinction of
doubtful value. Therefore, we do not pursue this issue
further.
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