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Abstract

Extended higher-order sandwich plate theory is used to analyze the free vibrations of

rectangular sandwich plates with compressible core. Accordingly, first-order shear

deformation theory is used to model the laminated face sheets. Besides, the in-plane

and transverse displacements of the core are assumed to be cubic and quadratic

functions of the thickness coordinate, respectively. To deduce the governing equations,

Hamilton’s principle is used. Then, based on the Rayleigh-Ritz method, single series

expansions with two-variable orthogonal polynomials – namely, the orthogonal plate

functions – are considered to approximate the displacement components. Lastly, a

generalized eigenvalue problem is solved to obtain the free vibrational characteristics

of sandwich plates with both symmetric and anti-symmetric lay-ups subjected to var-

ious boundary conditions. The method is validated against the results obtained by

different methods in the literature. Finally, the effects of the plate side-to-thickness

ratio, in-plane aspect ratio, and core-to-face sheets thickness ratio on the natural fre-

quencies are discussed.
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Introduction

Today, sandwich plates are used as main structural components in many industrial
applications of aerospace, marine, transportation, and civil engineering. A typical
sandwich plate is made of two face sheets separated by a core. Face sheets furnish
bending strength and stiffness to the sandwich; they are typically made of metals or
fiber-reinforced laminates. The core is mainly in charge of bearing the transverse
shear. The core material should have low density to reduce the weight of the
structure, but sufficiently large transverse Young’s modulus to prevent excessive
deformation along the thickness. Common technological solutions for the core
include honeycomb structures and foam materials [1,2].

Generally speaking, three main approaches have been proposed in the literature
to analyze sandwich plates. The first approach uses three-dimensional (3D) elas-
ticity to evaluate the static and dynamic responses of sandwich plates. Srinivas
et al. [3–5] provided exact analytical solutions for the bending, vibration, and
buckling problems of homogeneous and laminated thick rectangular plates.
Pagano [6] studied the bending behavior of simply supported sandwich plates.
Noor et al. [7] used the same method to obtain the free vibration characteristics
of sandwich plates.

The second approach includes the so-called equivalent single layer (ESL) theo-
ries, whereas the constitutive relations of multi-layered plates are reduced to a
single equivalent layer. Accordingly, the core is considered as a layer with different
material properties. In the past, attempts have been made to use classical plate
theory (CPT) and first-order shear deformation theory (FSDT) to analyze sand-
wich plates. As expectable, however, classical plate theory does not lead to accu-
rate results since it ignores transverse shear deformation. FSDT predicts constant
(averaged) transverse shear stresses in the thickness direction and thus some shear
correction factors are needed. To consider variable shear stresses, higher-order
shear deformation theories (HSDTs) have been developed. One of the most used
HSDTs is the third-order shear deformation theory (TSDT) developed by Reddy
[8] for laminated composite plates. Kant and Swaminathan [9,10] used Reddy’s
TSDT to develop an analytical solution for simply supported sandwich plates.
Swaminathan et al. [11,12] adopted the same higher-order theory to study the
bending and free vibration problems of sandwich plates with anti-symmetric
angle-ply face sheets. Based on Reddy’s higher order theory, different finite ele-
ment analyses have been carried out by, amongst others, Meunier and Shenoi [13]
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and Nayak et al. [14]. In the ESL theories, however, deformation of the plate in the
thickness direction due to the core compressibility is generally ignored.

The third and last approach includes the layer-wise (LW) theories, whereas each
layer (face sheets and core) is considered separately with its own kinematic rela-
tions. Rao and Desai [15] provided a higher-order mixed LW model to determine
the natural frequencies of simply supported sandwich plates. Bardell et al. [16]
obtained the free vibration characteristics of sandwich panels using a zig-zag dis-
placement pattern over the thickness. A modified Fourier–Ritz solution was pre-
sented by Yang et al. [17] for the damped vibration analysis of sandwich plates
made of viscoelastic and functionally graded materials (FGMs) with various
boundary conditions. In their model, FSDT is used for all of the three layers
with constant transverse shear deformation. Therefore, only one transverse shear
deformation is considered for the face sheets and core, while compatibility con-
ditions between the parts are provided only for the in-plane deformations. Chalak
et al. [18] analyzed the free vibrations of soft core sandwich plates using the finite
element method (FEM) based on a higher-order zig-zag theory. Frostig and
Thomsen [19] developed a higher-order sandwich panel theory (HSAPT), where
the layers are interconnected through equilibrium and compatibility conditions.
They assumed the core to be compressible, but with negligible in-plane rigidity,
and provided two models for this analysis. In the first model, the transverse shear
stresses of the core, as well as the displacements of the upper and lower face sheets,
are considered as unknowns. In the second model, the displacement field in the
core is described by a polynomial based on the displacement field obtained in
the first model. In this second model, the polynomial coefficients, along with the
displacements of the upper and lower face sheets, are the unknowns. Malekzadeh
et al. [20] analyzed the free vibrations of a sandwich plate with simply supported
edges using Navier’s technique. Malekzadeh and Sayyidmousavi [21] also studied
the free vibrations of a sandwich plate with flexible viscoelastic core subjected to
various boundary conditions by using a double Fourier series expansion and
Stokes’s transformation technique. They used FSDT for the face sheets and 3D
elasticity theory for the soft core with out-of-plane stresses only considered. It is
worth mentioning that in references [19,21], the shear stresses in the core are
assumed constant in the thickness direction. Generally, for the free vibration
response, only the out-of-plane stresses are considered, while the in-plane stresses
are neglected. Anyway, the HSAPT model is incapable of capturing the in-plane
stresses and assumes negligible in-plane rigidity. An extended higher-order sand-
wich panel theory (EHSAPT) was proposed by Frostig et al. [22] to appropriately
take into account the effects of the in-plane and transverse rigidity of the core on
the sandwich panel response.

In this paper, we use the well-known Rayleigh-Ritz approximate solution
method, originally formulated in 1909 by Ritz [23] and later applied to study the
transverse vibration of a square plate with free edges [24]. The method has been
used for decades for static, buckling, and free vibration problems of beams, plates,
and shells. In the Rayleigh-Ritz method, the displacement parameters representing
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the structural response are approximated by (truncated) series expansions with

suitable basic functions chosen as terms of the series. For instance, Rahmani

et al. [25] used basic functions defined by the product of trigonometric functions

for the free vibration analysis of composite sandwich cylindrical shells. Abedi et al.

[26] presented a new solution method in which the Legendre orthogonal functions

are used as the base function to obtain the vibrational characteristics of laminated

composite plates with arbitrary lay-ups and also arbitrary boundary conditions.

Bhat [27] studied the vibrations of rectangular plates introducing for the first time

the use of double series of one-variable orthogonal polynomials in the plate in-

plane coordinates. The first term of such polynomial series for each direction is

defined in such a way as to satisfy the essential and natural boundary conditions of

the problem. The other polynomials of the series are then obtained by using the

Gram-Schmidt process. Bhat [28] also used single series of two-variable orthogonal

polynomials to analyze the flexural vibrations of polygonal plates. He also used the

Gram-Schmidt process to generate the family of orthogonal polynomials. Liew

et al. [29] examined the vibrations of rectangular plates by using a single series of

two-variable orthogonal polynomial functions, called orthogonal plate functions,

again generated through the Gram-Schmidt process. Liew et al. [30] used the same

method for the vibration analysis of skew plates. Later, Nallim et al. [31] presented

a general approach for the study of the static and dynamic responses of arbitrary

quadrilateral anisotropic plates with various boundary conditions. Nallim and

Oller [32] applied this approach for unsymmetrically laminated plates with one-

variable orthogonal polynomials to approximate the three components of the dis-

placement field, i.e. the transverse deflection and the two in-plane displacements.

Rango et al. [33] investigated the vibrational behavior of quadrilateral laminated

composite plates based on TSDT by extending the research of Nallim et al. [31,32].

Kumar and Lal [34] used the Rayleigh-Ritz method with two-variable orthogonal

polynomials to study the vibrations of nonhomogeneous orthotropic rectangular

plates with bilinear thickness variation resting on a Winkler foundation. Behera

and Chakraverty [35] also used this method to analyze the free vibrations of rect-

angular nano-plates. Recently, Kumar [36] provided a comprehensive review of the

literature on the Rayleigh-Ritz method and its application to various beam, plate,

and shell problems. Moreno-Garc�ıa et al. [37] also reviewed the literature and used

the Rayleigh-Ritz method to solve plate and beam problems. Orthogonal polyno-

mials, non-orthogonal polynomials, and trigonometric functions have been pro-

posed as basic functions of the series expansion. In particular, orthogonal

polynomial functions have proven to enable rapid convergence of the method.

Nallim and Grossi [38] demonstrated that the Rayleigh-Ritz method with orthog-

onal polynomials functions is very satisfactory for anisotropic plates, whereas

faster convergence is achieved with respect to non-orthogonal polynomial.

Besides orthogonality, the use of single series instead of double series also reduces

computational costs. Another advantage of using polynomial functions is that they

can be easily defined in such a way as to satisfy the essential boundary conditions.
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Based on the above, we use single series with two-variable orthogonal polyno-
mials (orthogonal plate functions) to apply the Rayleigh-Ritz method. As an
improvement with respect to previous researches, we consider the core to be com-
pressible and subjected to all of the in-plane and out-of-plane stress components.
The face sheets are assumed to be made of fiber-reinforced composite laminates.
Accordingly, FSDT is used for the face sheets and the second model by Frostig and
Thomsen [19] is used for the core. Furthermore, the solution method is presented
in such a way that it is possible to obtain results for arbitrary boundary conditions.

The paper is organized as follows. In the next section, the mathematical formu-
lation of the problem is given starting from plate kinematics and arriving at the
expressions for the kinetic and strain energies. Then, the solution method is pre-
sented: based on the Rayleigh-Ritz method, a generalized eigenvalue problem is
formulated, whose solution yields the natural frequencies and mode shapes of the
plate. Next, numerical results are given and discussed: first, a convergence study is
performed and the proposed method is validated through comparison with other
methods of the literature; then, some example problems are analyzed for sandwich
plates with both symmetric and anti-symmetric lay-ups. The effects on the natural
frequencies of the plate in-plane aspect ratio, boundary conditions, plate side-to-
thickness ratio, and core-to-face sheets thickness ratio are investigated.

Mathematical formulation

Kinematics

Let us consider a rectangular sandwich plate of length a, width b, and total thick-
ness h (Figure 1). The plate is made up of three layers, namely a top face sheet with
thickness ft, a core with thickness fc, and a bottom face sheet with thickness fb. In
the following, the indices t, c, and b will refer to the top face, core, and bottom
face, respectively. Let us introduce a global Cartesian reference system Oxyz with
the origin at a vertex of the top face sheet, the x- and y-axes aligned with the plate
length and width directions, respectively, and the z-axis pointing downwards.

Figure 1. Sandwich plate with length a, width b, and total thickness h.
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Parallel to the global z-axis, we introduce local za-axes (a¼ t, c, b) with their
origins at the mid-planes of the top face sheet, core, and bottom face sheet,
respectively.

Based on FSDT and assuming harmonic free vibrations with angular frequency
�x, the displacement components at an arbitrary point with coordinates (x; y; z) of
the top and bottom face sheets at time t can be written as follows:

ua x; y; z; tð Þ ¼ ½ua0 x; yð Þ þ zaw
a
x x; yð Þ�expðĵ �xtÞ

va x; y; z; tð Þ ¼ ½va0 x; yð Þ þ zaw
a
y

�
x; yÞ�expðĵ �xtÞ

wa x; y; tð Þ ¼ wa
0 x; yð Þexpðĵ �xtÞ

; a ¼ t; bð Þ

8>>><
>>>:

(1)

where ua0 and va0 are the in-plane displacements (in the x- and y-directions,
respectively), wa

0 is the transverse displacement (in the z-direction) of the middle
surface of the face sheets, wa

x and wa
y are the rotation angles of the transverse

normal about the y- and x-directions, respectively. Furthermore, ĵ denotes the
imaginary unit.

In what follows, we drop the dependence on time and focus on the mode shapes.
By assuming small deformations, the strain-displacement relations for the face
sheets are as follows:

eaxx x; y; zið Þ ¼ ua0;x þ zaw
a
x;x ¼ ea0xx þ zajax

eayy x; y; zið Þ ¼ va0;y þ zaw
a
y;y ¼ ea0yy þ zajay

caxy x; y; zið Þ ¼ ua0;y þ va0;x þ za wa
x;y þ wa

y;x

� � ¼ ca0xy þ zajaxy
caxz x; y; zið Þ ¼ wa

x þ wa
0;x

cayz x; y; zið Þ ¼ wa
y þ wa

0;y ða ¼ t; bÞ

(2)

where a comma in the subscript denotes differentiation with respect to the follow-
ing variable, also the following strain measures have been defined:

ea0xx ¼ ua0;x

ea0yy ¼ va0;y
ca0xy ¼ ua0;y þ va0;x

jax ¼ wa
x;x

jay ¼ wa
y;y

jaxy ¼ wa
x;y þ wa

y;x ða ¼ t; bÞ

(3)

For the displacement field of the core, the second model provided by Frostig
and Thomsen [19] is used. To consider the effects of core compression, the in-plane
displacements are assumed to be cubic functions of the transverse coordinate,
while the transverse displacement is assumed to vary quadratically in the thickness
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direction. Based on EHSAPT, the displacement components for the core can be

written as follows:

uc x; y; zcð Þ ¼ u0 x; yð Þ þ zcu1 x; yð Þ þ z2cu2 x; yð Þ þ z3cu3 x; yð Þ
vc x; y; zcð Þ ¼ v0 x; yð Þ þ zcv1 x; yð Þ þ z2cv2 x; yð Þ þ z3cv3 x; yð Þ
wc x; y; zcð Þ ¼ w0 x; yð Þ þ zcw1 x; yð Þ þ z2cw2 x; yð Þ

(4)

In the above equation, u0 and v0 are the in-plane displacements (in the x- and y-

directions, respectively) and w0 is the tranverse displacement (in the z-direction) of

the core middle surface. Besides, u1 and v1 are the rotation angles of the transverse

normal about the y- and x-axes, respectively. The functions u2, u3, v2, v3, w1 and

w2 are generalized displacements, which will be calculated using the compatibility

conditions between the core and the face sheets.
The strain-displacement relations for the core can be written out as follows:

ecxx ¼ u0;x þ zcu1;x þ zc
2u2;x þ zc

3u3;x
ecyy ¼ v0;y þ zcv1;y þ zc

2v2;y þ zc
3v3;y

eczz ¼ w1 þ 2zcw2

ccxy ¼ u0;y þ zcu1;y þ zc
2u2;y þ zc

3u3;y þ v0;x þ zcv1;x þ zc
2v2;x þ zc

3v3;x
ccxz ¼ u1 þ 2zcu2 þ 3zc

2u3 þ w0;x þ zcw1;x þ zc
2w2;x

ccyz ¼ v1 þ 2zcv2 þ 3zc
2v3 þ w0;y þ zcw1;y þ zc

2w2;y

(5)

Similar to equation (3), the following generalized strain measures can be

defined:

ec0xx ¼ u0;x; ec1xx ¼ u1;x; ec2xx ¼ u2;x; ec3xx ¼ u3;x
ec0yy ¼ v0;x; ec1yy ¼ v1;x; ec2yy ¼ v2;x; ec3yy ¼ v3;x
ec0zz ¼ w1; ec1zz ¼ 2w2; cc0xy ¼ u0;y þ v0;x; cc1xy ¼ u1;y þ v1;x
cc2xy ¼ u2;y þ v2;x; cc3xy ¼ u3;y þ v3;x; cc0xz ¼ u1 þ w0;x

cc1xz ¼ 2u2 þ w1;x; cc2xz ¼ 3u3 þ w2;x; cc0yz ¼ v1 þ w0;y

cc1yz ¼ 2v2 þ w1;y; cc2yz ¼ 3v3 þ w2;y

(6)

Constitutive equations and stress resultants

The strain-stress relations for the k-th layer of the top or bottom laminated face

sheets are given by [39]:

rxx
ryy
sxy

8><
>:

9>=
>;

k

¼
�Q11

�Q12
�Q16

�Q12
�Q22

�Q26

�Q16
�Q26

�Q66

2
64

3
75
k

exx
eyy
cxy

8><
>:

9>=
>;

k

;
syz
sxz

( )
k

¼
�Q44

�Q45

�Q45
�Q55

" #
k

cyz
cxz

( )
k

(7)
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where ð �QijÞk are the transformed stiffness constants of the k-th layer. The stress
resultants for the face sheets are related to the generalized displacements as
follows:

Na
xx

Na
yy

Na
xy

8>><
>>:

9>>=
>>; ¼

Aa
11 Aa

12 Aa
16

Aa
21 Aa

22 Aa
26

Aa
16 Aa

26 Aa
66

2
64

3
75

ua0;x

v0;y

ua0;y þ va0;x

8>><
>>:

9>>=
>>;

þ
Ba
11 Ba

12 Ba
16

Ba
21 Ba

22 Ba
26

Ba
16 Ba

26 Ba
66

2
64

3
75

wa
x;x

wa
y;y

wa
x;y þ wa

y;x

8>><
>>:

9>>=
>>; ða ¼ t; bÞ

(8)

Ma
xx

Ma
yy

Ma
xy

8>><
>>:

9>>=
>>; ¼

Ba
11 Ba

12 Ba
16

Ba
21 Ba

22 Ba
26

Ba
16 Ba

26 Ba
66

2
64

3
75

ua0;x

va0;y

ua0;y þ va0;x

8>><
>>:

9>>=
>>;

þ
Da

11 Da
12 Da

16

Da
21 Da

22 Da
26

Da
16 Da

26 Da
66

2
64

3
75

wa
x;x

wa
y;y

wa
x;y þ wa

y;x

8>><
>>:

9>>=
>>; ða ¼ t; bÞ

(9)

Qa
yz

Qa
xz

( )
¼ Aa

44 Aa
45

Aa
45 Aa

55

" #
wa;y þ wa

y

wa;x þ wa
x

( )
ða ¼ t; bÞ (10)

where Aa
ij, B

a
ij, and Da

ij ði; j ¼ 1;2; 6Þ are the components of the extensional,
extensional-bending coupling, and bending stiffness matrices, respectively.
Likewise, Aa

ij ði; j ¼ 4;5Þ are the components of the transverse shear stiffness matri-
ces. Such components are given by:

Aa
ij ¼

XN
k¼1

�Qij

� �
k
ðzak � zaðk�1ÞÞ (11a)

Ba
ij ¼

1

2

XN
k¼1

�Qij

� �
k
ðz2ak � z2aðk�1ÞÞ (11b)

Da
ij ¼

1

3

XN
k¼1

�Qij

� �
k
ðz3ak � z3aðk�1ÞÞ (11c)
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in which N is the total number of layers in the laminate, zak and zaðk�1Þ are the

distances of the top and bottom surfaces of the k-th layer from the face sheet mid-

plane, respectively.
Besides, by assuming that the core material is orthotropic, the stress-strain

relations for it can be written as follows:

rcxx
rcyy
rczz
scxz
scyz
scxy

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

¼

1
E1

� t12
E1

� t13
E1

0 0 0

� t12
E1

1
E2

� t23
E2

0 0 0

� t13
E1

� t23
E2

1
E3

0 0 0

0 0 0 1
G23

0 0

0 0 0 0 1
G31

0

0 0 0 0 0 1
G12

2
666666666664

3
777777777775

�1

ecxx
ecyy
eczz
ccxz
ccyz
ccxy

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

(12)

where Ei, tij, and Gij are the Young’s moduli, Poisson’s ratios, and shear moduli in

the material principal reference system, and the superscript –1 denotes matrix

inversion.
The stress resultants of the core are given by:

Nc
xx;M

c
mxxf g ¼ R fc

2

�fc
2

ð1; zmc Þrcxxdzc

Nc
yy;M

c
myy

� � ¼ R fc
2

�fc
2

ð1; zmc Þrcyydzc

Nc
xy;M

c
mxy

� � ¼ R fc
2

�fc
2

1; zmcð Þscxydzc ðm ¼ 1;2; 3Þ

Qc
xz;M

c
Qnxz

� � ¼ R fc
2

�fc
2

1; zncð Þscxzdzc ðn ¼ 1;2Þ

Qc
yz;M

c
Qnyz

� � ¼ R fc
2

�fc
2

ð1; zncÞscyzdzc

Rc
z;M

c
zf g ¼ R fc

2

�fc
2

ð1; zc Þrczzdzc

(13)

Strain and kinetic energies

The maximum strain energy of the top and bottom face sheets can be calculated as

follows:

Ua ¼ 1

2

Z a

0

Z b

0

½Na
xxe

a
0xx þNa

yye
a
0yy þNa

xyc
a
0xy þMa

xxj
a
x þMa

yyj
a
y

þMa
xyj

a
xy þQa

yzc
a
yz þQa

xzc
a
xz�dydx ða ¼ t; bÞ

(14)
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where the stress resultants and strain measures are given by equations (8) to (10)
and (3), respectively.

Likewise, the maximum strain energy of the core can be calculated as:

Uc ¼ 1

2

Z a

0

Z b

0

ðNc
xxe

c
0xxþMc

1xxe
c
1xxþMc

2xxe
c
2xxþMc

3xxe
c
3xxþNc

yye
c
0yyþMc

1yye
c
1yy

þMc
2yye

c
2yyþMc

3yye
c
3yyþRc

ze
c
0zzþMc

ze
c
1zzþNc

xyc
c
0xyþMc

1xyc
c
1xyþMc

2xyc
c
2xy

þMc
3xyc

c
3xyþQc

xzc
c
0xzþMc

Q1xzc
c
1xzþMc

Q2xzc
c
2xzþQc

yzc
c
0yzþMc

Q1yzc
c
1yzþMc

Q2yzc
c
2yzÞdydx

(15)

where the stress resultants and strain measures are given by equations (14) and (6),
respectively.

Also, the maximum kinetic energy of the top and bottom face sheets and core
can be computed as follows:

Ta ¼ 1

2

Z a

0

Z b

0

�
Ia0 ðua0Þ2 þ ðva0Þ2 þ ðwa

0Þ2
� �

þ 2Ia1 ua0w
a
x þ va0w

a
y

� �
þIa2 wa

x

� �2 þ wa
y

� �2� �	
dydx ða ¼ t; bÞ

(16)

and

Tc ¼ 1

2

Z a

0

Z b

0

�
Ic0 w0

2þ u0
2þ v0

2
� �

þ 2Ic1 w0w1þ v0v1þ u0u1ð Þ
þ Ic2 w1

2þ 2w0w2þ v1
2þ 2v0v2þ u1

2þ 2u0u2
� �

þ 2Ic3 w1w2þ v1v2þ v0v3þ u1u2þ u0u3ð Þþ Ic4 w2
2þ v2

2þ 2v1v3þ u2
2þ 2u1u3

� �
þ 2Ic5 v2v3þ u2u3ð Þþ Ic6ðu32þ v3

2Þ
	
dy dx

(17)

where

Ia0; I
a
1; I

a
2ð Þ ¼ R fa=2

�fa=2
qað1; za; z2aÞdza i ¼ t; bð Þ

Ic0; I
c
1; I

c
2; I

c
3; I

c
4; I

c
5; I

c
6ð Þ ¼ R fc=2

�fc=2
qcð1; zc; z2c ; z3c ; z4c ; z5c ; z6cÞdzc

(18)

are the inertia terms of the face sheets and core.
The total strain energy and kinetic energy of the sandwich plate are equal to the

sum of the strain and kinetic energies, respectively, of the face sheets and core:

UTotal ¼ Uc þUt þUb (19)
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and

TTotal ¼ Tc þ Tt þ Tb (20)

The governing equations and boundary conditions can be derived through

Hamilton’s principle, as presented in Appendix 2.

Compatibility conditions

Assuming complete bond with no slip between the core and face sheets, the com-

patibility conditions at the upper and lower face–core interfaces read as follows:

uc zc ¼ � fc
2


 �
¼ ut0 þ

1

2
ftw

t
x vc zc ¼ � fc

2


 �
¼ vt0 þ

1

2
ftw

t
y wc zc ¼ � fc

2


 �
¼ wt

0

(21)

and

uc zc ¼ fc
2


 �
¼ ub0 �

1

2
fbw

b
x vc zc ¼ fc

2


 �
¼ vb0 �

1

2
fbw

b
y wc zc ¼ fc

2


 �
¼ wb

0 (22)

By substituting equations (1) and (4) into the above equations, the compatibility

conditions are obtained:

u0 þ u1
fc
2
þ u2

f2c
4
þ u3

f3c
8
¼ ub0 � wb

x

fb
2

v0 þ v1
fc
2
þ v2

f2c
4
þ v3

f3c
8
¼ vb0 � wb

y

fb
2

w0 þ w1
fc
2
þ w2

f2c
4
¼ wb

0

u0 � u1
fc
2
þ u2

f2c
4
� u3

f3c
8
¼ ut0 þ wt

x

ft
2

v0 � v1
fc
2
þ v2

f2c
4
� v3

f3c
8
¼ vt0 þ wt

y

ft
2

w0 � w1
fc
2
þ w2

f2c
4
¼ wt

0

(23)

For the ease of calculation, the relations between the dependent coefficients are

calculated, so that the number of unknowns of the problem is reduced.
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The relations between the displacement-dependent parameters in the core are

derived as follows:

u2 ¼ ð2 ub0 þ ut0
� �� fbw

b
x þ ftw

t
x � 4u0Þ=f2c

u3 ¼ ð4 ub0 � ut0
� �� 2 fbw

b
x þ ftw

t
x

� �
� 4fcu1Þ=f3c

v2 ¼ ð2 vb0 þ vt0
� �� fbw

b
y þ ftw

t
y � 4v0Þ=f2c

v3 ¼ ð4 vb0 � vt0
� �� 2 fbw

b
y þ ftw

t
y

� �
� 4fcv1Þ=f3c

w2 ¼ 2ðwb
0 þ wt

0 � 2w0Þ=f2c
w1 ¼ ðwb

0 � wt
0Þ=fc

(24)

Solution method

Series expansion of generalized displacements

The displacement components are approximated by using m-term truncated single

series of two-variable orthogonal polynomials:

wt
0 x; yð Þ ¼

Xm
i¼1

Ai/
wt

i x; yð Þ vt0 x; yð Þ ¼
Xm
i¼1

Bi/
vt

i x; yð Þ

ut0 x; yð Þ ¼
Xm
i¼1

Ci/
ut

i x; yð Þ wt
x x; yð Þ ¼

Xm
i¼1

Di/
xt

i x; yð Þ

wt
y x; yð Þ ¼

Xm
i¼1

Ei/
yt

i x; yð Þ wb
0 x; yð Þ ¼

Xm
i¼1

Fi/
wb

i x; yð Þ

vb0 x; yð Þ ¼
Xm
i¼1

Gi/
vb

i x; yð Þ ub0 x; yð Þ ¼
Xm
i¼1

Hi/
ub

i x; yð Þ

wb
x x; yð Þ ¼

Xm
i¼1

Ii/
xb

i x; yð Þ wb
y x; yð Þ ¼

Xm
i¼1

Ji/
yb

i x; yð Þ

w0 x; yð Þ ¼
Xm
i¼1

Ki/
wc

i x; yð Þ v0 x; yð Þ ¼
Xm
i¼1

Li/
vc

i x; yð Þ

u0 x; yð Þ ¼
Xm
i¼1

Mi/
uc

i x; yð Þ v1 x; yð Þ ¼
Xm
i¼1

Ni/
v1

c

i x; yð Þ

u1 x; yð Þ ¼
Xm
i¼1

Oi/
u1

c

i x; yð Þ

(25)

where Ai;Bi;Ci;Di;Ei;Fi;Gi;Hi; Ii; Ji;Ki;Li;Mi;Oi ði ¼ 1;2; . . . ;mÞ are unknown

coefficients and /k
i ðk ¼ wt;wb;wc; . . . ; u1

cÞ are the shape functions. The latter

have to be chosen in such a way as to satisfy the essential boundary conditions.

To this aim, the first member of the orthogonal polynomial basis /k
1 is defined as
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described in Appendix 1. The other members of the orthogonal polynomial basis
are generated through the following recursive formula [25,26]:

/k
i x; yð Þ ¼ fiðx; yÞ � ai;1

� �
/k
1 x; yð Þ � ai;2/

k
2 x; yð Þ � ai;3/

k
3 x; yð Þ � � � �

� ai;i�1/
k
i�1 x; yð Þ (26)

where fiðx; yÞ are weight functions (represented by 1; x; y; x2; xy; y2; . . . ; xi�nyn

with i ¼ 1; . . . ;m and n ¼ 0; . . . ;m) and ai;i�1 are calculated as follows [28,29]:

ai:i�1 ¼
R a

0

R b

0 fi/
k
1 x; yð Þ/k

i�1 x; yð Þ dydxR a

0

R b

0 /k
i�1 x; yð Þ/k

i�1 x; yð Þ dydx
(27)

Using the above relations, the basic functions are created with the following
orthogonality properties:

Z a

0

Z b

0

/k
i x; yð Þ/k

j x; yð Þdxdy ¼
0 if i 6¼ j

�ij 6¼ 0 if i ¼ j

8><
>: (28)

Generalized eigenvalue problem

Based on the Rayleigh-Ritz method, the difference between the maximum strain
and kinetic energies (19) and (20) is minimized with respect to the unknown
coefficients:

@ UTotal � TTotalð Þ
@ Ai;Bi;Ci;Di;Ei;Fi;Gi;Hi; Ii; Ji;Ki;Li;Mi;Oið Þ ¼ 0 (29)

The matrix form of the abovementioned equations is:

K½ � � �x2 M½ �� �

Ai

Bi

Ci

Di

Ei

Fi

Gi

Hi

Ii
Ji
Ki

Li

Mi

Ni

Oi

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>;

¼ 0f g (30)
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Equation (30) represents a generalized eigenvalue problem, out of which one
can obtain the natural frequencies (eigenvalues) and mode shapes (eigenvectors) of
the sandwich plate.

Results and discussion

Material properties and plate lay-ups

Table 1 shows the material properties adopted for the core and face sheets of the
sandwich plates analyzed in the following examples.

The following four lay-ups will be considered in the examples (the angles in
degrees represent fiber orientations with respect to the x-axis, C represents the core):

• lay-up #1) 0�/90�/0�/C/0�/90�/0�: a seven–layer symmetric sandwich plate with
core thickness 0.88h, material 1 for the core and material 2 for the laminated
face sheets;

• lay-up #2) 45�/–45�/45�/C/–45�/45�/–45�: a seven-layer anti-symmetric sand-
wich plate with core thickness 0.88h, material 1 for the core and material 2
for the laminated face sheets;

• lay-up #3) 0�/90�/C/90�/0�: a five-layer symmetric sandwich plate with core thick-
ness 0.8h, material 3 for the core and material 4 for the laminated face sheets;

• lay-up #4) 0�/90�/C/0�/90�: a five-layer anti-symmetric sandwich plate with core
thickness 0.8h, material 5 for the core and material 6 for the laminated face
sheets.

Convergence study

In the proposed method, the number of terms of the truncated series plays a crucial
role for the accuracy of numerical results. Table 2 shows the first six dimensionless

Table 1. Material properties adopted for the example sandwich plates.

Material no.

Property Unit M1 [20] M2 [20] M3 [18] M4 [18] M5 [18] M6 [18]

E1 GPa 0.10363 24.51 0.5776 276 0.00689 131

E2 GPa 0.10363 7.77 0.5776 6.9 0.00689 10.34

E3 GPa 0.10363 7.77 0.5776 6.9 0.00689 10.34

G12 GPa 0.05 3.34 0.1079 6.9 0.00345 6.895

G23 GPa 0.05 1.34 0.2221 6.9 0.00345 6.895

G13 GPa 0.05 3.34 0.1079 6.9 0.00345 6.205

v12 0.33 0.078 0.0025 0.25 0 0.22

v23 0.33 0.49 0.0025 0.25 0 0.22

v13 0.33 0.078 0.0025 0.3 0 0.49

q kg=m3 130 1800 1000 681.8 97 1627
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natural frequencies, x ¼ �xa2
ffiffiffiffiffiffiffiffiffiffiffiffi
qc=Ec

p
=h, calculated for a simply supported sand-

wich plate with a different number of series terms. Here, qc and Ec are the density
and Young’s modulus of the core, respectively; �x and h respectively are the natural
frequency and total thickness of the plate. After considering a number of terms
equal to forty, the response of the first four natural frequencies converged to the
fourth decimal digit. Therefore, in all of the subsequent analyses the number of
terms is chosen to be m¼ 40.

Validation

As discussed in the literature review, in previous researches, the natural frequencies
of simply supported sandwich plates have been obtained using several analytical
and numerical methods. In Table 3, a comparison of results is presented for

Table 2. Convergence study of first six dimensionless natural frequencies. x ¼ �xa2
ffiffiffiffiffiffiffiffiffiffiffi
qc=Ec

p
=h

of a simply supported sandwich plate with a=b ¼ 1; a=h ¼ 10 and. hc=h ¼ 0:88.

Dimensionless natural frequencies

M x1 x2 x3 x4 x5 x6

10 14.2844 27.6400 28.1594 36.4457 42.7456 42.8172

15 14.2843 26.2126 26.8479 36.2009 42.0549 42.8656

20 14.2827 26.2122 26.8455 34.5758 40.7453 41.9713

25 14.2820 26.2086 26.8224 34.5695 39.2526 40.0359

30 14.2820 26.1842 26.8222 34.5591 39.2287 39.9286

35 14.2820 26.1842 26.8222 34.5165 39.2213 39.9226

40 14.2820 26.1842 26.8221 34.5165 39.1128 39.9223

45 14.2820 26.1842 26.8221 34.5165 39.1128 39.9223

Table 3. Dimensionless natural frequencies for seven-layer simply supported sandwich plates
with different lay-ups, a=b ¼ 1; a=h ¼ 10, and hc=h ¼ 0:88.

Method

Lay-ups

Mode

No.

Present

(with

in-plane)

Present

(without

in-plane)

Analytical

[20]

FEM-HSDT

(LW) [40]

Analytical-HSDT

(ESL) [13]

FEM–HSDT

(ESL) [14]

#1 x1 14.282 14.3404 14.83 14.440 15.28 15.34

x2 26.1842 26.5028 26.91 26.826 28.69 30.18

x3 26.8221 27.1551 27.47 27.456 30.01 31.96

x4 34.5165 35.2757 35.57 35.706 38.86 40.94

#2 x1 15.245 15.312 15.53 15.405 16.38 16.43

x2 26.7295 27.0592 27.36 27.417 29.65 31.17

x3 26.7295 27.0592 27.36 27.417 29.65 31.17

x4 35.3905 36.1435 36.93 36.592 40 42.78
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sandwich plates with lay-ups #1 and #2 with simply supported boundary condi-
tions. The present method is compared against the analytical solutions based on
the layer wise approach [20], the FEM solutions based on higher-order shear
deformations theory [40], and other analytical solutions based on higher-order
shear deformation theory with the ESL approach [13,14]. In these references, the
effect of in-plane stresses are neglected so the results for the proposed method are
presented for two cases: with and without in-plane stresses. The present formula-
tion is in good agreement with the methods of the literature. Also, as expected, the
natural frequencies decrease with the consideration of in-plane stresses.

The next comparison study is presented in Table 4, in which the first six dimen-
sionless natural frequencies of a five-layer sandwich plate with lay-up #3 and four
different boundary conditions (CCCC, CSCS, CFCF, and CFFF) are compared.
The results of the present method are compared with the FEM results of Chalak
et al. [18] based on higher-order zig-zag model, Kulkarni and Kapuria [41] based
on zig-zag model for different boundary conditions, and 3D results reported by
Kulkarni and Kapuria [41]. Present results are in excellent agreement with those in
the literature.

The last comparison study is devoted to the first six dimensionless natural fre-
quencies of a five-layer simply supported sandwich plate with lay-up #4 as shown
in Table 5. The results of the present method show a good agreement with the
results by Rao et al. [15] and Wang et al. [42], who used the higher order mixed
layer wise theory for both thin (a=h¼10) and moderately thick (a=h¼100) sandwich

Table 4. Dimensionless natural frequencies for symmetric five-layer sandwich plates with lay-up
#3, different boundary conditions, a=b¼ 1, a=h¼ 10, and hc=h¼ 0.8.

Frequencies

B.C. Method x1 x2 x3 x4 x5 x6

CFCF Present 7.0426 7.7690 14.2215 15.2980 17.1898 21.5046

Chalak [18] 7.0359 7.7249 14.2105 15.2415 17.1179 21.3580

3D Abaqus [41] 7.0119 7.7131 14.1496 15.1975 17.0942 21.3089

ZIGT FE [41] 7.0923 7.8284 14.3407 15.4498 17.1776 21.5871

CFFF Present 2.9740 3.6312 9.4107 10.7907 15.8589 17.2400

Chalak [18] 2.9721 3.6053 9.3976 10.7219 15.8489 17.2203

3D Abaqus [41] 2.9674 3.6113 9.3738 10.7228 15.8337 17.5148

ZIGT FE [41] 2.9791 3.6348 9.4418 10.8109 15.8500 17.3072

CSCS Present 10.3848 15.3560 18.2338 21.4893 21.6985 26.7959

Chalak [18] 10.3027 16.1798 18.3228 22.1962 23.2839 27.1750

3D Abaqus [41] 10.2816 16.1245 18.3029 22.1480 23.1797 27.1464

ZIGT FE [41] 10.3582 16.3499 18.3744 22.4100 23.5983 27.2300

CCCC Present 11.3166 16.8330 19.1758 23.0592 23.7886 28.4357

Chalak [18] 11.2607 16.7446 19.0385 22.8018 23.6414 28.1930

3D Abaqus [41] 11.2236 16.6777 18.9650 22.7096 23.5270 28.0728

ZIGT FE [41] 11.4158 17.0329 19.3780 23.4305 24.0862 28.7241
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plates. Table 5 also gives the results obtained by ESL theory [10], which clearly

overestimates the natural frequencies compared to the proposed model and the

LW theory.

Effect of plate in-plane aspect ratio

To study the effect of the plate in-plane aspect ratio, we consider a seven-layer

sandwich plate with soft flexible core, symmetric lay-up #1, and side-to-thickness

a=h ¼ 10. The core is made of HEREX-C70.130 PVC foam and the face sheets are

made of glass polyester resin (corresponding to materials 1 and 2 of Table 1,

respectively). Table 6 provides the first six dimensionless natural frequencies

obtained for plates with aspect ratios a=b¼1 and 2, subjected to different boundary

conditions. It can be observed that the natural frequencies vary as expected with

the changing of boundary conditions: for instance, the fully clamped plate has the

highest frequencies, because in this case the general stiffness of the system is high-

est; conversely, when one side is clamped and the other three sides are free, the

general stiffness is lowest, so the lowest frequencies are calculated. For the same

boundary conditions, as the aspect ratio increases, the natural frequencies also

increase.
In order to visualize the type of free vibrations of the sandwich plates with soft

flexible core, the first six mode shapes of the symmetric sandwich plate with lay-up

#1 for two boundary conditions (SSSS and SSSF) are shown in Figures 2 and 3.

Effect of boundary conditions

To investigate the effects of boundary conditions, we analyze an anti-symmetric

sandwich plates with lay-up #2 and side-to-thickness ratio a=h¼10. The adopted

material properties are the same as in the previous example. The first four dimen-

sionless natural frequencies of the plate subjected to different boundary conditions

are shown in Figures 4 and 5 for aspect ratio a=b¼ 1 and 2, respectively. The

Table 5. Dimensionless natural frequencies for anti-symmetric five-layer simply supported
sandwich plates with lay-up #4, a=b¼1, and fc=ft¼10.

a=h Method

Modes

1;1 1;2 2;2 1;3 2;3 3;3

10 Present 1.8444 3.2053 4.2585 5.1124 6.0607 7.0

Rao et al. [15] 1.8480 3.2196 4.2867 5.2234 6.0942 7.6762

Wang et al. [42] 1.8470 3.2182 4.2882 5.2286 6.0901 7.6721

ESL [10] 4.8594 8.0187 10.2966 11.7381 13.4706 16.1320

100 Present 11.9515 23.4175 30.9631 36.1460 41.5612 49.5131

Rao et al. [15] 11.9401 23.4017 30.9432 36.1434 41.4475 49.7622

Wang et al. [42] 11.8593 23.3419 30.8647 36.1150 41.3906 49.7091

ESL [10] 15.5093 39.0293 54.7618 72.7572 83.4412 105.3781
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Table 6. Dimensionless natural frequencies for symmetric sandwich plates with lay-up #1, dif-
ferent boundary conditions, a=h¼ 10, and hc=h¼ 0.88.

B.C.
Dimensionless natural frequencies

x1 x2 x3 x4 x5 x6

a=b¼ 1 SSSS 14.2820 26.1842 26.8221 34.5165 39.1128 39.9223

CCCC 17.9478 28.3883 28.8626 36.7106 40.9407 41.8097

SSSF 10.4886 18.3217 24.8432 29.6955 31.1754 38.6135

CFCF 12.8390 14.3070 23.8718 25.7326 27.7681 34.4752

SCSC 16.1656 27.5669 27.6220 35.8010 40.4973 40.5721

SSCF 10.9319 19.1317 24.9796 30.2877 32.0784 38.7532

SFSF 12.7507 14.2018 23.7883 25.4969 27.5950 34.0244

CCCF 13.6366 20.2508 26.3918 31.4783 32.6803 40.1626

CFFF 4.0143 6.3308 15.2491 18.6960 19.9351 28.1375

FFFF 10.1538 18.5966 20.3367 22.8370 23.8423 32.8215

a=b¼ 2 SSSS 26.1828 34.5131 45.1735 51.4412 55.5460 56.6561

CCCC 29.9038 37.4583 47.8411 53.7021 58.0913 59.0258

SSSF 12.4001 26.4037 36.1372 39.8191 43.1713 52.4893

CFCF 12.8386 17.2968 25.7316 32.2413 39.6862 45.3543

SCSC 29.1065 36.4640 46.8339 53.4658 57.6096 58.8917

SSCF 15.2456 27.2396 36.9033 40.2578 44.0774 53.3827

SFSF 12.7503 17.1937 25.4960 32.0918 39.3926 45.2257

CCCF 17.0671 28.5307 37.2527 41.6105 44.8291 54.4597

CFFF 4.0139 8.7116 15.2492 24.4851 30.5695 38.0243

FFFF 16.5397 20.3260 30.6221 34.7169 43.5808 46.3031

(a) (b) (c)

(d) (e) (f)

Figure 2. First six mode shapes of the seven-layer simply supported sandwich plate with lay-up
#1, (a=b ¼ 1) and ða=h¼ 10). (a) First mode (b) Second mode (c) Third mode (d) Fourth mode
(e) Fifth mode (f) Sixth mode.

18 Journal of Sandwich Structures and Materials 0(0)



highest frequencies are obtained for the fully clamped (CCCC) boundary condi-
tion, while the lowest ones for the CFFF boundary condition. For the square plate
(a=b¼1), the natural frequencies of the second and third modes are the exactly
same for the symmetric boundary conditions (CCCC and SSSS) and very close for
the SCSC boundary condition. Besides, the third and fourth natural frequencies

(a) (b) (c)

(d) (e) (f)

Figure 3. First six mode shapes of the seven-layer sandwich plate with SSSF boundary condition
and lay-up #1, (a=b ¼ 1) and ða=h¼10). (a) First mode (b) Second mode (c) Third mode (d)
Fourth mode (e) Fifth mode (f) Sixth mode.

Figure 4. Dimensionless natural frequencies of the seven-layer anti-symmetric sandwich plate
with lay-up #2 for different boundary conditions and a=b¼1.
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are very close for the CFCF and SFSF boundary conditions. Instead, for the

rectangular plate (a=b¼ 2), the natural frequencies of two consecutive modes are

always distinct for each of the boundary conditions.
The completely free boundary condition (FFFF) has received little attention in

the literature. To further investigate this case, we analyze a square sandwich plate

with completely free edges and lay-up (0�/h/0�/C/0�/h/0�), where h can take the

values 30�, 45�, 60�, and 90�. The material properties 1 and 2 of Table 1 are

assumed for the core and face sheets, respectively. Table 7 shows the calculated

dimensionless natural frequencies for different fiber-orientation angles and side-to-

thickness aspect ratios.
Figure 6 shows the first six mode shapes for the plate with a=h ¼ 10.

Effect of plate side-to-thickness ratio

Lastly, we investigate the effect of the plate side-to-thickness ratio. To this aim, we

consider an anti-symmetric sandwich plate with lay-up #4 and soft flexible core.

The material properties 5 and 6 of Table 1 are assumed for the core and face sheets,

respectively. The first six natural frequencies calculated for different boundary

conditions are presented in Table 8. Here, the side-to-thickness ratio is a=h¼ 20

and the core-to-face sheets thickness ratio is fc=ft¼ 10.

Figure 5. Dimensionless natural frequencies of the seven-layer anti-symmetric sandwich plate
with lay-up #2 for different boundary conditions and a=b¼2.
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Table 7. Dimensionless natural frequencies of an all free (FFFF) square sandwich plate with
symmetric lay-up 0�/h/0�/C/0�/h/0�.

a=h
NATURAL FREQUENCIES

h 30
�

45
�

60
�

90
�

10 x1 10.9743 11.1533 10.8147 10.1538

x2 15.8724 16.4530 17.4125 18.5966

x3 20.9667 20.6238 20.4126 20.3367

x4 21.8127 22.1049 22.3183 22.8370

x5 24.6524 24.6248 24.4309 23.8423

x6 31.2163 31.7486 32.5704 32.8215

20 x1 13.1194 13.3655 12.8580 11.9376

x2 18.7023 19.7119 21.3635 23.3447

x3 28.4110 27.5812 27.0643 26.8776

x4 29.2915 29.8605 30.0784 30.8875

x5 35.3406 35.2716 34.7372 33.1645

x6 45.2436 46.9761 49.5856 49.9988

30 x1 13.8523 14.1151 13.5538 12.5615

x2 19.4245 20.5885 22.4728 24.6952

x3 30.8871 29.8335 29.1757 28.9374

x4 32.1515 32.8353 32.9965 33.8501

x5 39.5914 39.5246 38.8033 36.6530

x6 50.6153 53.1011 56.8301 57.8763

40 x1 14.2095 14.4779 13.8933 12.8733

x2 19.7009 20.9353 22.9173 25.2281

x3 31.9249 30.7672 30.0431 29.7801

x4 33.5721 34.3100 34.4253 35.2717

x5 41.6323 41.5811 40.7610 38.2813

x6 53.1028 56.0003 60.3367 61.9881

(a) (b) (c)

(d) (e) (f)

Figure 6. First six mode shapes of an all free (FFFF) square sandwich plate with lay-up #4 and
a=h ¼ 10. (a) First mode (b) Second mode (c) Third mode (d) Fourth mode (e) Fifth mode (f)
Sixth mode.
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Figure 7 displays the variation of the first natural frequency with the plate side-
to-thickness ratio. Three different boundary conditions (SSSS, CCCC, and CFFF)
are analyzed. As the side-to-thickness ratio increases, the first natural frequency
increases. Indeed, the moderately thick sandwich plates have lower frequencies
with respect to the thinner plates.

Table 8. Dimensionless natural frequencies for a square anti-symmetric sandwich plate with lay-
up #4, different boundary conditions, a=b¼1, and a=h¼20.

B.C.
Mode No.

x1 x2 x3 x4 x5 x6

SSSS 3.4789 5.7273 5.7333 7.3888 8.5296 8.5701

CCCC 3.9141 6.3522 6.3605 8.1863 9.4472 9.5067

SSSF 2.6613 4.4447 5.2764 6.4272 6.9962 8.2089

CFCF 2.7489 3.4485 5.6713 5.8415 6.1924 7.7812

SCSC 3.7006 5.8729 6.2264 7.9586 9.3051 9.3687

SSCF 2.7506 4.6222 5.3044 6.6277 7.3212 8.3133

SFSF 2.7479 3.4485 5.6678 5.8303 6.1960 8.4340

CCCF 3.0290 4.7929 5.8285 7.0012 7.4522 9.0654

CFFF 1.2345 1.9263 3.8246 4.5494 5.2021 6.5562

FFFF 3.1368 5.0134 5.0177 5.6310 5.6955 7.4512

Figure 7. Fundamental natural frequency of a square sandwich plate with lay-up #4 as a function
of the side-to-thickness ratio.
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Effect of core-to-face sheets thickness ratio

Figure 8 illustrates the effect of the core-to-face sheets thickness ratio on the first
natural frequency of a square sandwich plate for the SSSS, CCCC and CFFF

boundary conditions. As shown in the figure, with the increase of this ratio, the
first natural frequency increases for all of the three boundary conditions consid-

ered. Again, the fully clamped sandwich plate has the highest fundamental natural

frequency among the other boundary conditions.

Conclusions

We analyzed the free vibrations of composite sandwich plates with compressible

core via an extended higher-order sandwich panel theory (EHSAPT). The govern-

ing equations were derived by using Hamilton’s principle. The Rayleigh-Ritz
method with two-variable orthogonal polynomials was used for the solution in

terms of natural frequencies and mode shapes. The free vibrations of sandwich
plates with both symmetric and anti-symmetric lay-ups subjected to various

boundary conditions were investigated. Results were validated with previous
results from the literature and excellent agreement was observed. Eventually, the

Figure 8. Fundamental natural frequency of a square sandwich plate with lay-up (0/90/C/0/90) as
a function of the core-to face sheets thickness ratio.
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effects were investigated of various parameters such as the plate in-plane ratio,
boundary conditions, plate side-to-thickness ratio, and core-to-face sheets thick-

ness ratio. The results show that the fundamental natural frequencies increase with
both the plate in-plane ratio and side-to-thickness ratio, as well as with the core-to-

face sheets thickness ratio. For an all free square plate, the effect was also exam-
ined of changing the fiber orientation angle in the face sheets.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, author-

ship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, author-

ship and/or publication of this article: The first three authors acknowledge the funding

support of Babol Noshirvani University of Technology through Grant program No.

BNUT/964113035/96.

ORCID iDs

Ramazan-Ali Jafari-Talookolaei https://orcid.org/0000-0003-4357-2597
Paolo S Valvo https://orcid.org/0000-0001-6439-1926

References

1. Vinson JR. Plate and panel structures of isotropic, composite and piezoelectric materials,

including sandwich construction. Berlin: Springer Science & Business Media, 2006.
2. Altenbach H, Altenbach J and Kissing W. Mechanics of composite structural elements.

Berlin: Springer, 2018.
3. Srinivas S, Rao AK and Rao CJ. Flexure of simply supported thick homogeneous and

laminated rectangular plates. ZAMM – J Appl Math Mech/Z Angew Math Mech 1969;

49: 449–458.
4. Srinivas S, Rao CJ and Rao A. An exact analysis for vibration of simply-supported

homogeneous and laminated thick rectangular plates. J Sound Vib 1970; 12:

187–199.
5. Srinivas S and Rao A. Bending, vibration and buckling of simply supported thick

orthotropic rectangular plates and laminates. Int J Solids Struct 1970; 6: 1463–1481.
6. Pagano NJ. Exact solutions for rectangular bidirectional composites and sandwich

plates. J Compos Mater 1970; 4: 20–34.
7. Noor AK, Peters JM and Burton WS. Three-dimensional solutions for initially stressed

structural sandwiches. J Eng Mech 1994; 120: 284–303.
8. Reddy JN. A simple higher-order theory for laminated composite plates. J Appl Mech

1984; 51: 745–752.
9. Kant T and Swaminathan K. Analytical solutions for the static analysis of laminated

composite and sandwich plates based on a higher order refined theory. Compos Struct

2002; 56: 329–344.

10. Kant T and Swaminathan K. Analytical solutions for free vibration of laminated composite

and sandwich plates based on a higher-order refined theory. Compos Struct 2001; 53: 73–85.

24 Journal of Sandwich Structures and Materials 0(0)

https://orcid.org/0000-0003-4357-2597
https://orcid.org/0000-0003-4357-2597
https://orcid.org/0000-0001-6439-1926
https://orcid.org/0000-0001-6439-1926


11. Swaminathan K, Patil S, Nataraja M, et al. Bending of sandwich plates with anti-

symmetric angle-ply face sheets–analytical evaluation of higher order refined computa-

tional models. Compos Struct 2006; 75: 114–120.
12. Swaminathan K and Patil S. Analytical solutions using a higher order refined compu-

tational model with 12 degrees of freedom for the free vibration analysis of antisym-

metric angle-ply plates. Compos Struct 2008; 82: 209–216.
13. Meunier M and Shenoi R. Dynamic analysis of composite sandwich plates with damp-

ing modelled using high-order shear deformation theory. Compos Struct 2001; 54:

243–254.
14. Nayak A, Moy S and Shenoi R. Free vibration analysis of composite sandwich plates

based on Reddy’s higher-order theory. Compos Part B Eng 2002; 33: 505–519.
15. Rao M and Desai Y. Analytical solutions for vibrations of laminated and sandwich

plates using mixed theory. Compos Struct 2004; 63: 361–373.
16. Bardell N, Dunsdon J and Langley R. Free vibration analysis of coplanar sandwich

panels. Compos Struct 1997; 38: 463–475.
17. Yang C, Jin G, Ye X, et al. A modified Fourier–Ritz solution for vibration and damp-

ing analysis of sandwich plates with viscoelastic and functionally graded materials. Int

J Mech Sci 2016; 106: 1–18.
18. Chalak H, Chakrabarti A, Iqbal MA, et al. Free vibration analysis of laminated soft

core sandwich plates. J Vib Acoust 2013; 135: 011013.
19. Frostig Y and Thomsen OT. High-order free vibration of sandwich panels with a flex-

ible core. Int J Solids Struct 2004; 41: 1697–1724.
20. Malekzadeh K, Khalili M and Mittal R. Local and global damped vibrations of plates

with a viscoelastic soft flexible core: an improved high-order approach. J Sandwich

Struct Mater 2005; 7: 431–456.
21. Malekzadeh K and Sayyidmousavi A. Free vibration analysis of sandwich plates with a

uniformly distributed attached mass, flexible core, and different boundary conditions.

J Sandwich Struct Mater 2010; 12: 709–732.
22. Frostig Y, Phan C and Kardomateas G. Free vibration of unidirectional sandwich

panels, part I: compressible core. J Sandwich Struct Mater 2013; 15: 377–411.
23. Ritz W. Uber eine neue methode zur losung gewisser variationsprobleme der mathema-

tischen physik. J Math 1909; 135: 1–61.
24. Ritz W. Theorie der transversalschwingungen einer quadratischen platte mit freien

r€andern. Ann Phys 1909; 333: 737–786.
25. Rahmani O, Khalili S and Malekzadeh K. Free vibration response of composite sand-

wich cylindrical shell with flexible core. Compos Struct 2010; 92: 1269–1281.
26. Abedi M, Jafari-Talookolaei R-A and Valvo PS. A new solution method for free vibra-

tion analysis of rectangular laminated composite plates with general stacking sequences

and edge restraints. Comput Struct 2016; 175: 144–156.
27. Bhat R. Natural frequencies of rectangular plates using characteristic orthogonal poly-

nomials in Rayleigh-Ritz method. J Sound Vib 1985; 102: 493–499.
28. Bhat R. Flexural vibration of polygonal plates using characteristic orthogonal polyno-

mials in two variables. J Sound Vib 1987; 114: 65–71.
29. Liew K, Lam K and Chow S. Free vibration analysis of rectangular plates using orthog-

onal plate function. Comput Struct 1990; 34: 79–85.
30. Liew K, Xiang Y, Kitipornchai S, et al. Vibration of thick skew plates based on Mindlin

shear deformation plate theory. J Sound Vib 1993; 168: 39–69.

Farsani et al. 25



31. Nallim LG, Martinez SO and Grossi RO. Statical and dynamical behaviour of thin fibre
reinforced composite laminates with different shapes. Comput Methods Appl Mech Eng

2005; 194: 1797–1822.
32. Nallim LG and Oller S. An analytical–numerical approach to simulate the dynamic

behaviour of arbitrarily laminated composite plates. Compos Struct 2008; 85: 311–325.
33. Rango RF, Bellomo FJ and Nallim LG. A variational Ritz formulation for vibration

analysis of thick quadrilateral laminated plates. Int J Mech Sci 2015; 104: 60–74.
34. Kumar Y and Lal R. Vibrations of nonhomogeneous orthotropic rectangular plates

with bilinear thickness variation resting on Winkler foundation. Meccanica 2012; 47:
893–915.

35. Behera L and Chakraverty S. Effect of scaling effect parameters on the vibration char-
acteristics of nanoplates. J Vib Control 2016; 22: 2389–2399.

36. Kumar Y. The Rayleigh–Ritz method for linear dynamic, static and buckling behavior
of beams, shells and plates: a literature review. J Vib Control 2018; 24: 1205–1227.

37. Moreno-Garc�ıa P, dos Santos JVA and Lopes H. A review and study on Ritz method
admissible functions with emphasis on buckling and free vibration of isotropic and
anisotropic beams and plates. Arch Comput Methods Eng 2018; 25: 785–815.

38. Nallim L and Grossi R. On the use of orthogonal polynomials in the study of aniso-
tropic plates. J Sound Vib 2003; 264: 1201–1207.

39. Jones R. Mechanics of composite materials. 2nd ed. Philadelphia, PA: Taylor & Francis,
1999.

40. Belarbi M-O, Tati A, Ounis H, et al. On the free vibration analysis of laminated com-
posite and sandwich plates: a layerwise finite element formulation. Lat Am J Solids

Struct 2017; 14: 2265–2290.
41. Kulkarni S and Kapuria S. Free vibration analysis of composite and sandwich plates

using an improved discrete Kirchhoff quadrilateral element based on third-order zigzag
theory. Comput Mech 2008; 42: 803–824.

42. Wang T, Sokolinsky V, Rajaram S, et al. Consistent higher-order free vibration analysis
of composite sandwich plates. Compos Struct 2008; 82: 609–621.

Appendix 1

The first members of the basic functions classes can be defined as follows:

(a) For the transverse displacements:

/wa

1 ¼ xb1yb2ðx� aÞb3ðy� bÞb4 (31)

where a ¼ t; b; c and

bi ¼
0 if edge i is free
1 if edge i is simply supported
2 if edge i is clamped

8<
:
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(b) For the x-displacements and rotations:

/ua

1 ¼ xc1yc2ðx� aÞc3ðy� bÞc4 (32)

and:

/xt

1 ¼ /xb

1 ¼ /u1
c

1 ¼ /ua

1 (33)

where a ¼ t; b; c and:

ci ¼
0 if edge i is free or simply supported in y� direction

1 if edge i is simply supported in x� direction or clamped

(

(c) For the y-displacements and rotations:

/va

1 ¼ xd1yd2ðx� aÞd3ðy� bÞd4 (34)

and:

/yt

1 ¼ /yb

1 ¼ /v1
c

1 ¼ /va

1 (35)

where a ¼ t; b; c and:

di ¼
0 if edge i is free or simply supported in x� direction

1 if edge i is simply supported in y� direction or clamped

(

Appendix 2

The governing differential equations along with the boundary conditions can be
derived by using Hamilton’s principle:

Z t2

t1

dT� dUð Þdt ¼ 0 (36)
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where t1 and t2 are the values of time at the beginning and end of motion, respec-
tively. By substituting equations (19) and (20) into (B-1), the governing equations
are derived:

Nt
xx;xþNt

xy;yþ
2

f2c
Mc

2xx;xþ
2

f2c
Mc

2xy;y�
4

f2c
Mc

Q1xz�
4

f3c
Mc

3xx;x�
4

f3c
Mc

3xy;y

þ12

f3c
Mc

Q2xz� It0u
t
0;tt� It1w

t
x;tt�

4

f3c
Ic3u0;ttþ

2

f2c
Ic2u0;tt�

4

f3c
Ic4u1;ttþ

2

f2c
Ic3u1;tt

� 4

f3c
Ic5u2;ttþ

2

f2c
Ic4u2;tt�

4

f3c
Ic6u3;ttþ

2

f2c
Ic5u3;tt ¼ 0

Nb
xx;xþNb

xy;yþ
2

f2c
Mc

2xx;xþ
2

f2c
Mc

2xy;y�
4

f2c
Mc

Q1xz�
4

f3c
Mc

3xx;xþ
4

f3c
Mc

3xy;y

�12

f3c
Mc

Q2xz� Ib0u
b
0;tt� Ib1w

b
x;ttþ

4

f3c
Ic3u0;ttþ

2

f2c
Ic2u0;ttþ

4

f3c
Ic4u1;ttþ

2

f2c
Ic3u1;tt

þ 4

f3c
Ic5u2;ttþ

2

f2c
Ic4u2;ttþ

4

f3c
Ic6u3;ttþ

2

f2c
Ic5u3;tt ¼ 0

Mt
xx;xþMt

xy;y�Qt
xzþ

ft
f2c
Mc

2xx;xþ
ft
f2c
Mc

2xy;y� 2
ft
f2c
Mc

Q1xz� 2
ft
f3c
Mc

3xx;x

�2
ft
f3c
Mc

3xy;yþ 6
ft
f3c
Mc

Q2xz� It1u
t
0;tt� It2w

t
x;tt� 2

ft
f3c
Ic3u0;ttþ

ft
f2c
Ic2u0;tt� 2

ft
f3c
Ic4u1;tt

þ ft
f2c
Ic3u1;tt� 2

ft
f3c
Ic5u2;ttþ

ft
f2c
Ic4u2;tt� 2

ft
f3c
Ic6u3;ttþ

ft
f2c
Ic5u3;tt ¼ 0

Mb
xx;xþMb

xy;y�Qb
xz�

fb
f2c
Mc

2xx;x�
fb
f2c
Mc

2xy;yþ 2
fb
f2c
Mc

Q1xz� 2
fb
f3c
Mc

3xx;x

�2
fb
f3c
Mc

3xy;yþ 6
fb
f3c
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Q2xz� Ib1u
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0;tt� Ib2w

b
x;tt� 2
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f3c
Ic3u0;tt�
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Qt
xz;xþQt

yz;y�
1

fc
Mc

Q1yz;y�
1

fc
Mc

Q1xz;xþ
1

fc
Rc

Zþ
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f2c
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Q2yz;yþ
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Q2xz;x

� 4

f2c
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z� It0w
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1
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Ic2w0;tt� 1
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� 1
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Qb
xz;xþQb

yz;yþ
1
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Q1yz;yþ
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Q1xz;x�
1
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� 4

f2c
Ic2v0;tt� Ic1v1;tt�

4

f2c
Ic3v1;tt� Ic2v2;tt�

4
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Ic4v2;tt� Ic3v3;tt�

4

f2c
Ic5v3;tt ¼ 0 (B-2)

Along with the boundary conditions:

At x ¼ 0 and x ¼ a :

Ni
xx ¼ 0 or ui0 ¼ 0; Mi

xx ¼ 0 or wi
x ¼ 0; Ni

xy ¼ 0 or vi0 ¼ 0 ;

Mi
xy ¼ 0 or wi

y ¼ 0; Qi
xz ¼ 0 or wi

0 ¼ 0; Mi
Q1xz ¼ 0 or w1 ¼ 0;

Mi
xz ¼ 0 or w2 ¼ 0; Qc

xz ¼ 0 or w0 ¼ 0; Nc
xx ¼ 0 or u0 ¼ 0;

Mc
xx ¼ 0 or u1 ¼ 0; Mc

2xx ¼ 0 or u2 ¼ 0; Mc
3xx ¼ 0 or u3 ¼ 0 ;

Nc
xy ¼ 0 or v0 ¼ 0; Mc

xy ¼ 0 or v1 ¼ 0; Mc
2xy ¼ 0 or v2 ¼ 0 ;

Mc
3xy ¼ 0 or v3 ¼ 0; AT y ¼ 0 and y ¼ a : Ni

yy ¼ 0 or vi0 ¼ 0;

Mi
yy ¼ 0 or wi

y ¼ 0; Ni
xy ¼ 0 or ui0 ¼ 0; Mi

xy ¼ 0 or wi
y ¼ 0;

Qi
yz ¼ 0 or wi

0 ¼ 0; Mc
Q1yz ¼ 0 or w1 ¼ 0; Mc

Q2yz ¼ 0 or w2 ¼ 0;

Qc
yz ¼ 0 or w0 ¼ 0; Nc

xy ¼ 0 or u0 ¼ 0; Mc
xy ¼ 0 or u1 ¼ 0;

Mc
2xy ¼ 0 or u2 ¼ 0; Mc

3xy ¼ 0 or u3 ¼ 0; Nc
yy ¼ 0 or v0 ¼ 0;

Mc
yy ¼ 0 or v1 ¼ 0; Mc

2yy ¼ 0 or v2 ¼ 0; Mc
3yy ¼ 0 or v3 ¼ 0 ;

(38)

30 Journal of Sandwich Structures and Materials 0(0)


