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Abstract

Background: Increased adipogenesis and altered adipocyte function contribute to the development of obesity and
associated comorbidities. Fructose modified adipocyte metabolism compared to glucose, but the regulatory
mechanisms and consequences for obesity are unknown. Genome-wide methylation and global transcriptomics in
SGBS pre-adipocytes exposed to 0, 2.5, 5, and 10 mM fructose, added to a 5-mM glucose-containing medium, were
analyzed at 0, 24, 48, 96, 192, and 384 h following the induction of adipogenesis.

Results: Time-dependent changes in DNA methylation compared to baseline (0 h) occurred during the final
maturation of adipocytes, between 192 and 384 h. Larger percentages (0.1% at 192 h, 3.2% at 384 h) of differentially
methylated regions (DMRs) were found in adipocytes differentiated in the glucose-containing control media
compared to adipocytes differentiated in fructose-supplemented media (0.0006% for 10 mM, 0.001% for 5 mM, and
0.005% for 2.5 mM at 384 h). A total of 1437 DMRs were identified in 5237 differentially expressed genes at 384 h
post-induction in glucose-containing (5 mM) control media. The majority of them inversely correlated with the
gene expression, but 666 regions were positively correlated to the gene expression.

Conclusions: Our studies demonstrate that DNA methylation regulates or marks the transformation of
morphologically differentiating adipocytes (seen at 192 h), to the more mature and metabolically robust adipocytes
(as seen at 384 h) in a genome-wide manner. Lower (2.5 mM) concentrations of fructose have the most robust
effects on methylation compared to higher concentrations (5 and 10 mM), suggesting that fructose may be playing
a signaling/regulatory role at lower concentrations of fructose and as a substrate at higher concentrations.
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Background
Obesity and its comorbidities are growing worldwide epi-
demics [83]. A major component of modern, Westernized
nutrition is the consumption of highly refined sugar [48]
that has been associated to the increasing incidence of
metabolic disorders [33, 45]. While overnutrition by
consuming added sucrose remains the focus of more than

100 years of research, the sharp rise in obesity and dia-
betes since the introduction of high-fructose corn syrup
(HFCS) to manufactured foods directed attention to the
role of fructose in metabolism and disease development
[30]. The most recent meta-analysis of 13 studies with a
combined total of 49,591 participants and over 14,000
cases showed a linear association between fructose intake
and metabolic syndrome (MetS). However, this adverse
correlation was specific to sugar-sweetened beverages
(SSB) [60] and not other fructose-containing foods (e.g.,
yogurt, whole fruits) indicating that the food matrix plays
a significant (and expected) role in the metabolism of nu-
trients. Fructose metabolism and the consequent effects
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on the regulation of host energy balance have been exten-
sively studied in the gastrointestinal tract, kidney, and liver
[25, 64]. Human, laboratory animal, and cell culture sys-
tems have also demonstrated that fructose can be metabo-
lized in the hypothalamus [9], innate immune system [83],
cardiac and skeletal muscles ([25, 64], and adipose tissue
and cells [25, 64]. Excess fructose intake leads to the de-
velopment of the multiple features of metabolic syndrome
[7] including fatty liver, insulin resistance, diabetes, obes-
ity, and hypertension [25].
Adipose tissue is a key node in the physiological sys-

tem of health and disease development since it stores ex-
cess energy in the form of triglyceride through (i) an
increase of adipocyte size (hypertrophy) and (ii) the pro-
motion of differentiation or adipogenesis of pre-existing
adipocytes (hyperplasia) [10]. Obesity occurs as a conse-
quence of a chronic positive energy intake which brings
hypertrophy to a plateau resulting in the promotion of
hyperplasia to manage with unbalance energy intakes
[10]. Early research identified the peroxisomal prolifera-
tor activate receptors γ (PPARγ) and CCAAT/enhancer
binding protein α (C/EBPα) as the master regulators of
adipogenesis. The use of gene knockouts or knockdowns
in cell culture and laboratory animals has greatly ex-
panded the knowledge of the transcription factors, chro-
matin (re) modeling proteins (e.g., histones, sirtuins) and
enzymes (protein acetyltransferases/deacetyltransferase
and methylases/demethylases), microRNAs, and DNA
methylation/demethylations that are involved in control
of adipogenesis [37]. Time course experiments also dem-
onstrated the changes in transcriptional regulation and
protein-protein interaction networks that occur during
differentiation from pre-adipocytes to adipocytes [51].
The role of DNA methylation has been the main focus

of the control of gene expression because it had previ-
ously been thought to be a “stable” epigenetic mark.
DNA methyltransferases (DNMTs) transfer the methyl
group from S-adenosylmethionine to the 5 position of
the cytosine primarily in CpG dinucleotides forming 5-
methylcytosine (5mC) [31]. Methylation in CpG-enriched
regions, called CpG islands, provides regulatory mecha-
nisms of gene expression and is essential for cell differen-
tiation and tissue integrity [3]. The effect of methylation
on gene expression depends on where methylation occurs:
high methylation levels in promoters normally repress
gene transcription [38], while methylation within intronic
and exonic regions of a gene body is positively correlated
with expression [32]. DNA methylation can be affected by
environmental factors such as lifestyle and diet, particu-
larly by choline, betaine, folate, riboflavin, and vitamin
B12 which are metabolized in the one-carbon cycle that
produces S-adenosylmethionine, the primary methyl
donor [8]. The relatively recent discovery that 5mC can be
oxidized to 5-hydroxymethylcytosine (by ten-eleven

translocation (TET) methylcytosine dioxygenase) as the
first step in functional demethylation has revealed a more
dynamic nature of DNA methylation [76].
Altered DNA methylation has been associated with

chronic diseases linked to unbalanced diets such as
obesity [3, 71], increased body mass index (BMI) [15],
and hepatic steatosis [12]. In addition, a relationship be-
tween the methylation of genes involved in the circadian
clock system and obesity, metabolic syndrome, and
weight loss has been described [44].
The controversial link between increased consumption

of fructose in human diets and the obesity epidemic [5]
stimulated research that tested the detrimental impact of
this carbohydrate on insulin resistance and adipocyte
differentiation, two key processes to maintain metabolic
health [36, 39]. The role of DNA methylation in
fructose-induced metabolic syndrome and DNA methy-
lation status in response to fructose has not been well
characterized. Increased consumption of fructose has
been shown to induce DNA methylation in PPARα and
CPT1A in rat liver [53], leading to reduced expression of
these genes and then to a hepatic lipid accumulation.
Fructose may alter adipocyte differentiation by increas-
ing the levels of PPARγ, C/EBPα, and FABP4, at least in
murine cells in culture [17]. While both fructose and
glucose are substrates utilized to increase adiposity, fruc-
tose was shown to contribute more to weight gain in
humans [63].
As a part of a series of studies examining the effects of

fructose on adipocytes [70], we analyzed genome-wide
transcriptomic and DNA methylation data at multiple
time points during differentiation of the human
Simpson-Golabi-Behmel syndrome (SGBS) euploid pro-
genitor cells. Using an integrative approach (see Fig. 1),
we identified genomic regions of differentially expressed
genes where methylation of CpG sites differed compared
to undifferentiated adipocytes.

Results
Genome-wide DNA methylation and transcriptomic
during adipocyte differentiation
Genome-wide DNA methylation was measured using
the Illumina 450K BeadChip at different time points
compared to baseline during adipocyte differentiation
(see Table 1 for the study design).
The total number of genome-wide differentially meth-

ylated positions (DMPs) was identified as 8, 9, 16, 1904,
and 116,637 at 24, 48, 96, 192, and 384 h, respectively,
while at the same time points, the genome-wide differ-
entially methylated regions (DMRs) were 2, 2, 4, 607,
and 15,573. The corresponding differential transcrip-
tomic analysis identified 2007, 2473, 4977, 6594, and
5237 genes at those time points (Table 2).
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The integration of DNA methylation and transcrip-
tomic data identified DMPs and DMRs in genes which
were differentially expressed during adipocyte differenti-
ation. The majority of methylated positions and gene re-
gions did not change between pre-induction (0 h) and
24, 48, and 96 h after induction (Fig. 2a). However, a
large number of changes in methylation were apparent
at 192 and 384 h vs baseline (Fig. 2 and Table 2).

Methylated region location in genes
The location in the gene where DNA methylation occurs
may differentially influence the gene expression [31]. At
192 h, the majority of the changes in DNA methylation
occurred in the promoter region (31 out of 57 DMRs
[54.4%]), while 18 genes (31.6%) were methylated in
exons and 8 (14.0%) in introns (Table 3). At 384 h, 987
DMRs (68.7% of the total) were found in the promoter

Fig. 1 Overview of the integration analysis of the three available omics data: CpG methylation levels, gene expression, and protein abundances.
The steps referring to single-omics analysis are done prior to integration and are depicted in boxes of different colors: green for gene expression,
blue for methylation, and orange for proteomics. On the left of the schema, moderated F-statistics identify the differentially expressed genes
(DEGs). The pipeline for methylation analysis is in the middle of the panel: differentially methylated positions (DMPs) were found, then DMPs in
the same genomic region were assembled identifying differentially methylated regions (DMRs). The proteomics analysis (right) shows differentially
expressed proteins (DEPs) identified with moderated t-statistics. Gray boxes at the bottom of the schema represent the steps of multi-omics
integration. First, concordant changes among the epigenomic and transcriptomic levels were studied. Then, associations were made with
differentially expressed proteins to find genes changing in methylation, gene expression, and protein levels

Table 1 Summary of the study design. DNA methylation and gene expression were assayed at 6 different time points for control
adipocytes, proteomics only at four time points (24 and 48 h excluded). DNA methylation, gene expression, and proteins changes in
the fructose-treated adipocytes were examined at 192 and 384 h, following the addition of 3 different doses of fructose (2.5 mM, 5
mM, 10 mM)
Hours Glucose (mM) Fructose (mM) Methylation Gene expression Proteomics

0 5 0 ✓ ✓ ✓

24 (1 day) 5 0 ✓ ✓ ━

48 (2 days) 5 0 ✓ ✓ ━

96 (4 days) 5 0 ✓ ✓ ✓

192 (8 days) 5 0, 2.5, 5, 10 ✓ ✓ ✓

384 (16 days) 5 0, 2.5, 5, 10 ✓ ✓ ✓
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of the genes, 272 (18.9%) in exons, 159 (11.1%) in in-
trons, and 19 (1.3%) in intergenic regions of genes
(Table 4). The majority of the genes with differentially
methylated promoter regions had decreased gene ex-
pression (e.g., up-methylation of promoter region rela-
tive to 0 h was associated with reduced gene expression),
while most cases of methylation in exons or introns af-
fected gene expression in the same direction at 384 h.
Surprisingly, half of the DMRs in genes had both signifi-
cant differential up-methylation and up-gene expression.
This regulation could possibly be explained by other epi-
genetics mechanisms such as histone or other chromatin
protein modifications and complex transcriptional factor
regulation. Additionally, most of the DMRs on

differentially expressed genes (DEGs) showing low β
values at 384 h were found to be anti-correlated with the
gene expression had (Supplementary Figure S3).

Time course pattern
Our results identified methylation patterns at different
time points during the course of adipocyte differenti-
ation. At 192 h, a total of 144 DMPs were found (see
Supplementary Table S1a for the complete list) in the
6594 differentially expressed genes. Fifty-seven regions
(DMRs) showed significant changes in methylation
representing 0.8% of the DEGs at 192 h. (Supplementary
Table S2a lists these differentially expressed genes). At
384 h, methylation changed significantly in 11,979 CpG

Table 2 Differentially methylated regions (DMRs) and differentially expressed genes (DEGs) at different time points across adipocyte
differentiation in control adipocytes. The number of genes differentially expressed used for the integration, the number of genome-
wide DMPs, and the number of CpG sites (# DMPs on DEGs) and regions (# DMRs on DEGs) with a significant change in methylation
levels are displayed for each comparison. DMRs on DEGs, as well as DMPs on DEGs, are detected only at 192 and 384 h following
the initiation of differentiation
Time point (h) # DEGs # Genome-wide DMPs # Genome-wide DMRs # DMPs on DEGs # DMRs on DEGs # DMRs not on DEGs

24 2007 8 2 – – 2

48 2473 9 2 – – 2

96 4977 16 4 – – 4

192 6594 1904 607 144 57 550

384 5237 116,637 15,573 11,979 1437 14,136

Fig. 2 DNA methylation levels for probes in control adipocytes reveal a general decreasing level of DNA methylation for each time point. A total
of 798 differentially methylated genes present the decreasing trend, but β values for 639 genes increase with time. Most changes occur between
192 and 384 h. b Change of expression (top) and methylation levels (bottom) during differentiation for the gene PRKCA. Dots represent the
different replicates available for each time methylation. Different time points across differentiation are represented by different colors. a
Methylation patterns during differentiation. Dots define averaged β values (absolute percentages of points)
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positions (DMPs, supplementary Table S1b) and in 1437
regions (DMRs) in 1254 differentially expressed genes
(23.95% of 5247 DEGs; supplementary Table S2b). A
total of 130 of those genes were differentially methylated
in multiple regions. Notably, 20 of the 57 DMRs at 192 h
maintained their methylation status at 384 h (Figure S1
in the supplementary material) suggesting that methyla-
tion occurred before 192 h and lasted at least until 384
h. Gene enrichment analysis revealed that the top-
ranked KEGG pathway for that subset of genes was
glyoxylate and dicarboxylate metabolism (e.g., SHMT1,
GLUL), and GO terms involved in morphogenesis, adhe-
sion, and developmental processes. Twelve (BCOR,
EBF3, ETS2, GLI2, ITGA7, NPC1, PDXK, SPON2, GLUL
[41], PLEKHG6, SHMT 1[27], TPD52L2 [66]) of the 20
genes have been shown to be involved in adipocyte dif-
ferentiation or function, and four (GLUL, PLEKHG6,
SHMT1, TPD52L2) are also involved in other types of
differentiation or development processes (e.g., neurite,
intestinal, cardiac, and others; see Table S3 in supple-
mentary material).
Another group of 20 DMRs was differentially methyl-

ated/expressed only at 192 h (Figure S2 in supplemen-
tary material) and returned to the baseline level at 384 h
suggesting that these were de-methylated between these
time points. These genes are enriched in GO term for
cell morphogenesis involved in differentiation processes
(SPINT2, EFNA3, FN1, MBP) (full list of GO terms in
supplementary material, Table S4). Among this group of

genes, CTDSP2 [16, 24] and LSS [47] have been individu-
ally studied for their roles in neuronal or sex differenti-
ation processes, respectively. The remaining 17 DMRs
were differently methylated/expressed at 192 h but were
not significantly expressed or methylated at 384 h.
Genes and pathways identified in this in vitro study

play roles in obesity and related conditions. Epigenome-
wide association has recently shown that BMI was asso-
ciated with widespread changes in DNA methylation in
210 candidate genes. Twenty-five of those candidate
genes [73] were also differentially methylated at 384 h
(full list in supplementary Table S5). Among these
DMRs, SREBF1, HOXA5, CPT1A, LPIN1, and PHGDH
have established roles in adipose tissue biology and insu-
lin resistance.

Pathway enrichment analysis
Network activity scores were calculated with NASFinder
[51] for all DMRs at 384 h to investigate how pathways
involved in converting a pre-adipocyte to a mature adi-
pocyte may be influenced by methylation changes. This
tool identifies statistically significant sub-networks and
scores them by connecting a list of differentially
expressed genes to key regulators (in this case, TFs).
NASFinder analysis revealed 29 significant pathways (the
10 most significant are shown in Table 5, and all the
pathways can be found in supplementary Table S6. Path-
way visualizations are available on http://www.cosbi.eu/
fx/2930/Visualization_C_TP384_DMR_NASFinder.zip).
The pathway with the highest activity score was
phospholipase C D1 in phospholipid-associated cell sig-
naling. Several of the identified pathways are hallmarks
of adipogenesis or function in adipocytes (e.g., RXR and
RAR heterodimerization, FXR and LCR regulation), but
others contribute new information on the differentiation
process. Four of the 18 DMRs (in ICAM1, PRKCA,
RAC1, RAN genes) involved in the 29 TF pathways were
shown to significantly change also at the protein level.
ICAM1 maps to the integrin signaling pathway (Supple-
ment Table S6) and may contribute to priming inflam-
matory processes if misregulated [43]. PRKCA (Fig. 2b)
is involved in 11 of the 29 pathways demonstrating its
central role in cell signaling. RAC1 mapped to the sema-
phoring signaling (Supplement Table S6) and is a key
signaling component for translocation of GLUT4 to the
cell surface [34]. RAN is in the non-canonical WNT sig-
naling pathway, and this GTPase is also involved in sev-
eral intracellular transport processes necessary for cell
fate determination, death, proliferation, differentiation,
and transformation [49]. Statistical results for the 18
DMRs involved in the pathways can be found in Table 6.
One mechanism by which methylation can influence

gene expression is by either positively or negatively alter-
ing access of transcription factor (TFs) to their binding

Table 3 Differentially methylated regions can be separated into
four groups, depending on their location on the gene at 192 h.
Four possible patterns can then be detected, considering gene
expression (G) and methylation regulation (M), which can be
increasing (↑) or decreasing (↓)
Location M↓G↑ M↑G↓ M↑G↑ M↓G↓ Total

Promoter 15 3 6 7 31

Exon 10 - 4 4 18

Intron 3 1 1 3 8

Total 28 4 11 14 57

Table 4 Differentially methylated regions can be separated into
four groups, depending on their location on the gene at 384 h.
Four possible patterns can then be detected, considering gene
expression (G) and methylation regulation (M), which can be
increasing (↑) or decreasing (↓)
Location M↓G↑ M↑G↓ M↑G↑ M↓G↓ Total

Promoter 218 368 171 230 987

Exon 63 48 16 145 272

Intron 40 25 7 87 159

Intergenic 8 1 3 7 19

Total 329 442 197 469 1437
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sites [42]. Binding sites of differentially expressed transcrip-
tion factors in promoters of differentially expressed genes
were analyzed by data mining methods. Among the 181
transcription factors identified in the ENCODE database,
61 were found differentially expressed at 192 h and 56 at
384 h. No consistent or significant binding motifs in the
DMRs in promotors at 192 h were found. However, 24 mo-
tifs were enriched in the differently methylated promoters

at 384 h. Of those, nine were binding sites for differentially
expressed TFs (TFAP2A, ELF1, ETS1, E2F4, E2F1, NR2C2
[59], NR2F2, RXRA, FLI1), which are involved in a large
number of intracellular processes such as E2F4’s [28] role
in suppression of anti-proliferation-associated genes and
E2F1-mediated [56] induction of the transcription factor
PPARγ. The binding site motifs for those TFs were found
in a total set of 486 DMRs (see supplementary Table S7).

Table 5 The ten most significant pathways from the NASFinder TFs analysis on the 1437 significant DMRs at 384 h are displayed.
The p value, the Network Activity Score (NAS), the identified TF, and the DMRs involved in each pathway are added
Pathways NAS p value DMRs in the pathway TF

BioCarta phospholipase C D1 in phospholipid-associated cell signaling 0.322 0.005 PRKCA JUNB

BioCarta CBL-mediated ligand-induced downregulation of EGF receptors 0.191 0.008 PRKCA MET

BioCarta activation of PKC through G protein-coupled receptor 0.186 0.003 PRKCA NFKBIA

BioCarta apoptotic signaling in response to DNA damage 0.167 0.011 APAF1, BID, PRKCA TP53

BioCarta role of MEF2D in T cell apoptosis 0.163 0.018 MEF2D, PRKCA EP300

BioCarta FXR and LXR regulation of cholesterol metabolism 0.115 0.010 ABCA1, NR1H3 RXRA

BioCarta cadmium induces DNA synthesis and proliferation in macrophages 0.088 0.013 PRKCA MYC

BioCarta TPO signaling pathway 0.064 0.029 PRKCA, STAT5A STAT3

BioCarta effects of calcineurin in keratinocyte differentiation 0.060 0.022 PRKCA SP3

Reactome regulation of gene expression by hypoxia-inducible factor 0.056 0.012 CITED2 HIF1A

Genes in bold are upregulated

Table 6 Statistics for the genes identified by the NASFinder as involved in the TF pathways. These genes show significant changes
at 384 h in their methylation level and gene expression. Four of them are differentially expressed also at the proteomic level.
Changes between 384 and 0 h are displayed for each studied omics, together with the adjusted p value. The region on the gene
where the DMR was found is added in the table
Gene DMR location Delta Me FDR Me Log FC GE adj Pval GE Log FC Pr adj Pval Pr

ABCA1 Intron − 1.17E−01 5.39E−03 1.66E+00 1.46E−05 – –

APAF1 Promoter 3.13E−02 1.29E−03 − 3.00E+00 7.51E−11 – –

BID Promoter − 3.31E−02 4.20E−02 − 1.91E+00 7.89E−07 – –

CITED2 Promoter 1.67E−02 1.17E−02 − 1.14E+00 3.89E−03 – –

ETS2 Exon − 5.49E−01 1.80E−02 − 3.29E+00 1.65E−12 – –

HMOX1 Promoter − 7.67E−02 4.73E−02 4.44E+00 1.23E−15 – –

HSD17B4 Promoter − 1.19E−01 1.31E−02 1.74E+00 7.11E−06 – –

ICAM1 Promoter − 4.91E−02 3.30E−03 − 2.43E+00 1.19E−08 − 7.39E−01 2.45E−05

MEF2D Promoter 2.51E−02 1.45E−02 − 1.62E+00 1.17E−05 – –

NCOR2* Intron − 1.26E−01 5.26E−03 − 1.31E+00 5.45E−04 – –

NR1H3 Promoter 2.05E−02 2.27E−02 4.83E+00 4.54E−18 – –

PCNA Promoter − 6.65E−02 4.51E−02 − 2.70E+00 2.02E−09 – –

PRKCA Promoter − 7.76E−02 4.56E−02 − 3.34E+00 6.50E−13 − 1.26E+00 1.97E−06

RAC1*° Promoter − 9.51E−02 8.33E−03 − 3.32E+00 1.56E−12 − 8.47E−01 1.40E−05

RAN Promoter 2.87E−02 1.25E−02 − 1.77E+00 4.33E−06 − 8.19E−01 2.36E−05

ROCK1 Promoter − 2.05E−01 3.59E−02 − 1.16E+00 5.75E−03 – –

SREBF1 Promoter − 1.41E−01 3.96E−02 4.62E+00 2.43E−15 – –

STAT5A Promoter − 1.30E−01 2.63E−02 3.03E+00 1.56E−11 – –

°Protein overlapping with multiple DMRs. The most significant DMRs are displayed
*Gene overlapping with multiple DMRs. The most significant DMRs are displayed
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Mapping these 486 DMRs to GO terms and pathways
is challenging since individual genes are regulated by
multiple transcription factors. However, analysis of the
pattern of genes (total) methylated (up or down)/
expressed (up or down) at 384 h (from supplementary
Table S2b) indicated that over 50% of genes mapped to
GO or pathways in metabolism categories (at p < 0.1).
No cytoskeleton or extracellular matrix genes had the
expected down/up pattern (Supplementary Table S8).
More specific methylation mapping methods are needed
to fully test and explain these putative associations.

Integration of methylation, gene expression, and protein
expression changes in fully differentiated adipocytes
Proteomic data from the Somalogic platform identified
and confirmed certain protein levels to the observed
DNA methylation events. The results of the integration
of methylation, gene expression, and protein abundances
are summarized with Venn diagrams in Fig. 3. An over-
lap among the three omics data was found only at 384 h
(Fig. 3a), while at 192 h (Fig. 3b), none of the studied
genes showed consistent changes at the three different
levels. A total of 73 proteins from the SomaLogic
SOMAscan V1.0 panel (total of 1129 proteins) showed a
significant change in the amounts between baseline and
384 h consistent with promoter, intron, and exon methy-
lation status. Nine of these 73 proteins overlap with
multiple DMRs on DEGs, resulting in a total of 84 gen-
omic regions with proteomic, transcriptomic, and
methylation changes. Eight of the 84 DMRs were

upregulated at the proteomic level, while 76 are down-
regulated (Supplementary Table S9). Sixty-three of these
were consistent with the typical pattern of methylation
upregulation and downregulation of gene expression.
Thirteen of the DMRs overlapping with downregulated
proteins and 8 DMRs on upregulated proteins were
found to have upregulated methylation and upregulation
of gene expression. DNA methylation in the promoter
regions typically silences genes while methylation within
introns and exons is reported to positively correlate to
gene expression [77]. Analysis of the pathways of the 73
proteins overlapping with DMRs will be biased since the
SOMAscan version 1.0 platform is based primarily on
secreted and membrane proteins (~ 66%) found in the
blood with a subset derived from cellular contents (~
33%).

Influence of fructose on DNA methylation
The status of DNA methylation sites in SGBS adipocytes
exposed to different concentrations of fructose (2.5, 5,
and 10 mM) for 192 and 384 h was also assessed from
the induction of differentiation (Table 7). At each fruc-
tose concentration, the methylation status of the same
genes was compared to the control (without fructose at
the same time point) at 192 and 384 h. Similar to the
control case presented above, we performed an integra-
tion of methylation and transcriptomics. However, at
192 h, this analysis identified only 6 DMPs in the pres-
ence of 10 mM fructose (Supplementary Table S10a)
and no DMRs. At 384 h, 139 and 27 DMPs were

Fig. 3 Venn diagram showing the number of genes with significant changes at a 384 and b 192 h. The green sets represent genes with a
significant change in the gene expression; the blue sets correspond to the differentially methylated regions; the red diagrams represent the
number of genes with significant changes at the protein abundances. The numbers in the intersections are the quantity of genes changing at
two or three different omic levels. While at 384 h 73 genes changed at the transcriptomic, epigenomic, and proteomic levels, at 192 h none of
the considered genes showed concordant variation among the three omics data
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significant in response to 2.5 mM and 5mM fructose, re-
spectively (Supplementary Table S10b and S10c). Only 3
DMRs (EDEM1, RNF145, and SLC3A2) in genes differ-
entially expressed were identified for 2.5 mM fructose,
none for 5 mM fructose.
Since so few DMRs were found in genes differentially

expressed at 192 and 384 h in response to varying fruc-
tose concentrations, genome-wide analysis of DMRs was
performed to find the general effect of fructose on
methylation. At 192 h, three significant genome-wide
DMRs (Supplementary Table S11a) were found only for
the highest dose of fructose (10 mM). At 384 h (Table 7),
26 genome-wide DMRs were detected with 2.5 mM of
fructose (Fig. 4 and Supplementary Table S11b), and 7
genome-wide DMRs were detected with 5 mM of

fructose (Supplementary Table S11c). Most of the DMRs
identified at 2.5 mM fructose at 384 h occurred in the
promoter regions of the genes (22 of the 26 DMRs). The
addition of fructose resulted in the up-methylation of
the majority of these gene promoters (18 of the 22
DMRs) (Table 8). Functional analysis of these 26 signifi-
cant DMRs resulted in 9 enriched pathways, for ex-
ample, branched-chain amino acid metabolic process
and oxoacid metabolic process (Table 9).

Linked transcripts and proteins but not DMRs
Some genes (219) showed corresponding abundance
changes at the protein and transcript level but not at the
methylation level (Supplementary Table S12) at 384 h.
DMRs at these sites were likely maintained at time
points which were not analyzed in this study. Subsets of
these genes mapped to 312 pathways (Benjamini ad-
justed p value < 0.05) with the secretory, membrane, and
extracellular processes featuring as the most significant
(< 10E−25) (see Supplementary Table S13). The GO
terms may indicate a bias towards secretory proteins
that constitute the SOMAscan assay panel.

Validation with replication study
The RNA and DNA used for the transcriptomic and
methylation analysis were obtained from cells plated on

Table 7 Genome-wide differentially methylated regions (DMRs)
found at different concentrations of fructose at 192 and 384 h
Fructose (mM) Time point (h) Genome-wide DMRs

2.5 vs 0 192 –

384 26

5 vs 0 192 –

384 7

10 vs 0 192 3

384 –

Fig. 4 Changes in methylation levels for the 26 DMRs most affected by the addition of 2.5 mM of fructose at 384 h. Different colors represent
different genes, while dots represent the mean β values without fructose and with 2.5 mM fructose
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different plates cultured at the same time and under iden-
tical conditions. The transcriptomic and methylation ana-
lyses were generated in the same genomics facility. Since
we also had access to the gene expression dataset obtained
from an experiment conducted at different hours but
under similar experimental conditions [51], we analyzed
the integration of methylation data reported here with the
gene expression dataset reported in the previous study
[51]. The dataset was generated with 8 Illumina Human
HT-12 version 4 BeadChips (Ilumina, Inc., San Diego,
CA) hybridized with the RNA from 18 cell cultures at dif-
ferent time points (0, 6, 48, 96, 192, 384 h).
The secondary analysis conducted on this gene expres-

sion dataset led to similar but less significant results
(Table 10). For example, significant DMRs on DEGs
were found only at 384 h for a total of 198 genes over
the 8279 DEGs found in the previously published study.
Sixty-eight of these genes (complete list in Supplemen-
tary Table S14) were found to be differentially methyl-
ated when using data from the same experiment.
Additionally, 7 of the 198 genes showed changes also at
the proteomic level: three of them (THBS2, CRLF1, and
C3) were found also in the analysis with the transcrip-
tomic data used for our study.
Only a few DMRs with corresponding DEGs were iden-

tified in cells exposed to fructose in this second dataset: 17
DMRs for 2.5 mM fructose and 3 for 5 mM addition at
384 h. These results are in agreement with that obtained
for data from the same experiment, with DMRs only at
384 h and diminishing with fructose addition.

The two gene expression datasets were generated by
separate laboratories using the same methodologies,
which may explain the differences in the results [11].

Discussion
Genome-wide changes in DNA methylation of pre-
adipocytes cells induced to differentiate into mature adi-
pocytes were analyzed to determine the role of DNA
methylation in regulating gene and subsequently protein
expression in control (5 mM glucose) cells. The effect of
varying concentrations of fructose on methylation status
and transcriptional regulation was also analyzed since
fructose stimulates anabolic processes of glutamate and
de novo fatty acid synthesis [70] and alters glucose me-
tabolism to induce more energy [69].

DMRs in control conditions
A previous report [67] concluded that DNA methylation
of 84 genes was relatively stable between 0 and 240 h
during human mesenchymal stem cell adipogenesis and
that changes in DNA methylation were not an under-
lying mechanism regulating the gene expression during
adipocyte differentiation. Our results largely confirm
these findings since DNA methylation did not change
appreciably at 24, 48, and 96 h and less than 1% at 192 h.
The majority of methylation regions at 192 h were con-
served at 384 h. The subset of genes with transient
methylation (methylated at 192 but not at 384) occurred
in genes associated to cell morphogenesis involved in
the differentiation process (SPINT2, EFNA3, FN1, MBP).
In addition, significant changes in methylation linked to
changes in the gene expression occurred in almost 25%
(1254 of 5237) of the sites analyzed at 384 h compared
to pre-induction. These results are consistent with our
previous metabolic [70] and transcriptomic analyses [51]
that showed adipocyte-specific metabolism, and gene
regulation at 192 h of differentiation becomes more “ro-
bust” by 384 h when adipocytes are in the fully differen-
tiated state. That is, a complex set of interactions

Table 8 Location on the genes and regulation of the 26 DMRs
found at 384 h for 2.5 mM fructose addition
Location M↓ M↑ Total

Promoter 7 15 22

Exon 0 1 1

Intron 1 2 3

Total 8 18 26

Table 9 Enriched pathways from the DAVID analysis on the 26 DMRs found to be significant for 2.5 mM of fructose addition at 384
h. The p value and the genes involved in the pathways are shown in the table
Category Term p value Genes

REACTOME_PATHWAY R-HSA-70895: Branched-chain amino acid catabolism 0.023 BCAT1, DBT

GOTERM_BP_FAT GO:0006367~transcription initiation from RNA polymerase II promoter 0.024 STON1-GTF2A1L, GTF2A1L, TAF7L

GOTERM_BP_FAT GO:0019752~carboxylic acid metabolic process 0.025 BCAT1, DBT, NARS, LDHAL6B, PHYH

GOTERM_BP_FAT GO:0043436~oxoacid metabolic process 0.026 BCAT, DBT, NARS, LDHAL6B, PHYH

GOTERM_BP_FAT GO:0009083~branched-chain amino acid catabolic process 0.026 BCAT1, DBT

GOTERM_BP_FAT GO:0009081~branched-chain amino acid metabolic process 0.030 BCAT1, DBT

GOTERM_BP_FAT GO:0006082~organic acid metabolic process 0.035 BCAT, DBT, NARS, LDHAL6B, PHYH

GOTERM_BP_FAT GO:0016054~organic acid catabolic process 0.037 BCAT1, DBT, PHYH

GOTERM_BP_FAT GO:0006352~DNA-templated transcription initiation 0.039 STON1-GTF2A1, GTF2A1L, TAF7L
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between metabolic pathways, transcriptional regulation,
and DNA methylation that cause the final maturation of
the adipocyte and/or DNA methylation ensures that the
cell remains in its fully differentiated state (that is, it is
not causal for differentiation, but rather a post-
differentiation mechanism to prevent de-differentiation).
Changes in DNA methylation occurred in genes and

pathways known to be involved in adipogenesis (e.g., a
PPARG receptor linked to RAR and RXR, visualization
on http://www.cosbi.eu/fx/2930/Visualization_C_TP384_
DMR_NASFinder.zip) as well as pathways not previously
associated with adipogenesis (supplement Table S4 and
visualization on http://www.cosbi.eu/fx/2930/Visualization_
C_TP384_DMR_NASFinder.zip). Upregulated genes at 384
h mapped to lipid metabolism, mitochondria, oxidoreduc-
tase, and other pathways regardless of the state of methyla-
tion. Downregulated genes mapped to cell adhesion, cell
cycle, cell division, and cytoskeleton (among others) path-
ways and also were independent of methylation status.
These results suggest that methylation is a consequence
and not a driver of the final maturation stage of
adipogenesis.

Integration of DNA methylation, gene expression, and
proteomics
A novel feature of this study was the analysis of DNA
methylation, mRNA levels, and selected proteins at 384
h after differentiation. Seventy-three of the DMRs (out
of the 84 proteins identified with Somalogic technology
with the corresponding DMRs in this dataset) showed
significant variation in levels indicating that DNA
methylation changes were transmitted to protein levels.
Of the 63 downregulated proteins and genes, DNA
methylation of the majority of genes occurred in the
promoter region. Methylation was also present at more
than one region in some genes, for example, up-
methylation of COL18A1 occurred both in the intronic

and exonic regions of the gene. Alternatively, methyla-
tion of some genes (e.g., MRC2, CRLF1, RAC1) occurred
in the promoter or either the intronic or exonic regions.
DKK [23] and other genes that have well-established
roles in adipogenesis have been shown to have methyla-
tion consistent with the direction of the expression [68].
More than half of the 73 methylated genes have been
identified as such in adipose tissue samples from obese
and/or diabetic patients [52]. Many of these genes have
not been fully characterized in adipose tissue, and a
functional role in the adipogenic process remains to be
defined (e.g., CRLF1) [82]. Methylation of several genes
and their protein changes are reported here for the first
time, and no literature exists describing their expression
in adipose tissue (e.g., RPS7, COLEC12) or role in adipo-
genesis. The integration of gene methylation and their
mRNA and protein levels make these likely targets and
biomarkers of adipocyte differentiation and contribute to
improving our understanding of this process.

Fructose effect on methylation
Fructose has been implicated in the obesity epidemic
and specifically in altering the physiology of adipocytes.
Although studying the effects of nutrients in cell culture
experiments is controversial because concentrations
have to be estimated, the doses used in this in vitro ex-
periment were modeled on circulating levels following
fructose ingestion in humans [46, 72] and considered
that local concentrations (e.g., adipose tissue associated
with the intestinal tract) could be higher than reported
plasma levels.
An inverse correlation was found between the number

of DMRs assayed and fructose levels (Table 6). At 384 h,
26 genome-wide DMRs were detected in cells grown in
2.5 mM of fructose in the presence of 5 mM glucose.
Pathway analysis mapped these genes to transcription
factor processes and branched-chain amino acid (BCAA)

Table 10 Differentially methylated positions (DMPs), differentially methylated regions (DMRs), and differentially expressed genes
(DEGs) for the validation dataset. The results obtained at different time points and for different fructose doses are displayed
Time point (h) Fructose doses (mM) # DEGs # DMPs on DEGs # DMRs on DEGs

6 0 1005 – –

48 0 5574 2 –

96 0 7334 – –

192 0 7248 4 2

384 0 8279 452 198

192 2.5 vs 0 214 – –

384 2.5 vs 0 2532 49 17

192 5 vs 0 79 – –

384 5 vs 0 2466 6 3

192 10 vs 0 64 – –

384 10 vs 0 2338 1 –
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catabolism at uncorrected p values of < 0.05. BCAA catab-
olism has a functional role in adipocyte differentiation
[22], and decreased catabolism of BCAA may be related to
insulin resistance, impairment of subcutaneous adipocyte
hypertrophy, and associated pathologies [55, 75]. Higher
circulating BCAA levels were observed in obese and dia-
betic patients [55].
Only 7 and 3 DMRs were found when adipocytes were

exposed to 5 mM and 10 mM fructose, respectively, at
384 h post-induction of differentiation. These small
numbers of genes precluded pathway analysis, but no
apparent pattern was observed. Individual genes can be
annotated and associated with whole body phenotypes.
For example, the endoplasmic reticulum degradation-
enhancing alphamannosidase-like protein1 (EDEM1)
found to be differently methylated at 10 mM fructose is
an endoplasmic reticulum stress (ERS) marker [58].
Acute ERS can weaken the capacity of mature adipocytes
to store lipids, and chronic ERS can impair the adipo-
genic potential of preadipocytes [35]. Disruption of these
pathways could contribute to obesity-associated morbid-
ities such as lipid spillover, ectopic fat deposition, and
ultimately insulin resistance [10]. Epigenetic modifica-
tions in ring finger protein 145 (RNF145, a metal bind-
ing proteins), also found at 10 mM fructose, were
associated with BMI, waist circumference, and changes
in BMI in African American adults [13].
Fructose has moderate effects on methylation at 384 h

at a concentration of 2.5 mM, a 1:2 ratio with the 5 mM
glucose in the culture media. However, changes in
methylation decreased at equimolar doses (5 mM fruc-
tose added to basal 5 mM glucose) or 2:1 (10 mM fruc-
tose with 5 mM basal glucose). We speculate that
fructose may play a signaling/regulatory role at doses
less than 1:1 fructose to glucose, but at equimolar or
greater levels, fructose participates as a substrate and is
“shunted” to the metabolic pathways to produce stored
(oleate) and released fatty acids (palmitate) as demon-
strated in our previous work [70].

Limitations
Comparing gene expression datasets generated by differ-
ent laboratories is known to be problematic [11]. In this
study, we compared and integrated two sets of gene ex-
pression datasets with the methylation data, of which,
one of the gene expression datasets was previously pub-
lished by our team while the second gene expression
dataset was generated from cells cultured simultaneously
with cells that were used for the methylation data. Our
observation was similar to previous reports [11] in that
although the trends were similar between the two separ-
ate gene expression datasets generated in different la-
boratories, differences were also found.

Another limitation of this study was the use of a prote-
omic assay technology (i.e., SomaLogic platform) that is
based on a subset of proteins that are typically found in
the blood. Nevertheless, these diverse high-throughput
methods allow for identifying and linking changes at the
chromosome level through protein levels. The integra-
tion of these diverse data types was possible by the use
of a highly characterized euploid cell line [2, 19] as to
more complex adipose tissue which would have multiple
cell types.

Cell model
The cell line (SGBS) used in these experiments was de-
rived from a male child with Simpson-Golabi-Behmel
syndrome (OMIM # 312870), an overgrowth syndrome
with multiple clinical features such as facial and cardiac
abnormalities, macrocephaly, and organomegaly. SGBS
is associated with genomic rearrangement and mutations
in glypican-3, a heparan sulfate proteoglycan [65]. The
cell line has retained its diploid character in culture.
While cells in culture lack communication between dif-
ferent cells in the tissue and physiological factors from
other organs that occur in vivo, SGBS cells have been
used extensively as a human model for pre-adipocyte
differentiation to mature adipocytes [2, 19]. Our previ-
ous study of global changes in networks and pathways
during adipogenesis in SGBS corroborated the results
from many studies in mouse 3T3-L1 that analyzed indi-
vidual pathways or subsystems [50]. A direct comparison
between SGBS and primary human white subcutaneous
adipocytes from 4 obese individuals indicated quantita-
tive but not qualitative differences in the expression of
extracellular matrix proteins, some metabolic pathways,
and mitochondrial respiration [81]. The differentiation
process was similar between SGBS and primary adipo-
cytes, and these direct comparisons can be informative
for understanding adipogenesis in vivo.

Conclusions
The transcriptomic and methylation data obtained in this
study indicated that a majority of DNA methylation and
resultant gene expression patterns are “pre-programmed”
since up- or downregulation of gene expression does not
appear to be causatively coupled to a promoter, exon, or
intron methylation. However, promoter methylation of a
subset of genes may be causatively linked to expression. In
addition, the differentiation program apparently overrides
the differences in the type and level of nutrients (fructose
vs glucose) consistent with our previous studies of the
metabolic fate of fructose [70] and the effect of fructose
on glucose metabolism [69] in these cells. Further research
on how nutrients affect methylation, gene expression, pro-
tein levels, and the differentiation program should focus
on mesenchymal stem cells to preadipocyte transition.
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Methods
Fructose treatment of SGBS cells
Human Simpson-Golabi-Behmel syndrome (SGBS) prea-
dipocytes, kindly provided by Martin Wabitsch, were used
and cultured as described in a previous study [70]. Briefly,
the SGBS preadipocytes cells were maintained at 37 °C in
a humidified incubator flushed with 5% CO2. The growth
medium consisted of DMEM:F12 (1:1), 33mM biotin, and
17mM pantothenate containing 10% fetal bovine serum
and 1% penicillin-streptomycin. One day post-confluence,
the cells were initiated to differentiate into adipocytes by
the addition of a serum-free differentiation medium con-
taining DMEM with 25 nM dexamethasone, 500 μM
IBMX, 2 μM rosiglitazone, 0.01mg/ml human transferrin,
2× 10-8M insulin, 10-7M cortisol, 0.2 nM T3, 33mM
biotin, and 17mM pantothenate. Following 4 days of
maintenance in serum-free differentiation medium, the
medium was changed to a serum-free adipogenic medium
consisting of DMEM:F12 (1:1) with 0.01mg/ml human
transferrin, 2× 10-8M insulin, 10-7M cortisol, 0.2 nM T3,
33mM biotin, and 17mM pantothenate. Adipogenic
medium is essentially similar to the differentiation
medium but lacks IBMX, dexamethasone, and rosiglita-
zone. The medium was changed every 2 days from the ini-
tiation of differentiation. The SGBS cells differentiate into
adipocytes by day 14 of differentiation as by Oil Red O
staining, seen previously during the establishment of the
differentiation methods of the cells, in the lab.

Fructose treatment of SGBS cells
SGBS preadipocytes were plated at 2 × 105 cells in 100-
mm dishes, supplemented with 10 ml growth medium,
grown to confluence, and initiated to differentiate as per
Varma et al. [70]. All media used for the growth, differ-
entiation, and maintenance of adipocytes contained a
basal amount of 5 mM glucose, equivalent to the normal
blood glucose concentration. Cells for RNA and DNA
isolations were collected at different time points across
differentiation at 24, 48, 96, 192, and 384 h. In order to
determine the effects of fructose exposure on adipocytes
at concentrations reported in the systemic circulation, in
response to fructose-rich food [29], different doses of
fructose including 2.5, 5, and 10 mM fructose were
added to the media at the initiation of differentiation
and maintained in the medium until the collection of
cells and medium at the end points of either 192 h or
until day 384 h of differentiation. The medium was
changed every 2 days, from the initiation of differenti-
ation to the collection of cell lysate experimental assays.
Cell lysates from the control or fructose-treated adipo-
cytes were collected for DNA and RNA isolations. For
RNA, the media were completely aspirated from cells,
and a total of 700 μl of QIAzol lysis reagent (Qiagen,
Cat No./ID: 79306) was added to the cells, and the lysed

cells were scraped and collected in an Eppendorf vial
and sheer disrupted by passing through a tuberculin syr-
inge about 6 times and the lysates are flash frozen. For
obtaining samples for DNA isolation, the media were re-
moved and cells were washed with PBS and aspirated to
remove all PBS. The cells were gently scraped in the
presence of a total of 400 μl of PBS that was added to
the plates and collected using a pipette fitted with a wide
mouth tip and transferred to an Eppendorf vial and flash
frozen. All experiments across all our studies were con-
ducted at the same passage numbers, and culture condi-
tion differentiations were adhered to rigorously.

Study design
The study design is summarized in Table 1. The study
was thus designed such that different concentrations of
fructose were added to a medium containing 5mM glu-
cose to mimic the effects of different concentrations of
fructose in circulation. We included a broad range of fruc-
tose concentrations (0.1–10mM) to examine the impact
of the reported concentrations of fructose in adipocytes
[29, 46]. Triplicate plates of cells in culture were harvested
for DNA methylation or separately for transcriptomics as-
says at specific time points including 24, 48, 96, 192, and
384 h for control adipocytes (six replicates were harvested
at 0 h). Cultures treated with different concentrations of
fructose (2.5, 5, and 10mM) were harvested at 192 and
384 h following the initiation of differentiation (Table 1).
For proteomic SOMAscan assays (version 1 [1149 soma-
mers], Somalogic, Boulder, CO), cell lysates were obtained
from cultures differentiated for 0, 96, 192, and 384 h fol-
lowing the induction of differentiation in a control
medium supplemented with 0, 2.5, 5, and 10mM fructose.

DNA methylation
Platform
Genome-wide methylation was assessed using the Illu-
mina Infinium HumanMethylation450K array platform
(Illumina, San Diego, CA, USA) that contains a total of
485,512 CpG sites. Samples were randomly distributed
over four different BeadChips to reduce batch effects.
CpG sites were then annotated with the R package
ilmn12.hg.19 [26] (v 0.6.0), which identified the genes
and the regions on the genome. Illumina GenomeStudio
software was used to extract the raw signal intensities.

Normalization
Preprocessing was performed with the function prepro-
cessIllumina from the R package Minfi [4] 1.22.1. This
method was applied to reduce Infinium I/II type bias
and correct for background. Absolute percentages of
methylation (β values) were then extracted and normal-
ized with the SWAN method [40]. For each CpG site,
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averaged β values across the cell replicates were consid-
ered for the following analysis.

Differentially methylated positions
The Minfi package was used to detect differentially
methylated positions. Statistical significance of CpG sites
was assessed with a moderated F-statistic implemented
in the function dmpFinder, which uses statistical signifi-
cance cutoffs to select differentially methylated positions.
Since DMPs were used as a starting point for further
analysis, an FDR adjusted p value threshold of 0.1 was
chosen.

Differentially methylated regions
In addition to DMPs, differentially methylated regions
were identified with the R package COHCAP [74] (version
1.20.0). COHCAP functions use a list of annotated DMPs
to compute the average signals from one or more CpG
sites that were found in the same genomic region. A t test
with an FDR threshold of 0.05 was applied to find those
regions (DMRs) showing a significant difference in the
average methylation level. The minimum number of sites
needed to create a region was set at 1, while the change in
methylation used to define the DMRs was left as the de-
fault values of COHCAP, which is 0.2. The possibility to
use a list of annotated DMPs makes this method suitable
for detecting DMRs on specific genes and thus to perform
a step of integration analysis. Moreover, COHCAP uses
predefined regions, allowing a more controlled analysis, in
contrast to methods that define regions [57].

Transcriptomic data
For RNA isolation, media was completely aspirated from
cells and a total of 700 μl of QIAzol lysis reagent was
added to the cells, and the lysed cells were scraped, col-
lected in an Eppendorf vial, sheer disrupted by passing
through a tuberculin syringe about 6 time, and the ly-
sates flash frozen. Cells from replicate wells were used
for both RNA and DNA isolation respectively.

Platform
The dataset was generated with 4 Illumina Human HT-
12 v-4 BeadChips (Ilumina, Inc., San Diego, CA) hybrid-
ized with the RNA from 46 cell cultures at different time
points (0, 24, 48, 96, 192, 384 h) and for different fruc-
tose concentration (0, 2.5 mM, 5mM, 10 mM). RNA la-
beling and microarray hybridization were performed
according to the manufacturer’s recommendations. Sam-
ples for RNA and DNA platform were measured on cells
plated at the same time and treated similarly.

Normalization and filtering
The scanned data was acquired in R using the package illi-
minaio [61] (v 0.18.0). The non-normalized summarized

bead-level data was then annotated with the R package
illuminaHumanv4.db [18]. Other labeling and analysis
methods were performed with the preprocessing pipeline
previously described [51].

Differentially expressed genes
Differential expression analysis was carried out using the
limma [62] R package (version 3.32.5). The probes were
ranked by their log-odds scores given by empirical
Bayesian moderation of sample variances with an FDR
threshold of 0.01. The DEGs of fully differentiated adi-
pocytes at 384 h in controls were further processed to
identify clusters of co-expressed genes. The clusters were
decomposed according to the functional categories of
their genes related to the biological functions and path-
ways (DEG modules). The details of the procedures are
described in the paper by Nassiri et al. [51].

Proteomic data
Proteomic studies
SGBS preadipocytes were plated at 1 × 105 cells/well in a 6-
well plate and allowed to reach near confluence before add-
ing a differentiation medium. Samples were harvested from
three replicate wells at 4 different time points including day
0 just before the induction of differentiation and then days
4, 8, and 16 after the induction of differentiation.
The spent culture medium (supernatant) from the re-

spective wells was pipetted into an Eppendorf vial, centri-
fuged at 13,000 RPM for 10min at 4 °C to pellet the cell
debris. The supernatant was transferred to a fresh vial and
stored at − 80 °C until used. Cells were washed three times
with ice-cold PBS and then lysed by the addition of 125 μl
Mammalian Protein Extraction Reagent M-PER® (Pierce
Biotechnology cat # 78503) supplemented with Halt™ prote-
ase inhibitors (with EDTA) (Pierce biotechnology cat #
87786) at 1× concentration and incubated for 5min. Cell
lysates were scraped and transferred to a microcentrifuge
tube, centrifuged at 13,000 RPM for 10min at 4 °C to pellet
the cell debris. The clarified supernatant (lysate) obtained
was transferred to a fresh tube and stored at − 80 °C. Pro-
tein concentrations in the supernatant and cell lysates were
estimated using the Micro BCA Kit (Pierce Biotechnology
cat # 23235) as per the recommended protocol.

Platform
Cell lysates in replicates were analyzed with the SOMAs-
can platform (SomaLogic, Inc., Boulder, CO) consisting
of 1149 aptamers at different time points (0, 96, 192,
and 384 h) and for different doses of fructose (0, 2.5, 5,
and 10 mM). SomaLogic Inc. (Boulder, CO) performed
all the proteomic assessments, and samples were ana-
lyzed as previously described [6, 20, 21, 54].
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Differentially expressed proteins
Differentially expressed proteins were found with a ro-
bust linear model from the R package limma [62]. A
threshold of 0.05 on moderated empirical Bayesian FDR
was set to select significant proteins.

Transcription factors binding sites analysis
Binding sites of transcription factors (TFs) in DMRs
were identified with the function get.enriched.motif of
the R package ELMER [78, 80] 1.6.0. The binding sites
were searched on 181 transcription factors identified in
the ENCODE database (http://amp.pharm.mssm.edu/
Harmonizome/dataset/ENCODE+Transcription+Factor+
Targets). The CpG sites of all DMPs were used as a
background. Motifs occurring at least 10 times and with
an odds ratio higher than 1 in the 95% CI were consid-
ered significant. Significant motifs from the same family
were summarized with the function motif.relevant.TFs
data from the ELMER.data package [79] (v 1.6.0).

Pathway analysis
Pathways analysis was performed with NASFinder [51].
NASFinder identifies and scores statistically significant sub-
networks of an interactome network connecting functionally
related genes to its main regulator (e.g., receptors or tran-
scription factors). The analysis described here was adipose-
specific using transcription factors as regulators and tran-
scripts that mapped to differentially methylated genes to find
the most active pathways influenced by methylation. The p
value threshold used to select significant pathways was <
0.05. Functional pathway enrichment analysis was also per-
formed with DAVID [14], using default parameters and a
p value threshold < 0.05 to analyze the fructose data.

Integration of methylation, gene expression, and protein
expression
The schema representing the different steps of the inte-
gration analysis is presented in Fig. 1.
Differentially methylated regions (DMRs), differentially

expressed genes (DEGs), and significantly expressed pro-
teins were explored at each time point and each different
fructose concentration.
An integrative analysis was then performed by deter-

mining the differentially methylated regions (DMRs)
that were associated with differentially expressed genes
for each of the considered analysis. The location of the
DMRs in the gene (promoter, exon, intron, or inter-
genic) was annotated with the genomation 1.8.0 R pack-
age [1]. Integration with protein expression was
performed by determining the methylated/expressed
genes that were also associated with significantly
expressed proteins. All the analyses described here were
performed with R version 3.4.1.
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Additional file 1: Figure S1. Methylation patterns during differentiation
for the 20 genes showing significant methylation changes both at 192
and 384 hours. To better inspect the patterns, genes are separated in
four panels. Dots define averaged β-values for each time-point, while dif-
ferent colors represent different genes. Figure S2. Methylation patterns
during differentiation for the 20 genes significantly methylated/expressed
at 192 hours (but not at 384 hours) which methylation levels return to
the baseline at 384 hours. For each panel, mean β-values at each time
point are represented by dots. Different colors represent different genes.
Figure S3. Distribution of the average beta-values for the DMRs on DEGs
at 384 hours. β-values of DMRs that show anti-correlated changes in
methylation and gene expression are depicted in pink. The blue curve
describes instead the distribution of β-values for DMRs showing the same
direction of regulation in methylation and gene expression levels.
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