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Abstract.
The mechanics of power transmission is usually modeled by two different theories: the creep theory

and the shear theory. Recently, the authors introduced an alternative theory based on the brush model, which
allows to compute the tangential stress distribution along the winding arc of pulleys. The brushmodel is able
to predict the speed loss along the driving and driven pulley as a function of the transmission parameters
(e.g. pre-load, friction, pulley radii etc.) and the operating parameters (i.e. angular speed and resistant
torque). In addition, the energy efficiency of the system is obtained by knowing the speed loss and the
energy dissipation; this contribution can be subdivided into energy loss due to friction and energy loss due
to the non-recoverable elastic deformation of the bristle.

In the present paper, using the previously developed model, a sensitivity analysis aimed at mapping
the transmission capabilities as a function of geometry and operating parameters is proposed. These results,
given as look-up table (or contour plot), are very important in mechanical systems simulation (e.g. real-time
systems, hardware in the loop systems) since they allow to introduce the phenomenological behavior of the
pulley-belt transmission without introducing complex models in the simulation.

1. Introduction
Power transmission is a key-topic in mechanical engineering and pulley-belt transmissions are widely
used in many industrial applications. The mechanics of belt transmissions have been studied for centuries
and several models were proposed to describe the transmission capability and the transmission efficiency.
During XVIII century Euler was the first to link the tension of a rope along a pulley to the friction between
the rope/belt and the pulley. Later, the speed losses caused by belt deformation where considered by
Reynolds in 1875 and the effect of the centrifugal force was implemented by Grashof in 1883. More
recently many papers extended the Grashof model, often called creep model, including the effects of
inertia, bending stiffness, different belt cross section etc. All these models divide the winding arc along
the pulleys in two regions: the adhesion region and the sliding region. In the adhesion region, it is
assumed that the tangential stress between the belt and the pulley is zero and the belt tension does not
vary. On the other hand, micro-slip or creep occurs along the sliding region, due to tangential stresses
related to friction between belt and pulley. Alternatively to the creep model, Firbank in 1970 proposed a
model assuming that the angular deformation (shear) of the belt causes the belt tension variation along the
adhesion arc. This deformation is due to the tangential speed difference between belt and pulley. Even
if some hypotheses on the shear deformation are introduced, the Firbank model does not compute the
angular coordinate where slip begins considering friction limits, but divides the adhesion and slip regions



in order to satisfy the belt tension values at the entrance and at the exit of the pulley. The Firbank model
has also been extended in order to consider extensible belts [1].

In the paper [2] the authors introduced a new mechanical model, inspired to the ”brush model” used
in the description of the mechanical behavior of pneumatic tires [3]–[5], which can describe, in steady–
state conditions, the trend, along the contact arc, of the belt tension and the tangential stress between
belt and pulley. The detailed knowledge of the contact actions provides an estimate of the power losses
related to the contact between belt and pulleys and to the elastic deformation of the belt (see e.g. [4]).
The model considers the transition between static and dynamic friction based on Coulomb friction model
and faces with the stick–slip phenomenon which may occur along the winding arc. Indeed, Della Pietra
and Timpone in [6] measured the belt tension by means of strain gauges bonded on the belt surface
and observed the stick–slip phenomenon. Stick and slip is also mentioned in [7], where the normal and
tangential forces acting on the pulleys are measured by force transducers for the case of an abrasive belt.
In the literature, this phenomenon is considered also in papers studying the sliding of the rubber and is
investigated in [8]–[9]. In addition, in [10] the authors extended the ”brush model” to extensible belts by
introducing the continuity equations and discussed the effect of the belt elasticity on the main operating
parameters of a given transmission.

In the present paper, using the previously developed models, a sensitivity analysis aimed at
mapping the transmission capabilities as a function of geometry and operating parameters is proposed.
Transmission capability maps are presented showing the driven pulley speed and the transmission
efficiency as a function of driving pulley speed and resistant torque for different belt pre-loads, friction
coefficients, pulley radii, belt axial stiffness etc. These results, given as look-up table (or contour plot), are
very important in mechanical systems simulation (e.g. real-time systems, hardware in the loop systems)
since they allow to introduce the phenomenological behavior of the pulley-belt transmission without
introducing complex models in the simulation. In addition, the results are also useful during the design
phase of a transmission since they allow to select and, eventually, optimize the set of parameters, which
determine the transmission kinematics and efficiency.

2. Mathematical model of the belt transmission
The mathematical model implemented to perform the sensitivity analysis is the one developed in [10]
which is recalled in this section.

The belt is assumed as composed of the tension member, made of the reinforcement fibers which are
much stiffer than the rubber matrix, composed of a bed of elastically deformable bristles in contact with
the pulley. The model is planar and the following equations are valid per unit of width of the belt. Figure
1 shows a schematic of the problem where the main geometry, static and kinematic parameters are given:
Rdg and Rdn are the driving and the driven pulleys’ radii, ωdg and ωdn is the driving and driven pulley
angular velocity andMdg andMdn are the torques acting on the driving and driven pulley, respectively.

Considering the continuity equation, for a given angular coordinate α, the belt velocity Vb and the belt
tension T are linked by the following relationship

Vb(α) = v1
EA+ T (α)

EA+ T1
= v2

EA+ T (α)

EA+ T2
(1)

where T1 and T2 are the belt tension on the tight and slack side, respectively, EA represents the
longitudinal stiffness per unit width of the belt, v1 [v2] is the peripheral speed of the belt in correspondence
of the belt tension T1 [T2].

The bristles transmit a tangential stress τ to the pulley which is assumed proportional to the bristle
deformation s

τ = ks s (2)

being ks the bristle stiffness.
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Figure 1. Belt transmission schematic and brush model concept.

When a bristle enters into the pulley, the difference of speed between the tension member and the
peripheral speed of the pulley causes the bristle deformations and tangential stress due to friction between
the belt and the pulley. The static friction occurs until the adhesion limit condition is reached

τ ≤ τs = µs p (3)

where µs is the static friction coefficient and p is the normal pressure, which is given by the well known
relationship

p =
T − qV 2

b
R

(4)

with q the lineic mass of the belt.
Figures 2–3 shows a qualitative representation of the contact stress and the friction limit along the

driving pulley (left) and driven (right) pulley. As demonstrated analytically in [2] and [10], the contact
stress rises with the angular coordinate along both the driving and driven pulleys, up it reaches the friction
limit. Once the static friction limit has been reached, stick–slip can occur.

The tangential stress τ reaches the static friction limit τs in correspondence of the angular coordinates
called α(i)

s,dg (along the driving pulley) and α
(i)
s,dn (along the driven pulley). The index i counts the number

of occurrences for which the friction limit has been reached.
For each angular section included between two friction limit occurrences (α(i)

s,dg < α < α
(i+1)
s,dg ) along

the driving pulley, the belt tension expression is obtained [10] in closed–form as follows:

T
(i+1)
dg (α) =

−M +
(
M +N T (i)(αs,dg)

)
cosh

(√
N

(
α− α

(i)
s,dg

))
N

−
µd p(α

(i)
s,dg)Rdg sinh

(√
N

(
α− α

(i)
s,dg

))
√
N

(5)

where
M = −ks R

2
dg + ks v1

Rdg

ωdg

EA

EA+ T1
(6)
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Figure 2. Representation of the contact stress and
the friction limit: Driving pulley.
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Figure 3. Representation of the contact stress and
the friction limit: Driven pulley.

and
N =

ks v1Rdg

ωdg(EA+ T1)
(7)

Similarly, for α(i)
s,dn < α < α

(i+1)
s,dn along the driven pulley, the belt tension is

T
(i+1)
dn (α) =

−P +
(
P +Q T (i)(αs,dn)

)
cosh

(√
Q
(
α− α

(i)
s,dn

))
Q

+
µd p(α

(i)
s,dn)Rdn sinh

(√
Q
(
α− α

(i)
s,dg

))
√
Q

(8)

with
P = −ks R

2
dn + ks v2

Rdn
ωdn

EA

EA+ T2
(9)

and
Q =

ks v2Rdn
ωdn(EA+ T2)

(10)

3. Model implementation
The brush-model was implemented in the Mathematica© basing on the scheme shown in figure 4. Using
this model it is possible to obtain information about the transmission capability (e.g. transmissible
moment) and the efficiency of the belt-pulley system as a function of the input parameters.

The resistant torque Mdn applied to the driven pulley, the angular velocity ωdg of the driving pulley,
the belt pre–load T0 and the pulley radii, Rdg and Rdn are given as input parameters, along with the belt
pre–load T0; by solving the set of governing equations, the tensions on the tight and slack side of the belt
are determined.

The goal of the routine is to compute v1 and ωdn and to this aim two while-loops have been
implemented. The first while loop, assuming a first attempt velocity v(1)1 computes the belt tension at the
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Figure 4. Schematic of the flow chart explaining the model implementation.

exit from the driving pulley T (αdg) and compares it to the belt slack side tension T2. The error e
(i)
1 is

computed and it is used to correct the belt entering velocity, until the error is lower than the threshold ζ1.
Known v1, in a similar way the second while-loop computes the driven pulley angular velocity ωdn.

4. Energy efficiency computation
In this model the dissipated energy is divided in energy dissipated due to contact slip (friction) and
non-recoverable potential energy due to the deformation of the bristles exiting from the pulleys.
The transmission efficiency is the ratio between power transmitted by the driven and driving pulley
respectively, as follows

η =
Mdnωdn
Mdgωdg

(11)

In particular, as already done in [2], let Ddg and Ddn indicate the energy dissipated by friction, for the
driving and driven pulley, respectively:

Ddg =

Ndg∑
i=1

T (αi
dg)(s

i
dg(α

i
dg)− si+1

dg (αi
dg)) (12)

Ddn =

Ndn∑
i=1

T (αi
dn)(s

i
dn(α

i
dn)− si+1

dn (αi
dn)) (13)



where αi
dg and αi

dn are the angle on the driving or driven pulley where the friction limit is reached for the
i− th time, sis,dg and sis,dn represent the bristle slip which takes place at angular position αi

dg and αi
dn and

Ndg and Ndn represents the total number of slip events. The terms Udg and Udn are the elastic potential
energy stored in the bristle:

Udg =
1

2
ks s

2
dg(π) π Rdg (14)

Udn =
1

2
ks s

2
dn(π) π Rdn (15)

where sdg(π) and sdn(π) is the elastic deformation of the bristle exiting from the driving and driven pulley,
respectively.

5. Sensitivity analysis
In order to to test the model and to assess the transmission capability of a belt-pulley transmission, several
sensitivity analyses have been performed varying separately: the belt pre–load, the friction coefficient,
the angular velocity of the driven pulley and the belt stiffness. The reference parameters considered for
the model are those given in previous work [2] and [10] by the authors and summarized in table 1.

Table 1. Model parameters.
Symbol Parameter Units Value
Rdg Driving pulley radius mm 40
Rdn Driven pulley radius mm 40
ωdg Driving pulley angular velocity rad/s 300
ks Bristle stiffness N/m2 5.072 ×106

µd Dynamic friction coefficient - 0.3
µs Static friction coefficient - 0.36
q Belt mass per unit length kg/m 0.24
T0 Belt pre–load N 400
EA Belt stiffness N inf

5.1. Effect of the pre–load
The belt pre–load has been varied in the range 300–500N and the results in terms of driven pulley velocity
as a function of transmitted torque are shown in figure 5.

The results refers to the condition for which dynamic friction has been reached on both the driving
and driven pulleys. The extrapolation of the results in the region where static friction occurs along, at
least, one entire pulley is shown through dashed lines. For a given pre–load, as the torque rises, the driven
pulley velocity decreases up to an almost-vertical asymptote which represents the dynamic (stick–slip)
friction along the whole pulleys’ winding arc. As the pre–load rises the transmissible torque rises and the
velocity loss, for a given value of transmitted torque, is lower. It is worth noting that, since the pulley radii
are the same, the driving and driven torque are the same and, consequently, the velocity loss are directly
related to the efficiency of the transmission: indeed the efficiency is the ration between the driven pulley
angular velocity and the driving pulley angular velocity.

Figures 6–9 shows the energy dissipated due to friction along the driving and driven pulley, Ddg and
Ddn respectively, and the energy loss due to elastic potential energy stored in the bristle for the driving
and driven pulley,Udg andUdn respectively. These are refereed to an angular rotation of the driving pulley
of 180◦.

For a given pre–load the energy dissipated due to friction along both the driving and driven pulleys
rises as the transmitted torque rises, while the effect of the pre–load is similar to a translation in the



horizontal direction of the plot. The energy dissipated due to potential energy stored in the bristles at
the exit of the pulley slightly varies for a given pre–load and clearly increases as the pre–load rises. For
the driving pulley, except for very low values of transmitted torque, the energy dissipated due to friction
is much higher than the energy dissipated due to elastic energy stored at the exit of the pulley, which is
negligible. This is due to the fact that the bristle deformation at the exit of the pulley is low due to the
low value of the normal pressure. Globally, for a given working condition, the energy dissipated along
the driving pulley is higher than the energy dissipated along the driven pulley, mainly because the sliding
(stick–slip) arc along the driving pulley is larger.

5.2. Effect of the friction coefficient
Similarly to the belt pre–load, the friction coefficient between pulleys and belt has been varied in the
range 0.2–0.3 and the results in terms of driven pulley velocity as a function of transmitted torque are
shown in figure 10. The effect of the friction coefficient is very similar to the effect of the belt pre–load:
as the friction coefficient increases, the transmitted torque increases. Similar considerations to the one
already expressed in the pre–load section can be drawn also about the dissipated energy, whose trends
are shown in figures 11–14.

5.3. Effect of the driving pulley angular velocity
Figure 15 show the normalized velocity (ω̄dn = ωdn/ωdg) of the driven pulley as a function of the
transmitted torque for different angular velocities of the driving pulley.

The effects, both in terms of angular velocity and in terms of dissipated energy (figures 16–19), are
qualitatively comparable to the ones already discussed for the pre–load and friction coefficient variations.
In particular, as the angular speed of the driving pulley rises the transmissible torque reduces and the
velocity loss, for a given value of transmitted torque, rises. This effect is similar to a reduction of the
friction coefficient (or of the effective pre–load) and it is due to the centrifugal force which increases
following a quadratic law as the angular speed increases, producing a reduction of the normal pressure
between belt and pulley and consequently a reduction of the transmissible torque capability.

In order to support this hypothesis, a sensitivity analysis has been performed for different driving
pulley angular velocities computed without considering the lineic mass of the belt, excluding in this way
the effect of the centrifugal force. The results are shown in figure 20 and figures 21–24. As expected,
the results are overlapped for all the driving pulley angular velocities.

5.4. Effect of the belt elasticity
Finally, a sensitivity analysis was performed varying the belt stiffness per unit of width EA (where E is
the equivalent belt elasticity and A the cross-section area of the belt) in the range 50-700 kN. Figure 25
shows the driven pulley angular velocity as a function of the transmitted torque and figures 26–29 shows
the energy dissipated. In the considered stiffness range the effect of the elasticity is not pronounced and
some differences can be found only for very low value of stiffness (i.e. 50 or 100 kN), while for stiffer
belts the results are almost overlapped to the infinitely stiff belt. Where appreciable, the reduction of
the belt stiffness causes a slightly higher velocity loss for low transmitted torque (i.e. about 11 Nm) and
slightly higher energy dissipated due to friction; this effect can be ascribed to the fact that, as discussed
in [10], for lower values of belt stiffness the stick-slip zone is larger. On the contrary, for higher values
of transmitted torque the effect of the belt elasticity is not appreciable.
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Figure 5. Driven pulley velocity for different pre–
loads.
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Figure 6. Friction energy dissipated along for
different pre–loads - Driving pulley.
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Figure 7. Friction energy dissipated for different
pre–loads - Driven pulley.
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Figure 8. Potential energy stored in the belt for
different pre–loads - Driving pulley.
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Figure 9. Potential energy stored in the belt
exiting for different pre–loads - Driven Pulley.
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Figure 10. Driven pulley velocity for different
friction coefficients.
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Figure 11. Friction energy dissipated for
different friction coefficients - Driving pulley.
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Figure 12. Friction energy dissipated for
different friction coefficients - Driven pulley.
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Figure 13. Potential energy stored in the belt for
different friction coefficients - Driving pulley.
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Figure 14. Potential energy stored in the belt for
different friction coefficients - Driven pulley.
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Figure 16. Friction energy dissipated for different
driving pulley angular velocities - Driving pulley.
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Figure 17. Friction energy dissipated for different
driving pulley angular velocities - Driven pulley.

0 2 4 6 8 10 12 14 16 18

Torque (Nm)

0

0.02

0.04

0.06

0.08

0.1

U
d

g
 (

N
m

)

m
 = 200 rad/s

m
 = 250 rad/s

m
 = 300 rad/s

m
 = 350 rad/s

m
 = 400 rad/s

Figure 18. Potential energy stored in the belt
for different driving pulley angular velocities -
Driving pulley.
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Figure 19. Potential energy stored in the belt
for different driving pulley angular velocities -
Driven pulley.
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Figure 20. Normalized driven pulley velocity for
different angular velocities - No centrifugal force.
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Figure 21. Friction energy dissipated for different
driving pulley angular velocities - No centrifugal
force - Driving pulley.
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Figure 22. Friction energy dissipated for different
driving pulley angular velocities - No centrifugal
force - Driven pulley.
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Figure 23. Potential energy stored in the belt for
different driving pulley angular velocities - No
centrifugal force - Driving pulley.
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Figure 24. Potential energy stored in the belt for
different driving pulley angular velocities - No
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Figure 26. Friction energy dissipated along the
driving pulley for different belt stiffnesses.
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Figure 27. Friction energy dissipated along the
driven pulley for different belt stiffnesses.
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Figure 28. Potential energy stored in the belt
exiting from the driving pulley for different
different belt stiffnesses.
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exiting from the driven pulley for different belt
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6. Conclusions
In this paper a numerical sensitivity analysis of the transmission capability of a pulley-belt transmission
has been performed. The analysis considered steady-state operation of flat belts and it has been performed
using a model previously developed by the authors, based on ”brush” model, frequently used to model
pneumatic tire behavior. The simulations were performed imposing the angular velocity at the driving
pulley and the resistant torque at the driven pulley. The model allowed to compute the belt and the driven
pulley velocity and the dissipated energy.

The pre–load, the friction coefficient, the angular velocity of the driving pulley and the belt stiffness
have been varied, one at a time, in order to infer their effect on the transmission capability of the pulley-
belt system. As predictable, increasing the pre–load and the friction coefficient allows to transmit higher
values of torque and, for a given value of torque, to dissipate a lower amount of energy. Concerning the
angular velocity of the driving pulley, if it is increased the effect is opposite to the pre–load or friction
coefficient increase, because higher angular velocity causes higher velocity of the belt and, consequently,
higher values of centrifugal force, which reduces the effective tension of the belt and the normal pressure
between the belt and the pulley, negatively affecting the transmission capability. It is interesting to point
out that if the centrifugal force is neglected, assuming very low value of the lineic mass of the belt, the
effect of the variation of the driving pulley angular velocity is negligible in the analyzed range. Finally,
the belt elasticity has a very low effect on both the transmission capability and energy efficiency of the
system: some appreciable effects arise for very low value of belt stiffness which causes a reduction of
the transmission capability and an increase of the dissipated energy.

For each simulation the dissipated energy has been divided in energy dissipated due to sliding friction
and energy dissipated due to non-recoverable elastic deformation of the belt, on both the driving and the
driven pulley. The results showed that, for non-negligible values of transmitted torque, the higher source
of energy dissipation is friction along the driving pulley.

These results are very important in the simulation of transmission (e.g. real-time systems, hardware
in the loop systems) since they allow to introduce the phenomenological behavior of the pulley-belt
transmission without introducing complex and computationally heavy models in the simulation. An
experimental campaign has been planned to experimentally validate the model.
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