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Nomenclature

a = propulsive acceleration vector, mm/s2

ar, aθ = propulsive acceleration components, mm/s2

E = dimensionless error
F = auxiliary function, see Eq. (17)
H = Hamiltonian function
h = specific angular momentum magnitude, km2/s
J = performance index, days
n̂ = normal unit vector in the direction opposite to the Sun
O = Sun’s center of mass
P = reference plane
r̂ = position unit vector
r = Sun-spacecraft distance, km
T = polar reference frame
t = time, days
u = radial component of velocity, km/s
α = cone angle, rad
β = sail lightness number
θ = spacecraft polar angle, rad
{λr, λθ, λu, λh} = adjoint variables
µ� = Sun’s gravitational parameter, km3/s2

Subscripts

0 = initial value
1 = at perihelion
f = final (target) value
min = minimum

Superscripts

· = time derivative
∧ = unit vector

Introduction
A notable feature of propellantless propulsion systems such as solar sails [1,2] is in their capability of generating a continuous

thrust for a long time span, theoretically limited only by the degradation of the sail film material [3–5]. This allows advanced
mission scenarios [6] to be conceived, which would be impossible to design with conventional propulsive systems [7,8].

In this respect, a challenging space mission consists in the maintenance of a heliostationary point, that is, a static equilibrium
in a heliocentric inertial reference frame [9, 10]. When placed in a heliostationary condition, the spacecraft has zero inertial
velocity, and its propulsive acceleration must balance the Sun’s gravitational attraction. The maintenance of a heliostationary
point requires the spacecraft to be propelled by a high-performance solar sail, of which the characteristic acceleration [11] is
still beyond the current technological capabilities. More precisely, the sail propulsive acceleration necessary for maintaining a
heliostationary point is similar to that required to perform a H-reversal trajectory [12], or a Solar System escape via a photonic
gravity assist [13]. The peculiarities of heliostationary points make them good candidates for future scientific mission concepts,
such as the continuous monitoring of solar poles, or the release of a small solar probe, of which the aim is to fall freely to
the Sun [14] to obtain in-situ information about corona and solar wind characteristics . These aspects have promoted the
analysis of solar sail dynamics in the vicinity of a heliostationary point, which started from the pioneering work by Dandouras
et al. [14], and has encouraged the study of possible applications for other (propellantless) propulsion systems [15].

This Note analyzes the transfer between two heliostationary points having the same distance from the Sun. The problem
is addressed within an optimal framework in which a constraint is enforced on the minimum Sun-spacecraft distance along the
transfer trajectory. A relevant contribution of this Note consists of the development of an approximate model, which allows
the time-optimal transfer between two heliostationary points (having the same distance from the Sun) to be found with an
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analytical solution. The latter is accurate enough for a preliminary mission design phase, as long as the angular displacement
between the two heliostationary points does not exceed some tens degrees. In addition, the closed-form expression of the
optimal control law gives interesting insights into the actual (nonlinear) optimal transfer problem, and allows the designer to
obtain an accurate guess of the unknown initial costates when an indirect approach is used to solve the optimization problem.

Problem description
Consider the heliocentric motion of a solar sail-based spacecraft and assume its propulsive acceleration a (i.e., the acceler-

ation due to the solar sail) to be described by an ideal force model as [16]

a = β
µ�
r2

cos2 α n̂ (1)

where µ� is the Sun’s gravitational parameter, r is the Sun-spacecraft distance, n̂ is the unit vector normal to the sail
nominal plane in the direction opposite to the Sun, and α is the sail cone angle, that is, the angle between the unit vector r̂
(parallel to the Sun-spacecraft line) and n̂, with cosα = n̂ · r̂. In Eq. (1), β is the sail lightness number [11], defined as the
ratio of the maximum propulsive acceleration magnitude (i.e., the value of ‖a‖ when α = 0) to the local solar gravitational

acceleration. At time t0 , 0 the spacecraft is in an equilibrium (heliostationary) condition at a given solar distance r0, where
the spacecraft inertial velocity is zero and the sail propulsive acceleration balances the Sun’s gravitational pull. Its initial
propulsive acceleration is therefore a0 , a(t0) = (µ�/r

2
0)r̂0 with r̂0 ≡ r̂(t0), see Eq. (1) when r = r0, β = 1, α = 0 and

n̂ = r̂0.
The problem discussed in this Note is to minimize the time tf required to transfer the spacecraft from an initial heliosta-

tionary position, defined by the vector r0 = r0 r̂0, to a final heliostationary position at the same heliocentric distance, that is,
rf = r0 r̂f with r̂f 6= r̂0; see Fig. 1.
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Figure 1 Conceptual sketch of the mission scenario.

The transfer trajectory may be analyzed within a two-dimensional framework, by considering the reference plane P that
contains the two unit vectors r̂0 and r̂f . In the special case when r̂f = −r̂0, P is any fixed plane that contains the initial
Sun-spacecraft line. The spacecraft dynamics can be conveniently described using a polar reference frame T (O; r, θ), of which

the origin O is the Sun’s center-of-mass, while θ , arccos(r̂ · r̂0) is the polar angle measured counterclockwise from the initial
Sun-spacecraft direction; see Fig. 1. In this scenario, the (single) sail control parameter is the cone angle that ranges in the
interval α ∈ [−π/2, π/2] rad. Note that, because rf = r0, the problem amounts to minimizing the time necessary to change

the spacecraft polar angle θ from θ0 , θ(t0) = 0 to θf , θ(tf ) ∈ (0, π] rad, see Fig. 1.
The spacecraft equations of motion in T are given by

r̈ = r θ̇2 − µ�
r2

+ ar , θ̈ =
2 ṙ θ̇ − aθ

r
(2)

where ar (or aθ) is the radial (or transverse) component of the propulsive acceleration a. Bearing in mind that β = 1, Eq. (1)
yields

ar =
µ�
r2

cosα3 , aθ =
µ�
r2

cosα2 sinα (3)

so that Eqs. (2) can be rewritten as a system of four first-order differential equations, viz.

ṙ = u , θ̇ =
h

r2
, u̇ =

h2

r3
− µ�

r2
(
1− cos3 α

)
, ḣ =

µ�
r

cos2 α sinα (4)

with initial conditions
r(t0) = r0 , θ(t0) = 0 , u(t0) = 0 , h(t0) = 0 (5)

where u is the radial component of the spacecraft velocity, and h , r2 θ̇ is the spacecraft specific angular momentum magnitude.
The time-optimal variation of the sail cone angle α is obtained by maximizing the performance index J , −tf with terminal

constraints
r(tf ) = r0 , θ(tf ) = θf , u(tf ) = 0 , h(tf ) = 0 (6)

Preliminary simulations show that the optimal transfer trajectory tends to approach the Sun when θf is sufficiently large.
Therefore, a path constraint is enforced in the trajectory analysis in the form r ≥ rmin, where rmin > 0 is the minimum
admissible value of the Sun-spacecraft distance, imposed by thermal constraints [17]; see Fig. 1.
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Trajectory optimization
The optimal performance is calculated with an indirect approach in which the Hamiltonian function H is a constant of

motion [18], given by

H , λr u+
λθ h

r2
+
λu h

2

r3
− λu µ�

r2
(
1− cos3 α

)
+
λh µ�
r

cos2 α sinα (7)

where {λr, λθ, λu, λh} are the adjoint variables associated with the state variables, and α is the only control variable. Using
the Euler-Lagrange equations, the time derivatives of the adjoint variables are

λ̇r =
2λθ h

r3
+

3λu h
2

r4
− 2λu µ�

r3
(
1− cos3 α

)
+
λh µ�
r2

cos2 α sinα,

λ̇θ = 0, λ̇u = −λr, λ̇h = −λθ
r2
− 2λu h

r3

(8)

The optimal steering law is found by maximizing the Hamiltonian H, in accordance with Pontryagin’s maximum principle.
This amounts to maximizing H′, defined as

H′ =
λu µ�
r2

(
1− cos3 α

)
+
λh µ�
r

cos2 α sinα (9)

which denotes the part of the Hamiltonian that is function of the control variable α. The required value of α may be written
as a function of the two adjoint variables {λu, λh}, by adapting the classical result by Sauer [19], viz.

α = arctan

(
−3λu +

√
9λ2

u + 8λ2
h r

2

4λh r

)
(10)

In particular, Eq. (10) coincides with the solution of the necessary condition ∂H′/∂α = 0.
The two-point boundary value problem (2PBVP) associated with the optimal transfer with no path constraint (that is,

without constraints on the minimum Sun-spacecraft distance), consists of finding the flight time tf and the initial values of
the adjoint variables {λr, λθ, λu, λh} that meet the four final conditions given by Eq. (6) and the transversality condition
H(tf ) = 1 [20]. When the path inequality constraint r ≥ rmin is introduced in the optimization process, a switching structure
is assumed a priori [20] and the following conditions are enforced at the (unknown) time instant t1 ∈ (t0, tf ) [21]

r(t1) = rmin , u(t1) = 0 (11)

Accordingly, λr undergoes an “impulsive” variation (equal to ∆λr1) at t1, while the other adjoint variables are all continuous.
This result is consistent with Eq. (3.13.4) of Ref. [20], which describes the corner conditions of an optimal problem with state
variable inequality constraints. In this case, the optimal transfer requires the solution of a three-point boundary value problem
(3PBVP) in which the unknowns are the initial values of {λr, λθ, λu, λh}, the variation ∆λr1 , and the two time instants
{t1, tf}, whereas the seven scalar constraints are H(tf ) = 1 and those given by Eqs. (6) and (11). Finally, note that the
optimal problem can be made independent of the initial heliostationary distance r0 and the Sun’s gravitational parameter µ�
by introducing a set of canonical units [22], in which the distance unit is r0 and the time unit is

√
r30/µ�. The numerical

results and the analytical expressions discussed in the following sections are therefore general, in that they may be applied to
a generic value of the design parameter r0.

Numerical simulations
The optimization problem discussed in the previous section has been solved to simulate the optimal heliostationary-to-

heliostationary transfer as a function of θf ∈ (0, π] rad and rmin ∈ {0.3, 0.35, 0.4} r0. Note that, assuming r0 = 1 au,
the minimum Sun-spacecraft distance of rmin = 0.3 r0 roughly corresponds to Mercury’s perihelion radius. From a numerical
viewpoint, Eqs. (4) and (8) have been integrated in double precision using a variable order Adams-Bashforth-Moulton solver [23,
24] with absolute and relative errors of 10−12. The boundary-value problem has been solved by means of a hybrid numerical
technique that combines genetic algorithms (to obtain a rough estimate of the adjoint variables) with gradient-based and direct
methods (to refine the final solution).

Figure 2 shows the minimum dimensionless flight time tf as a function of θf for the three values of rmin/r0 considered in
the study. In particular, the three curves in Fig. 2 overlap when θf < 120 deg because the constraint on the minimum Sun-
spacecraft distance is inactive and, accordingly, the optimal transfer trajectory coincides with the solution of the corresponding
2PBVP. This aspect is confirmed by Fig. 3, which shows the dimensionless sail perihelion distance during the transfer as a
function of the two design parameters {θf , rmin}.

An interesting and counterintuitive result, which emerges from Fig. 2, is the flight time variation with θf for a given value
of the ratio rmin/r0. In fact, the function tf = tf (θf ) reaches its maximum value when θf → 0+, that is, the flight time tends
to increase as the displacement angle θf decreases. This behaviour is better explained with the aid of Fig. 4 , which shows
the maximum cone angle (Fig. 4(a)) and the maximum radial deviation (Fig. 4(b)) compared to the initial solar distance as
a function of θf ∈ (0, 30] deg. As long as the displacement angle θf is sufficiently small, during the transfer the optimal cone
angle is close to the value α = 0 required to maintain the heliostationary condition. Therefore, the transverse component of
the propulsive acceleration vector, which scales with sinα [see the second of Eqs. (3)], is very small during all of the transfer
and this fact increases the flight time. Moreover, Fig. 4(b) shows that, when θf is small, the Sun-spacecraft distance remains
close to its initial value r0. In other terms, the numerical simulations indicate that the approximations

r ' r0 ∩ α� 1 for t ∈ [t0, tf ] (12)

are consistent with the actual behaviour of the optimal transfer trajectory as long as θf � 1. These approximations form the
foundation for the analytical result discussed in the next section.
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Figure 2 Minimum dimensionless flight time as a function of θf and rmin/r0.
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Figure 3 Dimensionless perihelion distance as a function of θf and rmin/r0.

Analytical approximation for small displacement angles

When the displacement angle θf is sufficiently small, the optimization problem is simplified by the introduction of the
approximations given by Eq. (12). Indeed, using the fact that cos2 α sinα ' α and (1 − cos3 α) ' 3α2/2, the last three
equations of motion (4) reduce to

θ̇ =
h

r20
(13)

u̇ =
h2

r30
− 3µ�

2 r20
α2 (14)

ḣ =
µ�
r0

α (15)

with initial conditions still given by the last three Eqs. (5). Using again an indirect approach to solve the optimization problem,
the Hamiltonian function now becomes

H = λθ
h

r20
+ λu

h2

r30
+
µ�
r0
F (16)

where F = F(λu, λh, α) is an auxiliary function, given by

F , λh α−
3λu
2 r0

α2 (17)
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Figure 4 Maximum cone angle and maximum radial deviation as a function of θf .

and the Euler-Lagrange equations are

λ̇θ = 0 (18)

λ̇u = 0 (19)

λ̇h = −λθ
r20
− 2λu h

r30
(20)

In this (approximate) case, λθ and λu are both constants of motion, while λh is a time-varying function with

λh(t0) = λh0 , λ̇h(t0) = −λθ
r20

(21)

where λh0 is a parameter to be found as a part of the general solution, whereas the second of Eqs. (21) is a consequence of
the initial condition h(t0) = 0; see Eq. (5).

The optimal cone angle is obtained by maximizing F with respect to α in Eq. (17). Since λu is a constant of motion and
F is a quadratic function of α, the maximization of F corresponds to either α = 0 or α = π/2 rad along the whole transfer
if λu ≤ 0. The latter condition on λu is however unfeasible, since if α = 0, the spacecraft remains in its initial position,
whereas if α = π/2 rad, the propulsive acceleration goes to zero and the spacecraft falls toward the Sun along a rectilinear
trajectory [25–27]. Assuming therefore λu > 0, the cone angle that maximizes F is

α =
λh r0
3λu

(22)

The adjoint variable λu can be written as a function of λh0 by exploiting the transversality condition H(tf ) = 1 [20]. In fact,
because the Hamiltonian function is again a constant of motion [18], the transversality condition can be equivalently rewritten
as H(t0) = 1. The latter, with the aid of Eqs. (5), (16)-(17) and (22), gives

λu =
µ� λ

2
h0

6
(23)

The expression of λh is obtained by taking the time derivative of Eq. (20). More precisely, bearing in mind Eqs. (15),
(18)-(19), and (22), it may be verified that

λ̈h + ω2 λh = 0 with ω ,

√
2µ�
3 r30

(24)
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Using the initial conditions (21), the time variation of λh may be written as a function of the unknown parameters {λh0 , λθ}
as

λh = λh0 cos(ω t)− λθ
ω r20

sin(ω t) (25)

The optimal time variation of α is then obtained substituting Eqs. (23) and (25) into (22). The result is

α =
2 r0
µ� λh0

cos(ω t)− 2λθ
µ� ω r0 λ2

h0

sin(ω t) (26)

The latter may be substituted into Eq. (15) to obtain, after integration, the expression of the specific angular momentum
magnitude as

h =
2

λh0 ω
sin(ω t)− 4λθ

λ2
h0
ω2 r20

sin2

(
ω t

2

)
(27)

Then, Eqs. (13) and (27) give the time variation of the polar angle

θ =
2λθ

λ2
h0
ω3 r40

sin(ω t) +
4

λh0 ω
2 r20

sin2

(
ω t

2

)
− 2λθ
λ2
h0
ω2 r40

t (28)

and Eqs. (14) and (26)-(27) provide the expression of u as

u =
8λh0λθωr

2
0 cos(ω t) [1− cos(ω t)]− 8λ2

θ sin(ω t)−
(
2λ2

h0
ω2r40 − 2λ2

θ

)
sin(2ω t) + 4λ2

θω t

λ4
h0
ω5 r70

(29)

Note that Eqs. (27)–(29) give the time variation of the spacecraft states {h, θ, u} as a function of {λh0 , λθ}. In particular,
Eq. (28) (or Eq. (29)) contains a secular term proportional to λθ (or λ2

θ), while h is a periodic function of time.
The values of {λh0 , λθ} and the minimum flight time tf are obtained by enforcing the terminal conditions (6) into Eqs. (27)–

(29). The result is the closed form solution of the (simplified) optimization problem, or

λh0 =
6 r0
µ� θf

, λθ = 0 , tf =
π

ω
≡ π

√
3 r30
2µ�

(30)

In addition, Eq. (23) gives λu as a function of the mission parameters

λu =
6 r20
µ� θ2f

(31)

and Eqs. (27)–(30) provide the analytical approximations of the optimal transfer trajectory in terms of time-histories of the
state variables, viz.

θ = θf sin2

(
ω t

2

)
(32)

u = −
ω r0 θ

2
f

8
sin(2ω t) (33)

h =
ω r20 θf

2
sin(ω t) (34)

from which it is clear that the analytical approximation of the state variables comply with the initial boundary conditions (5)
at t0 = 0 and with the final boundary conditions (6) at tf = π/ω. Finally, Eq. (26) gives the time variation of the optimal
cone angle as

α =
θf
3

cos(ω t) (35)

that is, the maximum value of α is proportional to θf . In other terms, as long as θf is small, during the transfer the sail cone
angle is nearly zero, in accordance with Fig. 4(a).

Some remarks on the approximate analytical model are in order: 1) strictly speaking, Eqs. (32)–(35) are valid for t ∈ [t0, tf ],
that is, for t ∈ [0, π/ω]; 2) the maximum value of u is small as it is proportional to θ2f (this is consistent with the assumption
of r ' r0); 3) the minimum flight time tf is independent of the target polar angle θf , see Eq. (30). The latter is a consequence
of the assumption of a small value of θf , which, in its turn, is at the basis of the approximations (12). In fact, the function

tf = tf (θf ) is nearly constant within the range 0 < θf ≤ 30 deg, see Fig. 2, and tf/
√
r30/µ� ' 3.847 as θf → 0+. Notably,

the latter result on the flight time is accurately approximated by Eq. (30), according to which tf/
√
r30/µ� ' π

√
3/2 ' 3.847.

A further analysis of Eqs. (32)–(34) highlights the influence of θf on the time histories of {θ, u, h, α}. In particular, the final
polar angle only affects the peak value of the state variable oscillations without changing their frequencies, which only depend
on the initial Sun-spacecraft distance r0 through ω; see Eq. (24).

To validate the approximation r(t) ' r0, the function r(t) obtained numerically is now compared with the analytical result
that comes from the integration of the radial velocity u given by Eq. (33), or

r(t) = r0 −
r0 θ

2
f

16
[1− cos(2ω t)] (36)
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Figure 5 Comparison between numerical solution (solid line) and analytical approximation (dashed line) of r = r(t) for θf = {20, 30} deg.

Figure 5 shows that when θf = 30 deg, the analytical approximation of r(t) is close to its numerical value, with a maximum
error, defined as |1− r(t)/r0|, of about 3.5%. When θf is decreased to 20 deg, the analytical and numerical time histories
of r(t) are nearly coincident, with a maximum error less than 1.6%. These results confirm the soundness of the assumption
r(t) ' r0 during the transfer. The accuracy of the analytical approximations (32)–(34) is better appreciated with the aid of
Fig. 6, which shows the time variation of {θ, u, h} in an optimal transfer when θf = {20, 30} deg. The analytical method also
provides a good approximation of the actual optimal control law α = α(t). This is apparent in Fig. 7, which compares the
numerical optimal value of α(t) with the sinusoidal approximation given by Eq. (35).

The accuracy of Eq. (35) allows the designer to obtain a reference steering law that is able to estimate the actual nonlinear
behaviour of the sail during the optimal transfer. In fact, when the system dynamics are simulated by integrating its equations
of motion (4), but using the control law α(t) taken from Eq. (35), the spacecraft closely approaches the desired target conditions
given by Eqs. (6). To quantify this result, let Ei be the dimensionless error associated with an estimate of the generic state
variable i = {r, θ, u, h}, calculated at tf = π/ω, and obtained by integrating the nonlinear equations of motion (4) with the

analytical steering law of Eq. (35). For example, Er = r(tf )/r0− 1, while Eu = u(tf )/
√
µ�/r0 when tf = π/ω. Figure 8 shows

the dimensionless errors Ei as functions of θf . Not only tend all errors to zero for small values of θf , but they remain small
even for large values of θf . Finally, Fig. 9 compares the approximate flight time tf = π/ω with that calculated numerically.
Again, the results confirm the accuracy of the approximation.

The analytical model provides a set of initial guesses for a solution of the 2PBVP that uses the original (nonlinear) equations
of motion (4). In particular, Eqs. (30)-(31) may be used to estimate the initial value of the adjoint variables {λθ, λu, λh}, which
simplifies the convergence of the numerical algorithms towards the final solution. This aspect of the optimization process is
confirmed by Table 1, where the actual values of the initial adjoint variables (in canonical units) are compared with those
obtained through the analytical approximate model. Note the different order of magnitude between {λh(t0), λu(t0)} and λθ
when θf � 1.
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Figure 6 Time variation of the state variables: comparison between numerical solution (solid line) and analytical approximation (dashed line).

Table 1 Accuracy in guessing the initial value of the unknown adjoint variables {λθ, λu, λh} (in canonical units).

θf [deg] model λθ λu(t0) λh(t0)
5 numerical −0.0455 784.0478 68.6388

analytical 0 787.8735 68.7549
20 numerical −0.1818 45.4587 16.7255

analytical 0 49.2421 17.1887
30 numerical −0.2727 18.1578 10.7668

analytical 0 21.8854 11.4592
45 numerical −0.4084 6.1233 6.6094

analytical 0 9.7268 7.6394

Conclusions
The results discussed in this Note allow a designer to get a rapid estimation of the time-optimal trajectory of a high-

performance solar sail in a transfer between heliostationary points. The analytical model, which is valid under the assumption
of short distance between the initial and the final heliostationary positions, gives a useful and accurate approximation of the
optimal control law, which can be used as an initial guess to drive the system towards the target state in a real (nonlinear)
mission scenario.

The existence of a closed-form solution is an uncommon result in optimal control problems and may be therefore considered
as a favourable event. In addition, such a solution is useful for accurate initial guesses of the adjoint variables, which guarantee
a fast numerical convergence of the original nonlinear problem.
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