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A B S T R A C T

In this work, results are presented on the application of standard LIBS and Nanoparticle-Enhanced LIBS (NELIBS)
to the classification of rocks (igneous and sedimentary). The classification of the spectra obtained with the two
methods was performed using Principal Component Analysis (PCA) and Graph Theory method. The results
obtained confirmed the advantages of the LIBS technique in geological applications, showing that excellent
classification of the rocks analyzed (more than 99% of the spectra correctly classified) can be obtained using
standard LIBS coupled to Graph Theory analysis, while NELIBS spectra, analyzed with the same technique,
provide acceptable results, but with 10% of the spectra not classified. These findings are particularly interesting
given the application of the LIBS technique in investigating natural samples having porous and/or rough sur-
faces.

1. Introduction

LIBS is a well-known spectrochemical analytical method used for
the qualitative and quantitative analysis of numerous types of mate-
rials. Details of the fundamentals and the experimental approaches of
LIBS can be found in many review papers and textbooks [1–3].

Utilization of nanomaterials to improve the performances of ana-
lytical techniques is a growing worldwide field of research during the
last two decades. The unique physical and chemical characteristics of
nanomaterials have already been exploited in many ways in numerous
scientific and technological applications [4–6].

Nanoparticles' unique properties have been used recently to en-
hance the analytical capabilities of the Laser-Induced Breakdown
Spectroscopy (LIBS) technique [6–8]. Nano-enhanced LIBS or NELIBS is
an approach proposed by De Giacomo et al. [9] to improve the signal to
noise ratio in the LIBS spectrum and consequently to reduce the limit of
detection of the technique [10]. This improvement can be achieved by
deposition of metallic nanoparticles (usually noble metals) onto the
surface of the target. An enhancement of several orders of magnitude in
the LIBS signal was attained. Many research papers were then published
adopting this promising method in a vast number of applications
[11–13]. NELIBS always provided superior results compared to the
conventional LIBS technique. In some recent applications of NELIBS,

biosynthesized (or green-synthesized) nanoparticles were used instead
of the chemically prepared ones in order to reduce the cost and to avoid
environmental contamination [14–16].

To achieve decisive results concerning the spectrochemical analysis
of various types of materials via the application of LIBS or NELIBS; it is
beneficial to make use of the statistical treatment of the spectroscopic
data. As early as 1994, chemometric techniques were applied for the
first time by Wisbrun et al. [17] in the analysis of LIBS spectra.
Nowadays numerous chemometric techniques such as Principal Com-
ponent Analysis (PCA), Partial Least Squares-Discriminant Analysis
(PLS-DA), Artificial Neural Networks (ANN), are exploited in the sta-
tistical analysis of LIBS spectra for the sake of discrimination and
characterization between different types of samples [18–22].

In the case of LIBS, a single spectrum includes tens of thousands of
data points, which makes the analysis highly sophisticated. However,
the use of unsupervised statistical analysis techniques, such as PCA, can
substantially reduce the dimensionality of such spectral data. In prin-
ciple, it is possible to analyze the complete set of data points of the
spectrum to attain successful discrimination, but it has been found that
including data not relevant to useful information may deteriorate the
performance of the statistical method. Hence, choosing the parts of the
spectra which cover only the information of interest, as input data,
could provide more reliable classification results [23]. PCA relies on the
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main idea of visually classifying the samples according to their clus-
tering distribution in the PC-space, and any test sample can be identi-
fied as linked to the closest cluster. Unclassified samples may be pre-
sent, not being allocated to any cluster [24].

More recently, a different unsupervised classification method was
introduced by Palleschi and coworkers [25–27], based on Graph theory.
The classification of the LIBS spectra is done considering the correlation
between the spectra. It has been demonstrated that spectral selection is
not required for the application of the method. The classification based
on Graph Theory is generally more effective than PCA; on the other
hand, since the classification is done according to the similarities of the
spectra, the chemical-physical information about the most significant
variables for classification is lost and must be recovered a posteriori by
comparing the spectra belonging to different groups.

Natural rocks constitute the earth's crust and the solid layer be-
neath. Rocks are classified primarily in three groups, igneous, sedi-
mentary and metamorphic. By volume, the Earth's crust consists of
64.7% igneous rocks, 7.9% sedimentary rocks, and 27.4% metamorphic
rocks [28].

It is of fundamental importance to have quick and reliable in-
formation about the mineral composition of rocks. This information
supports our understanding of the terrestrial (or even extraterrestrial)
geological processes and the relevant environmental and historical
parameters. Moreover, industrial quality assurance requires a detailed
elemental analysis of rocks to use these raw materials in a variety of
essential products, namely silicon, ceramics, concrete, pharmaceuticals,
cosmetics, and other industries.

In the present work standard LIBS and NELIBS (with biosynthesized
silver nanoparticles) was used jointly with PCA and Graph Theory, as

multivariate unsupervised statistical analysis methods, for the classifi-
cation of some igneous and sedimentary rocks. The main purpose of the
work was to assess the effectiveness of NELIBS, which is characterized
by a higher detection sensitivity compared to conventional LIBS, for the
classification of geological materials.

2. Materials and method

2.1. Rock samples

In the present work, sixty rock samples were analyzed, thirty ig-
neous (granite, leucogranite, and dolerite), and thirty sedimentary
(siltstone, magnetite, and malachite). The natural samples were col-
lected from different sites in South Africa, and Namibia. In order to
avoid any effects of the surface fluctuations and roughness, the samples
were thoroughly polished using sandpaper.

2.2. Biosynthesized nanoparticles and characterization of the NPs

Deionized water obtained from a Milli-Q water purification system
was used to prepare all used solutions of reacting materials. Aqua regia
(HCl: HNO3= 3:1 (v/v)) was used to wash all glassware rinsed after
that with deionized water. Chemicals, AgNO3 and NaOH, were pur-
chased from Sigma-Aldrich (St. Louis, Missouri, USA). Potatoes were
obtained from the marketplace nearby Cairo University.

Potato extract, prepared as described in [29] was used for the bio-
synthetization of the silver nanoparticles [30]. Repeated centrifugation,
at 3000 rpm for 15min each time, was performed to extract the Ag NPs
from the potato residues.

The characterization of the silver nanoparticles was performed via a
UV–Vis Power Wave microplate spectrophotometer (BioTech, Vermont,
USA). The obtained absorption spectrum was peaking at 420 nm, which
is characteristic of the Ag NPs [15,16,31]. Besides, TEM micrographs
have been obtained for the silver nanoparticles and revealed a spherical
shape with an average size ranging between 7 and 20 nm, as depicted in
[15]. The estimated surface concentration of the nanoparticles on the
samples was 26 ng cm−2.

2.3. LIBS arrangement

In the experimental LIBS arrangements, the laser used to induce the
plasma was an Nd: YAG (Brilliant EaZy, Quantel, France) delivering
laser pulses of 5 ns duration and 50mJ/pulse energy at a wavelength of

Fig. 1. A comparison between spectra of LIBS and NELIBS for an iron ore rock sample. On the bottom is the whole spectrum, while the upper graph is a zoomed part.

Table 1
Comparison between Signal-to noise ratio of LIBS and NELIBS for Igneous
(upper three lines), dolerite, granite, and leucogranite respectively and sedi-
mentary rocks (bottom three lines), siltstone Cu ore, and Fe ore respectively.

Spectral line (nm) Signal-to- noise ratio(S/N)

LIBS NELIBS

Fe (427.14) 1.62 8.60
Al (309.28) 4.28 9.20
Si (288.16) 6.55 20.07
Ti (334.90) 1.98 11.63
Cu (327.35) 6.65 10.58
Fe (263.14) 4.09 12.51
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532 nm and repetition rate of 10 Hz. A planoconvex fused silica lens of
focal length 10 cm was used to focus the laser pulses onto the sample
surface. The focused laser spot size was 51.92 μm, and the incident laser
fluence was 6.13 J/cm2. The sample holder was attached to an X-Y
translational stage which was used to obtain a fresh surface spot on the
target for each laser pulse. A 2m length optical fiber with 600 μm core
diameter was used to collect the laser-induced plasma emission and
feed it for dispersion to an echelle spectrometer (Mechelle 7500,
Multichannel, Sweden). The dispersed light was detected via an ICCD
(DiCAM-Pro, PCO, Computer Optics, Germany) coupled to the spec-
trometer and the obtained spectrum was recorded on a suitable PC for
display and further processing.

Further details of this LIBS setup are given in [32,33]. Optical

triggering of the ICCD high voltage is adopted to avoid possible elec-
tronic interference and jitters. In order to get rid of the strong con-
tinuum emission in the early evolution time of the laser-induced
plasma, the optical intensifier of the ICCD was triggered at an optimized
delay time and a gate width of 1250 ns and 2500 ns respectively. Fifty
spectra were collected from each sample (each spectrum represents a
single laser shot on a new surface spot). The commercial software LIBS
++ [34] was used for further processing and analysis of the recorded
spectra.

2.4. Principal component analysis (PCA) and graph theory

PCA is an unsupervised statistical technique which reduces the di-
mensionality of a large data set, such as LIBS spectra effectively,
without losing much information. The obtained variables, called prin-
cipal components, are evaluated in the form of linear sets of the primary
variables. In the present work, PCA was utilized in order to explore
whether LIBS, as a spectrochemical analytical technique, could effec-
tively classify different rocks into different groups of various types. The
measured spectra of different rock types were analyzed statistically via
PCA using the commercial software Origin Lab 2017.

The Graph Theory analysis, on the other hand, is based on the de-
finition of a distance between the LIBS spectra, which measures the
degree of similarity between the spectra. A natural definition of this
distance is the correlation (normalized scalar product) between the
spectra, defined as:
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where Sa and Sb are two LIBS spectra and Sa (i) and Sb (i) are their ith

spectral component (comprised between 1 and n).
The correlations C(Sa, Sb) can be interpreted as the elements of a

symmetric similarity matrix that can be analyzed in the framework of
Graph Theory. Note that the independent elements of the similarity

Fig. 2. Segmented parts of the NELIBS spectra depicting the spectral lines of the characteristic elements in each type of rocks.
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Fig. 3. The ratio of ionic to atomic spectral lines intensity of titanium for all
investigated rock samples.
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matrix are m (m – 1) /2 where m is the number of spectra to be clas-
sified. This number is independent on the size n of the LIBS components
that have to be considered in PCA analysis. It is worth mentioning that
no spectral pre-treatment should be applied before the Graph Theory
analysis. However, the expression of the correlation given by Eq. (1)
represents, in fact, the normalized scalar product between the spectra
and, therefore, does not depend on the integrated intensities of the
spectra.

3. Results and discussion

As an example of the effect of the nanoparticles on the LIBS spectra,
a two to three folds improvement of the intensity of the LIBS spectral

lines has been obtained when using the silver nanoparticles on the iron
ore rock sample as shown in Fig. 1. The spectra shown in this figure are
an average of 50 spectra in both cases, with and without nanoparticles.
Table 1 lists a comparison between the LIBS and NELIBS signal-to-noise
ratio for six main emission line; three in igneous rock samples, and the
other three in sedimentary rock samples. Dell'Aglio et al. [10] have
justified the noticeable enhancement in the intensity of the spectral
lines in the NELIBS spectra considering the significant role played by
the ablation and excitation mechanisms on the features of the laser-
induced plasma.

The remarkable field improvement in LIBS induced by the thin layer
of nanoparticles spread onto the non-conducting surface of the rock
samples is possibly a result of surface plasmon resonance (SPR), if the

Fig. 4. PCs score plot of the first three principal components (PC1, PC2, and PC3) for three types of sedimentary rocks for LIBS (a) and NELIBS (b).
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laser wavelength is in resonance with the local surface plasmon (LSP),
or a result of the effect of a laser irradiance higher than 1 GW/cm2 on
the NPs. In the first mechanism, the surface electron oscillation of the
nanoparticles increases the electromagnetic field resulting in localized
intense heating on the sample surface. In the second mechanism,
breakdown takes place in the nanoparticles, and the induced plasma is
transferred to the local part of the sample surface where such nano-
particles are deposited [9]. In the present work, the wavelength of the
used laser was 532 nm, which is not in resonance with the silver NPs
absorption peak at 420 nm [15]. Therefore, the enhancement in the
LIBS intensity is mainly due to the breakdown of the nanoparticles
under the effect of the intense laser irradiance. Accordingly, and be-
cause of the different mechanisms of the laser-induced plasma pro-
duction in conventional and nano-enhanced LIBS, two different optimal
configurations of the detection systems should be used for LIBS and

NELIBS techniques. However, the obtained experimental optimum va-
lues for the delay time (tD) and gate width (tG) revealed no significant
differences in both cases of LIBS and NELIBS; hence the same values for
tD and tG have been used throughout all carried out measurements. As
mentioned above, the detailed and logical justification for the en-
hancement achieved by NELIBS can be found in the theoretical calcu-
lations made by Dell'Aglio et al. in reference [10].

Fig. 2 depicts zoomed NELIBS spectra of three sedimentary and
three igneous rock samples using a laser fluence of 6.13 J/cm2 at
532 nm wavelength. Each spectrum is the average of 50 spectra ob-
tained from each of the rock samples. Given the intrinsic in-
homogeneity of the analyzed rocks, the measurements can be con-
sidered as independent having; as a result, an effective number of 300
samples, representing six types of rocks. The spectra demonstrate the
potential of NELIBS to present a fast result providing a fingerprint

Fig. 5. PCs score plot of the first three principal components (PC1, PC2, and PC3) for three types of igneous rocks for LIBS (a) and NELIBS (b).
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spectrum for each rock type just after simple measurements without
any additional pretreatment or preparation of the samples, besides the
deposition of the nanoparticles.

Many previous publications reported the possibility of estimating
the surface hardness of solid targets via the evaluation of the ionic to
the atomic intensity ratio of spectral lines in the relevant LIBS spectrum
[16,35,36]. To compare the surface hardness for the three sedimentary
rocks (siltstone, Fe-ore and Cu-ore) and the three igneous rocks
(granite, leucogranite and dolerite), the spectral lines intensity ratios of
the titanium spectral lines Ti II at 323.4 nm to Ti I at 296.6 nm were
estimated in the LIBS spectra of these rocks. The bar graph in Fig. 3
demonstrates a higher surface hardness of the igneous rocks compared
to the sedimentary ones (note the different scales on the y-axes in
Fig. 3). The relative surface hardness of each of the rock types in each
group, to each other, is also depicted in the same figure.

It is well known that in igneous rocks, the interspacing between the

medium size grains are small, contrary to the sedimentary rocks which
have fine grains with larger interspacing. This compositional fact ex-
plains the higher surface hardness of the igneous rocks compared to the
sedimentary ones [32]. The small interspacing, in case of igneous rocks,
also facilitates a better laser coupling efficiency and hence an improved
spectral lines intensity in the LIBS spectrum, as has been demonstrated
above.

3.1. Principal Component and Graph Theory Analysis of the LIBS Spectra

PCA was used to discriminate between the spectra of the rock
samples in each of the two groups, igneous and sedimentary. Because
most of the background from the continuum emission was avoided
through the time-gated measurements, there was no need for pre-
processing of the spectra used in the PCA. The score plots of the LIBS
and NELIBS data of the sedimentary rocks are shown in Fig. 4 a, and b
respectively. The whole spectral range (200–700 nm) was used in the
analysis since the use of specific spectral segments did not make any
substantial difference in the obtained results. In the case of LIBS, the
first three principal components constituted 90.5% of the total var-
iance, where PC1, PC2, and PC3 accounted for 62.0%, 23.1%, and 5.4%
respectively. The PCA score plot for NELIBS in Fig. 4b shows overall
improved discrimination with the three PCs constituted 92.4% of the
total variance, where PC1, PC2, and PC3 accounted for 74.4%, 12.7%,
and 5.3% respectively. It can be seen from Fig. 4a and b, that PCA
provides better discrimination results in case of NELIBS for the studied
sedimentary rocks.

For igneous rocks, the PCA score plots are depicted in Fig. 5a, and b.
The three PCs in case of LIBS (Fig. 5a) account for a total variance of
90.9% with 66.9, 17.5, and 6.5% variance for PC1, PC2, and PC3, re-
spectively. The plot shows some overlap between the dolerite and
granite clusters. By using the NELIBS data in the PCA analysis, Fig. 5b
does not show a clear difference compared to the LIBS data. The three
PCs constituted 89.4% of the total variance, where PC1, PC2, and PC3,
accounted to 63.3, 15.5 and 10.6% variance, respectively.

In general, NELIBS looks not very helpful in the classification of
such highly inhomogeneous rocks, where the reproducibility of the
spectra is not guaranteed.

The classification results obtained using the Graph Theory approach
are shown in Figs. 6 and 7. In this case, igneous and sedimentary rocks
were treated together. According to the results of PCA analysis, stan-
dard LIBS provides a more accurate classification compared to NELIBS
(see Table I for a comparison of the classification efficiency).

In Table 2, when all the rocks of a given type are grouped in the
same cluster, the classification is indicated as being 100% correct. In
the case of misclassification, it should be noticed whether the sample
was wrongly classified in a different class or if the automated Graph
Theory algorithm did not classify it. It can be seen from the table that
only 2 LIBS spectra over 300 (0.67%) are not classified, compared to the
33 NELIBS spectra (11%) that cannot be classified correctly using the
Graph Theory algorithm.

Concerning PCA, the Graph Theory method classifies granite and
dolerite (with both LIBS and NELIBS) correctly. Moreover, both LIBS
and NELIBS do not misclassify any sample, the difference between the
two approaches being the number of samples not assigned to any group
(0.67% of the total for LIBS against 11% for NELIBS).

This worse performance of NELIBS in the classification can be
probably explained given the poorer spectra reproducibility, due to the
difficulties in achieving the homogeneity of the NPs treatment on the
samples' surface which is originally inhomogeneous and porous. This
inhomogeneous distribution of the NP's, of course, reduces the corre-
lation between the spectra belonging to the same samples. To verify the
heterogeneity of the nanoparticles distribution onto the surface of the
samples; the intensity fluctuations of a couple of spectral lines in thirty
consecutive and adjacent LIBS and NELIBS spectra of a sedimentary
rock sample and an igneous rock sample are depicted in Fig. 8. The

Fig. 6. Graph Theory classification of the rock samples using LIBS spectra. Red:
Siltstone; Green: Leucogranite; Blue: Fe ore; Magenta: Granite; Yellow: Cu ore;
Cyan: Dolerite. (For interpretation of the references to colour in this figure le-
gend, the reader is referred to the web version of this article.)

Fig. 7. Graph Theory classification of the rock samples using NELIBS spectra.
The correspondence between rocks and colors is the same as in Fig. 6.

Table 2
– Classification of the geological samples. Black (Bold): LIBS, Red: NELIBS.

Siltstone Leucogr. Fe ore Granite Cu ore Dolerite

Siltstone 50 (50) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
Leucogr. 0 (0) 50 (43) 0 (0) 0 (0) 0 (0) 0 (0)
Fe ore 0 (0) 0 (0) 50 (50) 0 (0) 0 (0) 0 (0)
Granite 0 (0) 0 (0) 0 (0) 49 (45) 0 (0) 0 (0)
Cu ore 0 (0) 0 (0) 0 (0) 0 (0) 49 (34) 0 (0)
Dolerite 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 50 (45)
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large fluctuations in case of NELIBS compared to LIBS demonstrates the
inhomogeneous distribution of the nanoparticles onto the sample sur-
face.

4. Conclusion

Spectrochemical analysis of three sedimentary and three igneous
rock samples was performed via LIBS and NELIBS techniques.
Utilization of nanoparticles revealed a pronounced improvement in the
LIBS signal. The spectroscopic estimation of the surface hardness of the
samples via the ionic to atomic spectral lines intensity ratios demon-
strated that igneous samples are, in general, harder than the sedimen-
tary ones. The results presented in this work demonstrated that LIBS
represents a rapid method for classifying the studied igneous and se-
dimentary rocks, once the proper statistical tools are used. Although a
relatively good classification can be achieved using classical Principal
Component Analysis, the approach based on the Graph Theory gave
better results. Moreover, despite the improved signal to noise guaran-
teed by the NELIBS approach, compared to standard LIBS, it has been
demonstrated that standard LIBS, treated statistically, provides better
results on the considered geological samples. This result is interesting,
especially given applications of LIBS on natural materials with porous
and/or rough surfaces.
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